101
|
Dierckx H, Panfilov AV, Verschelde H, Biktashev VN, Biktasheva IV. Response function framework for the dynamics of meandering or large-core spiral waves and modulated traveling waves. Phys Rev E 2019; 99:022217. [PMID: 30934367 DOI: 10.1103/physreve.99.022217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Indexed: 06/09/2023]
Abstract
In many oscillatory or excitable systems, dynamical patterns emerge which are stationary or periodic in a moving frame of reference. Examples include traveling waves or spiral waves in chemical systems or cardiac tissue. We present a unified theoretical framework for the drift of such patterns under small external perturbations, in terms of overlap integrals between the perturbation and the adjoint critical eigenfunctions of the linearized operator (i.e., response functions). For spiral waves, the finite radius of the spiral tip trajectory and spiral wave meander are taken into account. Different coordinate systems can be chosen, depending on whether one wants to predict the motion of the spiral-wave tip, the time-averaged tip path, or the center of the meander flower. The framework is applied to analyze the drift of a meandering spiral wave in a constant external field in different regimes.
Collapse
Affiliation(s)
- Hans Dierckx
- Department of Physics and Astronomy, Ghent University, 9000 Ghent, Belgium
| | - A V Panfilov
- Department of Physics and Astronomy, Ghent University, 9000 Ghent, Belgium
- Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg 620075, Russia
| | - H Verschelde
- Department of Physics and Astronomy, Ghent University, 9000 Ghent, Belgium
| | - V N Biktashev
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, United Kingdom
| | - I V Biktasheva
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, United Kingdom
- Department of Computer Science, University of Liverpool, Liverpool L69 3BX, United Kingdom
| |
Collapse
|
102
|
Computational modeling: What does it tell us about atrial fibrillation therapy? Int J Cardiol 2019; 287:155-161. [PMID: 30803891 DOI: 10.1016/j.ijcard.2019.01.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 12/09/2018] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
Atrial fibrillation (AF) is a complex cardiac arrhythmia with diverse etiology that negatively affects morbidity and mortality of millions of patients. Technological and experimental advances have provided a wealth of information on the pathogenesis of AF, highlighting a multitude of mechanisms involved in arrhythmia initiation and maintenance, and disease progression. However, it remains challenging to identify the predominant mechanisms for specific subgroups of AF patients, which, together with an incomplete understanding of the pleiotropic effects of antiarrhythmic therapies, likely contributes to the suboptimal efficacy of current antiarrhythmic approaches. Computer modeling of cardiac electrophysiology has advanced in parallel to experimental research and provides an integrative framework to attempt to overcome some of these challenges. Multi-scale cardiac modeling and simulation integrate structural and functional data from experimental and clinical work with knowledge of atrial electrophysiological mechanisms and dynamics, thereby improving our understanding of AF mechanisms and therapy. In this review, we describe recent advances in our quantitative understanding of AF through mathematical models. We discuss computational modeling of AF mechanisms and therapy using detailed, mechanistic cell/tissue-level models, including approaches to incorporate variability in patient populations. We also highlight efforts using whole-atria models to improve catheter ablation therapies. Finally, we describe recent efforts and suggest future extensions to model clinical concepts of AF using patient-level models.
Collapse
|
103
|
Makowiec D, Wdowczyk J, Struzik ZR. Heart Rhythm Insights Into Structural Remodeling in Atrial Tissue: Timed Automata Approach. Front Physiol 2019; 9:1859. [PMID: 30692928 PMCID: PMC6340163 DOI: 10.3389/fphys.2018.01859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
The heart rhythm of a person following heart transplantation (HTX) is assumed to display an intrinsic cardiac rhythm because it is significantly less influenced by the autonomic nervous system-the main source of heart rate variability in healthy people. Therefore, such a rhythm provides evidence for arrhythmogenic processes developing, usually silently, in the cardiac tissue. A model is proposed to simulate alterations in the cardiac tissue and to observe the effects of these changes on the resulting heart rhythm. The hybrid automata framework used makes it possible to represent reliably and simulate efficiently both the electrophysiology of a cardiac cell and the tissue organization. The curve fitting method used in the design of the hybrid automaton cycle follows the well-recognized physiological phases of the atrial myocyte membrane excitation. Moreover, knowledge of the complex architecture of the right atrium, the ability of the almost free design of intercellular connections makes the automata approach the only one possible. Two particular aspects are investigated: impairment of the impulse transmission between cells and structural changes in intercellular connections. The first aspect models the observed fatigue of cells due to specific cardiac tissue diseases. The second aspect simulates the increase in collagen deposition with aging. Finally, heart rhythms arising from the model are validated with the sinus heart rhythms recorded in HTX patients. The modulation in the impairment of the impulse transmission between cells reveals qualitatively the abnormally high heart rate variability observed in patients living long after HTX.
Collapse
Affiliation(s)
- Danuta Makowiec
- Institute of Theoretical Physics and Astrophysics, University of Gdańsk, Gdansk, Poland
| | - Joanna Wdowczyk
- 1st Department of Cardiology, Medical University of Gdańsk, Gdansk, Poland
| | - Zbigniew R Struzik
- RIKEN Advanced Center for Computing and Communication, Wako, Japan.,Graduate School of Education, University of Tokyo, Tokyo, Japan
| |
Collapse
|
104
|
Olejníčková V, Šaňková B, Sedmera D, Janáček J. Trabecular Architecture Determines Impulse Propagation Through the Early Embryonic Mouse Heart. Front Physiol 2019; 9:1876. [PMID: 30670981 PMCID: PMC6331446 DOI: 10.3389/fphys.2018.01876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Most embryonic ventricular cardiomyocytes are quite uniform, in contrast to the adult heart, where the specialized ventricular conduction system is molecularly and functionally distinct from the working myocardium. We thus hypothesized that the preferential conduction pathway within the embryonic ventricle could be dictated by trabecular geometry. Mouse embryonic hearts of the Nkx2.5:eGFP strain between ED9.5 and ED14.5 were cleared and imaged whole mount by confocal microscopy, and reconstructed in 3D at 3.4 μm isotropic voxel size. The local orientation of the trabeculae, responsible for the anisotropic spreading of the signal, was characterized using spatially homogenized tensors (3 × 3 matrices) calculated from the trabecular skeleton. Activation maps were simulated assuming constant speed of spreading along the trabeculae. The results were compared with experimentally obtained epicardial activation maps generated by optical mapping with a voltage-sensitive dye. Simulated impulse propagation starting from the top of interventricular septum revealed the first epicardial breakthrough at the interventricular grove, similar to experimentally obtained activation maps. Likewise, ectopic activation from the left ventricular base perpendicular to dominant trabecular orientation resulted in isotropic and slower impulse spreading on the ventricular surface in both simulated and experimental conditions. We conclude that in the embryonic pre-septation heart, the geometry of the A-V connections and trabecular network is sufficient to explain impulse propagation and ventricular activation patterns.
Collapse
Affiliation(s)
- Veronika Olejníčková
- Department of Developmental Cardiology, Institute of Physiology of The Czech Academy of Sciences, Prague, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - Barbora Šaňková
- Department of Developmental Cardiology, Institute of Physiology of The Czech Academy of Sciences, Prague, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - David Sedmera
- Department of Developmental Cardiology, Institute of Physiology of The Czech Academy of Sciences, Prague, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - Jiří Janáček
- Department of Biomathematics, Institute of Physiology of The Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
105
|
Abstract
Excitable biological cells, such as cardiac muscle cells, can exhibit complex patterns of oscillations such as spiking and bursting. Moreover, it is well known that an enhancement in calcium currents may yield certain kind of cardiac arrhythmia, so-called early afterdepolarisations (EADs). The presence of EADs strongly correlates with the onset of dangerous cardiac arrhythmia. In this paper we study mathematically and numerically the dynamics of a cardiac muscle cell with respect to the calcium current by investigating a simplistic system of differential equations. For the study of this phenomena, we use bifurcation theory, numerical bifurcation analysis, geometric singular perturbation theory and computational methods to investigate a nonlinear multiple time scales system. It will turn out that EADs related to an enhanced calcium current are canard–induced and that we have to combine these theories to derive a better understanding of the dynamics behind EADs. Moreover, a suitable time scale separation argument determines the important and sensitive system parameters which are related to the occurrence of EADs.
Collapse
|
106
|
Cantwell CD, Mohamied Y, Tzortzis KN, Garasto S, Houston C, Chowdhury RA, Ng FS, Bharath AA, Peters NS. Rethinking multiscale cardiac electrophysiology with machine learning and predictive modelling. Comput Biol Med 2019; 104:339-351. [PMID: 30442428 PMCID: PMC6334203 DOI: 10.1016/j.compbiomed.2018.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/04/2018] [Accepted: 10/14/2018] [Indexed: 11/17/2022]
Abstract
We review some of the latest approaches to analysing cardiac electrophysiology data using machine learning and predictive modelling. Cardiac arrhythmias, particularly atrial fibrillation, are a major global healthcare challenge. Treatment is often through catheter ablation, which involves the targeted localised destruction of regions of the myocardium responsible for initiating or perpetuating the arrhythmia. Ablation targets are either anatomically defined, or identified based on their functional properties as determined through the analysis of contact intracardiac electrograms acquired with increasing spatial density by modern electroanatomic mapping systems. While numerous quantitative approaches have been investigated over the past decades for identifying these critical curative sites, few have provided a reliable and reproducible advance in success rates. Machine learning techniques, including recent deep-learning approaches, offer a potential route to gaining new insight from this wealth of highly complex spatio-temporal information that existing methods struggle to analyse. Coupled with predictive modelling, these techniques offer exciting opportunities to advance the field and produce more accurate diagnoses and robust personalised treatment. We outline some of these methods and illustrate their use in making predictions from the contact electrogram and augmenting predictive modelling tools, both by more rapidly predicting future states of the system and by inferring the parameters of these models from experimental observations.
Collapse
Affiliation(s)
- Chris D Cantwell
- ElectroCardioMaths Group, Imperial College Centre for Cardiac Engineering, Imperial College London, London, UK; Department of Aeronautics, Imperial College London, South Kensington Campus, London, UK.
| | - Yumnah Mohamied
- ElectroCardioMaths Group, Imperial College Centre for Cardiac Engineering, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, UK
| | - Konstantinos N Tzortzis
- ElectroCardioMaths Group, Imperial College Centre for Cardiac Engineering, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, UK
| | - Stef Garasto
- ElectroCardioMaths Group, Imperial College Centre for Cardiac Engineering, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, South Kensington Campus, London, UK
| | - Charles Houston
- ElectroCardioMaths Group, Imperial College Centre for Cardiac Engineering, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, UK
| | - Rasheda A Chowdhury
- ElectroCardioMaths Group, Imperial College Centre for Cardiac Engineering, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, UK
| | - Fu Siong Ng
- ElectroCardioMaths Group, Imperial College Centre for Cardiac Engineering, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, UK
| | - Anil A Bharath
- ElectroCardioMaths Group, Imperial College Centre for Cardiac Engineering, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, South Kensington Campus, London, UK
| | - Nicholas S Peters
- ElectroCardioMaths Group, Imperial College Centre for Cardiac Engineering, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, UK
| |
Collapse
|
107
|
Alegret N, Dominguez-Alfaro A, Mecerreyes D. 3D Scaffolds Based on Conductive Polymers for Biomedical Applications. Biomacromolecules 2018; 20:73-89. [PMID: 30543402 DOI: 10.1021/acs.biomac.8b01382] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
3D scaffolds appear to be a cost-effective ultimate answer for biomedical applications, facilitating rapid results while providing an environment similar to in vivo tissue. These biomaterials offer large surface areas for cell or biomaterial attachment, proliferation, biosensing and drug delivery applications. Among 3D scaffolds, the ones based on conjugated polymers (CPs) and natural nonconductive polymers arranged in a 3D architecture provide tridimensionality to cellular culture along with a high surface area for cell adherence and proliferation as well electrical conductivity for stimulation or sensing. However, the scaffolds must also obey other characteristics: homogeneous porosity, with pore sizes large enough to allow cell penetration and nutrient flow; elasticity and wettability similar to the tissue of implantation; and a suitable composition to enhance cell-matrix interactions. In this Review, we summarize the fabrication methods, characterization techniques and main applications of conductive 3D scaffolds based on conductive polymers. The main barrier in the development of these platforms has been the fabrication and subsequent maintenance of the third dimension due to challenges in the manipulation of conductive polymers. In the last decades, different approaches to overcome these barriers have been developed for the production of conductive 3D scaffolds, demonstrating a huge potential for biomedical purposes. Finally, we present an overview of the emerging strategies developed to manufacture 3D conductive scaffolds, the techniques used to fully characterize them, and the biomedical fields where they have been applied.
Collapse
Affiliation(s)
- Nuria Alegret
- POLYMAT University of the Basque Country UPV/EHU , Avenida de Tolosa 72 , 20018 Donostia-San Sebastián , Spain.,Cardiovascular Institute, School of Medicine, Division of Cardiology , University of Colorado Denver Anschutz Medical Campus , 12700 E. 19th Avenue, Building P15 , Aurora , Colorado 80045 , United States
| | - Antonio Dominguez-Alfaro
- POLYMAT University of the Basque Country UPV/EHU , Avenida de Tolosa 72 , 20018 Donostia-San Sebastián , Spain.,Carbon Nanobiotechnology Group, CIC biomaGUNE , Paseo de Miramón 182 , 2014 Donostia-San Sebastián , Spain
| | - David Mecerreyes
- POLYMAT University of the Basque Country UPV/EHU , Avenida de Tolosa 72 , 20018 Donostia-San Sebastián , Spain.,Ikerasque, Basque Foundation for Science , 48013 Bilbao , Spain
| |
Collapse
|
108
|
Santiago A, Aguado-Sierra J, Zavala-Aké M, Doste-Beltran R, Gómez S, Arís R, Cajas JC, Casoni E, Vázquez M. Fully coupled fluid-electro-mechanical model of the human heart for supercomputers. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e3140. [PMID: 30117302 DOI: 10.1002/cnm.3140] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/28/2018] [Accepted: 07/22/2018] [Indexed: 05/12/2023]
Abstract
In this work, we present a fully coupled fluid-electro-mechanical model of a 50th percentile human heart. The model is implemented on Alya, the BSC multi-physics parallel code, capable of running efficiently in supercomputers. Blood in the cardiac cavities is modeled by the incompressible Navier-Stokes equations and an arbitrary Lagrangian-Eulerian (ALE) scheme. Electrophysiology is modeled with a monodomain scheme and the O'Hara-Rudy cell model. Solid mechanics is modeled with a total Lagrangian formulation for discrete strains using the Holzapfel-Ogden cardiac tissue material model. The three problems are simultaneously and bidirectionally coupled through an electromechanical feedback and a fluid-structure interaction scheme. In this paper, we present the scheme in detail and propose it as a computational cardiac workbench.
Collapse
Affiliation(s)
- Alfonso Santiago
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Jazmín Aguado-Sierra
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Miguel Zavala-Aké
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | | | - Samuel Gómez
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Ruth Arís
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Juan C Cajas
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Eva Casoni
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Mariano Vázquez
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Instituto de Investigación en Inteligencia Artificial (IIIA), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
109
|
Chen R, Wen C, Fu R, Li J, Wu J. The effect of complex intramural microstructure caused by structural remodeling on the stability of atrial fibrillation: Insights from a three-dimensional multi-layer modeling study. PLoS One 2018; 13:e0208029. [PMID: 30485346 PMCID: PMC6261624 DOI: 10.1371/journal.pone.0208029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 11/10/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Recent researches have suggested that the complex three-dimensional structures caused by structural remodeling play a key role in atrial fibrillation (AF) substrates. Here we aimed to investigate this hypothesis using a multi-layer model representing intramural microstructural features. METHODS The proposed multi-layer model was composed of the endocardium, connection wall, and epicardium. In the connection wall, intramural fibrosis was simulated using fibrotic patches randomly scattered in the myocardial tissue of fibrotic layers, while endo-epicardial dissociation was simulated using myocardial patches randomly scattered in the fibrotic tissue of isolation layers. Multiple simulation groups were generated to quantitatively analyze the effects of endo-epicardial dissociation and intramural fibrosis on AF stability, including a stochastic group, interrelated groups, fibrosis-degree-controlled groups, and dissociation-degree-controlled groups. RESULTS 1. Stable intramural re-entries were observed to move along complete re-entrant circuits inside the transmural wall in four of 65 simulations in the stochastic group. 2. About 21 of 23 stable simulations in the stochastic group were distributed in the areas with high endo-epicardial dissociation and intramural fibrosis. 3. The difference between fibrosis-degree-controlled groups and dissociation-degree-controlled groups suggested that some distributions of connection areas may affect AF episodes despite low intramural fibrosis and endo-epicardial dissociation. 4. The overview of tracking phase singularities revealed that endo-epicardial dissociation played a visible role in AF substrates. CONCLUSION The complex intramural microstructure is positively correlated with critical components of AF maintenance mechanisms. The occurrence of intramural re-entry further indicates the complexity of AF wave-dynamics.
Collapse
Affiliation(s)
- Riqing Chen
- Institute of Biomedical Engineering, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Cheng Wen
- Institute of Biomedical Engineering, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Rao Fu
- Institute of Biomedical Engineering, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Jianning Li
- Institute of Biomedical Engineering, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Jian Wu
- Institute of Biomedical Engineering, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- * E-mail:
| |
Collapse
|
110
|
Wang W, Zhang S, Ni H, Garratt CJ, Boyett MR, Hancox JC, Zhang H. Mechanistic insight into spontaneous transition from cellular alternans to arrhythmia-A simulation study. PLoS Comput Biol 2018; 14:e1006594. [PMID: 30500818 PMCID: PMC6291170 DOI: 10.1371/journal.pcbi.1006594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/12/2018] [Accepted: 10/23/2018] [Indexed: 02/01/2023] Open
Abstract
Cardiac electrical alternans (CEA), manifested as T-wave alternans in ECG, is a clinical biomarker for predicting cardiac arrhythmias and sudden death. However, the mechanism underlying the spontaneous transition from CEA to arrhythmias remains incompletely elucidated. In this study, multiscale rabbit ventricular models were used to study the transition and a potential role of INa in perpetuating such a transition. It was shown CEA evolved into either concordant or discordant action potential (AP) conduction alternans in a homogeneous one-dimensional tissue model, depending on tissue AP duration and conduction velocity (CV) restitution properties. Discordant alternans was able to cause conduction failure in the model, which was promoted by impaired sodium channel with either a reduced or increased channel current. In a two-dimensional homogeneous tissue model, a combined effect of rate- and curvature-dependent CV broke-up alternating wavefronts at localised points, facilitating a spontaneous transition from CEA to re-entry. Tissue inhomogeneity or anisotropy further promoted break-up of re-entry, leading to multiple wavelets. Similar observations have also been seen in human atrial cellular and tissue models. In conclusion, our results identify a mechanism by which CEA spontaneously evolves into re-entry without a requirement for premature ventricular complexes or pre-existing tissue heterogeneities, and demonstrated the important pro-arrhythmic role of impaired sodium channel activity. These findings are model-independent and have potential human relevance.
Collapse
Affiliation(s)
- Wei Wang
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Shanzhuo Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Haibo Ni
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Clifford J. Garratt
- Manchester Heart Centre, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Mark R. Boyett
- Manchester Heart Centre, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Jules C. Hancox
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom
- School of Physiology, Pharmacology and Neuroscience, and Cardiovascular Research Laboratories, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
- Space Institute of Southern China, Shenzhen, China
| |
Collapse
|
111
|
Rabinovitch A, Aviram I, Biton Y, Braunstein D. Reentry as an Origin for Rotors. Bull Math Biol 2018; 80:3023-3037. [DOI: 10.1007/s11538-018-0506-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 09/05/2018] [Indexed: 11/24/2022]
|
112
|
McNamara HM, Dodson S, Huang YL, Miller EW, Sandstede B, Cohen AE. Geometry-Dependent Arrhythmias in Electrically Excitable Tissues. Cell Syst 2018; 7:359-370.e6. [PMID: 30292705 PMCID: PMC6204347 DOI: 10.1016/j.cels.2018.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/14/2018] [Accepted: 08/28/2018] [Indexed: 12/12/2022]
Abstract
Little is known about how individual cells sense the macroscopic geometry of their tissue environment. Here, we explore whether long-range electrical signaling can convey information on tissue geometry to individual cells. First, we studied an engineered electrically excitable cell line. Cells grown in patterned islands of different shapes showed remarkably diverse firing patterns under otherwise identical conditions, including regular spiking, period-doubling alternans, and arrhythmic firing. A Hodgkin-Huxley numerical model quantitatively reproduced these effects, showing how the macroscopic geometry affected the single-cell electrophysiology via the influence of gap junction-mediated electrical coupling. Qualitatively similar geometry-dependent dynamics were observed in human induced pluripotent stem cell (iPSC)-derived cardiomyocytes. The cardiac results urge caution in translating observations of arrhythmia in vitro to predictions in vivo, where the tissue geometry is very different. We study how to extrapolate electrophysiological measurements between tissues with different geometries and different gap junction couplings.
Collapse
Affiliation(s)
- Harold M McNamara
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02138, USA
| | - Stephanie Dodson
- Department of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - Yi-Lin Huang
- Departments of Chemistry, Molecular and Cell Biology, and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Evan W Miller
- Departments of Chemistry, Molecular and Cell Biology, and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Björn Sandstede
- Department of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - Adam E Cohen
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
113
|
Moss R, Sachse FB, Moreno-Galindo EG, Navarro-Polanco RA, Tristani-Firouzi M, Seemann G. Modeling effects of voltage dependent properties of the cardiac muscarinic receptor on human sinus node function. PLoS Comput Biol 2018; 14:e1006438. [PMID: 30303952 PMCID: PMC6197694 DOI: 10.1371/journal.pcbi.1006438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 10/22/2018] [Accepted: 08/15/2018] [Indexed: 11/25/2022] Open
Abstract
The cardiac muscarinic receptor (M2R) regulates heart rate, in part, by modulating the acetylcholine (ACh) activated K+ current IK,ACh through dissociation of G-proteins, that in turn activate KACh channels. Recently, M2Rs were noted to exhibit intrinsic voltage sensitivity, i.e. their affinity for ligands varies in a voltage dependent manner. The voltage sensitivity of M2R implies that the affinity for ACh (and thus the ACh effect) varies throughout the time course of a cardiac electrical cycle. The aim of this study was to investigate the contribution of M2R voltage sensitivity to the rate and shape of the human sinus node action potentials in physiological and pathophysiological conditions. We developed a Markovian model of the IK,ACh modulation by voltage and integrated it into a computational model of human sinus node. We performed simulations with the integrated model varying ACh concentration and voltage sensitivity. Low ACh exerted a larger effect on IK,ACh at hyperpolarized versus depolarized membrane voltages. This led to a slowing of the pacemaker rate due to an attenuated slope of phase 4 depolarization with only marginal effect on action potential duration and amplitude. We also simulated the theoretical effects of genetic variants that alter the voltage sensitivity of M2R. Modest negative shifts in voltage sensitivity, predicted to increase the affinity of the receptor for ACh, slowed the rate of phase 4 depolarization and slowed heart rate, while modest positive shifts increased heart rate. These simulations support our hypothesis that altered M2R voltage sensitivity contributes to disease and provide a novel mechanistic foundation to study clinical disorders such as atrial fibrillation and inappropriate sinus tachycardia. Heart rate regulation is dependent upon a delicate interplay between parasympathetic and sympathetic nerve activity at the level of the sinus node. Acetylcholine slows the heart rate by activating the M2 muscarinic receptor (M2R) that, in turn, opens the acetylcholine-activated potassium channel (IK,ACh) to slow the firing of the sinus node. Surprisingly, the M2R is sensitive to membrane potential and undergoes conformational changes throughout the cardiac action potential that alter the affinity for acetylcholine, with secondary consequences for IK,ACh activity. Here, we investigated the contribution of M2R voltage sensitivity to the rate and shape of the human sinus node action potential in physiological and pathophysiological conditions, using a Markovian model of the IK,ACh channel integrated into a computational model of human sinus node. The computational model allowed us to assess the effects of potential genetic variants that alter specific properties of voltage sensitivity. Our results indicate that alterations in the M2R voltage sensitivity play a significant role in the physiology and pathophysiology of the human sinus node and atria. Our computational model is relevant for future studies aimed at the design and development of anti-arrhythmic agents that specifically target the unique voltage-sensitive properties of M2R.
Collapse
Affiliation(s)
- Robin Moss
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Freiburg, Germany
- Faculty of Medicine, Albert-Ludwigs University of Freiburg, Freiburg, Germany
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Frank B Sachse
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
- Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States of America
| | - Eloy G Moreno-Galindo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | | | - Martin Tristani-Firouzi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Gunnar Seemann
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Freiburg, Germany
- Faculty of Medicine, Albert-Ludwigs University of Freiburg, Freiburg, Germany
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
114
|
Yip E, Andalam S, Roop PS, Malik A, Trew ML, Ai W, Patel N. Towards the Emulation of the Cardiac Conduction System for Pacemaker Validation. ACM TRANSACTIONS ON CYBER-PHYSICAL SYSTEMS 2018. [DOI: 10.1145/3134845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The heart is a vital organ that relies on the orchestrated propagation of electrical stimuli to coordinate each heartbeat. Abnormalities in the heart’s electrical behaviour can be managed with a cardiac pacemaker. Recently, the closed-loop testing of pacemakers with an emulation (real-time simulation) of the heart has been proposed. This enables developers to interrogate their pacemaker design without having to engage in costly or lengthy clinical trials. Many high-fidelity heart models have been developed, but are too computationally intensive to be simulated in real-time. Heart models, designed specifically for the closed-loop testing of pacemaker logic, are too abstract to be useful for the testing of pacemaker implementations.
In the context of pacemaker testing, compared to high-fidelity heart models, this article presents a more computationally efficient heart model that generates realistic piecewise continuous electrical signals. The heart model is composed of cardiac cells that are connected by paths. Our heart model is based on the Stony Brook cardiac cell model and the UPenn path model, and improves them by stabilising the activation behaviour of the cells and by capturing the piecewise continuous behaviour of electrical propagation. We provide simulation results that show our ability to faithfully model a range of arrhythmias, such as VA conduction, heart blocks, and long Q-T syndrome. Moreover, re-entrant circuits (that cause arrhythmia) can be faithfully modelled, which only the discrete-event UPenn heart model is also able to achieve.
Collapse
Affiliation(s)
| | | | | | | | | | - Weiwei Ai
- The University of Auckland, New Zealand
| | | |
Collapse
|
115
|
Hu Z, Du D, Du Y. Generalized polynomial chaos-based uncertainty quantification and propagation in multi-scale modeling of cardiac electrophysiology. Comput Biol Med 2018; 102:57-74. [PMID: 30248513 DOI: 10.1016/j.compbiomed.2018.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 11/19/2022]
Abstract
Uncertainty and physiological variability are ubiquitous in cardiac electrical signaling. It is important to address the uncertainty and variability in cardiac modeling to provide reliable and realistic predictions of heart function, thus ensuring trustworthy computer-aided medical decision-making and treatment planning. Statistical techniques such as Monte Carlo (MC) simulations have been applied to uncertainty quantification and propagation in cardiac modeling. However, MC simulation-based methods are computationally prohibitive for complex cardiac models with a great number of parameters and governing equations. In this paper, we propose to use the Generalized Polynomial Chaos (gPC) expansion in combination with Galerkin projection to analytically quantify parametric uncertainty in ion channel models of mouse ventricular cell, and further propagate the uncertainty across different organizational levels of cell and tissue. To identify the most significant parametric uncertainty in cardiac ion channel and cell models, variance decomposition-based sensitivity analysis was first performed. Following this, gPC was integrated with deterministic cardiac models to propagate uncertainty through ion current, ventricular cell, 1D cable, and 2D tissue to account for the stochasticity and cell-to-cell variability. As compared to MC, the gPC in this work shows the superior performance in terms of computational efficiency. In addition, the gPC models can provide a measure of confidence in model predictions, which can improve the reliability of computer simulations of cardiac electrophysiology for clinical applications.
Collapse
Affiliation(s)
- Zhiyong Hu
- Department of Industrial, Manufacturing and Systems Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Dongping Du
- Department of Industrial, Manufacturing and Systems Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Yuncheng Du
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY, 33613, USA.
| |
Collapse
|
116
|
Clayton RH. Dispersion of Recovery and Vulnerability to Re-entry in a Model of Human Atrial Tissue With Simulated Diffuse and Focal Patterns of Fibrosis. Front Physiol 2018; 9:1052. [PMID: 30131713 PMCID: PMC6090998 DOI: 10.3389/fphys.2018.01052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/16/2018] [Indexed: 12/03/2022] Open
Abstract
Fibrosis in atrial tissue can act as a substrate for persistent atrial fibrillation, and can be focal or diffuse. Regions of fibrosis are associated with slowed or blocked conduction, and several approaches have been used to model these effects. In this study a computational model of 2D atrial tissue was used to investigate how the spatial scale of regions of simulated fibrosis influenced the dispersion of action potential duration (APD) and vulnerability to re-entry in simulated normal human atrial tissue, and human tissue that has undergone remodeling as a result of persistent atrial fibrillation. Electrical activity was simulated in a 10 × 10 cm square 2D domain, with a spatially varying diffusion coefficient as described below. Cellular electrophysiology was represented by the Courtemanche model for human atrial cells, with the model parameters set for normal and remodeled cells. The effect of fibrosis was modeled with a smoothly varying diffusion coefficient, obtained from sampling a Gaussian random field (GRF) with length scales of between 1.25 and 10.0 mm. Twenty samples were drawn from each field, and used to allocate a value of diffusion coefficient between 0.05 and 0.2 mm2/ms. Dispersion of APD was assessed in each sample by pacing at a cycle length of 1,000 ms, followed by a premature beat with a coupling interval of 400 ms. Vulnerability to re-entry was assessed with an aggressive pacing protocol with pacing cycle lengths decreasing from 450 to 250 ms in 25 ms intervals for normal tissue and 300–150 ms for remodeled tissue. Simulated fibrosis at smaller spatial scales tended to lengthen APD, increase APD dispersion, and increase vulnerability to sustained re-entry relative to fibrosis at larger spatial scales. This study shows that when fibrosis is represented by smoothly varying tissue diffusion, the spatial scale of fibrosis has important effects on both dispersion of recovery and vulnerability to re-entry.
Collapse
Affiliation(s)
- Richard H Clayton
- Department of Computer Science, Insigneo Institute for in-silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
117
|
Córdova Aquino J, Medellín-Castillo HI. Analysis of the influence of modelling assumptions on the prediction of the elastic properties of cardiac fibres. Comput Methods Biomech Biomed Engin 2018; 21:601-615. [DOI: 10.1080/10255842.2018.1502279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jacobo Córdova Aquino
- Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, México
- Disión de la DESICA, Universidad Popular de la Chontalpa, Tabasco, México
| | | |
Collapse
|
118
|
Landajuela M, Vergara C, Gerbi A, Dedè L, Formaggia L, Quarteroni A. Numerical approximation of the electromechanical coupling in the left ventricle with inclusion of the Purkinje network. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e2984. [PMID: 29575751 DOI: 10.1002/cnm.2984] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/02/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
In this work, we consider the numerical approximation of the electromechanical coupling in the left ventricle with inclusion of the Purkinje network. The mathematical model couples the 3D elastodynamics and bidomain equations for the electrophysiology in the myocardium with the 1D monodomain equation in the Purkinje network. For the numerical solution of the coupled problem, we consider a fixed-point iterative algorithm that enables a partitioned solution of the myocardium and Purkinje network problems. Different levels of myocardium-Purkinje network splitting are considered and analyzed. The results are compared with those obtained using standard strategies proposed in the literature to trigger the electrical activation. Finally, we present a numerical study that, although performed in an idealized computational domain, features all the physiological issues that characterize a heartbeat simulation, including the initiation of the signal in the Purkinje network and the systolic and diastolic phases.
Collapse
Affiliation(s)
- Mikel Landajuela
- MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy
| | - Christian Vergara
- MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy
| | - Antonello Gerbi
- Chair of Modelling and Scientific Computing, Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Route Cantonale, Lausanne, CH-1015, Switzerland
| | - Luca Dedè
- MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy
| | - Luca Formaggia
- MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy
| | - Alfio Quarteroni
- MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy
- Chair of Modelling and Scientific Computing, Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Route Cantonale, Lausanne, CH-1015, Switzerland
| |
Collapse
|
119
|
Quaglino A, Pezzuto S, Koutsourelakis PS, Auricchio A, Krause R. Fast uncertainty quantification of activation sequences in patient-specific cardiac electrophysiology meeting clinical time constraints. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e2985. [PMID: 29577657 DOI: 10.1002/cnm.2985] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/16/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
We present a fast, patient-specific methodology for uncertainty quantification in electrophysiology, aimed at meeting the time constraints of clinical practitioners. We focus on computing the statistics of the activation map, given the uncertainties associated with the conductivity tensor modeling the fiber orientation in the heart. We use a fast parallel solution method implemented on a graphics processing unit for the eikonal approximation, in order to compute the activation map and to sample the random fiber field with correlation on the basis of geodesic distances. While this enables to perform uncertainty quantification studies with a manageable computational effort, the required time frame still exceeds clinically suitable time expectations. In order to reduce it further by 2 orders of magnitude, we rely on Bayesian multifidelity methods. In particular, we propose a low-fidelity model that is patient-specific and free from the additional training cost associated with reduced models. This is achieved by a sound physics-based simplification of the full eikonal model. The low-fidelity output is then corrected by the standard multifidelity framework. In practice, the complete procedure only requires approximately 100 new runs of our eikonal graphics processing unit solver for producing the sought estimates and their associated credible intervals, enabling a full online analysis in less than 5 minutes.
Collapse
Affiliation(s)
- A Quaglino
- Center for Computational Medicine in Cardiology, Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland
| | - S Pezzuto
- Center for Computational Medicine in Cardiology, Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland
| | | | - A Auricchio
- Center for Computational Medicine in Cardiology, Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland
- Division of Cardiology, Fondazione Cardiocentro Ticino, Lugano, Switzerland
| | - R Krause
- Center for Computational Medicine in Cardiology, Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland
| |
Collapse
|
120
|
Bifurcation Analysis of a Certain Hodgkin-Huxley Model Depending on Multiple Bifurcation Parameters. MATHEMATICS 2018. [DOI: 10.3390/math6060103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
121
|
Dhamala J, Arevalo HJ, Sapp J, Horácek BM, Wu KC, Trayanova NA, Wang L. Quantifying the uncertainty in model parameters using Gaussian process-based Markov chain Monte Carlo in cardiac electrophysiology. Med Image Anal 2018; 48:43-57. [PMID: 29843078 DOI: 10.1016/j.media.2018.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 03/17/2018] [Accepted: 05/14/2018] [Indexed: 02/02/2023]
Abstract
Model personalization requires the estimation of patient-specific tissue properties in the form of model parameters from indirect and sparse measurement data. Moreover, a low-dimensional representation of the parameter space is needed, which often has a limited ability to reveal the underlying tissue heterogeneity. As a result, significant uncertainty can be associated with the estimated values of the model parameters which, if left unquantified, will lead to unknown variability in model outputs that will hinder their reliable clinical adoption. Probabilistic estimation of model parameters, however, remains an unresolved challenge. Direct Markov Chain Monte Carlo (MCMC) sampling of the posterior distribution function (pdf) of the parameters is infeasible because it involves repeated evaluations of the computationally expensive simulation model. To accelerate this inference, one popular approach is to construct a computationally efficient surrogate and sample from this approximation. However, by sampling from an approximation, efficiency is gained at the expense of sampling accuracy. In this paper, we address this issue by integrating surrogate modeling of the posterior pdf into accelerating the Metropolis-Hastings (MH) sampling of the exact posterior pdf. It is achieved by two main components: (1) construction of a Gaussian process (GP) surrogate of the exact posterior pdf by actively selecting training points that allow for a good global approximation accuracy with a focus on the regions of high posterior probability; and (2) use of the GP surrogate to improve the proposal distribution in MH sampling, in order to improve the acceptance rate. The presented framework is evaluated in its estimation of the local tissue excitability of a cardiac electrophysiological model in both synthetic data experiments and real data experiments. In addition, the obtained posterior distributions of model parameters are interpreted in relation to the factors contributing to parameter uncertainty, including different low-dimensional representations of the parameter space, parameter non-identifiability, and parameter correlations.
Collapse
Affiliation(s)
- Jwala Dhamala
- Rochester Institute of Technology, Rochester, NY, USA. http://www.jwaladhamala.com
| | | | - John Sapp
- Dalhousie University, Halifax, Canada
| | | | | | | | - Linwei Wang
- Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
122
|
Tixier E, Lombardi D, Rodriguez B, Gerbeau JF. Modelling variability in cardiac electrophysiology: a moment-matching approach. J R Soc Interface 2018; 14:rsif.2017.0238. [PMID: 28835541 PMCID: PMC5582121 DOI: 10.1098/rsif.2017.0238] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/02/2017] [Indexed: 11/16/2022] Open
Abstract
The variability observed in action potential (AP) cardiomyocyte measurements is the consequence of many different sources of randomness. Often ignored, this variability may be studied to gain insight into the cell ionic properties. In this paper, we focus on the study of ionic channel conductances and describe a methodology to estimate their probability density function (PDF) from AP recordings. The method relies on the matching of observable statistical moments and on the maximum entropy principle. We present four case studies using synthetic and sets of experimental AP measurements from human and canine cardiomyocytes. In each case, the proposed methodology is applied to infer the PDF of key conductances from the exhibited variability. The estimated PDFs are discussed and, when possible, compared to the true distributions. We conclude that it is possible to extract relevant information from the variability in AP measurements and discuss the limitations and possible implications of the proposed approach.
Collapse
Affiliation(s)
- Eliott Tixier
- Sorbonne Universités, UPMC Université Paris 6, UMR 7598 LJLL, 75005 Paris, France.,Inria Paris, 75012 Paris, France
| | - Damiano Lombardi
- Sorbonne Universités, UPMC Université Paris 6, UMR 7598 LJLL, 75005 Paris, France.,Inria Paris, 75012 Paris, France
| | - Blanca Rodriguez
- Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Jean-Frédéric Gerbeau
- Sorbonne Universités, UPMC Université Paris 6, UMR 7598 LJLL, 75005 Paris, France .,Inria Paris, 75012 Paris, France
| |
Collapse
|
123
|
The Carotenogenic Dunaliella salina CCAP 19/20 Produces Enhanced Levels of Carotenoid under Specific Nutrients Limitation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7532897. [PMID: 29854788 PMCID: PMC5952566 DOI: 10.1155/2018/7532897] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/25/2018] [Indexed: 01/09/2023]
Abstract
Dunaliella salina is the popular microalga for β-carotene production. There is still a growing demand for the best strain identification and growth conditions optimization for maximum carotenoids production. Some strains are noncarotenogenic while other strains may respond differently to applied growth conditions and produce enhanced carotenoid levels. This study tested the carotenogenic ability of Dunaliella salina CCAP 19/20 under sixteen stress conditions and certain biochemical changes in response to specific stress were investigated. This study identified the above strain as carotenogenic, which produces maximum carotenoids under high light (240 μmol photons m−2 sec−1) when combined nitrogen and micronutrients (Cu or CuMn) were limited. Based on the intensity of extracted ions chromatograms, lutein (m/z 568.4357) appears as the major carotenoid followed by β-carotene (m/z 536.4446) and α-carotene (m/z 536.4435). A polypeptide of 28.3 kDa appeared while another polypeptide of 25.5 kDa disappeared in stress cells as compared to noncarotenogenic cells. Expression levels of antioxidative-enzyme superoxide dismutase-1 (SOD1, H2O2-resistant) remained identical, while the prominent H2O2-sensitive isoforms SOD2 and SOD3 were downregulated during carotenogenic conditions. Overall, increased carotenoids levels might be due to the response of differential expression of specific polypeptides and retention of H2O2-resistant SOD, which eventually might help the organism to thrive in the tested stress conditions.
Collapse
|
124
|
Ganesan P, Shillieto KE, Ghoraani B. Simulation of Spiral Waves and Point Sources in Atrial Fibrillation with Application to Rotor Localization. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS 2018; 2017:379-384. [PMID: 29629398 DOI: 10.1109/cbms.2017.161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cardiac simulations play an important role in studies involving understanding and investigating the mechanisms of cardiac arrhythmias. Today, studies of arrhythmogenesis and maintenance are largely being performed by creating simulations of a particular arrhythmia with high accuracy comparable to the results of clinical experiments. Atrial fibrillation (AF), the most common arrhythmia in the United States and many other parts of the world, is one of the major field where simulation and modeling is largely used. AF simulations not only assist in understanding its mechanisms but also help to develop, evaluate and improve the computer algorithms used in electrophysiology (EP) systems for ablation therapies. In this paper, we begin with a brief overeview of some common techniques used in simulations to simulate two major AF mechanisms - spiral waves (or rotors) and point (or focal) sources. We particularly focus on 2D simulations using Nygren et al.'s mathematical model of human atrial cell. Then, we elucidate an application of the developed AF simulation to an algorithm designed for localizing AF rotors for improving current AF ablation therapies. Our simulation methods and results, along with the other discussions presented in this paper is aimed to provide engineers and professionals with a working-knowledge of application-specific simulations of spirals and foci.
Collapse
Affiliation(s)
- Prasanth Ganesan
- Department of Electrical Engineering, Florida Atlantic University, Boca Raton, Florida
| | | | - Behnaz Ghoraani
- Department of Electrical Engineering, Florida Atlantic University, Boca Raton, Florida
| |
Collapse
|
125
|
Washio T, Sugiura S, Kanada R, Okada JI, Hisada T. Coupling Langevin Dynamics With Continuum Mechanics: Exposing the Role of Sarcomere Stretch Activation Mechanisms to Cardiac Function. Front Physiol 2018; 9:333. [PMID: 29681861 PMCID: PMC5898180 DOI: 10.3389/fphys.2018.00333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/16/2018] [Indexed: 11/13/2022] Open
Abstract
High-performance computing approaches that combine molecular-scale and macroscale continuum mechanics have long been anticipated in various fields. Such approaches may enrich our understanding of the links between microscale molecular mechanisms and macroscopic properties in the continuum. However, there have been few successful examples to date owing to various difficulties associated with overcoming the large spatial (from 1 nm to 10 cm) and temporal (from 1 ns to 1 ms) gaps between the two scales. In this paper, we propose an efficient parallel scheme to couple a microscopic model using Langevin dynamics for a protein motor with a finite element continuum model of a beating heart. The proposed scheme allows us to use a macroscale time step that is an order of magnitude longer than the microscale time step of the Langevin model, without loss of stability or accuracy. This reduces the overhead required by the imbalanced loads of the microscale computations and the communication required when switching between scales. An example of the Langevin dynamics model that demonstrates the usefulness of the coupling approach is the molecular mechanism of the actomyosin system, in which the stretch-activation phenomenon can be successfully reproduced. This microscopic Langevin model is coupled with a macroscopic finite element ventricle model. In the numerical simulations, the Langevin dynamics model reveals that a single sarcomere can undergo spontaneous oscillation (15 Hz) accompanied by quick lengthening due to cooperative movements of the myosin molecules pulling on the common Z-line. Also, the coupled simulations using the ventricle model show that the stretch-activation mechanism contributes to the synchronization of the quick lengthening of the sarcomeres at the end of the systolic phase. By comparing the simulation results given by the molecular model with and without the stretch-activation mechanism, we see that this synchronization contributes to maintaining the systolic blood pressure by providing sufficient blood volume without slowing the diastolic process.
Collapse
Affiliation(s)
- Takumi Washio
- UT-Heart Inc., Kashiwa, Japan.,Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | - Seiryo Sugiura
- UT-Heart Inc., Kashiwa, Japan.,Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | - Ryo Kanada
- Predictive Health Team, Integrated Research Group, Compass to Healthy Life Research Complex Program, RIKEN, Kobe, Japan
| | - Jun-Ichi Okada
- UT-Heart Inc., Kashiwa, Japan.,Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | - Toshiaki Hisada
- UT-Heart Inc., Kashiwa, Japan.,Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| |
Collapse
|
126
|
Greiner J, Sankarankutty AC, Seemann G, Seidel T, Sachse FB. Confocal Microscopy-Based Estimation of Parameters for Computational Modeling of Electrical Conduction in the Normal and Infarcted Heart. Front Physiol 2018; 9:239. [PMID: 29670532 PMCID: PMC5893725 DOI: 10.3389/fphys.2018.00239] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/06/2018] [Indexed: 12/28/2022] Open
Abstract
Computational modeling is an important tool to advance our knowledge on cardiac diseases and their underlying mechanisms. Computational models of conduction in cardiac tissues require identification of parameters. Our knowledge on these parameters is limited, especially for diseased tissues. Here, we assessed and quantified parameters for computational modeling of conduction in cardiac tissues. We used a rabbit model of myocardial infarction (MI) and an imaging-based approach to derive the parameters. Left ventricular tissue samples were obtained from fixed control hearts (animals: 5) and infarcted hearts (animals: 6) within 200 μm (region 1), 250-750 μm (region 2) and 1,000-1,250 μm (region 3) of the MI border. We assessed extracellular space, fibroblasts, smooth muscle cells, nuclei and gap junctions by a multi-label staining protocol. With confocal microscopy we acquired three-dimensional (3D) image stacks with a voxel size of 200 × 200 × 200 nm. Image segmentation yielded 3D reconstructions of tissue microstructure, which were used to numerically derive extracellular conductivity tensors. Volume fractions of myocyte, extracellular, interlaminar cleft, vessel and fibroblast domains in control were (in %) 65.03 ± 3.60, 24.68 ± 3.05, 3.95 ± 4.84, 7.71 ± 2.15, and 2.48 ± 1.11, respectively. Volume fractions in regions 1 and 2 were different for myocyte, myofibroblast, vessel, and extracellular domains. Fibrosis, defined as increase in fibrotic tissue constituents, was (in %) 21.21 ± 1.73, 16.90 ± 9.86, and 3.58 ± 8.64 in MI regions 1, 2, and 3, respectively. For control tissues, image-based computation of longitudinal, transverse and normal extracellular conductivity yielded (in S/m) 0.36 ± 0.11, 0.17 ± 0.07, and 0.1 ± 0.06, respectively. Conductivities were markedly increased in regions 1 (+75, +171, and +100%), 2 (+53, +165, and +80%), and 3 (+42, +141, and +60%). Volume fractions of the extracellular space including interlaminar clefts strongly correlated with conductivities in control and MI hearts. Our study provides novel quantitative data for computational modeling of conduction in normal and MI hearts. Notably, our study introduces comprehensive statistical information on tissue composition and extracellular conductivities on a microscopic scale in the MI border zone. We suggest that the presented data fill a significant gap in modeling parameters and extend our foundation for computational modeling of cardiac conduction.
Collapse
Affiliation(s)
- Joachim Greiner
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States.,Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Aparna C Sankarankutty
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States.,Bioengineering Department, University of Utah, Salt Lake City, UT, United States
| | - Gunnar Seemann
- Institute for Experimental Cardiovascular Medicine, University Heart Center, Medical Center University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Thomas Seidel
- Institute for Cellular and Molecular Physiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Frank B Sachse
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States.,Bioengineering Department, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
127
|
McGillivray MF, Cheng W, Peters NS, Christensen K. Machine learning methods for locating re-entrant drivers from electrograms in a model of atrial fibrillation. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172434. [PMID: 29765687 PMCID: PMC5936952 DOI: 10.1098/rsos.172434] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/13/2018] [Indexed: 05/14/2023]
Abstract
Mapping resolution has recently been identified as a key limitation in successfully locating the drivers of atrial fibrillation (AF). Using a simple cellular automata model of AF, we demonstrate a method by which re-entrant drivers can be located quickly and accurately using a collection of indirect electrogram measurements. The method proposed employs simple, out-of-the-box machine learning algorithms to correlate characteristic electrogram gradients with the displacement of an electrogram recording from a re-entrant driver. Such a method is less sensitive to local fluctuations in electrical activity. As a result, the method successfully locates 95.4% of drivers in tissues containing a single driver, and 95.1% (92.6%) for the first (second) driver in tissues containing two drivers of AF. Additionally, we demonstrate how the technique can be applied to tissues with an arbitrary number of drivers. In its current form, the techniques presented are not refined enough for a clinical setting. However, the methods proposed offer a promising path for future investigations aimed at improving targeted ablation for AF.
Collapse
Affiliation(s)
- Max Falkenberg McGillivray
- The Blackett Laboratory, Imperial College London, London SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London SW7 2AZ, UK
| | - William Cheng
- The Blackett Laboratory, Imperial College London, London SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London SW7 2AZ, UK
| | - Nicholas S Peters
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London W12 0NN, UK
| | - Kim Christensen
- The Blackett Laboratory, Imperial College London, London SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London SW7 2AZ, UK
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London W12 0NN, UK
| |
Collapse
|
128
|
Loewe A, Wülfers EM, Seemann G. Cardiac ischemia-insights from computational models. Herzschrittmacherther Elektrophysiol 2018; 29:48-56. [PMID: 29305703 DOI: 10.1007/s00399-017-0539-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Complementary to clinical and experimental studies, computational cardiac modeling serves to obtain a comprehensive understanding of the cardiovascular system in order to analyze dysfunction, evaluate existing, and develop novel treatment strategies. OBJECTIVES We describe the basics of multiscale computational modeling of cardiac electrophysiology from the molecular ion channel to the whole body scale. By modeling cardiac ischemia, we illustrate how in silico experiments can contribute to our understanding of how the pathophysiological mechanisms translate into changes observed in diagnostic tools such as the electrocardiogram (ECG). MATERIALS AND METHODS Quantitative in silico modeling spans a wide range of scales from ion channel biophysics to ECG signals. For each of the scales, a set of mathematical equations describes electrophysiology in relation to the other scales. Integration of ischemia-induced changes is performed on the ion channel, single-cell, and tissue level. This approach allows us to study how effects simulated at molecular scales translate to changes in the ECG. RESULTS Ischemia induces action potential shortening and conduction slowing. Hence, ischemic myocardium has distinct and significant effects on propagation and repolarization of excitation, depending on the intramural extent of the ischemic region. For transmural and subendocardial ischemic regions, ST segment elevation and depression, respectively, were observed, whereas intermediate ischemic regions were found to be electrically silent (NSTEMI). CONCLUSIONS In silico modeling contributes quantitative and mechanistic insight into fundamental ischemia-related arrhythmogenic mechanisms. In addition, computational modeling can help to translate experimental findings at the (sub-)cellular level to the organ and body context (e. g., ECG), thereby providing a thorough understanding of this routinely used diagnostic tool that may translate into optimized applications.
Collapse
Affiliation(s)
- Axel Loewe
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Eike Moritz Wülfers
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Medical Center, Computational Modeling Group, Albert-Ludwigs University of Freiburg, Elsässerstr. 2q, 79110, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gunnar Seemann
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Medical Center, Computational Modeling Group, Albert-Ludwigs University of Freiburg, Elsässerstr. 2q, 79110, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
129
|
Pathmanathan P, Gray RA. Validation and Trustworthiness of Multiscale Models of Cardiac Electrophysiology. Front Physiol 2018; 9:106. [PMID: 29497385 PMCID: PMC5818422 DOI: 10.3389/fphys.2018.00106] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/31/2018] [Indexed: 02/06/2023] Open
Abstract
Computational models of cardiac electrophysiology have a long history in basic science applications and device design and evaluation, but have significant potential for clinical applications in all areas of cardiovascular medicine, including functional imaging and mapping, drug safety evaluation, disease diagnosis, patient selection, and therapy optimisation or personalisation. For all stakeholders to be confident in model-based clinical decisions, cardiac electrophysiological (CEP) models must be demonstrated to be trustworthy and reliable. Credibility, that is, the belief in the predictive capability, of a computational model is primarily established by performing validation, in which model predictions are compared to experimental or clinical data. However, there are numerous challenges to performing validation for highly complex multi-scale physiological models such as CEP models. As a result, credibility of CEP model predictions is usually founded upon a wide range of distinct factors, including various types of validation results, underlying theory, evidence supporting model assumptions, evidence from model calibration, all at a variety of scales from ion channel to cell to organ. Consequently, it is often unclear, or a matter for debate, the extent to which a CEP model can be trusted for a given application. The aim of this article is to clarify potential rationale for the trustworthiness of CEP models by reviewing evidence that has been (or could be) presented to support their credibility. We specifically address the complexity and multi-scale nature of CEP models which makes traditional model evaluation difficult. In addition, we make explicit some of the credibility justification that we believe is implicitly embedded in the CEP modeling literature. Overall, we provide a fresh perspective to CEP model credibility, and build a depiction and categorisation of the wide-ranging body of credibility evidence for CEP models. This paper also represents a step toward the extension of model evaluation methodologies that are currently being developed by the medical device community, to physiological models.
Collapse
Affiliation(s)
- Pras Pathmanathan
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | | |
Collapse
|
130
|
Rostami Z, Jafari S. Defects formation and spiral waves in a network of neurons in presence of electromagnetic induction. Cogn Neurodyn 2018; 12:235-254. [PMID: 29564031 DOI: 10.1007/s11571-017-9472-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/04/2017] [Accepted: 12/29/2017] [Indexed: 11/30/2022] Open
Abstract
Complex anatomical and physiological structure of an excitable tissue (e.g., cardiac tissue) in the body can represent different electrical activities through normal or abnormal behavior. Abnormalities of the excitable tissue coming from different biological reasons can lead to formation of some defects. Such defects can cause some successive waves that may end up to some additional reorganizing beating behaviors like spiral waves or target waves. In this study, formation of defects and the resulting emitted waves in an excitable tissue are investigated. We have considered a square array network of neurons with nearest-neighbor connections to describe the excitable tissue. Fundamentally, electrophysiological properties of ion currents in the body are responsible for exhibition of electrical spatiotemporal patterns. More precisely, fluctuation of accumulated ions inside and outside of cell causes variable electrical and magnetic field. Considering undeniable mutual effects of electrical field and magnetic field, we have proposed the new Hindmarsh-Rose (HR) neuronal model for the local dynamics of each individual neuron in the network. In this new neuronal model, the influence of magnetic flow on membrane potential is defined. This improved model holds more bifurcation parameters. Moreover, the dynamical behavior of the tissue is investigated in different states of quiescent, spiking, bursting and even chaotic state. The resulting spatiotemporal patterns are represented and the time series of some sampled neurons are displayed, as well.
Collapse
Affiliation(s)
- Zahra Rostami
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, 15875-4413 Iran
| | - Sajad Jafari
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, 15875-4413 Iran
| |
Collapse
|
131
|
Batacan RB, Duncan MJ, Dalbo VJ, Buitrago GL, Fenning AS. Effect of different intensities of physical activity on cardiometabolic markers and vascular and cardiac function in adult rats fed with a high-fat high-carbohydrate diet. JOURNAL OF SPORT AND HEALTH SCIENCE 2018; 7:109-119. [PMID: 30356452 PMCID: PMC6180540 DOI: 10.1016/j.jshs.2016.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/30/2016] [Accepted: 06/06/2016] [Indexed: 05/14/2023]
Abstract
BACKGROUND Physical activity (PA) and diet are 2 lifestyle factors that affect cardiometabolic risk. However, data on how a high-fat high-carbohydrate (HFHC) diet influences the effect of different intensities of PA on cardiometabolic health and cardiovascular function in a controlled setting are yet to be fully established. This study investigated the effect of sedentary behavior, light-intensity training (LIT), and high-intensity interval training (HIIT) on cardiometabolic markers and vascular and cardiac function in HFHC-fed adult rats. METHODS Twelve-week-old Wistar rats were randomly allocated to 4 groups (12 rats/group): control (CTL), sedentary (SED), LIT, and HIIT. Biometric indices, glucose and lipid control, inflammatory and oxidative stress markers, vascular reactivity, and cardiac electrophysiology of the experimental groups were examined after 12 weeks of HFHC-diet feeding and PA interventions. RESULTS The SED group had slower cardiac conduction (p = 0.0426) and greater thoracic aortic contractile responses (p < 0.05) compared with the CTL group. The LIT group showed improved cardiac conduction compared with the SED group (p = 0.0003), and the HIIT group showed decreased mesenteric artery contractile responses compared with all other groups and improved endothelium-dependent mesenteric artery relaxation compared with the LIT group (both p < 0.05). The LIT and HIIT groups had lower visceral (p = 0.0057 for LIT, p = 0.0120 for HIIT) and epididymal fat (p < 0.0001 for LIT, p = 0.0002 for HIIT) compared with the CTL group. CONCLUSION LIT induced positive adaptations on fat accumulation and cardiac conduction, and HIIT induced a positive effect on fat accumulation, mesenteric artery contraction, and endothelium-dependent relaxation. No other differences were observed between groups. These findings suggest that few positive health effects can be achieved through LIT and HIIT when consuming a chronic and sustained HFHC diet.
Collapse
Affiliation(s)
- Romeo B. Batacan
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4702, Australia
- Centre for Physical Activity Studies, Central Queensland University, Rockhampton, QLD 4702, Australia
- Corresponding author.
| | - Mitch J. Duncan
- School of Medicine & Public Health, Priority Research Centre for Physical Activity and Nutrition, Faculty of Health and Medicine, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Vincent J. Dalbo
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4702, Australia
- Clinical Biochemistry Laboratory, Central Queensland University, Rockhampton, QLD 4702, Australia
| | - Geraldine L. Buitrago
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4870, Australia
| | - Andrew S. Fenning
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4702, Australia
- Centre for Physical Activity Studies, Central Queensland University, Rockhampton, QLD 4702, Australia
| |
Collapse
|
132
|
Lim B, Hwang M, Song JS, Ryu AJ, Joung B, Shim EB, Ryu H, Pak HN. Effectiveness of atrial fibrillation rotor ablation is dependent on conduction velocity: An in-silico 3-dimensional modeling study. PLoS One 2017; 12:e0190398. [PMID: 29287119 PMCID: PMC5747478 DOI: 10.1371/journal.pone.0190398] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 12/14/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND We previously reported that stable rotors are observed in in-silico human atrial fibrillation (AF) models, and are well represented by a dominant frequency (DF). In the current study, we hypothesized that the outcome of DF ablation is affected by conduction velocity (CV) conditions and examined this hypothesis using in-silico 3D-AF modeling. METHODS We integrated 3D CT images of left atrium obtained from 10 patients with persistent AF (80% male, 61.8±13.5 years old) into in-silico AF model. We compared AF maintenance durations (max 300s), spatiotemporal stabilities of DF, phase singularity (PS) number, life-span of PS, and AF termination or defragmentation rates after virtual DF ablation with 5 different CV conditions (0.2, 0.3, 0.4, 0.5, and 0.6m/s). RESULTS 1. AF maintenance duration (p<0.001), spatiotemporal mean variance of DF (p<0.001), and the number of PS (p = 0.023) showed CV dependent bimodal patterns (highest at CV0.4m/s and lowest at CV0.6m/s) consistently. 2. After 10% highest DF ablation, AF defragmentation rates were the lowest at CV0.4m/s (37.8%), but highest at CV0.5 and 0.6m/s (all 100%, p<0.001). 3. In the episodes with AF termination or defragmentation followed by 10% highest DF ablation, baseline AF maintenance duration was shorter (p<0.001), spatiotemporal mean variance of DF was lower (p = 0.014), and the number of PS was lower (p = 0.004) than those with failed AF defragmentation after DF ablation. CONCLUSION Virtual ablation of DF, which may indicate AF driver, was more likely to terminate or defragment AF with spatiotemporally stable DF, but not likely to do so in long-lasting and sustained AF conditions, depending on CV.
Collapse
Affiliation(s)
- Byounghyun Lim
- Yonsei University Health System, Seoul, Republic of Korea
| | - Minki Hwang
- Yonsei University Health System, Seoul, Republic of Korea
| | - Jun-Seop Song
- Yonsei University Health System, Seoul, Republic of Korea
| | - Ah-Jin Ryu
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, Ganwon-do, Republic of Korea
| | - Boyoung Joung
- Yonsei University Health System, Seoul, Republic of Korea
| | - Eun Bo Shim
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, Ganwon-do, Republic of Korea
| | - Hyungon Ryu
- NVIDIA, Yonsei University, Department of Mathematics, Seoul, Republic of Korea
| | - Hui-Nam Pak
- Yonsei University Health System, Seoul, Republic of Korea
| |
Collapse
|
133
|
Van Nieuwenhuyse E, Seemann G, Panfilov AV, Vandersickel N. Effects of early afterdepolarizations on excitation patterns in an accurate model of the human ventricles. PLoS One 2017; 12:e0188867. [PMID: 29216239 PMCID: PMC5720514 DOI: 10.1371/journal.pone.0188867] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022] Open
Abstract
Early Afterdepolarizations, EADs, are defined as the reversal of the action potential before completion of the repolarization phase, which can result in ectopic beats. However, the series of mechanisms of EADs leading to these ectopic beats and related cardiac arrhythmias are not well understood. Therefore, we aimed to investigate the influence of this single cell behavior on the whole heart level. For this study we used a modified version of the Ten Tusscher-Panfilov model of human ventricular cells (TP06) which we implemented in a 3D ventricle model including realistic fiber orientations. To increase the likelihood of EAD formation at the single cell level, we reduced the repolarization reserve (RR) by reducing the rapid delayed rectifier Potassium current and raising the L-type Calcium current. Varying these parameters defined a 2D parametric space where different excitation patterns could be classified. Depending on the initial conditions, by either exciting the ventricles with a spiral formation or burst pacing protocol, we found multiple different spatio-temporal excitation patterns. The spiral formation protocol resulted in the categorization of a stable spiral (S), a meandering spiral (MS), a spiral break-up regime (SB), spiral fibrillation type B (B), spiral fibrillation type A (A) and an oscillatory excitation type (O). The last three patterns are a 3D generalization of previously found patterns in 2D. First, the spiral fibrillation type B showed waves determined by a chaotic bi-excitable regime, i.e. mediated by both Sodium and Calcium waves at the same time and in same tissue settings. In the parameter region governed by the B pattern, single cells were able to repolarize completely and different (spiral) waves chaotically burst into each other without finishing a 360 degree rotation. Second, spiral fibrillation type A patterns consisted of multiple small rotating spirals. Single cells failed to repolarize to the resting membrane potential hence prohibiting the Sodium channel gates to recover. Accordingly, we found that Calcium waves mediated these patterns. Third, a further reduction of the RR resulted in a more exotic parameter regime whereby the individual cells behaved independently as oscillators. The patterns arose due to a phase-shift of different oscillators as disconnection of the cells resulted in continuation of the patterns. For all patterns, we computed realistic 9 lead ECGs by including a torso model. The B and A type pattern exposed the behavior of Ventricular Tachycardia (VT). We conclude that EADs at the single cell level can result in different types of cardiac fibrillation at the tissue and 3D ventricle level.
Collapse
Affiliation(s)
| | - Gunnar Seemann
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Nele Vandersickel
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| |
Collapse
|
134
|
Wilson D, Ermentrout B. Stochastic Pacing Inhibits Spatially Discordant Cardiac Alternans. Biophys J 2017; 113:2552-2572. [PMID: 29212008 DOI: 10.1016/j.bpj.2017.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022] Open
Abstract
Depressed heart rate variability is a well-established risk factor for sudden cardiac death in survivors of acute myocardial infarction and for those with congestive heart failure. Although measurements of heart rate variability provide a valuable prognostic tool, it is unclear whether reduced heart rate variability itself is proarrhythmic or if it simply correlates with the severity of autonomic nervous system dysfunction. In this work, we investigate a possible mechanism by which heart rate variability could protect against cardiac arrhythmia. Specifically, in numerical simulations, we observe an inverse relationship between the variance of stochastic pacing and the occurrence of spatially discordant alternans, an arrhythmia that is widely believed to facilitate the development of cardiac fibrillation. By analyzing the effects of conduction velocity restitution, cellular dynamics, electrotonic coupling, and stochastic pacing on the nodal dynamics of spatially discordant alternans, we provide intuition for this observed behavior and propose control strategies to inhibit discordant alternans.
Collapse
Affiliation(s)
- Dan Wilson
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Bard Ermentrout
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
135
|
Liu Y, Xu G, Wei J, Wu Q, Li X. Cardiomyocyte coculture on layered fibrous scaffolds assembled from micropatterned electrospun mats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:500-510. [DOI: 10.1016/j.msec.2017.08.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/12/2017] [Accepted: 08/10/2017] [Indexed: 12/14/2022]
|
136
|
Ni H, Whittaker DG, Wang W, Giles WR, Narayan SM, Zhang H. Synergistic Anti-arrhythmic Effects in Human Atria with Combined Use of Sodium Blockers and Acacetin. Front Physiol 2017; 8:946. [PMID: 29218016 PMCID: PMC5703742 DOI: 10.3389/fphys.2017.00946] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. Developing effective and safe anti-AF drugs remains an unmet challenge. Simultaneous block of both atrial-specific ultra-rapid delayed rectifier potassium (K+) current (IKur) and the Na+ current (INa) has been hypothesized to be anti-AF, without inducing significant QT prolongation and ventricular side effects. However, the antiarrhythmic advantage of simultaneously blocking these two channels vs. individual block in the setting of AF-induced electrical remodeling remains to be documented. Furthermore, many IKur blockers such as acacetin and AVE0118, partially inhibit other K+ currents in the atria. Whether this multi-K+-block produces greater anti-AF effects compared with selective IKur-block has not been fully understood. The aim of this study was to use computer models to (i) assess the impact of multi-K+-block as exhibited by many IKur blokers, and (ii) evaluate the antiarrhythmic effect of blocking IKur and INa, either alone or in combination, on atrial and ventricular electrical excitation and recovery in the setting of AF-induced electrical-remodeling. Contemporary mathematical models of human atrial and ventricular cells were modified to incorporate dose-dependent actions of acacetin (a multichannel blocker primarily inhibiting IKur while less potently blocking Ito, IKr, and IKs). Rate- and atrial-selective inhibition of INa was also incorporated into the models. These single myocyte models were then incorporated into multicellular two-dimensional (2D) and three-dimensional (3D) anatomical models of the human atria. As expected, application of IKur blocker produced pronounced action potential duration (APD) prolongation in atrial myocytes. Furthermore, combined multiple K+-channel block that mimicked the effects of acacetin exhibited synergistic APD prolongations. Synergistically anti-AF effects following inhibition of INa and combined IKur/K+-channels were also observed. The attainable maximal AF-selectivity of INa inhibition was greatly augmented by blocking IKur or multiple K+-currents in the atrial myocytes. This enhanced anti-arrhythmic effects of combined block of Na+- and K+-channels were also seen in 2D and 3D simulations; specially, there was an enhanced efficacy in terminating re-entrant excitation waves, exerting improved antiarrhythmic effects in the human atria as compared to a single-channel block. However, in the human ventricular myocytes and tissue, cellular repolarization and computed QT intervals were modestly affected in the presence of actions of acacetin and INa blockers (either alone or in combination). In conclusion, this study demonstrates synergistic antiarrhythmic benefits of combined block of IKur and INa, as well as those of INa and combined multi K+-current block of acacetin, without significant alterations of ventricular repolarization and QT intervals. This approach may be a valuable strategy for the treatment of AF.
Collapse
Affiliation(s)
- Haibo Ni
- Biological Physics Group, University of Manchester, Manchester, United Kingdom.,Space Institute of Southern China, Shenzhen, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Dominic G Whittaker
- Biological Physics Group, University of Manchester, Manchester, United Kingdom
| | - Wei Wang
- Biological Physics Group, University of Manchester, Manchester, United Kingdom
| | - Wayne R Giles
- Faculties of Kinesiology and Medicine, University of Calgary, Calgary, AB, Canada
| | - Sanjiv M Narayan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Henggui Zhang
- Biological Physics Group, University of Manchester, Manchester, United Kingdom.,Space Institute of Southern China, Shenzhen, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.,School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
137
|
Lin YT, Chang ETY, Eatock J, Galla T, Clayton RH. Mechanisms of stochastic onset and termination of atrial fibrillation studied with a cellular automaton model. J R Soc Interface 2017; 14:rsif.2016.0968. [PMID: 28356539 PMCID: PMC5378131 DOI: 10.1098/rsif.2016.0968] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/02/2017] [Indexed: 01/23/2023] Open
Abstract
Mathematical models of cardiac electrical excitation are increasingly complex, with multiscale models seeking to represent and bridge physiological behaviours across temporal and spatial scales. The increasing complexity of these models makes it computationally expensive to both evaluate long term (more than 60 s) behaviour and determine sensitivity of model outputs to inputs. This is particularly relevant in models of atrial fibrillation (AF), where individual episodes last from seconds to days, and interepisode waiting times can be minutes to months. Potential mechanisms of transition between sinus rhythm and AF have been identified but are not well understood, and it is difficult to simulate AF for long periods of time using state-of-the-art models. In this study, we implemented a Moe-type cellular automaton on a novel, topologically equivalent surface geometry of the left atrium. We used the model to simulate stochastic initiation and spontaneous termination of AF, arising from bursts of spontaneous activation near pulmonary veins. The simplified representation of atrial electrical activity reduced computational cost, and so permitted us to investigate AF mechanisms in a probabilistic setting. We computed large numbers (approx. 105) of sample paths of the model, to infer stochastic initiation and termination rates of AF episodes using different model parameters. By generating statistical distributions of model outputs, we demonstrated how to propagate uncertainties of inputs within our microscopic level model up to a macroscopic level. Lastly, we investigated spontaneous termination in the model and found a complex dependence on its past AF trajectory, the mechanism of which merits future investigation.
Collapse
Affiliation(s)
- Yen Ting Lin
- Theoretical Physics Division, School of Physics and Astronomy, University of Manchester, Manchester, UK
| | - Eugene T Y Chang
- Department of Computer Science and INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Julie Eatock
- Department of Computer Science, Brunel University London, Uxbridge UB8 3PH, UK
| | - Tobias Galla
- Theoretical Physics Division, School of Physics and Astronomy, University of Manchester, Manchester, UK
| | - Richard H Clayton
- Department of Computer Science and INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|
138
|
Global sensitivity analysis for developing biological models: Application to K+ channel model in mouse ventricular myocytes. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:3676-3679. [PMID: 29060696 DOI: 10.1109/embc.2017.8037655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mathematical models of cardiac myocytes are highly nonlinear and involve a large number of model parameters. The parameters are estimated using experimental data, which are often corrupted by noise and uncertainty. Such uncertainty can be propagated onto model parameters during model calibration, which further affects model reliability and credibility. In order to improve model accuracy, it is important to quantify and reduce the uncertainty in model response resulting from parametric uncertainty. Sensitivity analysis is a key technique to investigate the significance of parametric uncertainty and its effect on model responses. This can identify and rank most sensitive parameters, and evaluate the effect of uncertainty on model outputs. In this work, a global sensitivity analysis is developed to determine the significance of parametric uncertainty on model responses using Sobol indices. This method is applied to nonlinear K+ channel models of mouse ventricular myocytes to demonstrate the efficacy of the developed algorithm.
Collapse
|
139
|
Mayer A, Bittihn P, Luther S. Complex restitution behavior and reentry in a cardiac tissue model for neonatal mice. Physiol Rep 2017; 5:5/19/e13449. [PMID: 28989116 PMCID: PMC5641936 DOI: 10.14814/phy2.13449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/06/2017] [Indexed: 11/24/2022] Open
Abstract
Spatiotemporal dynamics in cardiac tissue emerging from the coupling of individual cardiomyocytes underlie the heart's normal rhythm as well as undesired and possibly life-threatening arrhythmias. While single cells and their transmembrane currents have been studied extensively, systematically investigating spatiotemporal dynamics is complicated by the nontrivial relationship between single-cell and emergent tissue properties. Mathematical models have been employed to bridge this gap and contribute to a deepened understanding of the onset, development, and termination of arrhythmias. However, no such tissue-level model currently exists for neonatal mice. Here, we build on a recent single-cell model of neonatal mouse cardiomyocytes by Wang and Sobie (Am. J. Physiol. Heart Circ. Physiol 294:H2565) to predict properties that are commonly used to gauge arrhythmogenicity of cardiac substrates. We modify the model to yield well-defined behavior for common experimental protocols and construct a spatially extended version to study emergent tissue dynamics. We find a complex action potential duration (APD) restitution behavior characterized by a nonmonotonic dependence on pacing frequency. Electrotonic coupling in tissue leads not only to changes in action potential morphology but can also induce spatially concordant and discordant alternans not observed in the single-cell model. In two-dimensional tissue, our results show that the model supports stable functional reentry, whose frequency is in good agreement with that observed in adult mice. Our results can be used to further constrain and validate the mathematical model of neonatal mouse cardiomyocytes with future experiments.
Collapse
Affiliation(s)
- Andreas Mayer
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Philip Bittihn
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Stefan Luther
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK) Partner Site Göttingen, Göttingen, Germany.,Institute for Nonlinear Dynamics Georg-August-Universität Göttingen, Göttingen, Germany.,Institute of Pharmacology and Toxicology University Medical Center, Göttingen, Germany.,Department of Physics and Department of Bioengineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
140
|
Whittaker DG, Ni H, Benson AP, Hancox JC, Zhang H. Computational Analysis of the Mode of Action of Disopyramide and Quinidine on hERG-Linked Short QT Syndrome in Human Ventricles. Front Physiol 2017; 8:759. [PMID: 29085299 PMCID: PMC5649182 DOI: 10.3389/fphys.2017.00759] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/19/2017] [Indexed: 01/24/2023] Open
Abstract
The short QT syndrome (SQTS) is a rare cardiac disorder associated with arrhythmias and sudden death. Gain-of-function mutations to potassium channels mediating the rapid delayed rectifier current, IKr, underlie SQTS variant 1 (SQT1), in which treatment with Na+ and K+ channel blocking class Ia anti-arrhythmic agents has demonstrated some efficacy. This study used computational modeling to gain mechanistic insights into the actions of two such drugs, disopyramide and quinidine, in the setting of SQT1. The O'Hara-Rudy (ORd) human ventricle model was modified to incorporate a Markov chain formulation of IKr describing wild type (WT) and SQT1 mutant conditions. Effects of multi-channel block by disopyramide and quinidine, including binding kinetics and altered potency of IKr/hERG channel block in SQT1 and state-dependent block of sodium channels, were simulated on action potential and multicellular tissue models. A one-dimensional (1D) transmural ventricular strand model was used to assess prolongation of the QT interval, effective refractory period (ERP), and re-entry wavelength (WL) by both drugs. Dynamics of re-entrant excitation waves were investigated using a 3D human left ventricular wedge model. In the setting of SQT1, disopyramide, and quinidine both produced a dose-dependent prolongation in (i) the QT interval, which was primarily due to IKr block, and (ii) the ERP, which was mediated by a synergistic combination of IKr and INa block. Over the same range of concentrations quinidine was more effective in restoring the QT interval, due to more potent block of IKr. Both drugs demonstrated an anti-arrhythmic increase in the WL of re-entrant circuits. In the 3D wedge, disopyramide and quinidine at clinically-relevant concentrations decreased the dominant frequency of re-entrant excitations and exhibited anti-fibrillatory effects; preventing formation of multiple, chaotic wavelets which developed in SQT1, and could terminate arrhythmias. This computational modeling study provides novel insights into the clinical efficacy of disopyramide and quinidine in the setting of SQT1; it also dissects ionic mechanisms underlying QT and ERP prolongation. Our findings show that both drugs demonstrate efficacy in reversing the SQT1 phenotype, and indicate that disopyramide warrants further investigation as an alternative to quinidine in the treatment of SQT1.
Collapse
Affiliation(s)
- Dominic G Whittaker
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Haibo Ni
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Alan P Benson
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom.,Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| | - Jules C Hancox
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom.,School of Physiology, Pharmacology and Neuroscience, Cardiovascular Research Laboratories, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom.,School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.,Space Institute of Southern China, Shenzhen, China
| |
Collapse
|
141
|
Colman MA, Perez Alday EA, Holden AV, Benson AP. Trigger vs. Substrate: Multi-Dimensional Modulation of QT-Prolongation Associated Arrhythmic Dynamics by a hERG Channel Activator. Front Physiol 2017; 8:757. [PMID: 29046643 PMCID: PMC5632683 DOI: 10.3389/fphys.2017.00757] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/19/2017] [Indexed: 11/13/2022] Open
Abstract
Background: Prolongation of the QT interval of the electrocardiogram (ECG), underlain by prolongation of the action potential duration (APD) at the cellular level, is linked to increased vulnerability to cardiac arrhythmia. Pharmacological management of arrhythmia associated with QT prolongation is typically achieved through attempting to restore APD to control ranges, reversing the enhanced vulnerability to Ca2+-dependent afterdepolarisations (arrhythmia triggers) and increased transmural dispersion of repolarisation (arrhythmia substrate) associated with APD prolongation. However, such pharmacological modulation has been demonstrated to have limited effectiveness. Understanding the integrative functional impact of pharmacological modulation requires simultaneous investigation of both the trigger and substrate. Methods: We implemented a multi-scale (cell and tissue) in silico approach using a model of the human ventricular action potential, integrated with a model of stochastic 3D spatiotemporal Ca2+ dynamics, and parameter modification to mimic prolonged QT conditions. We used these models to examine the efficacy of the hERG activator MC-II-157c in restoring APD to control ranges, examined its effects on arrhythmia triggers and substrates, and the interaction of these arrhythmia triggers and substrates. Results: QT prolongation conditions promoted the development of spontaneous release events underlying afterdepolarisations during rapid pacing. MC-II-157c applied to prolonged QT conditions shortened the APD, inhibited the development of afterdepolarisations and reduced the probability of afterdepolarisations manifesting as triggered activity in single cells. In tissue, QT prolongation resulted in an increased transmural dispersion of repolarisation, which manifested as an increased vulnerable window for uni-directional conduction block. In some cases, MC-II-157c further increased the vulnerable window through its effects on INa. The combination of stochastic release event modulation and transmural dispersion of repolarisation modulation by MC-II-157c resulted in an integrative behavior wherein the arrhythmia trigger is reduced but the arrhythmia substrate is increased, leading to variable and non-linear overall vulnerability to arrhythmia. Conclusion: The relative balance of reduced trigger and increased substrate underlies a multi-dimensional role of MC-II-157c in modulation of cardiac arrhythmia vulnerability associated with prolonged QT interval.
Collapse
Affiliation(s)
- Michael A Colman
- School of Biomedical Sciences and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| | - Erick A Perez Alday
- Division of Cardiovascular Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Arun V Holden
- School of Biomedical Sciences and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| | - Alan P Benson
- School of Biomedical Sciences and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
142
|
Neic A, Campos FO, Prassl AJ, Niederer SA, Bishop MJ, Vigmond EJ, Plank G. Efficient computation of electrograms and ECGs in human whole heart simulations using a reaction-eikonal model. JOURNAL OF COMPUTATIONAL PHYSICS 2017; 346:191-211. [PMID: 28819329 PMCID: PMC5555399 DOI: 10.1016/j.jcp.2017.06.020] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Anatomically accurate and biophysically detailed bidomain models of the human heart have proven a powerful tool for gaining quantitative insight into the links between electrical sources in the myocardium and the concomitant current flow in the surrounding medium as they represent their relationship mechanistically based on first principles. Such models are increasingly considered as a clinical research tool with the perspective of being used, ultimately, as a complementary diagnostic modality. An important prerequisite in many clinical modeling applications is the ability of models to faithfully replicate potential maps and electrograms recorded from a given patient. However, while the personalization of electrophysiology models based on the gold standard bidomain formulation is in principle feasible, the associated computational expenses are significant, rendering their use incompatible with clinical time frames. In this study we report on the development of a novel computationally efficient reaction-eikonal (R-E) model for modeling extracellular potential maps and electrograms. Using a biventricular human electrophysiology model, which incorporates a topologically realistic His-Purkinje system (HPS), we demonstrate by comparing against a high-resolution reaction-diffusion (R-D) bidomain model that the R-E model predicts extracellular potential fields, electrograms as well as ECGs at the body surface with high fidelity and offers vast computational savings greater than three orders of magnitude. Due to their efficiency R-E models are ideally suitable for forward simulations in clinical modeling studies which attempt to personalize electrophysiological model features.
Collapse
Affiliation(s)
- Aurel Neic
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Fernando O. Campos
- Institute of Biophysics, Medical University of Graz, Graz, Austria
- Dept. of Congenital Heart Diseases and Pediatric Cardiology, German Heart Institute Berlin, Berlin, Germany
| | - Anton J. Prassl
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Steven A. Niederer
- Dept. Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King’s College of London, London, United Kingdom
| | - Martin J. Bishop
- Dept. Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King’s College of London, London, United Kingdom
| | | | - Gernot Plank
- Institute of Biophysics, Medical University of Graz, Graz, Austria
- Corresponding author. (G. Plank)
| |
Collapse
|
143
|
Cinelli I, Destrade M, Duffy M, McHugh P. Electrothermal Equivalent Three-Dimensional Finite-Element Model of a Single Neuron. IEEE Trans Biomed Eng 2017; 65:1373-1381. [PMID: 28920894 DOI: 10.1109/tbme.2017.2752258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE We propose a novel approach for modelling the interdependence of electrical and mechanical phenomena in nervous cells, by using electrothermal equivalences in finite element (FE) analysis so that existing thermomechanical tools can be applied. METHODS First, the equivalence between electrical and thermal properties of the nerve materials is established, and results of a pure heat conduction analysis performed in Abaqus CAE Software 6.13-3 are validated with analytical solutions for a range of steady and transient conditions. This validation includes the definition of equivalent active membrane properties that enable prediction of the action potential. Then, as a step toward fully coupled models, electromechanical coupling is implemented through the definition of equivalent piezoelectric properties of the nerve membrane using the thermal expansion coefficient, enabling prediction of the mechanical response of the nerve to the action potential. RESULTS Results of the coupled electromechanical model are validated with previously published experimental results of deformation for squid giant axon, crab nerve fibre, and garfish olfactory nerve fibre. CONCLUSION A simplified coupled electromechanical modelling approach is established through an electrothermal equivalent FE model of a nervous cell for biomedical applications. SIGNIFICANCE One of the key findings is the mechanical characterization of the neural activity in a coupled electromechanical domain, which provides insights into the electromechanical behaviour of nervous cells, such as thinning of the membrane. This is a first step toward modelling three-dimensional electromechanical alteration induced by trauma at nerve bundle, tissue, and organ levels.
Collapse
|
144
|
Multifidelity-CMA: a multifidelity approach for efficient personalisation of 3D cardiac electromechanical models. Biomech Model Mechanobiol 2017; 17:285-300. [PMID: 28894984 DOI: 10.1007/s10237-017-0960-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
Personalised computational models of the heart are of increasing interest for clinical applications due to their discriminative and predictive abilities. However, the simulation of a single heartbeat with a 3D cardiac electromechanical model can be long and computationally expensive, which makes some practical applications, such as the estimation of model parameters from clinical data (the personalisation), very slow. Here we introduce an original multifidelity approach between a 3D cardiac model and a simplified "0D" version of this model, which enables to get reliable (and extremely fast) approximations of the global behaviour of the 3D model using 0D simulations. We then use this multifidelity approximation to speed-up an efficient parameter estimation algorithm, leading to a fast and computationally efficient personalisation method of the 3D model. In particular, we show results on a cohort of 121 different heart geometries and measurements. Finally, an exploitable code of the 0D model with scripts to perform parameter estimation will be released to the community.
Collapse
|
145
|
Collet A, Bragard J, Dauby PC. Temperature, geometry, and bifurcations in the numerical modeling of the cardiac mechano-electric feedback. CHAOS (WOODBURY, N.Y.) 2017; 27:093924. [PMID: 28964162 DOI: 10.1063/1.5000710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This article characterizes the cardiac autonomous electrical activity induced by the mechanical deformations in the cardiac tissue through the mechano-electric feedback. A simplified and qualitative model is used to describe the system and we also account for temperature effects. The analysis emphasizes a very rich dynamics for the system, with periodic solutions, alternans, chaotic behaviors, etc. The possibility of self-sustained oscillations is analyzed in detail, particularly in terms of the values of important parameters such as the dimension of the system and the importance of the stretch-activated currents. It is also shown that high temperatures notably increase the parameter ranges for which self-sustained oscillations are observed and that several attractors can appear, depending on the location of the initial excitation of the system. Finally, the instability mechanisms by which the periodic solutions are destabilized have been studied by a Floquet analysis, which has revealed period-doubling phenomena and transient intermittencies.
Collapse
Affiliation(s)
- A Collet
- GIGA In silico medicine, Liège University, B-4000 Liège, Belgium
| | - J Bragard
- Physics and Applied Math. Dept., Universidad de Navarra, Pamplona E-31080, Spain
| | - P C Dauby
- GIGA In silico medicine, Liège University, B-4000 Liège, Belgium
| |
Collapse
|
146
|
Dhamala J, Arevalo HJ, Sapp J, Horacek M, Wu KC, Trayanova NA, Wang L. Spatially Adaptive Multi-Scale Optimization for Local Parameter Estimation in Cardiac Electrophysiology. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:1966-1978. [PMID: 28459685 PMCID: PMC5687096 DOI: 10.1109/tmi.2017.2697820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To obtain a patient-specific cardiac electro-physiological (EP) model, it is important to estimate the 3-D distributed tissue properties of the myocardium. Ideally, the tissue property should be estimated at the resolution of the cardiac mesh. However, such high-dimensional estimation faces major challenges in identifiability and computation. Most existing works reduce this dimension by partitioning the cardiac mesh into a pre-defined set of segments. The resulting low-resolution solutions have a limited ability to represent the underlying heterogeneous tissue properties of varying sizes, locations, and distributions. In this paper, we present a novel framework that, going beyond a uniform low-resolution approach, is able to obtain a higher resolution estimation of tissue properties represented by spatially non-uniform resolution. This is achieved by two central elements: 1) a multi-scale coarse-to-fine optimization that facilitates higher resolution optimization using the lower resolution solution and 2) a spatially adaptive decision criterion that retains lower resolution in homogeneous tissue regions and allows higher resolution in heterogeneous tissue regions. The presented framework is evaluated in estimating the local tissue excitability properties of a cardiac EP model on both synthetic and real data experiments. Its performance is compared with optimization using pre-defined segments. Results demonstrate the feasibility of the presented framework to estimate local parameters and to reveal heterogeneous tissue properties at a higher resolution without using a high number of unknowns.
Collapse
|
147
|
Gokhale TA, Medvescek E, Henriquez CS. Modeling dynamics in diseased cardiac tissue: Impact of model choice. CHAOS (WOODBURY, N.Y.) 2017; 27:093909. [PMID: 28964161 PMCID: PMC5568867 DOI: 10.1063/1.4999605] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
Cardiac arrhythmias have been traditionally simulated using continuous models that assume tissue homogeneity and use a relatively large spatial discretization. However, it is believed that the tissue fibrosis and collagen deposition, which occur on a micron-level, are critical factors in arrhythmogenesis in diseased tissues. Consequently, it remains unclear how well continuous models, which use averaged electrical properties, are able to accurately capture complex conduction behaviors such as re-entry in fibrotic tissues. The objective of this study was to compare re-entrant behavior in discrete microstructural models of fibrosis and in two types of equivalent continuous models, a homogenous continuous model and a hybrid continuous model with distinct heterogeneities. In the discrete model, increasing levels of tissue fibrosis lead to a substantial increase in the re-entrant cycle length which is inadequately reflected in the homogenous continuous models. These cycle length increases appear to be primarily due to increases in the tip path length and to altered restitution behavior, and suggest that it is critical to consider the discrete effects of fibrosis on conduction when studying arrhythmogenesis in fibrotic myocardium. Hybrid models are able to accurately capture some aspects of re-entry and, if carefully tuned, may provide a framework for simulating conduction in diseased tissues with both accuracy and efficiency.
Collapse
Affiliation(s)
- Tanmay A Gokhale
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281, USA
| | - Eli Medvescek
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281, USA
| | - Craig S Henriquez
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281, USA
| |
Collapse
|
148
|
Barone A, Fenton F, Veneziani A. Numerical sensitivity analysis of a variational data assimilation procedure for cardiac conductivities. CHAOS (WOODBURY, N.Y.) 2017; 27:093930. [PMID: 28964111 DOI: 10.1063/1.5001454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An accurate estimation of cardiac conductivities is critical in computational electro-cardiology, yet experimental results in the literature significantly disagree on the values and ratios between longitudinal and tangential coefficients. These are known to have a strong impact on the propagation of potential particularly during defibrillation shocks. Data assimilation is a procedure for merging experimental data and numerical simulations in a rigorous way. In particular, variational data assimilation relies on the least-square minimization of the misfit between simulations and experiments, constrained by the underlying mathematical model, which in this study is represented by the classical Bidomain system, or its common simplification given by the Monodomain problem. Operating on the conductivity tensors as control variables of the minimization, we obtain a parameter estimation procedure. As the theory of this approach currently provides only an existence proof and it is not informative for practical experiments, we present here an extensive numerical simulation campaign to assess practical critical issues such as the size and the location of the measurement sites needed for in silico test cases of potential experimental and realistic settings. This will be finalized with a real validation of the variational data assimilation procedure. Results indicate the presence of lower and upper bounds for the number of sites which guarantee an accurate and minimally redundant parameter estimation, the location of sites being generally non critical for properly designed experiments. An effective combination of parameter estimation based on the Monodomain and Bidomain models is tested for the sake of computational efficiency. Parameter estimation based on the Monodomain equation potentially leads to the accurate computation of the transmembrane potential in real settings.
Collapse
Affiliation(s)
- Alessandro Barone
- Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322, USA
| | - Flavio Fenton
- Department of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Alessandro Veneziani
- Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia, USA; School of Advanced Studies IUSS, Pavia, Italy
| |
Collapse
|
149
|
Weinberg SH. Ephaptic coupling rescues conduction failure in weakly coupled cardiac tissue with voltage-gated gap junctions. CHAOS (WOODBURY, N.Y.) 2017; 27:093908. [PMID: 28964133 DOI: 10.1063/1.4999602] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Electrical conduction in cardiac tissue is usually considered to be primarily facilitated by gap junctions, providing a pathway between the intracellular spaces of neighboring cells. However, recent studies have highlighted the role of coupling via extracellular electric fields, also known as ephaptic coupling, particularly in the setting of reduced gap junction expression. Further, in the setting of reduced gap junctional coupling, voltage-dependent gating of gap junctions, an oft-neglected biophysical property in computational studies, produces a positive feedback that promotes conduction failure. We hypothesized that ephaptic coupling can break the positive feedback loop and rescue conduction failure in weakly coupled cardiac tissue. In a computational tissue model incorporating voltage-gated gap junctions and ephaptic coupling, we demonstrate that ephaptic coupling can rescue conduction failure in weakly coupled tissue. Further, ephaptic coupling increased conduction velocity in weakly coupled tissue, and importantly, reduced the minimum gap junctional coupling necessary for conduction, most prominently at fast pacing rates. Finally, we find that, although neglecting gap junction voltage-gating results in negligible differences in well coupled tissue, more significant differences occur in weakly coupled tissue, greatly underestimating the minimal gap junctional coupling that can maintain conduction. Our study suggests that ephaptic coupling plays a conduction-preserving role, particularly at rapid heart rates.
Collapse
Affiliation(s)
- S H Weinberg
- Virginia Commonwealth University, 401 West Main Street, Richmond, Virginia 23284, USA
| |
Collapse
|
150
|
Bittihn P, Berg S, Parlitz U, Luther S. Emergent dynamics of spatio-temporal chaos in a heterogeneous excitable medium. CHAOS (WOODBURY, N.Y.) 2017; 27:093931. [PMID: 28964139 DOI: 10.1063/1.4999604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Self-organized activation patterns in excitable media such as spiral waves and spatio-temporal chaos underlie dangerous cardiac arrhythmias. While the interaction of single spiral waves with different types of heterogeneity has been studied extensively, the effect of heterogeneity on fully developed spatio-temporal chaos remains poorly understood. We investigate how the complexity and stability properties of spatio-temporal chaos in the Bär-Eiswirth model of excitable media depend on the heterogeneity of the underlying medium. We employ different measures characterizing the chaoticity of the system and find that the spatial arrangement of multiple discrete lower excitability regions has a strong impact on the complexity of the dynamics. Varying the number, shape, and spatial arrangement of the heterogeneities, we observe strong emergent effects ranging from increases in chaoticity to the complete cessation of chaos, contrasting the expectation from the homogeneous behavior. The implications of our findings for the development and treatment of arrhythmias in the heterogeneous cardiac muscle are discussed.
Collapse
Affiliation(s)
- Philip Bittihn
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Sebastian Berg
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Ulrich Parlitz
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Stefan Luther
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| |
Collapse
|