101
|
Cai BX, Li XY, Chen JH, Tang YB, Wang GL, Zhou JG, Qui QY, Guan YY. Ginsenoside-Rd, a new voltage-independent Ca2+ entry blocker, reverses basilar hypertrophic remodeling in stroke-prone renovascular hypertensive rats. Eur J Pharmacol 2009; 606:142-9. [PMID: 19374845 DOI: 10.1016/j.ejphar.2009.01.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 12/22/2008] [Accepted: 01/19/2009] [Indexed: 11/18/2022]
MESH Headings
- Animals
- Basilar Artery/drug effects
- Basilar Artery/metabolism
- Basilar Artery/physiopathology
- Basilar Artery/ultrastructure
- Blood Pressure/drug effects
- Brain/blood supply
- Calcium/metabolism
- Calcium Channel Blockers/pharmacology
- Cell Proliferation/drug effects
- Electric Conductivity
- Endothelin-1/pharmacology
- Ginsenosides/pharmacology
- Hypertension, Renovascular/complications
- Hypertension, Renovascular/metabolism
- Hypertension, Renovascular/pathology
- Hypertension, Renovascular/physiopathology
- Male
- Microscopy, Electron, Transmission
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Rats
- Rats, Sprague-Dawley
- Stroke/etiology
Collapse
Affiliation(s)
- Bing-Xiang Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Yogi A, Callera GE, Tostes R, Touyz RM. Bradykinin regulates calpain and proinflammatory signaling through TRPM7-sensitive pathways in vascular smooth muscle cells. Am J Physiol Regul Integr Comp Physiol 2009; 296:R201-7. [DOI: 10.1152/ajpregu.90602.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transient receptor potential melastatin-7 (TRPM7) channels have recently been identified to be regulated by vasoactive agents acting through G protein-coupled receptors in vascular smooth muscle cells (VSMC). However, downstream targets and functional responses remain unclear. We investigated the subcellular localization of TRPM7 in VSMCs and questioned the role of TRPM7 in proinflammatory signaling by bradykinin. VSMCs from Wistar-Kyoto rats were studied. Cell fractionation by sucrose gradient and differential centrifugation demonstrated that in bradykinin-stimulated cells, TRPM7 localized in fractions corresponding to caveolae. Immunofluorescence confocal microscopy revealed that TRPM7 distributes along the cell membrane, that it has a reticular-type intracellular distribution, and that it colocalizes with flotillin-2, a marker of lipid rafts. Bradykinin increased expression of calpain, a TRPM7 target, and stimulated its cytosol/membrane translocation, an effect blocked by 2-APB (TRPM7 inhibitor) and U-73122 (phospholipase C inhibitor), but not by chelerythrine (PKC inhibitor). Expression of proinflammatory mediators VCAM-1 and cyclooxygenase-2 (COX-2) was time-dependently increased by bradykinin. This effect was blocked by Hoe-140 (B2 receptor blocker) and 2-APB. Our data demonstrate that in bradykinin-stimulated VSMCs: 1) TRPM7 is upregulated, 2) TRPM7 associates with cholesterol-rich microdomains, and 3) calpain and proinflammatory mediators VCAM-1 and COX2 are regulated, in part, via TRPM7- and phospholipase C-dependent pathways through B2 receptors. These findings identify a novel signaling pathway for bradykinin, which involves TRPM7. Such phenomena may play a role in bradykinin/B2 receptor-mediated inflammatory responses in vascular cells.
Collapse
|
103
|
Regulation of the novel Mg2+ transporter transient receptor potential melastatin 7 (TRPM7) cation channel by bradykinin in vascular smooth muscle cells. J Hypertens 2009; 27:155-66. [PMID: 19145781 DOI: 10.1097/hjh.0b013e3283190582] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Transient receptor potential melastatin 7 (TRPM7) channels have been identified in the vasculature. However, their regulation and function remain unclear. METHODS Here, we tested the hypothesis that bradykinin and its second messenger cAMP upregulate TRPM7, which stimulates activation of annexin-1 (TRPM7 substrate) and increases transmembrane Mg2+ transport and vascular smooth muscle cell (VSMC) migration. Human and rat VSMCs were studied. TRPM7 phosphorylation was assessed by immunoprecipitation:immunoblotting using antiphospho-serine/threonine and anti-TRPM7 antibodies. [Mg2+]i was measured by mag-fura-2. TRPM7 was downregulated by small interfering RNA and 2-aminoethoxydiphenyl borate. Annexin-1 activity was assessed by cytosol-to-membrane translocation. Cell migration and invasion, functional responses to bradykinin, were assessed in transwell chambers. RESULTS Bradykinin increased expression of TRPM7 and annexin-1. TRPM7 was rapidly (5 min) phosphorylated on serine/threonine but not on tyrosine residues by bradykinin. [Mg2+]i was increased in bradykinin-stimulated cells (0.53 versus 0.68 mmol/l, basal versus bradykinin, P < 0.01). Annexin-1 activation was increased by bradykinin and inhibited by 2-aminoethoxydiphenyl borate. Although Hoe 140 (B2 receptor antagonist), U-73122 (phospholipase C inhibitor), 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (c-Src inhibitor) and chelerythrine (protein kinase C inhibitor) blocked bradykinin actions, dibutyryl-c-AMP was without effect. In small interfering RNA-transfected and in 2-aminoethoxydiphenyl borate-treated cells, bradykinin-induced Mg2+ influx and VSMC migration were reduced. CONCLUSION Our results demonstrate that bradykinin regulates TRPM7 and its downstream target annexin-1 through phospholipase C-dependent, protein kinase C-dependent and c-Src-dependent and cAMP-independent pathways; effects are mediated through bradykinin type 2 receptor; and bradykinin regulates VSMC [Mg2+]i and migration through TRPM7. These data identify TRPM7/annexin-1/Mg2+ as a novel pathway in bradykinin signaling.
Collapse
|
104
|
Demaurex N, Poburko D, Frieden M. Regulation of plasma membrane calcium fluxes by mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1383-94. [PMID: 19161976 DOI: 10.1016/j.bbabio.2008.12.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 12/21/2008] [Accepted: 12/29/2008] [Indexed: 11/27/2022]
Abstract
The role of mitochondria in cell signaling is becoming increasingly apparent, to an extent that the signaling role of mitochondria appears to have stolen the spotlight from their primary function as energy producers. In this chapter, we will review the ionic basis of calcium handling by mitochondria and discuss the mechanisms that these organelles use to regulate the activity of plasma membrane calcium channels and transporters.
Collapse
Affiliation(s)
- Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, 1, rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
105
|
Materazzi S, Nassini R, Gatti R, Trevisani M, Geppetti P. Cough sensors. II. Transient receptor potential membrane receptors on cough sensors. Handb Exp Pharmacol 2009:49-61. [PMID: 18825335 DOI: 10.1007/978-3-540-79842-2_3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The transient receptor potential (TRP) family of channels is represented by at least six members in primary sensory neurons. These include the TRP vanilloid subtypes 1 (TRPV1), 2, 3, and 4, the cold and menthol receptor TRPM8, and TRPA1. Much interest has been directed to the study of the TRPV1, because capsaicin has been instrumental in discovering the unique role of a subset of primary sensory neurons in causing nociceptive responses, in activating reflex pathways including cough, and in producing neurogenic inflammation. TRPV1 is now regarded as an integrator of diverse sensory modalities because it undergoes marked plasticity and sensitization through a variety of mechanisms, including activation of G-protein-coupled or tyrosine kinase receptors. Evidence in experimental animals and in patients with airway diseases indicates a marked hypersensitivity to cough induced by TRPV1 agonists. Recent studies with newly developed high-affinity and selective TRPV1 antagonists have revealed that TRPV1 inhibition reduces cough induced by citric acid or antigen challenge.
Collapse
Affiliation(s)
- S Materazzi
- Department of Critical Care Medicine and Surgery, University of Florence, Viale Pieraccini, 6, Florence 50139, Italy
| | | | | | | | | |
Collapse
|
106
|
Poburko D, Liao CH, van Breemen C, Demaurex N. Mitochondrial regulation of sarcoplasmic reticulum Ca2+ content in vascular smooth muscle cells. Circ Res 2008; 104:104-12. [PMID: 19023135 DOI: 10.1161/circresaha.108.180612] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Subplasmalemmal ion fluxes have global effects on Ca(2+) signaling in vascular smooth muscle. Measuring cytoplasmic and mitochondrial [Ca(2+)]and [Na(+)], we previously showed that mitochondria buffer both subplasmalemmal cytosolic [Ca(2+)] and [Na(+)] in vascular smooth muscle cells. We have now directly measured sarcoplasmic reticulum [Ca(2+)] in aortic smooth muscle cells, revealing that mitochondrial Na(+)/Ca(2+) exchanger inhibition with CGP-37157 impairs sarcoplasmic reticulum Ca(2+) refilling during purinergic stimulation. By overexpressing hFis1 to remove mitochondria from the subplasmalemmal space, we show that the rate and extent of sarcoplasmic reticulum refilling is augmented by a subpopulation of peripheral mitochondria. In ATP-stimulated cells, hFis-1-mediated relocalization of mitochondria impaired the sarcoplasmic reticulum refilling process and reduced mitochondrial [Ca(2+)] elevations, despite increased cytosolic [Ca(2+)] elevations. Reversal of plasmalemmal Na(+)/Ca(2+) exchange was the primary Ca(2+) entry mechanism following ATP stimulation, based on the effects of KB-R7943. We propose that subplasmalemmal mitochondria ensure efficient sarcoplasmic reticulum refilling by cooperating with the plasmalemmal Na(+)/Ca(2+) exchanger to funnel Ca(2+) into the sarcoplasmic reticulum and minimize cytosolic [Ca(2+)] elevations that might otherwise contribute to hypertensive or proliferative vasculopathies.
Collapse
Affiliation(s)
- Damon Poburko
- Department of Cell Physiology and Metabolism, University of Geneva, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland.
| | | | | | | |
Collapse
|
107
|
Perez-Zoghbi JF, Karner C, Ito S, Shepherd M, Alrashdan Y, Sanderson MJ. Ion channel regulation of intracellular calcium and airway smooth muscle function. Pulm Pharmacol Ther 2008; 22:388-97. [PMID: 19007899 DOI: 10.1016/j.pupt.2008.09.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 09/03/2008] [Accepted: 09/28/2008] [Indexed: 12/11/2022]
Abstract
Airway hyper-responsiveness associated with asthma is mediated by airway smooth muscle cells (SMCs) and has a complicated etiology involving increases in cell contraction and proliferation and the secretion of inflammatory mediators. Although these pathological changes are diverse, a common feature associated with their regulation is a change in intracellular Ca(2+) concentration ([Ca(2+)](i)). Because the [Ca(2+)](i) itself is a function of the activity and expression of a variety of ion channels, in both the plasma membrane and sarcoplasmic reticulum of the SMC, the modification of this ion channel activity may predispose airway SMCs to hyper-responsiveness. Our objective is to review how ion channels determine the [Ca(2+)](i) and influence the function of airway SMCs and emphasize the potential of ion channels as sites for therapeutic approaches to asthma.
Collapse
Affiliation(s)
- Jose F Perez-Zoghbi
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | | | | | | | | | | |
Collapse
|
108
|
Gomis A, Soriano S, Belmonte C, Viana F. Hypoosmotic- and pressure-induced membrane stretch activate TRPC5 channels. J Physiol 2008; 586:5633-49. [PMID: 18832422 DOI: 10.1113/jphysiol.2008.161257] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transient receptor potential (TRP) channels mediate a wide array of sensory functions. We investigated the role of TRPC5, a poorly characterized channel widely expressed in the central and peripheral nervous system, as a potential osmosensory protein. Here we show that hypoosmotic stimulation activates TRPC5 channels resulting in a large calcium influx. The response to osmotically induced membrane stretch is blocked by GsMTx-4, an inhibitor of stretch activated ion channels. Direct hypoosmotic activation of TRPC5 is independent of phospholipase C function. However, the osmotic response is inhibited in a cell line in which PIP(2) levels are reduced by regulated overexpression of a lipid phosphatase. The response was restored by increasing intracellular PIP(2) levels through the patch pipette. The mechano-sensitivity of the channel was probed in the whole-cell configuration by application of steps of positive pressure through the patch pipette. Pressure-induced membrane stretch also activated TRPC5 channels, suggesting its role as a transducer of osmo-mechanical stimuli. We also demonstrated the expression of TRPC5 in sensory neurones which together with the osmo-mechanical characteristics of TRPC5 channels suggest its putative role in mechanosensory transduction events.
Collapse
Affiliation(s)
- Ana Gomis
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández. Av. Ramón y Cajal s/n. 03550 Sant Joan d'Alacant, Alicante, Spain.
| | | | | | | |
Collapse
|
109
|
Guibert C, Ducret T, Savineau JP. Voltage-independent calcium influx in smooth muscle. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 98:10-23. [DOI: 10.1016/j.pbiomolbio.2008.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
110
|
Berra-Romani R, Mazzocco-Spezzia A, Pulina MV, Golovina VA. Ca2+ handling is altered when arterial myocytes progress from a contractile to a proliferative phenotype in culture. Am J Physiol Cell Physiol 2008; 295:C779-90. [PMID: 18596214 DOI: 10.1152/ajpcell.00173.2008] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phenotypic modulation of vascular myocytes is important for vascular development and adaptation. A characteristic feature of this process is alteration in intracellular Ca(2+) handling, which is not completely understood. We studied mechanisms involved in functional changes of inositol 1,4,5-trisphosphate (IP(3))- and ryanodine (Ry)-sensitive Ca(2+) stores, store-operated Ca(2+) entry (SOCE), and receptor-operated Ca(2+) entry (ROCE) associated with arterial myocyte modulation from a contractile to a proliferative phenotype in culture. Proliferating, cultured myocytes from rat mesenteric artery have elevated resting cytosolic Ca(2+) levels and increased IP(3)-sensitive Ca(2+) store content. ATP- and cyclopiazonic acid [CPA; a sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) inhibitor]-induced Ca(2+) transients in Ca(2+)-free medium are significantly larger in proliferating arterial smooth muscle cells (ASMCs) than in freshly dissociated myocytes, whereas caffeine (Caf)-induced Ca(2+) release is much smaller. Moreover, the Caf/Ry-sensitive store gradually loses sensitivity to Caf activation during cell culture. These changes can be explained by increased expression of all three IP(3) receptors and a switch from Ry receptor type II to type III expression during proliferation. SOCE, activated by depletion of the IP(3)/CPA-sensitive store, is greatly increased in proliferating ASMCs. Augmented SOCE and ROCE (activated by the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol) in proliferating myocytes can be attributed to upregulated expression of, respectively, transient receptor potential proteins TRPC1/4/5 and TRPC3/6. Moreover, stromal interacting molecule 1 (STIM1) and Orai proteins are upregulated in proliferating cells. Increased expression of IP(3) receptors, SERCA2b, TRPCs, Orai(s), and STIM1 in proliferating ASMCs suggests that these proteins play a critical role in an altered Ca(2+) handling that occurs during vascular growth and remodeling.
Collapse
Affiliation(s)
- Roberto Berra-Romani
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
111
|
Sbrana F, Sassoli C, Meacci E, Nosi D, Squecco R, Paternostro F, Tiribilli B, Zecchi-Orlandini S, Francini F, Formigli L. Role for stress fiber contraction in surface tension development and stretch-activated channel regulation in C2C12 myoblasts. Am J Physiol Cell Physiol 2008; 295:C160-72. [DOI: 10.1152/ajpcell.00014.2008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Membrane-cytoskeleton interaction regulates transmembrane currents through stretch-activated channels (SACs); however, the mechanisms involved have not been tested in living cells. We combined atomic force microscopy, confocal immunofluorescence, and patch-clamp analysis to show that stress fibers (SFs) in C2C12 myoblasts behave as cables that, tensed by myosin II motor, activate SACs by modifying the topography and the viscoelastic (Young's modulus and hysteresis) and electrical passive (membrane capacitance, Cm) properties of the cell surface. Stimulation with sphingosine 1-phosphate to elicit SF formation, the inhibition of Rho-dependent SF formation by Y-27632 and of myosin II-driven SF contraction by blebbistatin, showed that not SF polymerization alone but the generation of tensional forces by SF contraction were involved in the stiffness response of the cell surface. Notably, this event was associated with a significant reduction in the amplitude of the cytoskeleton-mediated corrugations in the cell surface topography, suggesting a contribution of SF contraction to plasma membrane stretching. Moreover, Cm, used as an index of cell surface area, showed a linear inverse relationship with cell stiffness, indicating participation of the actin cytoskeleton in plasma membrane remodeling and the ability of SF formation to cause internalization of plasma membrane patches to reduce Cm and increase membrane tension. SF contraction also increased hysteresis. Together, these data provide the first experimental evidence for a crucial role of SF contraction in SAC activation. The related changes in cell viscosity may prevent SAC from abnormal activation.
Collapse
|
112
|
|
113
|
Lindsey SH, Tribe RM, Songu-Mize E. Cyclic stretch decreases TRPC4 protein and capacitative calcium entry in rat vascular smooth muscle cells. Life Sci 2008; 83:29-34. [PMID: 18538797 DOI: 10.1016/j.lfs.2008.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 04/11/2008] [Accepted: 04/22/2008] [Indexed: 11/17/2022]
Abstract
We investigated whether cyclic stretch affects TRPC4 or TRPC6 expression and calcium mobilization in cultured vascular smooth muscle cells. In aortic and mesenteric smooth muscle cells isolated from male Sprague-Dawley rats, TRPC4 expression was decreased after 5 h stretch and remained suppressed through 24 h stretch. After removal of the stretch stimulus, TRPC4 expression recovered within 2 h. Stretch did not affect TRPC6 expression. Stretch also decreased capacitative calcium entry, while agonist-induced calcium influx was increased. Similar results were obtained in primary aortic smooth muscle cells. TRPC4 mRNA levels were not decreased in response to mechanical strain. TRPC4 downregulation was also achieved by increasing extracellular calcium and was attenuated by gadolinium and MG132, suggesting that TRPC4 protein is regulated by intracellular calcium concentration and/or the ubiquitin-proteasome pathway. These data suggest that stretch-induced downregulation of TRPC4 protein expression and capacitative calcium entry may be a protective mechanism to offset stretch-induced increases in intracellular calcium.
Collapse
Affiliation(s)
- S H Lindsey
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido Street, P7-1, New Orleans, LA 70112, United States.
| | | | | |
Collapse
|
114
|
Ducret T, Guibert C, Marthan R, Savineau JP. Serotonin-induced activation of TRPV4-like current in rat intrapulmonary arterial smooth muscle cells. Cell Calcium 2008; 43:315-23. [PMID: 17669489 DOI: 10.1016/j.ceca.2007.05.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 04/20/2007] [Accepted: 05/30/2007] [Indexed: 01/08/2023]
Abstract
In the present study, we investigated the implication of transient receptor potential vanilloid (TRPV)-related channels in the 5-hydroxytryptamine (5-HT)-induced both intracellular calcium response and mitogenic effect in rat pulmonary arterial smooth muscle cells (PASMC). Using microspectrofluorimetry (indo-1 as Ca(2+) fluorescent probe) and the patch-clamp technique (in whole-cell configuration), we found that 5-HT (10 microM) induced a transient intracellular calcium mobilization followed by a sustained calcium entry. This latter was partly blocked by an inhibitor of cytochrome P450 epoxygenase (17-ODYA) and insensitive to cyclo-oxygenase and lipoxygenase inhibitors (indomethacin and CDC), suggesting the involvement of arachidonic acid metabolization by cytochrome P450 epoxygenase. This calcium influx was also sensitive to Ni(2+) and to ruthenium red, a TRPV channel blocker, and mimicked by 4alpha-phorbol-12,13-didecanoate (4alpha-PDD), a TRPV4 channel agonist. In patched PASMC, 5-HT and 4alpha-PDD-activated TRPV4-like ruthenium red sensitive currents with typical characteristics. Furthermore, 5-HT induced a ruthenium red sensitive increase in BrdU incorporation levels in PASMC. The present study provides evidence that 5-HT activates a TRPV4-like current, potentially involved in PASMC proliferation. The signalling pathway between proliferation and ion channel activation remains to be determined and may represent a molecular target for the treatment of vascular diseases such as pulmonary hypertension.
Collapse
Affiliation(s)
- Thomas Ducret
- Université Bordeaux 2, Laboratoire de Physiologie Cellulaire Respiratoire, 146 rue Léo-Saignat, F-33076 Bordeaux, France.
| | | | | | | |
Collapse
|
115
|
Abstract
The expression of TRPC3 (canonical-type transient receptor potential cation channel type 3) is tightly regulated during skeletal muscle cell differentiation, and a functional interaction between TRPC3 and RyR1 [(ryanodine receptor type 1), an SR (sarcoplasmic reticulum) Ca2+-release channel] regulates the gain of SR Ca2+ release during EC (excitation–contraction) coupling. However, it has not been possible to demonstrate direct protein–protein interactions between TRPC3 and RyR1. To identify possible candidate(s) for a linker protein(s) between TRPC3 and RyR1 in skeletal muscle, in the present study we performed MALDI–TOF (matrix-assisted laser-desorption ionization–time-of-flight) MS analysis of a cross-linked triadic protein complex from rabbit skeletal triad vesicles and co-immunoprecipitation assays using primary mouse skeletal myotubes. From these studies, we found that six triadic proteins, that are known to regulate RyR1 function and/or EC coupling [TRPC1, JP2 (junctophilin 2), homer, mitsugumin 29, calreticulin and calmodulin], interacted directly with TRPC3 in a Ca2+-independent manner. However we again found no direct interaction between TRPC3 and RyR1. TRPC1 was identified as a potential physical link between TRPC3 and RyR1, as it interacted with both TRPC3 and RyR1, and JPs showed subtype-specific interactions with both RyR1 and TRPC3 (JP1–RyR1 and JP2–TRPC3). These results support the hypothesis that TRPC3 and RyR1 are functionally engaged via linker proteins in skeletal muscle.
Collapse
|
116
|
Everett KV, Chioza BA, Georgoula C, Reece A, Capon F, Parker KA, Cord-Udy C, McKeigue P, Mitton S, Pierro A, Puri P, Mitchison HM, Chung EMK, Gardiner RM. Genome-wide high-density SNP-based linkage analysis of infantile hypertrophic pyloric stenosis identifies loci on chromosomes 11q14-q22 and Xq23. Am J Hum Genet 2008; 82:756-62. [PMID: 18308288 DOI: 10.1016/j.ajhg.2007.12.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 11/26/2007] [Accepted: 12/11/2007] [Indexed: 11/16/2022] Open
Abstract
Infantile hypertrophic pyloric stenosis (IHPS) has an incidence of 1-8 per 1000 live births and is inherited as a complex sex-modified multifactorial trait with a striking male preponderance. Syndromic and monogenic forms exist, and two loci have been identified. Infants present with vomiting due to gastric-outlet obstruction caused by hypertrophy of the smooth muscle of the pylorus. A genome-wide SNP-based high-density linkage scan was carried out on 81 IHPS pedigrees. Nonparametric and parametric linkage analysis identified loci on chromosomes 11q14-q22 (Z(max) = 3.9, p < 0.0001; HLOD(max) = 3.4, alpha = 0.34) and Xq23 (Z(max) = 4.3, p < 0.00001; HLOD(max) = 4.8, alpha = 0.56). The two linked chromosomal regions each harbor functional candidate genes that are members of the canonical transient receptor potential (TRPC) family of ion channels and have a potential role in smooth-muscle control and hypertrophy.
Collapse
Affiliation(s)
- Kate V Everett
- University College London Institute of Child Health, London WC1N 1EH, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Villalba N, Stankevicius E, Simonsen U, Prieto D. Rho kinase is involved in Ca2+ entry of rat penile small arteries. Am J Physiol Heart Circ Physiol 2008; 294:H1923-32. [PMID: 18223191 DOI: 10.1152/ajpheart.01221.2007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tonic physiological activity of RhoA/Rho kinase contributes to the maintenance of penile flaccidity through its involvement in the Ca(2+) sensitization of erectile tissue smooth muscle. The present study hypothesized that Rho kinase is also involved in the modulation of Ca(2+) entry induced by alpha(1)-adrenoceptor stimulation of penile arteries. Rat penile arteries were mounted in microvascular myographs for simultaneous measurements of intracellular Ca(2+) ([Ca(2+)](i)) and force. The Rho-kinase inhibitor Y-27632 markedly reduced norepinephrine-mediated electrically induced contractions and the increases in both [Ca(2+)](i) and tension elicited by the alpha(1)-adrenoceptor agonist phenylephrine (Phe). In contrast, the protein kinase C (PKC) inhibitor Ro-31-8220 reduced tension without altering the Phe-induced increase in [Ca(2+)](i). In the presence of nifedipine, Y-27632 still inhibited the non-L-type Ca(2+) signal and blunted Phe contraction. Y-27632 did not impair the capacitative Ca(2+) entry evoked by store depletion with cyclopiazonic acid but largely reduced the Ba(2+) influx stimulated by Phe in fura-2 AM-loaded arteries. The addition of Y-27632 to arteries depolarized with high KCl markedly reduced tension without changing [Ca(2+)](i). In alpha-toxin-permeabilized penile arteries stimulated with threshold Ca(2+) concentrations, Y-27632 inhibited the sensitization induced by either guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) or Phe in the presence of GTPgammaS. However, Y-27632 failed to alter contractions induced by a maximal concentration of free Ca(2+). These results suggest that Rho kinase, besides its contribution to the Ca(2+) sensitization of the contractile proteins, is also involved in the regulation of Ca(2+) entry through a nonselective cation channel activated by alpha(1)-adenoceptor stimulation in rat penile arteries.
Collapse
Affiliation(s)
- Nuria Villalba
- Dept. de Fisiología, Facultad de Farmacia, Univ. Complutense, 28040-Madrid, Spain
| | | | | | | |
Collapse
|
118
|
Touyz RM. Transient receptor potential melastatin 6 and 7 channels, magnesium transport, and vascular biology: implications in hypertension. Am J Physiol Heart Circ Physiol 2008; 294:H1103-18. [PMID: 18192217 DOI: 10.1152/ajpheart.00903.2007] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Magnesium, an essential intracellular cation, is critically involved in many biochemical reactions involved in the regulation of vascular tone and integrity. Decreased magnesium concentration has been implicated in altered vascular reactivity, endothelial dysfunction, vascular inflammation, and structural remodeling, processes important in vascular changes and target organ damage associated with hypertension. Until recently, very little was known about mechanisms regulating cellular magnesium homeostasis, and processes controlling transmembrane magnesium transport had been demonstrated only at the functional level. Two cation channels of the transient receptor potential melastatin (TRPM) cation channel family have now been identified as magnesium transporters, TRPM6 and TRPM7. These unique proteins, termed chanzymes because they possess a channel and a kinase domain, are differentially expressed, with TRPM6 being found primarily in epithelial cells and TRPM7 occurring ubiquitously. Vascular TRPM7 is modulated by vasoactive agents, pressure, stretch, and osmotic changes and may be a novel mechanotransducer. In addition to its magnesium transporter function, TRPM7 has been implicated as a signaling kinase involved in vascular smooth muscle cell growth, apoptosis, adhesion, contraction, cytoskeletal organization, and migration, important processes involved in vascular remodeling associated with hypertension and other vascular diseases. Emerging evidence suggests that vascular TRPM7 function may be altered in hypertension. This review discusses the importance of magnesium in vascular biology and implications in hypertension and highlights the transport systems, particularly TRPM6 and TRPM7, which may play a role in the control of vascular magnesium homeostasis. Since the recent identification and characterization of Mg2+-selective transporters, there has been enormous interest in the field. However, there is still a paucity of information, and much research is needed to clarify the exact mechanisms of magnesium regulation in the cardiovascular system and the implications of aberrant transmembrane magnesium transport in the pathogenesis of hypertension and other vascular diseases.
Collapse
Affiliation(s)
- Rhian M Touyz
- Kidney Research Center, Ottawa Heallth Research Institute, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5.
| |
Collapse
|
119
|
Abstract
Epidemiological, clinical and experimental evidence indicates an inverse association between Mg(2+) levels (serum and tissue) and blood pressure. Magnesium may influence blood pressure by modulating vascular tone and structure through its effects on numerous biochemical reactions that control vascular contraction/dilation, growth/apoptosis, differentiation and inflammation. Magnesium acts as a calcium channel antagonist, it stimulates production of vasodilator prostacyclins and nitric oxide and it alters vascular responses to vasoactive agonists. Mammalian cells regulate Mg(2+) concentration through specialized influx and efflux transport systems that have only recently been characterized. Magnesium efflux occurs via Na(2+)-dependent and Na(2+)-independent pathways. Mg(2+) influx is controlled by recently cloned transporters including Mrs2p, SLC41A1, SLC41A1, ACDP2, MagT1, TRPM6 and TRPM7. Alterations in some of these systems may contribute to hypomagnesemia and intracellular Mg(2+) deficiency in hypertension. In particular increased Mg(2+) efflux through altered regulation of the vascular Na(+)/Mg(2+) exchanger and decreased Mg(2+) influx due to defective vascular and renal TRPM6/7 expression/activity may be important. This review discusses the role of Mg(2+) in vascular biology and implications in hypertension and focuses on the putative transport systems that control vascular magnesium homeostasis. Much research is still needed to clarify the exact mechanisms of Mg(2+) regulation in the cardiovascular system and the implications of aberrant transcellular Mg(2+) transport in the pathogenesis of cardiovascular disease.
Collapse
Affiliation(s)
- Bruno Sontia
- Kidney Research Centre, University of Ottawa, Ottawa Health Research Institute, 451 Smyth Rd, #2513, K1H 8M5 Ottawa, ON, Canada
| | | |
Collapse
|
120
|
Ambudkar IS, Ong HL, Liu X, Bandyopadhyay BC, Bandyopadhyay B, Cheng KT. TRPC1: The link between functionally distinct store-operated calcium channels. Cell Calcium 2007; 42:213-23. [PMID: 17350680 DOI: 10.1016/j.ceca.2007.01.013] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 01/30/2007] [Accepted: 01/31/2007] [Indexed: 10/23/2022]
Abstract
Although store-operated calcium entry (SOCE) was identified more that two decades ago, understanding the molecular mechanisms that regulate and mediate this process continue to pose a major challenge to investigators in this field. Thus, there has been major focus on determining which of the models proposed for this mechanism is valid and conclusively establishing the components of the store-operated calcium (SOC) channel(s). The transient receptor potential canonical (TRPC) proteins have been suggested as candidate components of the elusive store-operated Ca(2+) entry channel. While all TRPCs are activated in response to agonist-stimulated phosphatidylinositol 4,5, bisphosphate (PIP(2)) hydrolysis, only some display store-dependent regulation. TRPC1 is currently the strongest candidate component of SOC and is shown to contribute to SOCE in many cell types. Heteromeric interactions of TRPC1 with other TRPCs generate diverse SOC channels. Recent studies have revealed novel components of SOCE, namely the stromal interacting molecule (STIM) and Orai proteins. While STIM1 has been suggested to be the ER-Ca(2+) sensor protein relaying the signal to the plasma membrane for activation of SOCE, Orai1 is reported to be the pore-forming component of CRAC channel that mediates SOCE in T-lymphocytes and other hematopoetic cells. Several studies now demonstrate that TRPC1 also associates with STIM1 suggesting that SOC and CRAC channels are regulated by similar molecular components. Interestingly, TRPC1 is also associated with Orai1 and a TRPC1-Orai1-STIM1 ternary complex contributes to SOC channel function. This review will focus on the diverse SOC channels formed by TRPC1 and the suggestion that TRPC1 might serve as a molecular link that determines their regulation by store-depletion.
Collapse
Affiliation(s)
- Indu S Ambudkar
- Secretory Physiology Section, GTTB, NIDCR, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
121
|
Firth AL, Remillard CV, Yuan JXJ. TRP channels in hypertension. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1772:895-906. [PMID: 17399958 PMCID: PMC2025589 DOI: 10.1016/j.bbadis.2007.02.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 02/08/2007] [Accepted: 02/08/2007] [Indexed: 01/05/2023]
Abstract
Pulmonary and systemic arterial hypertension are associated with profound alterations in Ca(2+) homeostasis and smooth muscle cell proliferation. A novel class of non-selective cation channels, the transient receptor potential (TRP) channels, have emerged at the forefront of research into hypertensive disease states. TRP channels are identified as molecular correlates for receptor-operated and store-operated cation channels in the vasculature. Over 10 TRP isoforms are identified at the mRNA and protein expression levels in the vasculature. Current research implicates upregulation of specific TRP isoforms to be associated with increased Ca(2+) influx, characteristic of vasoconstriction and vascular smooth muscle cell proliferation. TRP channels are implicated as Ca(2+) entry pathways in pulmonary hypertension and essential hypertension. Caveolae have recently emerged as membrane microdomains in which TRP channels may be co-localized with the endoplasmic reticulum in both smooth muscle and endothelial cells. Such enhanced expression and function of TRP channels and their localization in caveolae in pathophysiological hypertensive disease states highlights their importance as potential targets for pharmacological intervention.
Collapse
MESH Headings
- Animals
- Caveolae/metabolism
- Cell Proliferation/drug effects
- Cytoskeleton/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Gene Expression Regulation
- Humans
- Hypertension/etiology
- Hypertension/genetics
- Hypertension/physiopathology
- Hypertension/therapy
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/therapy
- Models, Biological
- Muscle Contraction/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Pulmonary Artery/physiology
- Transient Receptor Potential Channels/agonists
- Transient Receptor Potential Channels/genetics
- Transient Receptor Potential Channels/metabolism
- Transient Receptor Potential Channels/physiology
Collapse
Affiliation(s)
- Amy L Firth
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0725, La Jolla, CA 92093-0725, USA
| | | | | |
Collapse
|
122
|
Dietrich A, Kalwa H, Fuchs B, Grimminger F, Weissmann N, Gudermann T. In vivo TRPC functions in the cardiopulmonary vasculature. Cell Calcium 2007; 42:233-44. [PMID: 17433435 DOI: 10.1016/j.ceca.2007.02.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 02/07/2007] [Accepted: 02/08/2007] [Indexed: 12/01/2022]
Abstract
Cardiovascular diseases are the leading cause of death in the industrialized countries. The cardiovascular system includes the systemic blood circulation, the heart and the pulmonary circulation providing sufficient blood flow and oxygen to peripheral tissues and organs according to their metabolic demand. This review focuses on three major cell types of the cardiovascular system: myocytes of the heart as well as smooth muscle cells and endothelial cells from the systemic and pulmonary circulation. Ion channels initiate and regulate contraction in all three cell types, and the identification of their genes has significantly improved our knowledge of signal transduction pathways in these cells. Among the ion channels expressed in smooth muscle cells, cation channels of the TRPC family allow for the entry of Na(+) and Ca(2+). Physiological functions of TRPC1, TRPC3, TRPC4, TRPC5, TRPC6 and TRPC7 in the cardiovascular system, dissected by down-regulating channel activity in isolated tissues or by the analysis of gene-deficient mouse models, are reviewed. Possible functional roles and physiological regulation of TRPCs as homomeric or heteromeric channels in these cell types are discussed. Moreover, TRP channels may also be responsible for pathophysiological processes of the cardiovascular system like hypertension as well as cardiac hypertrophy and increased endothelial permeability.
Collapse
MESH Headings
- Animals
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiology
- Heart Diseases/etiology
- Humans
- Hypertension/etiology
- Mice
- Muscle Contraction
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- Pulmonary Circulation
- Rats
- TRPC Cation Channels/physiology
Collapse
Affiliation(s)
- Alexander Dietrich
- Institute for Pharmacology and Toxicology, School of Medicine, University of Marburg, 35043 Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
123
|
Takahashi Y, Watanabe H, Murakami M, Ono K, Munehisa Y, Koyama T, Nobori K, Iijima T, Ito H. Functional role of stromal interaction molecule 1 (STIM1) in vascular smooth muscle cells. Biochem Biophys Res Commun 2007; 361:934-40. [PMID: 17689489 DOI: 10.1016/j.bbrc.2007.07.096] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 07/18/2007] [Indexed: 02/01/2023]
Abstract
We investigated the functional role of STIM1, a Ca(2+) sensor in the endoplasmic reticulum (ER) that regulates store-operated Ca(2+) entry (SOCE), in vascular smooth muscle cells (VSMCs). STIM1 was mainly localized at the ER and plasma membrane. The knockdown of STIM1 expression by small interfering (si) RNA drastically decreased SOCE. In contrast, an EF-hand mutant of STIM1, STIM1(E87A), produced a marked increase in SOCE, which was abolished by co-transfection with siRNA to transient receptor potential canonical 1 (TRPC1). In addition, transfection with siRNA against STIM1 suppressed phosphorylation of cAMP-responsive element binding protein (CREB) and cell growth. These results suggest that STIM1 is an essential component of SOCE and that it is involved in VSMC proliferation.
Collapse
Affiliation(s)
- Yoichiro Takahashi
- Second Department of Internal Medicine, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Dietrich A, Kalwa H, Storch U, Mederos y Schnitzler M, Salanova B, Pinkenburg O, Dubrovska G, Essin K, Gollasch M, Birnbaumer L, Gudermann T. Pressure-induced and store-operated cation influx in vascular smooth muscle cells is independent of TRPC1. Pflugers Arch 2007; 455:465-77. [PMID: 17647013 DOI: 10.1007/s00424-007-0314-3] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 06/21/2007] [Indexed: 10/23/2022]
Abstract
Among the classical transient receptor potential (TRPC) subfamily, TRPC1 is described as a mechanosensitive and store-operated channel proposed to be activated by hypoosmotic cell swelling and positive pipette pressure as well as regulated by the filling status of intracellular Ca(2+) stores. However, evidence for a physiological role of TRPC1 may most compellingly be obtained by the analysis of a TRPC1-deficient mouse model. Therefore, we have developed and analyzed TRPC1(-/-) mice. Pressure-induced constriction of cerebral arteries was not impaired in TRPC1(-/-) mice. Smooth muscle cells from cerebral arteries activated by hypoosmotic swelling and positive pipette pressure showed no significant differences in cation currents compared to wild-type cells. Moreover, smooth muscle cells of TRPC1(-/-) mice isolated from thoracic aortas and cerebral arteries showed no change in store-operated cation influx induced by thapsigargin, inositol-1,4,5 trisphosphate, and cyclopiazonic acid compared to cells from wild-type mice. In contrast to these results, small interference RNAs decreasing the expression of stromal interaction molecule 1 (STIM1) inhibited thapsigargin-induced store-operated cation influx, demonstrating that STIM1 and TRPC1 are mutually independent. These findings also imply that, as opposed to current concepts, TRPC1 is not an obligatory component of store-operated and stretch-activated ion channel complexes in vascular smooth muscle cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Aorta, Thoracic/cytology
- Base Sequence
- Calcium Channels
- Cerebral Arteries/cytology
- Indoles/pharmacology
- Inositol 1,4,5-Trisphosphate/pharmacology
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/biosynthesis
- Mice
- Molecular Sequence Data
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- RNA, Small Interfering/pharmacology
- Stromal Interaction Molecule 1
- TRPC Cation Channels/deficiency
- TRPC Cation Channels/physiology
- Thapsigargin/pharmacology
Collapse
Affiliation(s)
- Alexander Dietrich
- Institut für Pharmakologie und Toxikologie, Philipps-Universität Marburg, Marburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Abstract
TRPC5 [TRP (transient receptor potential) canonical (or classical) 5] is a widely expressed mammalian homologue of Drosophila TRP, forming a calcium- and sodium-permeable channel in the plasma membrane either as a homomultimer or heteromultimer with other proteins (e.g. TRPC1). Although several factors are known to stimulate the channel, understanding of its endogenous activators and functions is limited. This paper provides a brief and focused review of our latest findings that show that TRPC5 is a sensor of important signalling phospholipids, including lysophosphatidylcholine and sphingosine 1-phosphate, acting extracellularly or intracellularly. Underlying mechanisms of action and biological relevance are discussed.
Collapse
Affiliation(s)
- D J Beech
- Institute of Membrane and Systems Biology, Garstang Building, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
126
|
Yuan JP, Zeng W, Huang GN, Worley PF, Muallem S. STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol 2007; 9:636-45. [PMID: 17486119 PMCID: PMC2699187 DOI: 10.1038/ncb1590] [Citation(s) in RCA: 403] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 04/17/2007] [Indexed: 12/22/2022]
Abstract
Stromal interacting molecule 1 (STIM1) is a Ca(2+) sensor that conveys the Ca(2+) load of the endoplasmic reticulum to store-operated channels (SOCs) at the plasma membrane. Here, we report that STIM1 binds TRPC1, TRPC4 and TRPC5 and determines their function as SOCs. Inhibition of STIM1 function inhibits activation of TRPC5 by receptor stimulation, but not by La(3+), suggesting that STIM1 is obligatory for activation of TRPC channels by agonists, but STIM1 is not essential for channel function. Through a distinct mechanism, STIM1 also regulates TRPC3 and TRPC6. STIM1 does not bind TRPC3 and TRPC6, and regulates their function indirectly by mediating the heteromultimerization of TRPC3 with TRPC1 and TRPC6 with TRPC4. TRPC7 is not regulated by STIM1. We propose a new definition of SOCs, as channels that are regulated by STIM1 and require the store depletion-mediated clustering of STIM1. By this definition, all TRPC channels, except TRPC7, function as SOCs.
Collapse
Affiliation(s)
- Joseph P. Yuan
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Weizhong Zeng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guo N. Huang
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul F. Worley
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Correspondence should be addressed to S.M. or P.F.W. (e-mail: ; pworley.edu; )
| | - Shmuel Muallem
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence should be addressed to S.M. or P.F.W. (e-mail: ; pworley.edu; )
| |
Collapse
|
127
|
Abstract
The mammalian transient receptor potential (TRP) superfamily of ion channels consists of voltage-independent, non-selective cation channels that are expressed in excitable and non-excitable cells. The biologic roles of TRP channels are diverse and include vascular tone, thermosensation, irritant stimuli sensing and flow sensing in the kidney. TRP channels are a relatively new target in therapeutic drug discovery. During the past few years, pharmaceutical companies have focused their discovery efforts on developing TRP channel modulators with potential therapeutic value. This review focuses on the potential therapeutic benefits of drugs targeting TRP ion channels.
Collapse
Affiliation(s)
- Dayne Y Okuhara
- Synta Pharmaceuticals Corp., 45 Hartwell Avenue, Lexington, MA 02421, USA.
| | | | | |
Collapse
|
128
|
Nilius B. TRP channels in disease. Biochim Biophys Acta Mol Basis Dis 2007; 1772:805-12. [PMID: 17368864 DOI: 10.1016/j.bbadis.2007.02.002] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 02/01/2007] [Indexed: 11/22/2022]
Abstract
"Transient receptor potential" cation channels (TRP channels) play a unique role as cell sensors, are involved in a plethora of Ca(2+)-mediated cell functions, and play a role as "gate-keepers" in many homeostatic processes such as Ca(2+) and Mg(2+) reabsorption. The variety of functions to which TRP channels contribute and the polymodal character of their activation predict that failures in correct channel gating or permeation will likely contribute to complex pathophysiological mechanisms. Dysfunctions of TRPs cause human diseases but are also involved in a complex manner to contribute and determine the progress of several diseases. Contributions to this special issue discuss channelopathias for which mutations in TRP channels that induce "loss-" or "gain-of-function" of the channel and can be considered "disease-causing" have been identified. The role of TRPs will be further elucidated in complex diseases of the intestinal, renal, urogenital, respiratory, and cardiovascular systems. Finally, the role of TRPs will be discussed in neuronal diseases and neurodegenerative disorders.
Collapse
Affiliation(s)
- Bernd Nilius
- KU Leuven, Department of Molecular Cell Biology, Division of Physiology, Laboratory of Ion Channel Research, Campus Gasthuisberg, Herestraat 49, bus 802, B-3000 Leuven, Belgium.
| |
Collapse
|
129
|
Pedersen SF, Nilius B. Transient Receptor Potential Channels in Mechanosensing and Cell Volume Regulation. Methods Enzymol 2007; 428:183-207. [PMID: 17875418 DOI: 10.1016/s0076-6879(07)28010-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transient receptor potential (TRP) channels are unique cellular sensors responding to a wide variety of extra- and intracellular signals, including mechanical and osmotic stress. In recent years, TRP channels from multiple subfamilies have been added to the list of mechano- and/or osmosensitive channels, and it is becoming increasingly apparent that Ca(2+) influx via TRP channels plays a crucial role in the response to mechanical and osmotic perturbations in a wide range of cell types. Although the events translating mechanical and osmotic stimuli into regulation of TRP channels are still incompletely understood, the specific mechanisms employed vary between different TRP isoforms, and probably include changes in the tension and/or curvature of the lipid bilayer, changes in the cortical cytoskeleton, and signaling events such as lipid metabolism and protein phosphorylation/dephosphorylation. This chapter describes candidate mechanosensitive channels from mammalian TRP subfamilies, discusses inherent and technical issues potentially confounding evaluation of mechano- and/or osmosensitivity, and presents methods relevant to the study of TRP channel regulation by mechanical and osmotic stimuli and involvement in cell volume regulation.
Collapse
|
130
|
Weissmann N, Dietrich A, Fuchs B, Kalwa H, Ay M, Dumitrascu R, Olschewski A, Storch U, Mederos y Schnitzler M, Ghofrani HA, Schermuly RT, Pinkenburg O, Seeger W, Grimminger F, Gudermann T. Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proc Natl Acad Sci U S A 2006; 103:19093-8. [PMID: 17142322 PMCID: PMC1748182 DOI: 10.1073/pnas.0606728103] [Citation(s) in RCA: 239] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regional alveolar hypoxia causes local vasoconstriction in the lung, shifting blood flow from hypoxic to normoxic areas, thereby maintaining gas exchange. This mechanism is known as hypoxic pulmonary vasoconstriction (HPV). Disturbances in HPV can cause life-threatening hypoxemia whereas chronic hypoxia triggers lung vascular remodeling and pulmonary hypertension. The signaling cascade of this vitally important mechanism is still unresolved. Using transient receptor potential channel 6 (TRPC6)-deficient mice, we show that this channel is a key regulator of acute HPV as this regulatory mechanism was absent in TRPC6(-/-) mice whereas the pulmonary vasoconstrictor response to the thromboxane mimetic U46619 was unchanged. Accordingly, induction of regional hypoventilation resulted in severe arterial hypoxemia in TRPC6(-/-) but not in WT mice. This effect was mirrored by a lack of hypoxia-induced cation influx and currents in smooth-muscle cells from precapillary pulmonary arteries (PASMC) of TRPC6(-/-) mice. In both WT and TRPC6(-/-) PASMC hypoxia caused diacylglycerol (DAG) accumulation. DAG seems to exert its action via TRPC6, as DAG kinase inhibition provoked a cation influx only in WT but not in TRPC6(-/-) PASMC. Notably, chronic hypoxia-induced pulmonary hypertension was independent of TRPC6 activity. We conclude that TRPC6 plays a unique and indispensable role in acute hypoxic pulmonary vasoconstriction. Manipulation of TRPC6 function may thus offer a therapeutic strategy for the control of pulmonary hemodynamics and gas exchange.
Collapse
Affiliation(s)
- Norbert Weissmann
- *University of Giessen Lung Center (UGLC), Department of Internal Medicine II/V, Klinikstrasse 36, 35392 Giessen, Germany
- To whom correspondence may be addressed. E-mail:
or
| | - Alexander Dietrich
- Institute for Pharmacology and Toxicology, School of Medicine, University of Marburg, Karl-von-Frisch-Strasse 1, 35033 Marburg, Germany; and
- To whom correspondence may be addressed. E-mail:
or
| | - Beate Fuchs
- *University of Giessen Lung Center (UGLC), Department of Internal Medicine II/V, Klinikstrasse 36, 35392 Giessen, Germany
| | - Hermann Kalwa
- Institute for Pharmacology and Toxicology, School of Medicine, University of Marburg, Karl-von-Frisch-Strasse 1, 35033 Marburg, Germany; and
| | - Mahmut Ay
- *University of Giessen Lung Center (UGLC), Department of Internal Medicine II/V, Klinikstrasse 36, 35392 Giessen, Germany
| | - Rio Dumitrascu
- *University of Giessen Lung Center (UGLC), Department of Internal Medicine II/V, Klinikstrasse 36, 35392 Giessen, Germany
| | - Andrea Olschewski
- Department of Anesthesiology, Intensive Care Medicine, Pain Therapy, Justus-Liebig-University, 35392 Giessen, Germany
| | - Ursula Storch
- Institute for Pharmacology and Toxicology, School of Medicine, University of Marburg, Karl-von-Frisch-Strasse 1, 35033 Marburg, Germany; and
| | - Michael Mederos y Schnitzler
- Institute for Pharmacology and Toxicology, School of Medicine, University of Marburg, Karl-von-Frisch-Strasse 1, 35033 Marburg, Germany; and
| | - Hossein Ardeschir Ghofrani
- *University of Giessen Lung Center (UGLC), Department of Internal Medicine II/V, Klinikstrasse 36, 35392 Giessen, Germany
| | - Ralph Theo Schermuly
- *University of Giessen Lung Center (UGLC), Department of Internal Medicine II/V, Klinikstrasse 36, 35392 Giessen, Germany
| | - Olaf Pinkenburg
- Institute for Pharmacology and Toxicology, School of Medicine, University of Marburg, Karl-von-Frisch-Strasse 1, 35033 Marburg, Germany; and
| | - Werner Seeger
- *University of Giessen Lung Center (UGLC), Department of Internal Medicine II/V, Klinikstrasse 36, 35392 Giessen, Germany
| | - Friedrich Grimminger
- *University of Giessen Lung Center (UGLC), Department of Internal Medicine II/V, Klinikstrasse 36, 35392 Giessen, Germany
| | - Thomas Gudermann
- Institute for Pharmacology and Toxicology, School of Medicine, University of Marburg, Karl-von-Frisch-Strasse 1, 35033 Marburg, Germany; and
| |
Collapse
|
131
|
Schlöndorff JS, Pollak MR. TRPC6 in glomerular health and disease: what we know and what we believe. Semin Cell Dev Biol 2006; 17:667-74. [PMID: 17116414 PMCID: PMC2705932 DOI: 10.1016/j.semcdb.2006.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mutations in TRPC6, a member of the transient receptor potential (TRP) superfamily of non-selective cation channels, have been identified as causing a familial form of focal segmental glomerulosclerosis, a disease characterized by proteinuria and progressive renal failure. Here we review the effect of disease-associated mutations on TRPC6 function and place TRPC6 within the context of other proteins central to glomerular and podocyte function. Finally, the known roles of TRPC6 in the kidney and other organ systems are used as a framework to discuss possible signaling pathways that TRPC6 may modulate during normal glomerular function and in disease states.
Collapse
Affiliation(s)
- Johannes S Schlöndorff
- Renal Division, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|