101
|
Santos M, D'Amico D, Dierssen M. From neural to genetic substrates of panic disorder: Insights from human and mouse studies. Eur J Pharmacol 2015; 759:127-41. [PMID: 25818748 DOI: 10.1016/j.ejphar.2015.03.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 01/15/2015] [Accepted: 03/12/2015] [Indexed: 01/30/2023]
Abstract
Fear is an ancestral emotion, an intrinsic defensive response present in every organism. Although fear is an evolutionarily advantageous emotion, under certain pathologies such as panic disorder it might become exaggerated and non-adaptive. Clinical and preclinical work pinpoints that changes in cognitive processes, such as perception and interpretation of environmental stimuli that rely on brain regions responsible for high-level function, are essential for the development of fear-related disorders. This review focuses on the involvement of cognitive function to fear circuitry disorders. Moreover, we address how animal models are contributing to understand the involvement of human candidate genes to pathological fear and helping achieve progress in this field. Multidisciplinary approaches that integrate human genetic findings with state of the art genetic mouse models will allow to elucidate the mechanisms underlying pathology and to develop new strategies for therapeutic targeting.
Collapse
Affiliation(s)
- Mónica Santos
- Cellular & Systems Neurobiology, Systems Biology Program, Center for Genomic Regulation (CRG), E-08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain; CIBER de Enfermedades Raras (CIBERER), E-08003 Barcelona, Spain; Institute of Biology, Otto-von-Guericke University, 39120 Magdeburg, Germany.
| | - Davide D'Amico
- Cellular & Systems Neurobiology, Systems Biology Program, Center for Genomic Regulation (CRG), E-08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain; CIBER de Enfermedades Raras (CIBERER), E-08003 Barcelona, Spain; ZeClinics SL, E-08001 Barcelona, Spain.
| | - Mara Dierssen
- Cellular & Systems Neurobiology, Systems Biology Program, Center for Genomic Regulation (CRG), E-08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain; CIBER de Enfermedades Raras (CIBERER), E-08003 Barcelona, Spain.
| |
Collapse
|
102
|
Fried EI. Problematic assumptions have slowed down depression research: why symptoms, not syndromes are the way forward. Front Psychol 2015; 6:309. [PMID: 25852621 PMCID: PMC4369644 DOI: 10.3389/fpsyg.2015.00309] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/04/2015] [Indexed: 12/16/2022] Open
Abstract
Major depression (MD) is a highly heterogeneous diagnostic category. Diverse symptoms such as sad mood, anhedonia, and fatigue are routinely added to an unweighted sum-score, and cutoffs are used to distinguish between depressed participants and healthy controls. Researchers then investigate outcome variables like MD risk factors, biomarkers, and treatment response in such samples. These practices presuppose that (1) depression is a discrete condition, and that (2) symptoms are interchangeable indicators of this latent disorder. Here I review these two assumptions, elucidate their historical roots, show how deeply engrained they are in psychological and psychiatric research, and document that they contrast with evidence. Depression is not a consistent syndrome with clearly demarcated boundaries, and depression symptoms are not interchangeable indicators of an underlying disorder. Current research practices lump individuals with very different problems into one category, which has contributed to the remarkably slow progress in key research domains such as the development of efficacious antidepressants or the identification of biomarkers for depression. The recently proposed network framework offers an alternative to the problematic assumptions. MD is not understood as a distinct condition, but as heterogeneous symptom cluster that substantially overlaps with other syndromes such as anxiety disorders. MD is not framed as an underlying disease with a number of equivalent indicators, but as a network of symptoms that have direct causal influence on each other: insomnia can cause fatigue which then triggers concentration and psychomotor problems. This approach offers new opportunities for constructing an empirically based classification system and has broad implications for future research.
Collapse
Affiliation(s)
- Eiko I. Fried
- Research Group of Quantitative Psychology and Individual Differences, Faculty of Psychology and Educational Sciences, University of LeuvenLeuven, Belgium
| |
Collapse
|
103
|
Terbeck S, Akkus F, Chesterman LP, Hasler G. The role of metabotropic glutamate receptor 5 in the pathogenesis of mood disorders and addiction: combining preclinical evidence with human Positron Emission Tomography (PET) studies. Front Neurosci 2015; 9:86. [PMID: 25852460 PMCID: PMC4364244 DOI: 10.3389/fnins.2015.00086] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/27/2015] [Indexed: 12/30/2022] Open
Abstract
In the present review, we deliver an overview of the involvement of metabotropic glutamate receptor 5 (mGluR5) activity and density in pathological anxiety, mood disorders and addiction. Specifically, we will describe mGluR5 studies in humans that employed Positron Emission Tomography (PET) and combined the findings with preclinical animal research. This combined view of different methodological approaches—from basic neurobiological approaches to human studies—might give a more comprehensive and clinically relevant view of mGluR5 function in mental health than the view on preclinical data alone. We will also review the current research data on mGluR5 along the Research Domain Criteria (RDoC). Firstly, we found evidence of abnormal glutamate activity related to the positive and negative valence systems, which would suggest that antagonistic mGluR5 intervention has prominent anti-addictive, anti-depressive and anxiolytic effects. Secondly, there is evidence that mGluR5 plays an important role in systems for social functioning and the response to social stress. Finally, mGluR5's important role in sleep homeostasis suggests that this glutamate receptor may play an important role in RDoC's arousal and modulatory systems domain. Glutamate was previously mostly investigated in non-human studies, however initial human clinical PET research now also supports the hypothesis that, by mediating brain excitability, neuroplasticity and social cognition, abnormal metabotropic glutamate activity might predispose individuals to a broad range of psychiatric problems.
Collapse
Affiliation(s)
- Sylvia Terbeck
- School of Psychology, Faculty of Health and Human Sciences, University of Plymouth Plymouth, UK
| | - Funda Akkus
- Division of Molecular Psychiatry, Translational Research Center, Psychiatric University Hospital, University of Bern Bern, Switzerland
| | | | - Gregor Hasler
- Division of Molecular Psychiatry, Translational Research Center, Psychiatric University Hospital, University of Bern Bern, Switzerland
| |
Collapse
|
104
|
Lisboa SF, Gomes FV, Silva AL, Uliana DL, Camargo LHA, Guimarães FS, Cunha FQ, Joca SRL, Resstel LBM. Increased Contextual Fear Conditioning in iNOS Knockout Mice: Additional Evidence for the Involvement of Nitric Oxide in Stress-Related Disorders and Contribution of the Endocannabinoid System. Int J Neuropsychopharmacol 2015; 18:pyv005. [PMID: 25618404 PMCID: PMC4571624 DOI: 10.1093/ijnp/pyv005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 01/12/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses. METHODS We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated. RESULTS Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning. CONCLUSION These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in situations where nitric oxide signaling is increased.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/metabolism
- Benzamides/pharmacology
- Benzoxazines/pharmacology
- Cannabinoid Receptor Agonists/pharmacology
- Cannabinoid Receptor Antagonists/pharmacology
- Carbamates/pharmacology
- Conditioning, Psychological/drug effects
- Conditioning, Psychological/physiology
- Endocannabinoids/metabolism
- Enzyme Inhibitors/pharmacology
- Extinction, Psychological/drug effects
- Extinction, Psychological/physiology
- Fear/drug effects
- Fear/physiology
- Freezing Reaction, Cataleptic/drug effects
- Freezing Reaction, Cataleptic/physiology
- Hippocampus/drug effects
- Hippocampus/metabolism
- Indazoles/pharmacology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type II/antagonists & inhibitors
- Nitric Oxide Synthase Type II/genetics
- Nitric Oxide Synthase Type II/metabolism
- Polyunsaturated Alkamides/metabolism
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/metabolism
- Pyrazoles/pharmacology
- RNA, Messenger/metabolism
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Stress, Psychological/metabolism
Collapse
Affiliation(s)
- Sabrina F Lisboa
- Department of Pharmacology, Medical School of Ribeirão Preto (Drs Lisboa, Gomes, Silva, Cunha, and Resstel, Ms Uliana and Ms Camargo), Department of Pharmacology, School of Pharmaceutical Sciences of Ribeirão Preto (Dr Joca), and Center for Interdisciplinary Research on Applied Neurosciences, University of São Paulo, Brazil (Drs Lisboa, Gomes, Guimarães, Joca, and Resstel).
| | - Felipe V Gomes
- Department of Pharmacology, Medical School of Ribeirão Preto (Drs Lisboa, Gomes, Silva, Cunha, and Resstel, Ms Uliana and Ms Camargo), Department of Pharmacology, School of Pharmaceutical Sciences of Ribeirão Preto (Dr Joca), and Center for Interdisciplinary Research on Applied Neurosciences, University of São Paulo, Brazil (Drs Lisboa, Gomes, Guimarães, Joca, and Resstel)
| | - Andréia L Silva
- Department of Pharmacology, Medical School of Ribeirão Preto (Drs Lisboa, Gomes, Silva, Cunha, and Resstel, Ms Uliana and Ms Camargo), Department of Pharmacology, School of Pharmaceutical Sciences of Ribeirão Preto (Dr Joca), and Center for Interdisciplinary Research on Applied Neurosciences, University of São Paulo, Brazil (Drs Lisboa, Gomes, Guimarães, Joca, and Resstel)
| | - Daniela L Uliana
- Department of Pharmacology, Medical School of Ribeirão Preto (Drs Lisboa, Gomes, Silva, Cunha, and Resstel, Ms Uliana and Ms Camargo), Department of Pharmacology, School of Pharmaceutical Sciences of Ribeirão Preto (Dr Joca), and Center for Interdisciplinary Research on Applied Neurosciences, University of São Paulo, Brazil (Drs Lisboa, Gomes, Guimarães, Joca, and Resstel)
| | - Laura H A Camargo
- Department of Pharmacology, Medical School of Ribeirão Preto (Drs Lisboa, Gomes, Silva, Cunha, and Resstel, Ms Uliana and Ms Camargo), Department of Pharmacology, School of Pharmaceutical Sciences of Ribeirão Preto (Dr Joca), and Center for Interdisciplinary Research on Applied Neurosciences, University of São Paulo, Brazil (Drs Lisboa, Gomes, Guimarães, Joca, and Resstel)
| | - Francisco S Guimarães
- Department of Pharmacology, Medical School of Ribeirão Preto (Drs Lisboa, Gomes, Silva, Cunha, and Resstel, Ms Uliana and Ms Camargo), Department of Pharmacology, School of Pharmaceutical Sciences of Ribeirão Preto (Dr Joca), and Center for Interdisciplinary Research on Applied Neurosciences, University of São Paulo, Brazil (Drs Lisboa, Gomes, Guimarães, Joca, and Resstel)
| | - Fernando Q Cunha
- Department of Pharmacology, Medical School of Ribeirão Preto (Drs Lisboa, Gomes, Silva, Cunha, and Resstel, Ms Uliana and Ms Camargo), Department of Pharmacology, School of Pharmaceutical Sciences of Ribeirão Preto (Dr Joca), and Center for Interdisciplinary Research on Applied Neurosciences, University of São Paulo, Brazil (Drs Lisboa, Gomes, Guimarães, Joca, and Resstel)
| | - Sâmia R L Joca
- Department of Pharmacology, Medical School of Ribeirão Preto (Drs Lisboa, Gomes, Silva, Cunha, and Resstel, Ms Uliana and Ms Camargo), Department of Pharmacology, School of Pharmaceutical Sciences of Ribeirão Preto (Dr Joca), and Center for Interdisciplinary Research on Applied Neurosciences, University of São Paulo, Brazil (Drs Lisboa, Gomes, Guimarães, Joca, and Resstel)
| | - Leonardo B M Resstel
- Department of Pharmacology, Medical School of Ribeirão Preto (Drs Lisboa, Gomes, Silva, Cunha, and Resstel, Ms Uliana and Ms Camargo), Department of Pharmacology, School of Pharmaceutical Sciences of Ribeirão Preto (Dr Joca), and Center for Interdisciplinary Research on Applied Neurosciences, University of São Paulo, Brazil (Drs Lisboa, Gomes, Guimarães, Joca, and Resstel)
| |
Collapse
|
105
|
Andreasen JT, Fitzpatrick CM, Larsen M, Skovgaard L, Nielsen SD, Clausen RP, Troelsen K, Pickering DS. Differential role of AMPA receptors in mouse tests of antidepressant and anxiolytic action. Brain Res 2015; 1601:117-26. [DOI: 10.1016/j.brainres.2015.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/14/2014] [Accepted: 01/01/2015] [Indexed: 12/30/2022]
|
106
|
Lavreysen H, Ahnaou A, Drinkenburg W, Langlois X, Mackie C, Pype S, Lütjens R, Le Poul E, Trabanco AA, Nuñez JMC. Pharmacological and pharmacokinetic properties of JNJ-40411813, a positive allosteric modulator of the mGlu2 receptor. Pharmacol Res Perspect 2015; 3:e00096. [PMID: 25692015 PMCID: PMC4317228 DOI: 10.1002/prp2.96] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/08/2014] [Indexed: 01/26/2023] Open
Abstract
Compounds modulating metabotropic glutamate type 2 (mGlu2) receptor activity may have therapeutic benefits in treating psychiatric disorders like schizophrenia and anxiety. The pharmacological and pharmacokinetic properties of a novel mGlu2 receptor-positive allosteric modulator (PAM), 1-butyl-3-chloro-4-(4-phenyl-1-piperidinyl)-2(1H)-pyridinone (JNJ-40411813/ADX71149) are described here. JNJ-40411813 acts as a PAM at the cloned mGlu2 receptor: EC50 = 147 ± 42 nmol/L in a [(35)S]GTPγS binding assay with human metabotropic glutamate type 2 (hmGlu2) CHO cells and EC50 = 64 ± 29 nmol/L in a Ca(2+) mobilization assay with hmGlu2 G α16 cotransfected HEK293 cells. [(35)S]GTPγS autoradiography on rat brain slices confirmed PAM activity of JNJ-40411813 on native mGlu2 receptor. JNJ-40411813 displaced [(3)H]JNJ-40068782 and [(3)H]JNJ-46281222 (mGlu2 receptor PAMs), while it failed to displace [(3)H]LY341495 (a competitive mGlu2/3 receptor antagonist). In rats, JNJ-40411813 showed ex vivo mGlu2 receptor occupancy using [(3)H]JNJ-46281222 with ED50 of 16 mg/kg (p.o.). PK-PD modeling using the same radioligand resulted in an EC50 of 1032 ng/mL. While JNJ-40411813 demonstrated moderate affinity for human 5HT2A receptor in vitro (K b = 1.1 μmol/L), higher than expected 5HT2A occupancy was observed in vivo (in rats, ED50 = 17 mg/kg p.o.) due to a metabolite. JNJ-40411813 dose dependently suppressed REM sleep (LAD, 3 mg/kg p.o.), and promoted and consolidated deep sleep. In fed rats, JNJ-40411813 (10 mg/kg p.o.) was rapidly absorbed (C max 938 ng/mL at 0.5 h) with an absolute oral bioavailability of 31%. Collectively, our data show that JNJ-40411813 is an interesting candidate to explore the therapeutic potential of mGlu2 PAMs, in in vivo rodents experiments as well as in clinical studies.
Collapse
Affiliation(s)
- Hilde Lavreysen
- Janssen Research & Development, Janssen Pharmaceutica NVBeerse, Belgium
| | - Abdellah Ahnaou
- Janssen Research & Development, Janssen Pharmaceutica NVBeerse, Belgium
| | | | - Xavier Langlois
- Janssen Research & Development, Janssen Pharmaceutica NVBeerse, Belgium
| | - Claire Mackie
- Janssen Research & Development, Janssen Pharmaceutica NVBeerse, Belgium
| | - Stefan Pype
- Janssen Research & Development, Janssen Pharmaceutica NVBeerse, Belgium
| | | | | | | | | |
Collapse
|
107
|
Réus GZ, Abaleira HM, Michels M, Tomaz DB, dos Santos MAB, Carlessi AS, Matias BI, Leffa DD, Damiani AP, Gomes VDC, Andrade VM, Dal-Pizzol F, Landeira-Fernadez J, Quevedo J. Anxious phenotypes plus environmental stressors are related to brain DNA damage and changes in NMDA receptor subunits and glutamate uptake. Mutat Res 2015; 772:30-37. [PMID: 25772108 DOI: 10.1016/j.mrfmmm.2014.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 06/04/2023]
Abstract
This study aimed at investigating the effects of chronic mild stress on DNA damage, NMDA receptor subunits and glutamate transport levels in the brains of rats with an anxious phenotype, which were selected to represent both the high-freezing (CHF) and low-freezing (CLF) lines. The anxious phenotype induced DNA damage in the hippocampus, amygdala and nucleus accumbens (NAc). CHF rats subjected to chronic stress presented a more pronounced DNA damage in the hippocampus and NAc. NMDAR1 were increased in the prefrontal cortex (PC), hippocampus and amygdala of CHF, and decreased in the hippocampus, amygdala and NAc of CHF stressed. NMDAR2A were decreased in the amygdala of the CHF and stressed; and increased in CHF stressed. NMDRA2A in the NAc was increased after stress, and decreased in the CLF. NMDAR2B were increased in the hippocampus of CLF and CHF. In the amygdala, there was a decrease in the NMDAR2B for stress in the CLF and CHF. NMDAR2B in the NAc were decreased for stress and increased in the CHF; in the PC NMDAR2B increased in the CHF. EAAT1 increased in the PC of CLF+stress. In the hippocampus, EAAT1 decreased in all groups. In the amygdala, EAAT1 decreased in the CLF+stress and CHF. EAAT2 were decreased in the PC for stress, and increased in CHF+control. In the hippocampus, the EAAT2 were increased for the CLF and decreased in the CLF+stress. In the amygdala, there was a decrease in the EATT2 in the CLF+stress and CHF. These findings suggest that an anxious phenotype plus stress may induce a more pronounced DNA damage, and promote more alterations in the glutamatergic system. These findings may help to explain, at least in part, the common point of the mechanisms involved with the pathophysiology of depression and anxiety.
Collapse
Affiliation(s)
- Gislaine Z Réus
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA.
| | - Helena M Abaleira
- Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| | - Monique Michels
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Débora B Tomaz
- Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| | - Maria Augusta B dos Santos
- Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| | - Anelise S Carlessi
- Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| | - Beatriz I Matias
- Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| | - Daniela D Leffa
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Adriani P Damiani
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Vitor de C Gomes
- Departamento de Engenharia de Biossistemas, Universidade Federal de São João del Rei, São João del Rei, MG, Brazil
| | - Vanessa M Andrade
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | | | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|
108
|
Wang Y, Ma Y, Cheng W, Jiang H, Zhang X, Li M, Ren J, Zhang X, Li X. Sexual differences in long‐term effects of prenatal chronic mild stress on anxiety‐like behavior and stress‐induced regional glutamate receptor expression in rat offspring. Int J Dev Neurosci 2015; 41:80-91. [DOI: 10.1016/j.ijdevneu.2015.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yan Wang
- College of Humanities and Social Sciences, Applied psychologyChina Medical UniversityShenyang110001China
| | - Yuchao Ma
- College of Humanities and Social Sciences, Applied psychologyChina Medical UniversityShenyang110001China
| | - Wenwen Cheng
- College of Humanities and Social Sciences, Applied psychologyChina Medical UniversityShenyang110001China
| | - Han Jiang
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyang110001China
| | - Xinxin Zhang
- The Research Center for Medical GenomicsKey Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of EducationChina Medical UniversityShenyang110001China
| | - Min Li
- College of Humanities and Social Sciences, Applied psychologyChina Medical UniversityShenyang110001China
| | - Jintao Ren
- College of Humanities and Social Sciences, Applied psychologyChina Medical UniversityShenyang110001China
| | - Xiaosong Zhang
- College of Humanities and Social Sciences, Applied psychologyChina Medical UniversityShenyang110001China
| | - Xiaobai Li
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyang110001China
| |
Collapse
|
109
|
Masoudian N, Riazi GH, Afrasiabi A, Modaresi SMS, Dadras A, Rafiei S, Yazdankhah M, Lyaghi A, Jarah M, Ahmadian S, Seidkhani H. Variations of glutamate concentration within synaptic cleft in the presence of electromagnetic fields: an artificial neural networks study. Neurochem Res 2015; 40:629-42. [PMID: 25577979 DOI: 10.1007/s11064-014-1509-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/20/2014] [Accepted: 12/26/2014] [Indexed: 12/31/2022]
Abstract
Glutamate is an excitatory neurotransmitter that is released by the majority of central nervous system synapses and is involved in developmental processes, cognitive functions, learning and memory. Excessive elevated concentrations of Glu in synaptic cleft results in neural cell apoptosis which is called excitotoxicity causing neurodegenerative diseases. Hence, we investigated the possibility of extremely low frequency electromagnetic fields (ELF-EMF) as a risk factor which is able to change Glu concentration in synaptic clef. Synaptosomes as a model of nervous terminal were exposed to ELF-EMF for 15-55 min in flux intensity range from 0.1 to 2 mT and frequency range from 50 to 230 Hz. Finally, all raw data by INForm v4.02 software as an artificial neural network program was analyzed to predict the effect of whole mentioned range spectra. The results showed the tolerance of all effects between the ranges from -35 to +40 % compared to normal state when glutamatergic systems exposed to ELF-EMF. It indicates that glutamatergic system attempts to compensate environmental changes though release or reuptake in order to keep the system safe. Regarding to the wide range of ELF-EMF acquired in this study, the obtained outcomes have potential for developing treatments based on ELF-EMF for some neurological diseases; however, in vivo experiments on the cross linking responses between glutamatergic and cholinergic systems in the presence of ELF-EMF would be needed.
Collapse
Affiliation(s)
- Neda Masoudian
- Institute of Biochemistry and Biophysics (I.B.B.), University of Tehran, Tehran, Iran
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Serotonin in fear conditioning processes. Behav Brain Res 2015; 277:68-77. [DOI: 10.1016/j.bbr.2014.07.028] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 12/17/2022]
|
111
|
Michels L, Schulte-Vels T, Schick M, O'Gorman RL, Zeffiro T, Hasler G, Mueller-Pfeiffer C. Prefrontal GABA and glutathione imbalance in posttraumatic stress disorder: preliminary findings. Psychiatry Res 2014; 224:288-95. [PMID: 25448399 DOI: 10.1016/j.pscychresns.2014.09.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/27/2014] [Accepted: 09/18/2014] [Indexed: 01/09/2023]
Abstract
Although posttraumatic stress disorder (PTSD) is associated with a variety of structural and functional brain changes, the molecular pathophysiological mechanisms underlying these macroscopic alterations are unknown. Recent studies support the existence of an altered excitation-inhibition balance in PTSD. Further, there is preliminary evidence from blood-sample studies suggesting heightened oxidative stress in PTSD, potentially leading to neural damage through excessive brain levels of free radicals. In this study we investigated PTSD (n=12) and non-PTSD participants (n=17) using single-voxel proton magnetic resonance spectroscopy (MRS) in dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC). We found significantly higher levels of γ-amino butyric acid (GABA) (a primary inhibitory neurotransmitter) and glutathione (a marker for neuronal oxidative stress) in PTSD participants. Atypically high prefrontal inhibition as well as oxidative stress may be involved in the pathogenesis of PTSD.
Collapse
Affiliation(s)
- Lars Michels
- Institute of Neuroradiology, University Hospital Zurich, Zurich, Switzerland.
| | - Thomas Schulte-Vels
- Department of Psychiatry and Psychotherapy, University Hospital Zurich, Zurich, Switzerland
| | - Matthis Schick
- Department of Psychiatry and Psychotherapy, University Hospital Zurich, Zurich, Switzerland
| | - Ruth L O'Gorman
- Center of MR-Research, University Children׳s Hospital Zurich, Zurich, Switzerland
| | - Thomas Zeffiro
- Neural Systems Group, Massachusetts General Hospital, Boston, MA, USA
| | - Gregor Hasler
- Psychiatric University Hospital, University of Bern, Bern, Switzerland
| | - Christoph Mueller-Pfeiffer
- Department of Psychiatry and Psychotherapy, University Hospital Zurich, Zurich, Switzerland; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center of Education and Research (COEUR), Psychiatric Services of the County of St. Gallen-North, Wil, Switzerland
| |
Collapse
|
112
|
Prasad KN, Bondy SC. Common biochemical defects linkage between post-traumatic stress disorders, mild traumatic brain injury (TBI) and penetrating TBI. Brain Res 2014; 1599:103-14. [PMID: 25553619 DOI: 10.1016/j.brainres.2014.12.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 12/29/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a complex mental disorder with psychological and emotional components, caused by exposure to single or repeated extreme traumatic events found in war, terrorist attacks, natural or man-caused disasters, and by violent personal assaults and accidents. Mild traumatic brain injury (TBI) occurs when the brain is violently rocked back and forth within the skull following a blow to the head or neck as in contact sports, or when in close proximity to a blast pressure wave following detonation of explosives in the battlefield. Penetrating TBI occurs when an object penetrates the skull and damages the brain, and is caused by vehicle crashes, gunshot wound to the head, and exposure to solid fragments in the proximity of explosions, and other combat-related head injuries. Despite clinical studies and improved understanding of the mechanisms of cellular damage, prevention and treatment strategies for patients with PTSD and TBI remain unsatisfactory. To develop an improved plan for treating and impeding progression of PTSD and TBI, it is important to identify underlying biochemical changes that may play key role in the initiation and progression of these disorders. This review identifies three common biochemical events, namely oxidative stress, chronic inflammation and excitotoxicity that participate in the initiation and progression of these conditions. While these features are separately discussed, in many instances, they overlap. This review also addresses the goal of developing novel treatments and drug regimens, aimed at combating this triad of events common to, and underlying, injury to the brain.
Collapse
Affiliation(s)
- Kedar N Prasad
- Antioxidant Research Institute, Premier Micronutrient Corporation, 14 Galli Drive, suite 200, Novato, CA 94949, USA.
| | - Stephen C Bondy
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA 92697-1830, USA.
| |
Collapse
|
113
|
Singewald N, Schmuckermair C, Whittle N, Holmes A, Ressler KJ. Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders. Pharmacol Ther 2014; 149:150-90. [PMID: 25550231 PMCID: PMC4380664 DOI: 10.1016/j.pharmthera.2014.12.004] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 12/24/2014] [Indexed: 12/20/2022]
Abstract
Pathological fear and anxiety are highly debilitating and, despite considerable advances in psychotherapy and pharmacotherapy they remain insufficiently treated in many patients with PTSD, phobias, panic and other anxiety disorders. Increasing preclinical and clinical evidence indicates that pharmacological treatments including cognitive enhancers, when given as adjuncts to psychotherapeutic approaches [cognitive behavioral therapy including extinction-based exposure therapy] enhance treatment efficacy, while using anxiolytics such as benzodiazepines as adjuncts can undermine long-term treatment success. The purpose of this review is to outline the literature showing how pharmacological interventions targeting neurotransmitter systems including serotonin, dopamine, noradrenaline, histamine, glutamate, GABA, cannabinoids, neuropeptides (oxytocin, neuropeptides Y and S, opioids) and other targets (neurotrophins BDNF and FGF2, glucocorticoids, L-type-calcium channels, epigenetic modifications) as well as their downstream signaling pathways, can augment fear extinction and strengthen extinction memory persistently in preclinical models. Particularly promising approaches are discussed in regard to their effects on specific aspects of fear extinction namely, acquisition, consolidation and retrieval, including long-term protection from return of fear (relapse) phenomena like spontaneous recovery, reinstatement and renewal of fear. We also highlight the promising translational value of the preclinial research and the clinical potential of targeting certain neurochemical systems with, for example d-cycloserine, yohimbine, cortisol, and L-DOPA. The current body of research reveals important new insights into the neurobiology and neurochemistry of fear extinction and holds significant promise for pharmacologically-augmented psychotherapy as an improved approach to treat trauma and anxiety-related disorders in a more efficient and persistent way promoting enhanced symptom remission and recovery.
Collapse
Affiliation(s)
- N Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| | - C Schmuckermair
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - N Whittle
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - A Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - K J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
114
|
Perna G, Schruers K, Alciati A, Caldirola D. Novel investigational therapeutics for panic disorder. Expert Opin Investig Drugs 2014; 24:491-505. [DOI: 10.1517/13543784.2014.996286] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Giampaolo Perna
- 1Hermanas Hospitalarias - Villa San Benedetto Menni Hospital, Department of Clinical Neurosciences, FoRiPsi, via Roma 16, 22032, Albese con Cassano, Como, Italy ;
- 2University of Maastricht, Medicine and Life Sciences, Department of Psychiatry and Neuropsychology, Faculty of Health, Maastricht, The Netherlands
- 3University of Miami, Leonard Miller School of Medicine, Department of Psychiatry and Behavioral Sciences, Miami, FL, USA
| | - Koen Schruers
- 2University of Maastricht, Medicine and Life Sciences, Department of Psychiatry and Neuropsychology, Faculty of Health, Maastricht, The Netherlands
- 4Faculty of Psychology, University of Leuven, Center for Learning and Experimental Psychology, Loeven, Belgium
| | - Alessandra Alciati
- 1Hermanas Hospitalarias - Villa San Benedetto Menni Hospital, Department of Clinical Neurosciences, FoRiPsi, via Roma 16, 22032, Albese con Cassano, Como, Italy ;
| | - Daniela Caldirola
- 1Hermanas Hospitalarias - Villa San Benedetto Menni Hospital, Department of Clinical Neurosciences, FoRiPsi, via Roma 16, 22032, Albese con Cassano, Como, Italy ;
| |
Collapse
|
115
|
Zhang J, Sheerin C, Mandel H, Banducci AN, Myrick H, Acierno R, Amstadter AB, Wang Z. Variation in SLC1A1 is related to combat-related posttraumatic stress disorder. J Anxiety Disord 2014; 28:902-7. [PMID: 25445080 DOI: 10.1016/j.janxdis.2014.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/17/2014] [Indexed: 10/24/2022]
Abstract
Candidate gene studies have yet to investigate the glutamate system, the primary excitatory neurotransmitter of the HPA-axis related to PTSD risk. We investigated 13 SNPs in the glutamate transporter gene (SLC1A1) in relation to PTSD among combat-exposed veterans. Participants (n=418) completed a diagnostic interview and provided a blood sample for DNA isolation and genotyping. A subset of participants (n=391) had severity and combat exposure data available. In the primary logistic regression gender and rs10739062 were significant predictors of PTSD diagnosis (OR=0.50; OR=1.43). In the linear regression analysis, combat exposure was the only significant predictor (β=0.16) of severity. A computed genetic risk sum score was significant in relation to PTSD diagnosis (OR=1.15) and severity scores (β=0.14) above and beyond the effects of combat exposure. This study provides preliminary support for the relationship of glutamate transporter polymorphisms to PTSD risk and the need for further genetic studies within this system.
Collapse
Affiliation(s)
- Jingmei Zhang
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | | | - Howard Mandel
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Anne N Banducci
- Center for Addictions, Personality, and Emotion Research, University of Maryland, College Park, MD, USA
| | - Hugh Myrick
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Ronald Acierno
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Ananda B Amstadter
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Zhewu Wang
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
| |
Collapse
|
116
|
Metabotropic glutamate receptor 5 binding in patients with obsessive-compulsive disorder. Int J Neuropsychopharmacol 2014; 17:1915-22. [PMID: 24833114 DOI: 10.1017/s1461145714000716] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is a disabling, mostly chronic, psychiatric condition with significant social and economic impairments and is a major public health issue. However, numerous patients are resistant to currently available pharmacological and psychological interventions. Given that recent animal studies and magnetic resonance spectroscopy research points to glutamate dysfunction in OCD, we investigated the metabotropic glutamate receptor 5 (mGluR5) in patients with OCD and healthy controls. We determined mGluR5 distribution volume ratio (DVR) in the brain of ten patients with OCD and ten healthy controls by using [11C]ABP688 positron-emission tomography. As a clinical measure of OCD severity, the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) was employed. We found no significant global difference in mGluR5 DVR between patients with OCD and healthy controls. We did, however, observe significant positive correlations between the Y-BOCS obsession sub-score and mGluR5 DVR in the cortico-striatal-thalamo-cortical brain circuit, including regions of the amygdala, anterior cingulate cortex, and medial orbitofrontal cortex (Spearman's ρ's⩾ = 0.68, p < 0.05). These results suggest that obsessions in particular might have an underlying glutamatergic pathology related to mGluR5. The research indicates that the development of metabotropic glutamate agents would be useful as a new treatment for OCD.
Collapse
|
117
|
Gudiño-Cabrera G, Ureña-Guerrero ME, Rivera-Cervantes MC, Feria-Velasco AI, Beas-Zárate C. Excitotoxicity triggered by neonatal monosodium glutamate treatment and blood-brain barrier function. Arch Med Res 2014; 45:653-9. [PMID: 25431840 DOI: 10.1016/j.arcmed.2014.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 12/21/2022]
Abstract
It is likely that monosodium glutamate (MSG) is the excitotoxin that has been most commonly employed to characterize the process of excitotoxicity and to improve understanding of the ways that this process is related to several pathological conditions of the central nervous system. Excitotoxicity triggered by neonatal MSG treatment produces a significant pathophysiological impact on adulthood, which could be due to modifications in the blood-brain barrier (BBB) permeability and vice versa. This mini-review analyzes this topic through brief descriptions about excitotoxicity, BBB structure and function, role of the BBB in the regulation of Glu extracellular levels, conditions that promote breakdown of the BBB, and modifications induced by neonatal MSG treatment that could alter the behavior of the BBB. In conclusion, additional studies to better characterize the effects of neonatal MSG treatment on excitatory amino acids transporters, ionic exchangers, and efflux transporters, as well as the role of the signaling pathways mediated by erythropoietin and vascular endothelial growth factor in the cellular elements of the BBB, should be performed to identify the mechanisms underlying the increase in neurovascular permeability associated with excitotoxicity observed in several diseases and studied using neonatal MSG treatment.
Collapse
Affiliation(s)
- Graciela Gudiño-Cabrera
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, México
| | - Monica E Ureña-Guerrero
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, México
| | - Martha C Rivera-Cervantes
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, México
| | - Alfredo I Feria-Velasco
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, México
| | - Carlos Beas-Zárate
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, México; División de Neurociencias, CIBO, IMSS, Guadalajara, Jalisco, México.
| |
Collapse
|
118
|
Zhou Q. GluN2B-NMDA receptors in Alzheimer's disease: beyond synapse loss and cell death. Neural Regen Res 2014; 9:1878-9. [PMID: 25558234 PMCID: PMC4281423 DOI: 10.4103/1673-5374.145346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2014] [Indexed: 11/25/2022] Open
Affiliation(s)
- Qiang Zhou
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
119
|
He Y, Zeng SY, Zhou SW, Qian GS, Peng K, Mo ZX, Zhou JY. Effects of rhynchophylline on GluN1 and GluN2B expressions in primary cultured hippocampal neurons. Fitoterapia 2014; 98:166-73. [PMID: 25110195 DOI: 10.1016/j.fitote.2014.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/28/2014] [Accepted: 08/01/2014] [Indexed: 01/06/2023]
Abstract
N-methyl-d-aspartate (NMDA) receptor subunits GluN1 and GluN2B in hippocampal neurons play key roles in anxiety. Our previous studies show that rhynchophylline, an active component of the Uncaria species, down-regulates GluN2B expression in the hippocampal CA1 area of amphetamine-induced rat. The effects of rhynchophylline on expressions of GluN1 and GluN2B in primary hippocampal neurons in neonatal rats in vitro were investigated. Neonatal hippocampal neurons were cultured with neurobasal-A medium. After incubation for 6h or 48 h with rhynchophylline (non-competitive NMDAR antagonist) and MK-801 (non-competitive NMDAR antagonist with anxiolytic effect, as the control drug) from day 6, neuron toxicity, mRNA and protein expressions of GluN1 and GluN2B were analyzed. GluN1 is mainly distributed on neuronal axons and dendritic trunks, cytoplasm and cell membrane near axons and dendrites. GluN2B is mainly distributed on the membrane, dendrites, and axon membranes. GluN1 and GluN2B are codistributed on dendritic trunks and dendritic spines. After 48 h incubation, a lower concentration of rhynchophylline (lower than 400 μmol/L) and MK-801 (lower than 200 μmol/L) have no toxicity on neonatal hippocampal neurons. Rhynchophylline up-regulated GluN1 mRNA expression at 6h and mRNA and protein expressions at 48h, but down-regulated GluN2B mRNA and protein expressions at 48 h. However, GluN1 and GluN2B mRNA expressions were down-regulated at 6h, and mRNA and protein expressions were both up-regulated by MK-801 at 48h. These findings show that rhynchophylline reciprocally regulates GluN1 and GluN2B expressions in hippocampal neurons, indicating a potential anxiolytic property for rhynchophylline.
Collapse
Affiliation(s)
- Yan He
- National Drug Clinical Trial Institution, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China; College of Traditional Chinese Medicine, Southern Medical University, Guangdong, Guangzhou 510515, PR China
| | - Sheng-Ya Zeng
- National Drug Clinical Trial Institution, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | - Shi-Wen Zhou
- National Drug Clinical Trial Institution, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | - Gui-Sheng Qian
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | - Kang Peng
- College of Traditional Chinese Medicine, Southern Medical University, Guangdong, Guangzhou 510515, PR China
| | - Zhi-Xian Mo
- College of Traditional Chinese Medicine, Southern Medical University, Guangdong, Guangzhou 510515, PR China
| | - Ji-Yin Zhou
- National Drug Clinical Trial Institution, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China.
| |
Collapse
|
120
|
Richter MA. Is anxiety best conceived as a unitary condition? The benefits of lumping compared with splitting . . CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2014; 59:291-3. [PMID: 25007402 PMCID: PMC4079147 DOI: 10.1177/070674371405900601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 03/01/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Margaret A Richter
- Head of Frederick W Thompson Anxiety Disorders Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario; Associate Professor of Psychiatry, University of Toronto, Toronto, Ontario
| |
Collapse
|
121
|
Grønli O, Kvamme JM, Jorde R, Wynn R. Vitamin D deficiency is common in psychogeriatric patients, independent of diagnosis. BMC Psychiatry 2014; 14:134. [PMID: 24884774 PMCID: PMC4022542 DOI: 10.1186/1471-244x-14-134] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 04/28/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Previous studies have found an association between psychiatric disorders and vitamin D deficiency, but most studies have focused on depression. This study aimed to establish the prevalence of vitamin D deficiency in elderly patients with a wider range of psychiatric diagnoses. METHOD The study included elderly patients (>64 years) referred to a psychiatric hospital in Northern Norway and a control group from a population survey in the same area. An assessment of psychiatric and cognitive symptoms and diagnoses was conducted using the Montgomery and Aasberg Depression Rating Scale, the Cornell Scale for Depression in Dementia, the Mini Mental State Examination, the Clockdrawing Test, and the Mini International Neuropsychiatric Interview (MINI+), as well as clinical interviews and a review of medical records. The patients' mean level of 25-hydroxyvitamin D (25(OH)D) and the prevalence of vitamin D deficiency were compared with those of a control group, and a comparison of vitamin D deficiency across different diagnostic groups was also made. Vitamin D deficiency was defined as 25(OH)D <50 nmol/L (<20 ng/ml). RESULTS The mean levels of 25(OH)D in the patient group (n = 95) and the control group (n = 104) were 40.5 nmol/L and 65.9 nmol/L (p < 0.001), respectively. A high prevalence of vitamin D deficiency was found in the patient group compared with the control group (71.6% and 20.0%, respectively; p < 0.001). After adjusting for age, gender, season, body mass index, and smoking, vitamin D deficiency was still associated with patient status (OR: 12.95, CI (95%): 6.03-27.83, p < 0.001). No significant differences in the prevalence of vitamin D deficiency were found between patients with different categories of psychiatric diagnoses, such as depression, bipolar disorders, psychosis, and dementia. CONCLUSION Vitamin D deficiency is very common among psychogeriatric patients, independent of diagnostic category. Even though the role of vitamin D in psychiatric disorders is still not clear, we suggest screening for vitamin D deficiency in this patient group due to the importance of vitamin D for overall health.
Collapse
Affiliation(s)
- Ole Grønli
- Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway.
| | - Jan Magnus Kvamme
- Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway,University Hospital of North Norway, Tromsø, Norway
| | - Rolf Jorde
- Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway,University Hospital of North Norway, Tromsø, Norway
| | - Rolf Wynn
- Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway,University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
122
|
Yin S, Niswender CM. Progress toward advanced understanding of metabotropic glutamate receptors: structure, signaling and therapeutic indications. Cell Signal 2014; 26:2284-97. [PMID: 24793301 DOI: 10.1016/j.cellsig.2014.04.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 04/27/2014] [Indexed: 12/24/2022]
Abstract
The metabotropic glutamate (mGlu) receptors are a group of Class C seven-transmembrane spanning/G protein-coupled receptors (7TMRs/GPCRs). These receptors are activated by glutamate, one of the standard amino acids and the major excitatory neurotransmitter. By activating G protein-dependent and non-G protein-dependent signaling pathways, mGlus modulate glutamatergic transmission both in the periphery and throughout the central nervous system. Since the discovery of the first mGlu receptor, and especially during the last decade, a great deal of progress has been made in understanding the signaling, structure, pharmacological manipulation and therapeutic indications of the 8 mGlu members.
Collapse
Affiliation(s)
- Shen Yin
- Department of Pharmacology, Vanderbilt University Medical School, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical School, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University Medical School, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical School, Nashville, TN 37232, USA.
| |
Collapse
|
123
|
Xiong XQ, Chen WW, Zhu GQ. Adipose afferent reflex: sympathetic activation and obesity hypertension. Acta Physiol (Oxf) 2014; 210:468-78. [PMID: 24118791 DOI: 10.1111/apha.12182] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/05/2013] [Accepted: 10/09/2013] [Indexed: 01/09/2023]
Abstract
Excessive sympathetic activity contributes to the pathogenesis of hypertension and the progression of the related organ damage. Adipose afferent reflex (AAR) is a sympatho-excitatory reflex that the afferent activity from white adipose tissue (WAT) increases sympathetic outflow and blood pressure. Hypothalamic paraventricular nucleus (PVN or PVH) is one of the central sites in the control of the AAR, and ionotropic glutamate receptors in the nucleus mediate the AAR. The AAR is enhanced in obesity and obesity hypertension. Enhanced WAT afferent activity and AAR contribute to the excessive sympathetic activation and hypertension in obesity. Blockage of the AAR attenuates the excessive sympathetic activity and hypertension. Leptin may be one of sensors in the WAT for the AAR, and is involved in the enhanced AAR in obesity and hypertension. This review focuses on the neuroanatomical basis and physiological functions of the AAR, and the important role of the enhanced AAR in the pathogenesis of obesity hypertension.
Collapse
Affiliation(s)
- X.-Q. Xiong
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing 210029 China
| | - W.-W. Chen
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing 210029 China
| | - G.-Q. Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing 210029 China
| |
Collapse
|
124
|
Lisboa S, Magesto A, Aguiar J, Resstel L, Guimarães F. Complex interaction between anandamide and the nitrergic system in the dorsolateral periaqueductal gray to modulate anxiety-like behavior in rats. Neuropharmacology 2013; 75:86-94. [DOI: 10.1016/j.neuropharm.2013.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/16/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022]
|
125
|
Oncken C, Arias AJ, Feinn R, Litt M, Covault J, Sofuoglu M, Kranzler HR. Topiramate for smoking cessation: a randomized, placebo-controlled pilot study. Nicotine Tob Res 2013; 16:288-96. [PMID: 24057996 DOI: 10.1093/ntr/ntt141] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Topiramate (TOP) blocks glutamate receptors and facilitates GABA (γ-aminobutyric acid) neurotransmission, effects that may facilitate smoking cessation. We compared the effects of behavioral counseling combined with (a) TOP, (b) TOP/nicotine patch (TOP/NIC), or (c) placebo (PLC) for smoking cessation. METHODS We conducted a 10-week randomized trial in which subjects and research personnel were blinded to TOP versus PLC but not to the TOP/NIC patch condition. In groups receiving TOP, the medication dosage was titrated gradually up to 200 mg/day. The smoking quit date (QD) was scheduled after 2 weeks of medication treatment. NIC (21 mg) was started on the QD in subjects randomized to the TOP/NIC condition. The main outcome measure was the end-of-treatment, 4-week continuous abstinence rate (CAR; biochemically confirmed). RESULTS Fifty-seven subjects were randomized to treatment. The 4-week CAR was 1 of 19 (5%) in the PLC group, 5 of 19 (26%) in the TOP group, and 7 of 19 (37%) in the TOP/NIC group (p = .056). Pairwise comparisons showed a difference between TOP/NIC and PLC (p = .042) and a nonsignificant difference between TOP and PLC (p = .18). The PLC group gained 0.37 lb/week, the TOP group lost 0.41 lb/week, and the TOP/NIC group lost 0.07 lb/week (p = .004). Pairwise comparisons showed a difference between TOP and PLC (p < .001) and between TOP/NIC and PLC groups (p = .035). Paresthesia was more frequent in subjects on TOP than PLC (p = .011). CONCLUSIONS TOP, alone or in combination with the NIC, resulted in a numerically higher quit rate than PLC and decreased weight. A larger, PLC-controlled trial is needed to confirm these findings.
Collapse
Affiliation(s)
- Cheryl Oncken
- Department of Medicine and Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT
| | | | | | | | | | | | | |
Collapse
|
126
|
Involvement of NR1, NR2A different expression in brain regions in anxiety-like behavior of prenatally stressed offspring. Behav Brain Res 2013; 257:1-7. [PMID: 24029697 DOI: 10.1016/j.bbr.2013.08.044] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/12/2013] [Accepted: 08/27/2013] [Indexed: 11/24/2022]
Abstract
Prenatal stress (PS) has been shown to be associated with anxiety. However, the underlying neurological mechanisms are not well understood. To determine the effects of PS on anxiety-like behavior in the adult offspring, we evaluated anxiety-like behavior using open field test (OFT) and elevated plus maze (EPM) in the 3-month offspring. Both male and female offspring showed a significant reduction of crossing counts in the center, total crossing counts, rearing counts and time spent in the center in the OFT, and only male offspring showed a decreased percentage of open-arm entries and open-arm time in open arms in the EPM. Additionally, expression of NR1 and NR2A subunit of N-methyl-D-aspartate receptor (NMDAR) in the hippocampus (HIP), prefrontal cortex (PFC) and striatum (STR) was studied. Our results showed that PS reduced NR1 and NR2A expression in the HIP, NR2A expression in the PFC and STR in the offspring. The altered NR1 and NR2A could have potential impact on anxiety-like behavior in the adult offspring exposed to PS.
Collapse
|
127
|
Burghardt N, Bauer E. Acute and chronic effects of selective serotonin reuptake inhibitor treatment on fear conditioning: Implications for underlying fear circuits. Neuroscience 2013; 247:253-72. [DOI: 10.1016/j.neuroscience.2013.05.050] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/14/2013] [Accepted: 05/20/2013] [Indexed: 12/24/2022]
|
128
|
Sokolowski M, Ben-Efraim YJ, Wasserman J, Wasserman D. Glutamatergic GRIN2B and polyaminergic ODC1 genes in suicide attempts: associations and gene-environment interactions with childhood/adolescent physical assault. Mol Psychiatry 2013; 18:985-92. [PMID: 22850629 DOI: 10.1038/mp.2012.112] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 06/20/2012] [Accepted: 06/26/2012] [Indexed: 12/21/2022]
Abstract
The complex etiology of suicidal behavior has frequently been investigated in relation to monoaminergic neurotransmission, but other neurosystems have shown alterations as well, involving excitatory glutamatergic and inhibitory γ-aminobutyric acid (GABA) molecular components, together with the modulating polyamines. Sufficiently powered and family-based association studies of glutamatergic and GABAergic genes with suicidal behavior are nonexistent, but several studies have been reported for polyamines. We therefore conducted, for the first time ever, an extensive family-based study of 113 candidate single-nucleotide polymorphisms (SNPs) located in 24 glutamatergic and GABA genes, in addition to interrelated polyaminergic genes, on the outcome of severe suicide attempts (SAs). The family-based analysis (n=660 trios) was supplemented with gene-environment interaction (G × E), case-control (n=519 controls) and subgroup analyses. The main observations were the previously unreported association and linkage of SNPs rs2268115 and rs220557 in GRIN2B, as well as of SNPs rs1049500 and rs2302614 in ODC1 (P<10(-2)). Furthermore, GRIN2B haplotypic associations were observed, in particular with a four-SNP AGGC haplotype (rs1805247-rs1806201-rs1805482-rs2268115; P<10(-5)), and a third SNP rs7559979 in ODC1 showed G × E with serious childhood/adolescent physical assault (P<10(-4)). SA subjects were characterized by transdiagnostic trait anger and past year alcohol-drug use disorders, but not by alcohol-drug use at SA, depression, anxiety or psychosis diagnoses. We also discuss a first ever confirmatory observation of SNP rs6526342 (polyaminergic SAT1) in SA, originally identified in completed suicides. The results suggest that specific genetic variants in a subset of glutamatergic (GRIN2B) and polyaminergic (ODC1) neurosystem genes may be of importance in certain suicidal subjects.
Collapse
Affiliation(s)
- M Sokolowski
- National Centre for Suicide Research and Prevention of Mental Ill-Health, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
129
|
Cui BP, Li P, Sun HJ, Ding L, Zhou YB, Wang JJ, Kang YM, Zhu GQ. Ionotropic glutamate receptors in paraventricular nucleus mediate adipose afferent reflex and regulate sympathetic outflow in rats. Acta Physiol (Oxf) 2013; 209:45-54. [PMID: 23782804 DOI: 10.1111/apha.12125] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/15/2013] [Accepted: 05/28/2013] [Indexed: 12/27/2022]
Abstract
AIM Chemical stimulation of white adipose tissue (WAT) induces adipose afferent reflex (AAR) and results in increases in renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP). The enhanced AAR contributes to sympathetic activation and hypertension in obesity rats. This study was designed to investigate whether N-methyl-D-aspartate receptors (NMDAR) and non-NMDAR in paraventricular nucleus (PVN) modulate AAR and sympathetic outflow. METHODS Renal sympathetic nerve activity and MAP were recorded in anesthetized rats. AAR was evaluated by the RSNA and MAP responses to the injection of capsaicin into the four sites of right inguinal WAT (8.0 nmol for each site). RESULTS Bilateral PVN microinjection of NMDAR antagonist AP5 or MK-801, or non-NMDAR antagonist CNQX attenuated AAR, RSNA and MAP. AP5 + CNQX caused greater effects than AP5 or CNQX alone and almost abolished AAR. NMDAR agonist NMDA or non-NMDAR agonist AMPA enhanced the AAR, and increased RSNA and MAP, which were prevented by AP5 or CNQX pre-treatment respectively. Casein kinase 2 inhibitor DRB, NR2A antagonist NVP-AAM077 or NR2B antagonist CP-101,606 attenuated AAR, RSNA and MAP. NVP-AAM077 + CP-101,606 caused greater effects than NVP-AAM077 or CP-101,606 alone. Bilateral baroreceptor denervation and vagotomy enhanced AAR, which was abolished by PVN pre-treatment with AP5 + CNQX. Furthermore, AP5 + CNQX abolished the AAR induced by leptin in iWAT. CONCLUSION Both NMDAR and non-NMDAR in the PVN mediate AAR and contribute to the tonic control of sympathetic outflow and blood pressure. CK2, NR2A and NR2B subunits of NMDAR in the PVN are involved in the NMDAR-mediated tonic control of AAR, RSNA and MAP.
Collapse
Affiliation(s)
- B.-P. Cui
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing; Jiangsu; China
| | - P. Li
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing; Jiangsu; China
| | - H.-J. Sun
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing; Jiangsu; China
| | - L. Ding
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing; Jiangsu; China
| | - Y.-B. Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing; Jiangsu; China
| | - J.-J. Wang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing; Jiangsu; China
| | - Y.-M. Kang
- Department of Physiology and Pathophysiology; Cardiovascular Research Center; Xi'an Jiaotong University School of Medicine; Xi'an; China
| | - G.-Q. Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing; Jiangsu; China
| |
Collapse
|
130
|
Cerebrospinal fluid glutamate concentration correlates with impulsive aggression in human subjects. J Psychiatr Res 2013; 47:1247-53. [PMID: 23791397 PMCID: PMC3980459 DOI: 10.1016/j.jpsychires.2013.05.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/02/2013] [Indexed: 01/08/2023]
Abstract
Neurochemical studies have pointed to a modulatory role in human aggression for various central neurotransmitters. Some (e.g., serotonin) appear to play an inhibitory role, while others appear to play a facilitator role. While recent animal studies of glutaminergic activity suggest a facilitator role for central glutamate in the modulation of aggression, no human studies of central glutaminergic indices have yet been reported regarding aggression. Basal lumbar cerebrospinal fluid (CSF) was obtained from 38 physically healthy subjects with DSM-IV Personality Disorder (PD: n = 28) and from Healthy Volunteers (HV: n = 10) and assayed for glutamate, and other neurotransmitters, in CSF and correlated with measures of aggression and impulsivity. CSF Glutamate levels did not differ between the PD and HC subjects but did directly correlate with composite measures of both aggression and impulsivity and a composite measure of impulsive aggression in both groups. These data suggest a positive relationship between CSF Glutamate levels and measures of impulsive aggression in human subjects. Thus, glutamate function may contribute to the complex central neuromodulation of impulsive aggression in human subjects.
Collapse
|
131
|
Effects of group II and III metabotropic glutamate receptor ligands on conditioned taste aversion learning. Behav Brain Res 2013; 253:9-16. [DOI: 10.1016/j.bbr.2013.06.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 06/22/2013] [Accepted: 06/27/2013] [Indexed: 12/13/2022]
|
132
|
Neelkantan N, Mikhaylova A, Stewart AM, Arnold R, Gjeloshi V, Kondaveeti D, Poudel MK, Kalueff AV. Perspectives on zebrafish models of hallucinogenic drugs and related psychotropic compounds. ACS Chem Neurosci 2013; 4:1137-50. [PMID: 23883191 DOI: 10.1021/cn400090q] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Among different classes of psychotropic drugs, hallucinogenic agents exert one of the most prominent effects on human and animal behaviors, markedly altering sensory, motor, affective, and cognitive responses. The growing clinical and preclinical interest in psychedelic, dissociative, and deliriant hallucinogens necessitates novel translational, sensitive, and high-throughput in vivo models and screens. Primate and rodent models have been traditionally used to study cellular mechanisms and neural circuits of hallucinogenic drugs' action. The utility of zebrafish ( Danio rerio ) in neuroscience research is rapidly growing due to their high physiological and genetic homology to humans, ease of genetic manipulation, robust behaviors, and cost effectiveness. Possessing a fully characterized genome, both adult and larval zebrafish are currently widely used for in vivo screening of various psychotropic compounds, including hallucinogens and related drugs. Recognizing the growing importance of hallucinogens in biological psychiatry, here we discuss hallucinogenic-induced phenotypes in zebrafish and evaluate their potential as efficient preclinical models of drug-induced states in humans.
Collapse
Affiliation(s)
- Nikhil Neelkantan
- Zebrafish Neuroscience Research Consortium (ZNRC) and ZENEREI Institute, 309
Palmer Court, Slidell, Louisiana 70458, United States
- Departments of Physiology and
Pharmacology, International American University College of Medicine, Vieux Fort, St. Lucia, WI
| | - Alina Mikhaylova
- Zebrafish Neuroscience Research Consortium (ZNRC) and ZENEREI Institute, 309
Palmer Court, Slidell, Louisiana 70458, United States
- Departments of Physiology and
Pharmacology, International American University College of Medicine, Vieux Fort, St. Lucia, WI
| | - Adam Michael Stewart
- Zebrafish Neuroscience Research Consortium (ZNRC) and ZENEREI Institute, 309
Palmer Court, Slidell, Louisiana 70458, United States
- Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh,
Pennsylvania 15260, United States
| | - Raymond Arnold
- Zebrafish Neuroscience Research Consortium (ZNRC) and ZENEREI Institute, 309
Palmer Court, Slidell, Louisiana 70458, United States
- Departments of Physiology and
Pharmacology, International American University College of Medicine, Vieux Fort, St. Lucia, WI
| | - Visar Gjeloshi
- Zebrafish Neuroscience Research Consortium (ZNRC) and ZENEREI Institute, 309
Palmer Court, Slidell, Louisiana 70458, United States
| | - Divya Kondaveeti
- Zebrafish Neuroscience Research Consortium (ZNRC) and ZENEREI Institute, 309
Palmer Court, Slidell, Louisiana 70458, United States
| | - Manoj K. Poudel
- Zebrafish Neuroscience Research Consortium (ZNRC) and ZENEREI Institute, 309
Palmer Court, Slidell, Louisiana 70458, United States
- Departments of Physiology and
Pharmacology, International American University College of Medicine, Vieux Fort, St. Lucia, WI
| | - Allan V. Kalueff
- Zebrafish Neuroscience Research Consortium (ZNRC) and ZENEREI Institute, 309
Palmer Court, Slidell, Louisiana 70458, United States
| |
Collapse
|
133
|
Ahmadi H, Nasehi M, Rostami P, Zarrindast MR. Involvement of the nucleus accumbens shell dopaminergic system in prelimbic NMDA-induced anxiolytic-like behaviors. Neuropharmacology 2013; 71:112-23. [DOI: 10.1016/j.neuropharm.2013.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 03/21/2013] [Accepted: 03/23/2013] [Indexed: 01/21/2023]
|
134
|
Zwanzger P, Zavorotnyy M, Gencheva E, Diemer J, Kugel H, Heindel W, Ruland T, Ohrmann P, Arolt V, Domschke K, Pfleiderer B. Acute shift in glutamate concentrations following experimentally induced panic with cholecystokinin tetrapeptide--a 3T-MRS study in healthy subjects. Neuropsychopharmacology 2013; 38:1648-54. [PMID: 23463151 PMCID: PMC3717541 DOI: 10.1038/npp.2013.61] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/05/2013] [Accepted: 02/08/2013] [Indexed: 01/04/2023]
Abstract
According to preclinical studies, glutamate has been implicated in the pathogenesis of anxiety. In order to elucidate the role of glutamate in anxiety and panic in humans, brain glutamate+glutamine (Glx) levels were measured during cholecystokinin-tetrapeptide (CCK-4)-induced panic using magnetic resonance spectroscopy (MRS). Eighteen healthy subjects underwent a CCK-4 challenge. MR spectra were obtained from the anterior cingulate cortex (ACC) using a single voxel point-resolved spectroscopy method and analyzed using LCModel. A combined fitting of Glx was performed. Panic was assessed using the Acute Panic Inventory (API) and Panic Symptom Scale (PSS) scores. Moreover, hypothalamic-pituitary-adrenal axis stimulation was monitored throughout the challenge. There was a significant panic response following CCK-4 as revealed by a marked increase in both the panic scores (API: F(1,17)=149.41; p<0.0001; PSS: F(1,17)=88.03; p<0.0001) and heart rate (HR: F(1,17)=72.79; p<0.0001). MRS measures showed a significant increase of brain Glx/creatine (Glx/Cr) levels peaking at 2-10 min after challenge (F(1,17)=15.94; p=0.001). There was also a significant increase in CCK-4-related cortisol release (F(6,11)=8.68; p=0.002). Finally, significant positive correlations were found between baseline Glx/Cr and both APImax (r=0.598; p=0.009) and maximum heart rate (HR(max)) during challenge (r=0.519; p=0.027). Our results suggest that CCK-4-induced panic is accompanied by a significant glutamate increase in the bilateral ACC. The results add to the hypothesis of a disturbance of the inhibitory-excitatory equilibrium and suggest that apart from static alterations rapid and dynamic neurochemical changes might also be relevant for the neural control of panic attacks.
Collapse
Affiliation(s)
- Peter Zwanzger
- Mood and Anxiety Disorders Research Unit, Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany.
| | - Maxim Zavorotnyy
- Mood and Anxiety Disorders Research Unit, Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Elena Gencheva
- Mood and Anxiety Disorders Research Unit, Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Julia Diemer
- Mood and Anxiety Disorders Research Unit, Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Harald Kugel
- Department of Clinical Radiology, University of Muenster, Muenster, Germany
| | - Walter Heindel
- Department of Clinical Radiology, University of Muenster, Muenster, Germany
| | - Tillmann Ruland
- Mood and Anxiety Disorders Research Unit, Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Patricia Ohrmann
- Mood and Anxiety Disorders Research Unit, Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Volker Arolt
- Mood and Anxiety Disorders Research Unit, Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Katharina Domschke
- Mood and Anxiety Disorders Research Unit, Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany,Department of Psychiatry, University of Wuerzburg, Wuerzburg, Germany
| | - Bettina Pfleiderer
- Department of Clinical Radiology, University of Muenster, Muenster, Germany
| |
Collapse
|
135
|
Acute stress symptoms do not worsen in posttraumatic stress disorder and abuse with a single subanesthetic dose of ketamine. Biol Psychiatry 2013; 73:e37-8. [PMID: 23245747 DOI: 10.1016/j.biopsych.2012.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 10/03/2012] [Indexed: 11/22/2022]
|
136
|
Burghardt NS, Sigurdsson T, Gorman JM, McEwen BS, LeDoux JE. Chronic antidepressant treatment impairs the acquisition of fear extinction. Biol Psychiatry 2013; 73:1078-86. [PMID: 23260230 PMCID: PMC3610782 DOI: 10.1016/j.biopsych.2012.10.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 10/15/2012] [Accepted: 10/15/2012] [Indexed: 01/08/2023]
Abstract
BACKGROUND Like fear conditioning, the acquisition phase of extinction involves new learning that is mediated by the amygdala. During extinction training, the conditioned stimulus is repeatedly presented in the absence of the unconditioned stimulus, and the expression of previously learned fear gradually becomes suppressed. Our previous study revealed that chronic treatment with a selective serotonin reuptake inhibitor (SSRI) impairs the acquisition of auditory fear conditioning. To gain further insight into how SSRIs affect fear learning, we tested the effects of chronic SSRI treatment on the acquisition of extinction. METHODS Rats were treated chronically (22 days) or subchronically (9 days) with the SSRI citalopram (10 mg/kg/day) before extinction training. The results were compared with those after chronic and subchronic treatment with tianeptine (10 mg/kg/day), an antidepressant with a different method of action. The expression of the NR2B subunit of the N-methyl-D-aspartate receptor in the amygdala was examined after behavioral testing. RESULTS Chronic but not subchronic administration of citalopram impaired the acquisition of extinction and downregulated the NR2B subunit of the N-methyl-D-aspartate receptor in the lateral and basal nuclei of the amygdala. Similar behavioral and molecular changes were found with tianeptine treatment. CONCLUSIONS These results provide further evidence that chronic antidepressant treatment can impair amygdala-dependent learning. Our findings are consistent with a role for glutamatergic neurotransmission in the final common pathway of antidepressant treatment.
Collapse
Affiliation(s)
- Nesha S Burghardt
- Department of Neuroscience, Columbia University, New York, NY 10032-2695, USA.
| | | | | | | | | |
Collapse
|
137
|
Wierońska JM, Pilc A. Glutamate-based anxiolytic ligands in clinical trials. Expert Opin Investig Drugs 2013; 22:1007-22. [PMID: 23718208 DOI: 10.1517/13543784.2013.803066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION With regard to anxiety, the role of the balance between glutamatergic and GABAergic systems was pursued for many years. The majority of drugs used presently as effective anxiolytics enhance the GABAergic system activity, thus increasing inhibition within the central nervous system (CNS). On the other hand, decreasing the activity of glutamatergic neurotransmission may attenuate excitation in the CNS, thus resulting in anxiolysis. AREAS COVERED The present review focuses on clinical data of well-known and recently discovered glutamatergic and, to a lesser extent, GABAergic agents, which reached at least the Phase II criteria. EXPERT OPINION A variety of glutamatergic agents active at both N-acetylo-D-asparaginian and metabotropic glutamate (mGlu) receptors have been tested in humans to examine their potential anxiolytic activity. Many compounds acting on the glutamatergic system and approved for the treatment of other disorders than anxiety were shown to exert anxiolytic effects in clinical trials. Those are mainly voltage-dependent ion channel ligands as well as d-cycloserin and memantine. Also, ligands active at mGlu receptors, such as fenobam and LY354740, exhibited activity in controlled clinical trials. However, relatively few trials are found on the agents that are focused on GABAergic neurotransmission. Therefore, it seems that glutamatergic system may become a novel target for modern and effective anxiolytics.
Collapse
Affiliation(s)
- Joanna M Wierońska
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | | |
Collapse
|
138
|
Psychopharmacological effects of acute exposure to kynurenic acid (KYNA) in zebrafish. Pharmacol Biochem Behav 2013; 108:54-60. [PMID: 23583441 DOI: 10.1016/j.pbb.2013.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 03/30/2013] [Accepted: 04/06/2013] [Indexed: 11/24/2022]
Abstract
A metabolite of the kynurenine pathway, kynurenic acid (KYNA) is an important endogenous neuromodulator and neuroprotector, that also exerts neurotropic effects following exogenous administration. In humans and animals, KYNA regulates affective and cognitive responses, acting mainly as an antagonist of glutamatergic receptors. However, the complete psychopharmacological profile of KYNA (which includes the activity of several neurotransmitter receptors) is poorly understood, and merit further studies. Aquatic models are rapidly emerging as useful tools in translational psychopharmacology research. Here, we exposed adult zebrafish (Danio rerio) to exogenous KYNA for 20 min, and assessed their behavior in the novel tank test. Exposure to KYNA (20 mg/L) in this paradigm evoked overt effects in fish, including decreased latency to enter the top half of the tank, increased number of top entries and longer top duration. In contrast, locomotor activity indices (swimming distance and velocity) were not affected by KYNA in this study. Overall, our results show KYNA has an anxiolytic-like pharmacological effect in zebrafish, and therefore strongly support the utility of zebrafish models in neurotropic drug screening, including drugs acting at central glutamatergic system. Robust phenotypic differences evoked by KYNA, revealed here using three-dimensional (3D) reconstructions of zebrafish locomotion in X, Y and time (Z) coordinates, confirm this notion, also demonstrating the value of 3D-based phenotyping approaches for high-throughput drug screening using zebrafish models.
Collapse
|
139
|
Sandiego CM, Nabulsi N, Lin SF, Labaree D, Najafzadeh S, Huang Y, Cosgrove K, Carson RE. Studies of the metabotropic glutamate receptor 5 radioligand [¹¹C]ABP688 with N-acetylcysteine challenge in rhesus monkeys. Synapse 2013; 67:489-501. [PMID: 23424090 DOI: 10.1002/syn.21656] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/12/2013] [Indexed: 02/05/2023]
Abstract
Detecting changes in receptor binding at the metabotropic glutamate receptor 5 (mGluR5) with the PET allosteric antagonist, [¹¹C]ABP688, may be valuable for studying dysfunctional glutamate transmission associated with psychiatric illnesses. This study was designed to validate the findings of a recent pilot study in baboons which reported a significant global decrease from baseline [¹¹C]ABP688 binding after increasing endogenous glutamate with 50 mg/kg N-acetylcysteine (NAC), with no change from test to retest. In rhesus monkeys (n = 5), paired [¹¹C]ABP688 scans were performed on the same day on the Focus-220 as follows (n = 3 per group): test-retest, baseline-NAC (50 mg/kg), and baseline-NAC (100 mg/kg). Multiple modeling methods were evaluated for kinetic analysis to estimate the total volume of distribution (VT ) and non-displaceable binding potential (BP(ND)) in regions-of-interest (ROIs), with the cerebellum gray matter (CGM) as the reference region. There was an increasing trend from test to retest BP(ND) across ROIs (13%). NAC (50 mg/kg and 100 mg/kg) increased VT (5% and 19%) and decreased BP(ND) (3% and 10%), respectively, significant only for VT in ROIs at the 100 mg/kg dose. High intersubject variability in BP(ND) was comparable to that reported in the baboon study. However, interpretability of BP(ND) is difficult with increases in VT in the CGM reference region at the higher NAC dose. Additionally, the net reduction in BP(ND) from the baseline-NAC scans may be obscured due to observed increases in test-retest BP(ND). Thus, we did not strictly replicate the findings in the baboon study based on BP(ND).
Collapse
Affiliation(s)
- Christine M Sandiego
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Bested AC, Logan AC, Selhub EM. Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: part III - convergence toward clinical trials. Gut Pathog 2013; 5:4. [PMID: 23497650 PMCID: PMC3605358 DOI: 10.1186/1757-4749-5-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/10/2013] [Indexed: 12/14/2022] Open
Abstract
Rapid scientific and technological advances have allowed for a more detailed understanding of the relevance of intestinal microbiota, and the entire body-wide microbiome, to human health and well-being. Rodent studies have provided suggestive evidence that probiotics (e.g. lactobacillus and bifidobacteria) can influence behavior. More importantly, emerging clinical studies indicate that the administration of beneficial microbes, via supplementation and/or fecal microbial transplant (FMT), can influence end-points related to mood state (glycemic control, oxidative status, uremic toxins), brain function (functional magnetic resonance imaging fMRI), and mental outlook (depression, anxiety). However, despite the advances in the area of gastro-biological psychiatry, it becomes clear that there remains an urgent need to explore the value of beneficial microbes in controlled clinical investigations. With the history explored in this series, it is fair to ask if we are now on the cusp of major clinical breakthroughs, or are we merely in the quicksand of Autointoxication II?
Collapse
Affiliation(s)
- Alison C Bested
- Complex Chronic Diseases Program, BC Women’s Hospital and Health Centre, B223A-4500 Oak Street, Vancouver, BC, V6H 3N1, Canada
| | - Alan C Logan
- CAMNR, 775 Blithedale Avenue Suite 364, Mill Valley, CA 94941, USA
| | - Eva M Selhub
- Harvard Medical School and Massachusetts General Hospital, 40 Crescent St., Suite 201, Waltham, MA, 02453, USA
| |
Collapse
|
141
|
Adult vitamin D deficiency leads to behavioural and brain neurochemical alterations in C57BL/6J and BALB/c mice. Behav Brain Res 2013; 241:120-31. [DOI: 10.1016/j.bbr.2012.12.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 11/29/2012] [Accepted: 12/03/2012] [Indexed: 12/11/2022]
|
142
|
Song H, Thompson SM, Blaustein MP. Nanomolar ouabain augments Ca2+ signalling in rat hippocampal neurones and glia. J Physiol 2013; 591:1671-89. [PMID: 23297310 DOI: 10.1113/jphysiol.2012.248336] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Linkage of certain neurological diseases to Na(+) pump mutations and some mood disorders to altered Na(+) pump function has renewed interest in brain Na(+) pumps. We tested nanomolar ouabain on Ca(2+) signalling (fura-2) in rat hippocampal neurone-astrocyte co-cultures. The neurones and astrocytes express Na(+) pumps with a high-ouabain-affinity catalytic subunit (α3 and α2, respectively); both also express pumps with a ouabain-resistant α1 subunit. Neurones and astrocytes were identified by immunocytochemistry and by stimulation; 3-4 μM L-glutamate (Glu) and 3 μM carbachol (CCh) evoked rapid Ca(2+) transients only in neurones, and small, delayed transients in some astrocytes, whereas 0.5-1 μM ATP evoked Ca(2+) transients only in astrocytes. Both cell types responded to 5-10 μM Glu or ATP. The signals evoked by 3-4 μM Glu in neurones were markedly inhibited by 3-10 μm MPEP (blocks metabotropic glutamate receptor mGluR5) and 10 μm LY341495 (non-selective mGluR blocker), but not by 80 μm AP5 (NMDA receptor blocker) or by selective block of mGluR1 or mGluR2. Pre-incubation (0.5-10 min) with 1-10 nm ouabain (EC50 < 1 nm) augmented Glu- and CCh-evoked signals in neurones. This augmentation was abolished by a blocker of the Na(+)-Ca(2+) exchanger, SEA0400 (300 nm). Ouabain (3 nm) pre-incubation also augmented 10 μM cyclopiazonic acid plus 10 mm caffeine-evoked release of Ca(2+) from the neuronal endoplasmic reticulum (ER). The implication is that nanomolar ouabain inhibits α3 Na(+) pumps, increases (local) intracellular Na(+), and promotes Na(+)-Ca(2+) exchanger-mediated Ca(2+) gain and increased storage in the adjacent ER. Ouabain (3 nm) also increased ER Ca(2+) release and enhanced 0.5 μM ATP-evoked transients in astrocytes; these effects were mediated by α2 Na(+) pumps. Thus, nanomolar ouabain may strongly influence synaptic transmission in the brain as a result of its actions on the high-ouabain-affinity Na(+) pumps in both neurones and astrocytes. The significance of these effects is heightened by the evidence that ouabain is endogenous in mammals.
Collapse
Affiliation(s)
- Hong Song
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
143
|
Buoli M, Caldiroli A, Caletti E, Paoli RA, Altamura AC. New approaches to the pharmacological management of generalized anxiety disorder. Expert Opin Pharmacother 2013; 14:175-84. [DOI: 10.1517/14656566.2013.759559] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
144
|
Le Roy C, Laboureyras E, Laulin JP, Simonnet G. A polyamine-deficient diet opposes hyperalgesia, tolerance and the increased anxiety-like behaviour associated with heroin withdrawal in rats. Pharmacol Biochem Behav 2012; 103:510-9. [PMID: 23085099 DOI: 10.1016/j.pbb.2012.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/17/2012] [Accepted: 10/10/2012] [Indexed: 11/28/2022]
Abstract
In humans, hyperalgesia, tolerance and anxiety disorders are common symptoms during heroin withdrawal syndrome. Significant evidence supports a role of NMDA receptors in these phenomena. Because polyamines may positively modulate the functioning of NMDA receptors and mainly originate from dietary intake, one hypothesis is that a polyamine deficient diet (PD diet) may reduce withdrawal symptoms. To address this question, we investigated the ability of a PD diet to prevent or to alleviate some symptoms of withdrawal syndrome as hyperalgesia, and increased anxiety-like behaviour in rats receiving 14 once daily subcutaneous heroin injections. Here, we show that a PD diet has both preventive and curative properties for reducing certain signs of withdrawal such as hyperalgesia, tolerance and increased anxiety-like behaviour observed in rats fed with a standard diet. Moreover, in heroin-withdrawn rats which were returned to basal pain sensitivity level, hyperalgesia following acute analgesia induced by a single heroin dose was observed in heroin-treated rats fed with standard diet, not in rats fed with a PD diet. Similarly, a stress-induced hyperalgesia induced by a non-nociceptive environmental stress session was observed in heroin-treated rats fed with standard diet. In contrast, a stress-induced analgesia was observed in heroin-treated rats fed with a PD diet, as it was observed in non heroin-treated rats. Since a PD diet for several weeks did not induce appreciable side-effects in rats, these preclinical results suggest that a PD diet could be an effective strategy for improving the relief of certain negative emotional states of heroin withdrawal syndrome and to allow reducing other medications generally used, such as opioid maintenance drugs.
Collapse
Affiliation(s)
- Chloé Le Roy
- Univ. Bordeaux, INCIA, UMR 5287, F-33000 Bordeaux, France
| | | | | | | |
Collapse
|
145
|
A high-dose of fentanyl induced delayed anxiety-like behavior in rats. Prevention by a NMDA receptor antagonist and nitrous oxide (N2O). Pharmacol Biochem Behav 2012; 102:562-8. [DOI: 10.1016/j.pbb.2012.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/20/2012] [Accepted: 07/01/2012] [Indexed: 11/20/2022]
|
146
|
Xu X, Hong X, Xie L, Li T, Yang Y, Zhang Q, Zhang G, Liu X. Gestational and lactational exposure to bisphenol-A affects anxiety- and depression-like behaviors in mice. Horm Behav 2012; 62:480-90. [PMID: 23240141 DOI: 10.1016/j.yhbeh.2012.08.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bisphenol-A (BPA), an environmental endocrine disruptor, has attracted attention because of its adverse effects on the brain and behavioral development. Previous evidence indicates that perinatal exposure to low levels of BPA affects anxiety-like and cognitive behaviors in adult rodents. The present study aims to investigate the changes of anxiety- and depression-like behaviors of perinatally exposed mice in adulthood following the gestational (gestation days 7 to 20) or lactational (postnatal days 1 to 14) exposure to BPA (0.4 or 4 mg/kg/d). The results indicated that both gestational and lactational exposures to BPA increased anxiety and depression-like behavior in mice of both sexes. The females with gestational exposure exhibited an increased anxiety-like state in the four models tested, including the open field, dark-light transition task, mirrored maze, and elevated plus maze tasks. Furthermore, the females with lactational exposure and the males with gestational exposure exhibited an anxiogenic-like behavior in two models, whereas the males with lactational exposure exhibited an anxiogenic-like behavior only in the elevated plus maze test. The results of the forced swim task showed that gestational exposure markedly increased the immobile time in both sexes, and the same effect was induced by lactational exposure only with 4 mg/kg/d BPA. Furthermore, western blot analyses showed that both gestational and lactational exposures inhibited the expression of the AMPA receptor subunit GluR1 in the hippocampus and amygdala in mice of both sexes, whereas the level of the NMDA receptor subunit NR1 was increased in the amygdala following gestational exposure but was reduced in the hippocampus of the females with lactational exposure. These results suggest that both gestational and lactational exposures to BPA increased anxiety- and depression-like behaviors of adult mice of both sexes. In addition gestational exposure exhibited a stronger effect on anxiety-like state in females. The altered levels of AMPA and NMDA receptors in the hippocampus and amygdala may be associated with BPA-induced behavioral changes.
Collapse
Affiliation(s)
- Xiaohong Xu
- Chemistry and Life Sciences College, Zhejiang Normal University, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Ventura-Silva AP, Pêgo JM, Sousa JC, Marques AR, Rodrigues AJ, Marques F, Cerqueira JJ, Almeida OFX, Sousa N. Stress shifts the response of the bed nucleus of the stria terminalis to an anxiogenic mode. Eur J Neurosci 2012; 36:3396-406. [DOI: 10.1111/j.1460-9568.2012.08262.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
148
|
Hascup ER, Hascup KN, Pomerleau F, Huettl P, Hajos-Korcsok E, Kehr J, Gerhardt GA. An allosteric modulator of metabotropic glutamate receptors (mGluR₂), (+)-TFMPIP, inhibits restraint stress-induced phasic glutamate release in rat prefrontal cortex. J Neurochem 2012; 122:619-27. [PMID: 22578190 PMCID: PMC3970435 DOI: 10.1111/j.1471-4159.2012.07784.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The potential anxiolytic effects of a novel positive allosteric modulator (PAM) of the metabotropic glutamate receptor subgroup 2 (mGluR₂) were investigated using a self-referencing recording technique with enzyme-based microelectrode arrays (MEAs) that reliably measures tonic and phasic changes in extracellular glutamate levels in awake rats. Studies involved glutamate measures in the rat prefrontal cortex during subcutaneous injections of the following: vehicle, a mGluR₂/₃ agonist, LY354740 (10 mg/kg), or a mGluR₂ PAM, 1-Methyl-2-((cis-(R,R)-3-methyl-4-(4-trifluoromethoxy-2-fluoro)phenyl)piperidin-1-yl)methyl)-1H-imidazo[4,5-b]pyridine ((+)-TFMPIP; 1.0 or 17.8 mg/kg). Studies assessed changes in tonic glutamate levels and the glutamatergic responses to a 5-min restraint stress. Subcutaneous injection of (+)-TFMPIP at a dose of 1.0 mg/kg (day 3: -7.1 ± 15.1 net AUC; day 5: -24.8 ± 24.9 net AUC) and 17.8 mg/kg (day 3: -46.5 ± 33.0 net AUC; day 5: 34.6 ± 36.8 net AUC) significantly attenuated the stress-evoked glutamate release compared to vehicle controls (day 3: 134.7 ± 50.6 net AUC; day 5: 286.6 ± 104.5 net AUC), whereas the mGluR₂/₃ agonist LY354740 had no effect. None of the compounds significantly affected resting glutamate levels, which we have recently shown to be extensively derived from neurons. Taken together, these data support that systemic administration of (+)-TFMPIP produces phasic rather than tonic release of glutamate that may play a major role in the effects of stress on glutamate neuronal systems in the prefrontal cortex.
Collapse
Affiliation(s)
- Erin R Hascup
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
149
|
Santos T, Baungratz MM, Haskel SP, de Lima DD, da Cruz JN, Magro DDD, da Cruz JGP. Behavioral interactions of simvastatin and fluoxetine in tests of anxiety and depression. Neuropsychiatr Dis Treat 2012; 8:413-22. [PMID: 23055736 PMCID: PMC3464062 DOI: 10.2147/ndt.s31714] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Simvastatin inhibits 3-hydroxy-3-methylglutaryl CoA reductase, the rate-limiting enzyme in the cholesterol biosynthetic pathway, and is widely used to control plasma cholesterol levels and prevent cardiovascular disease. However, emerging evidence indicates that the beneficial effects of simvastatin extend to the central nervous system. The effects of simvastatin combined with fluoxetine provide an exciting and potential paradigm to decreased anxiety and depression. Thus, the present paper investigates the possibility of synergistic interactions between simvastatin and fluoxetine in models of anxiety and depression. We investigated the effects of subchronically administered simvastatin (1 or 10 mg/kg/day) combined with fluoxetine (2 or 10 mg/kg) at 24, 5, and 1 hour on adult rats before conducting behavioral tests. The results indicate that simvastatin and/or fluoxetine treatment reduces anxiety-like behaviors in the elevated plus-maze and open-field tests. Our results showed that simvastatin and/or fluoxetine induced a significant increase in the swimming activity during the forced swimming test (antidepressant effect), with a concomitant increase in climbing time in simvastatin-treated animals only (noradrenergic activation). We hypothesize that anxiolytic and antidepressant effects of simvastatin and/or fluoxetine produce their behavioral effects through similar mechanisms and provide an important foundation for future preclinical research.
Collapse
Affiliation(s)
- Tainaê Santos
- Department of Medicine, Regional University of Blumenau, Santa Catarina, Brazil
| | | | | | | | | | | | | |
Collapse
|