101
|
Wu Z, Su J, Ali A, Hu X, Wang Z. Study on the simultaneous removal of fluoride, heavy metals and nitrate by calcium precipitating strain Acinetobacter sp. H12. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124255. [PMID: 33092874 DOI: 10.1016/j.jhazmat.2020.124255] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
The removal properties and mechanisms of fluoride (F-) and nickel (Ni2+) were studied by biomineralizing bacteria (Acinetobacter sp. H12). The results showed that the removal ratio of F-, Ca2+ and Ni2+ reached 75% (0.031 mg·L-1·h-1), 84.96% (2.123 mg·L-1·h-1), and 56.67% (0.024 mg·L-1·h-1) after 72 h, respectively. The removal ratio of nitrate (NO3-) reached 100% (0.686 mg·L-1·h-1) after 24 h. SEM and XRD images indicated that bioprecipitation of CaF2, Ca5(PO4)3F, Ca5(PO4)3(OH), NiCO3, CaCO3 and Ni were formed, and some of these precipitation used bacteria as nucleation sites to form biological crystal seeds. N2 was the primary product in gas chromatography analysis. Meanwhile, both the fluorescence spectroscopy and fourier transform near-infrared spectroscopy analysis proved that strain H12 had good ability to remove fluoride and nickel ions simultaneously.
Collapse
Affiliation(s)
- Zizhen Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Xiaofen Hu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
102
|
Tian L, Wang L. Multi-omics analysis reveals structure and function of biofilm microbial communities in a pre-denitrification biofilter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143908. [PMID: 33316516 DOI: 10.1016/j.scitotenv.2020.143908] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
The highly complex microbial communities in biofilm play crucial roles in the pollutant removal performance of wastewater treatment plants (WWTPs). In the present study, using multi-omics analysis, we studied microbial structure, key enzymes, functional traits, and key metabolic pathways of pre-denitrification biofilter in an urban WWTP in China. The analysis results of metagenomic and metaproteomic showed that Betaproteobacteria and Flavobacteriia were dominant in biofilms. The integrated metagenomic and metaproteomic data showed that the expression of nitrogen metabolism genes was high, and the high proportion of denitrification module indicating that denitrification was the main nitrogen removal pathway. The most abundant denitrifying bacterial genera were: Dechloromonas, Acidovorax, Bosea, Polaromonas, and Chryseobacterium. And microorganisms with denitrification potential may not be able to denitrify in the actual operation of the filter. The integrated analysis of metaproteomic and metabolomic showed that there was a correlation between biofilm microorganisms and metabolites. Metabolomic analysis indicated that metabolic profiles of biofilms varied with layer height. This study provides the first detailed microbial communities and metabolic profiles in a full-scale pre-denitrification biofilter and clarifies the mechanism of denitrification.
Collapse
Affiliation(s)
- Lu Tian
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Lin Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
103
|
Zhang L, Cui B, Yuan B, Zhang A, Feng J, Zhang J, Han X, Pan L, Li L. Denitrification mechanism and artificial neural networks modeling for low-pollution water purification using a denitrification biological filter process. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
104
|
Yan S, Cheng KY, Ginige MP, Zheng G, Zhou L, Kaksonen AH. Optimization of nitrate and selenate reduction in an ethanol-fed fluidized bed reactor via redox potential feedback control. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123770. [PMID: 33254781 DOI: 10.1016/j.jhazmat.2020.123770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 06/12/2023]
Abstract
Electron donors are a major cost-factor in biological removal of oxyanions, such as nitrate and selenate from wastewater. In this study, an online ethanol dosing strategy based on feedback control of oxidation-reduction potential (ORP) was designed to optimize the performance of a lab-scale fluidized bed reactor (FBR) in treating selenate and nitrate (5 mM each) containing wastewater. The FBR performance was evaluated at various ORP setpoints ranging between -520 mV and -240 mV (vs. Ag/AgCl). Results suggested that both nitrate and selenate were completely removed at ORPs between -520 mV and -360 mV, with methylseleninic acid, selenocyanate, selenosulfate and ammonia being produced at low ORPs between -520 mV and -480 mV, likely due to overdosing of ethanol. At ORPs between -300 mV and -240 mV, limited ethanol dosing resulted in an apparent decline in selenate removal whereas nitrate removal remained stable. Resuming the ORP to -520 mV successfully restored complete selenate reduction. An optimal ORP of -400 mV was identified for the FBR, whereby selenate and nitrate were nearly completely removed with a minimal ethanol consumption. Overall, controlling ORP via feedback-dosing of the electron donor was an effective strategy to optimize FBR performance for reducing selenate and nitrate in wastewater.
Collapse
Affiliation(s)
- Su Yan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water, 147 Underwood Avenue, Floreat WA, 6014, Australia; Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ka Yu Cheng
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water, 147 Underwood Avenue, Floreat WA, 6014, Australia; School of Engineering and Information Technology, Murdoch University, Perth WA, Australia
| | - Maneesha P Ginige
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water, 147 Underwood Avenue, Floreat WA, 6014, Australia
| | - Guanyu Zheng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Anna H Kaksonen
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water, 147 Underwood Avenue, Floreat WA, 6014, Australia; School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Nedlands, WA 6009, Australia.
| |
Collapse
|
105
|
Cao S, Wang L, Yan W, Zhou Y. Primary sludge as solid carbon source for biological denitrification: System optimization at micro-level. ENVIRONMENTAL RESEARCH 2020; 191:110160. [PMID: 32891614 DOI: 10.1016/j.envres.2020.110160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/16/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Commercial carbon source (e.g. methanol) has been frequently used to enhance heterotrophic denitrification for nitrate removal. However, this is not sustainable due to the high cost of chemical purchasing and excessive sludge production. To address these issues, this study reports an integrated denitrification system using primary sludge as solid carbon source. Complete denitrification without any nitrite accumulation achieved at the primary sludge dosage of 6.0 g VSS/g N with the maximum specific nitrate reduction rate of 6.4 mg N/g VSS/h, which was comparable with the reported soluble carbon source. More importantly, as a solid "waste" in municipal wastewater treatment plants (WWTPs), the primary sludge was simultaneously reduced by 65.3%-85.1%, and this avoids the intensive denitrification biomass generation that generally occurs in using the commercial carbon source. Ammonium, phosphate, and recalcitrant organic matter were released meantime. Interestingly, the concentration of ammonium and phosphate declined during the denitrification process. The refractory dissolved organics mainly composed of aromatic protein and microbial by-products. The detailed cycle study suggests that an appropriate denitrification cycle/duration time would largely lower the effluent organics concentration, which can be achieved by monitoring the pH turning point. This study clearly demonstrates that primary sludge is a promising alternative carbon source for biological denitrification with great economic benefits and environmental sustainability.
Collapse
Affiliation(s)
- Shenbin Cao
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Li Wang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wangwang Yan
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
106
|
Namburath M, Papirio S, Moscariello C, Di Costanzo N, Pirozzi F, Alappat BJ, Sreekrishnan TR. Effect of nickel on the comparative performance of inverse fluidized bed and continuously stirred tank reactors for biogenic sulphur-driven autotrophic denitrification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 275:111301. [PMID: 32866922 DOI: 10.1016/j.jenvman.2020.111301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/22/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
The comparative performance of an inverse fluidized bed reactor (IFBR) having high density polyethylene beads as carrier materials for biofilm formation and a continuous stirred tank reactor (CSTR), both maintaining autotrophic denitrification using biogenic sulphur (ADBIOS) in the absence and presence of nickel (Ni2+), was studied. The reactors were compared in terms of NO3--N and NO2--N removal and SO42--S production throughout the study. A simulated wastewater with an inlet NO3--N concentration of 225 mg/L and a decreasing concentration of biogenic sulphur (bio-S) from 1.5 to 0.375 g/L was used. Both reactors were operated at a hydraulic retention time (HRT) of 48 h for 140 days and at an HRT of 42 h for the following 68 days. A more efficient ADBIOS was observed in the CSTR than IFBR throughout the study due to a better mixing of the feed wastewater in the bulk liquid and a higher availability of bio-S to the suspended cells. The NO3--N removal efficiency in the IFBR decreased by approximately 41% when the feed bio-S was reduced to 0.375 g/L, while it remained unaffected in the CSTR. Conversely, the presence of Ni2+ did not significantly affect NO3--N removal in both reactors even at a feed Ni2+ concentration of 120 mg/L. The highest NO3--N removal rates achieved were 86 and 108 mg NO3--N/(L·day) in the IFBR and CSTR, respectively, in the presence of 120 mg/L of feed Ni2+ at an HRT of 42 h. Batch studies conducted with acclimatized biomass showed that the continuous-flow operation mode in both reactors played a major role in helping the autotrophic denitrifiers to tolerate Ni2+ toxicity.
Collapse
Affiliation(s)
- Maneesh Namburath
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy; Department of Civil Engineering, Indian Institute of Technology Delhi, 110016, New Delhi, India.
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy
| | - Carlo Moscariello
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy
| | - Nicola Di Costanzo
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy
| | - Francesco Pirozzi
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy
| | - Babu J Alappat
- Department of Civil Engineering, Indian Institute of Technology Delhi, 110016, New Delhi, India
| | - T R Sreekrishnan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, 110016, New Delhi, India
| |
Collapse
|
107
|
Chu Z, Huang X, Su Y, Yu H, Rong H, Wang R, Zhang L. Low-dose Ultraviolet-A irradiation selectively eliminates nitrite oxidizing bacteria for mainstream nitritation. CHEMOSPHERE 2020; 261:128172. [PMID: 33113654 DOI: 10.1016/j.chemosphere.2020.128172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Nitritation is currently known as a bottleneck for mainstream nitrite shunt or partial nitritation/anammox (PN/A). Here we propose a new approach to selectively eliminate nitrite oxidizing bacteria (NOB) for mainstream nitritation by low-dose ultraviolet-A (UVA) irradiation. The results showed that mainstream nitritation was rapidly achieved within 10 days with UVA irradiation at the dose of 0.87 μE L-1 s-1, and nitrite accumulation ratio (NO2--N/(NO2--N + NO3--N) ×100%) stabilized over 80%. Microbial community analysis revealed that two typical NOB populations (Nitrospira and Ca. Nitrotoga) detected in the control reactor were suppressed efficiently in UVA irradiation reactor, whereas the Nitrosomonas genus of ammonium oxidizing bacteria (AOB) remained at similar level. Intracellular reactive oxygen species (ROS) analysis indicated that NOB-dominant sludge tends to generate more intracellular ROS compared with AOB-dominant sludge in the presence of UVA, leading to the inactivation and elimination of NOB. Additionally, amounts of microalgae found in UVA irradiation reactor could help to suppress NOB by generating ROS during photosynthesis. Briefly, the UVA irradiation approach proposed in this study was shown to be promising in NOB suppression for reliable mainstream nitritation.
Collapse
Affiliation(s)
- Zhaorui Chu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Xiaoyu Huang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yikui Su
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Huarong Yu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hongwei Rong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Randeng Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Liqiu Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
108
|
Su JF, Wu ZZ, Huang TL, Zhang H, Li JW. A new technology for simultaneous calcium-nitrate and fluoride removal in the biofilm reactor. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122846. [PMID: 32937694 DOI: 10.1016/j.jhazmat.2020.122846] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/28/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
In this study, a biofilm reactor containing Acinetobacter sp.H12 was established to investigate the simultaneous denitrification, the removal of calcium and fluoride performance. The main precipitation components in the reactor were determined by SEM, XPS and XRD. The effects of HRT (6 h, 9 h and 12 h), pH (6.0, 7.0, 8.0), influent F- concentration (3 mg/L, 5 mg/L, 10 mg/L) on synchronously removal of nitrate and F- and Ca2+ during reactor operation were studied. Optimum operating conditions were achieved with a nitrate removal ratio of 100%, F- removal ratio of 81.91% and Ca2+ removal ratio of 67.66%. Nitrogen was the main gaseous product analyzed by gas chromatography. Extracellular polymers (proteins) were also identified as sites for biological precipitation nucleation by fluorescence spectroscopy. Moreover, microbial distribution and community structure analysis showed that strain H12 was the dominat strain in the biofilm reactor. And combined with the performance prediction of the reactor, strain H12 played a major role in the process of simultaneous denitrification, F- and Ca2+ removal.
Collapse
Affiliation(s)
- Jun Feng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an710055, China.
| | - Zi Zhen Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an710055, China
| | - Ting Lin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an710055, China
| | - Han Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an710055, China
| | - Jia Wei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an710055, China
| |
Collapse
|
109
|
Lan Z, Yang J, Feng L, Yu H, Ye X, Yang G, Gao H, Zhou J. Comparative analysis of denitrification performance, denitrifying community and functional genes to oxytetracycline exposure between single and hybrid biodegradable polymers supported solid-phase denitrification systems. Biodegradation 2020; 31:289-301. [PMID: 32920674 DOI: 10.1007/s10532-020-09910-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023]
Abstract
Biodegradable carrier are vital for the solid-phase denitrification (SPD) systems for treating nitrate-rich water. Two solid-phase denitrification reactors were developed with both 200 g L-1 of single (polycaprolactone, PCL) (R1) and hybrid solid carbon sources (PCL/polylactic acid (PLA) /polyhydroxyalkanoates (PHA)) (R2) to examine the denitrification performance, denitrifying community and functional genes to various oxytetracycline (OTC) exposure in this study, respectively. Complete denitrification performance was achieved in the both SPD systems at low stress of OTC (1 mg L-1), but then dramatically reduced to less than 20% of nitrate reduction efficiency after one-month high OTC stress (10 mg L-1), and rapidly recovered to stable nitrate removal rates of 76.77 ± 5.48% (R1) and 40.68 ± 4.40% (R2) after the next day of no OTC stress. However, the reactor R1 with single PCL carriers acquired more efficient nitrate removal rate than that of reactor R2 at the high OTC stress and recovery phase with OTC stress, mainly due to the more organics availability from the single PCL carriers. The richness and diversity of nirK and nirS deintrifiers significantly declined at high OTC stress, and much more of those occurred in biofilm R1 with more organics availability. Besides, biofilm R1 achieved much more abundant periplasmic nitrate reductase, nitrite reductase genes and tetracycline resistance genes after high OTC stress, which explained the potential resistance to OTC and rapid recovery efficiency after no stress of OTC. Thus, the organics availability played an important role in assuring SPD system to be efficient under high OTC stress.
Collapse
Affiliation(s)
- Zeyu Lan
- Department of Environment Science and Engineering, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Jingyi Yang
- Department of Environment Science and Engineering, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Lijuan Feng
- Department of Environment Science and Engineering, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China.
| | - Hui Yu
- Department of Environment Science and Engineering, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Xin Ye
- Department of Environment Science and Engineering, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Guangfeng Yang
- Department of Environment Science and Engineering, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Huiming Gao
- Department of Environment Science and Engineering, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Jiaheng Zhou
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
110
|
Colombani N, Gervasio MP, Castaldelli G, Mastrocicco M. Soil conditioners effects on hydraulic properties, leaching processes and denitrification on a silty-clay soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139342. [PMID: 32446080 DOI: 10.1016/j.scitotenv.2020.139342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Agricultural landscapes are often affected by groundwater quality issues due to fertilizers leaching. To address this worldwide problem several agricultural best practices have been proposed, like limiting the amount of fertilizers and increasing soil organic matter content. To evaluate if these practices may promote groundwater quality enhancement, vadose zone retention time and complex biogeochemical processes must be known in detail. In this study, sequential undisturbed column experiments were performed to determine the amount of nutrients and heavy metals leached after simulated stormwater events. The column was amended with urea then flushed for two pore volumes, then straw residuals were incorporated and flushed for two pore volumes and finally compost was incorporated and flushed for six pore volumes. Dissolved ions, major gasses and heavy metals were determined in leachate samples. Nitrate and nitrite were leached in the urea treatment producing the highest concentrations, followed by compost and straw residuals. The redox conditions were aerobic in all treatments and pH was circumneutral or slightly basic. Denitrification was low but increased with the addition of straw residuals and compost. Heavy metals were all at very low concentrations except for lead and cadmium, which slightly exceeded threshold limits (10 and 1 μg/L, respectively) in all the treatments. The compost treatment, after three pore volumes, was affected by clay swelling due to sodium dispersion, which in turn provoked a reduction of porosity and hydraulic conductivity.
Collapse
Affiliation(s)
- Nicolò Colombani
- SIMAU - Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche 12, 60131 Ancona, Italy
| | - Maria Pia Gervasio
- DiSTABiF - Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Campania University "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Giuseppe Castaldelli
- SVeB - Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Micòl Mastrocicco
- DiSTABiF - Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Campania University "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy.
| |
Collapse
|
111
|
Shen Q, Ji F, Wei J, Fang D, Zhang Q, Jiang L, Cai A, Kuang L. The influence mechanism of temperature on solid phase denitrification based on denitrification performance, carbon balance, and microbial analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139333. [PMID: 32438161 DOI: 10.1016/j.scitotenv.2020.139333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
In this work, the influence mechanism of temperature on solid phase denitrification (SPD) was investigated using a pilot-scale reactor supported with polycaprolactone (PCL). The results showed that under nitrate loads of ~31.5 mg N/(L·h), as temperature decreased from 30 °C to 13 °C, the nitrate removal efficiency declined from 94% to 57%. Furthermore, denitrification rate constants were input into Arrhenius equation and the resulting temperature coefficient was 1.04. Significantly nitrite accumulation and less effluent COD residue occurred at low-temperatures. Via stoichiometry, the sludge yield coefficient and COD demand for nitrate removal both increased as a function of increasing temperature; and were calculated at 20 °C as 0.069 g MLVSS/(g COD·d) and 3.265 g COD/g N, respectively. Carbon balance analysis indicated that the COD release rate (υ) at 30 °C was twice that at 13 °C. LEfSe analysis demonstrated that Desulfomicrobium, Desulfovibrio, and Meganema were abundant at low-temperature, while Simplicispira, Aquabacterium, and Acidovorax were enriched at high-temperature. Besides, carboxylesterase (PCL depolymerase) was more abundant at high-temperature, implying an association with a fast υ. Moreover, nar was enriched at low-temperature, while nir was depleted, which led to nitrite accumulation. These results provide reference for SPD design parameter estimation and/or optimal operation strategy.
Collapse
Affiliation(s)
- Qiushi Shen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Fangying Ji
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Jiazhi Wei
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Dexin Fang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Qian Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Lei Jiang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Anrong Cai
- Chongqing Yuxi Water Co., Ltd, Chongqing 402160, China
| | - Li Kuang
- Chongqing Gangli Environmental Protection Co., Ltd, Chongqing 404100, China
| |
Collapse
|
112
|
Zhong H, Cheng Y, Ahmad Z, Shao Y, Zhang H, Lu Q, Shim H. Solid-phase denitrification for water remediation: processes, limitations, and new aspects. Crit Rev Biotechnol 2020; 40:1113-1130. [DOI: 10.1080/07388551.2020.1805720] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hua Zhong
- Faculty of Science and Technology, Department of Civil and Environmental Engineering, University of Macau, Macau, China
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| | - Ying Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, China
| | - Zulfiqar Ahmad
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| | - Yalu Shao
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| | - Hongwei Zhang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| | - Qihong Lu
- Faculty of Science and Technology, Department of Civil and Environmental Engineering, University of Macau, Macau, China
| | - Hojae Shim
- Faculty of Science and Technology, Department of Civil and Environmental Engineering, University of Macau, Macau, China
| |
Collapse
|
113
|
Zhang X, Liu Y, Li ZR, Zhang J, Chen Y, Wang Q. Impact of COD/N on anammox granular sludge with different biological carriers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138557. [PMID: 32361109 DOI: 10.1016/j.scitotenv.2020.138557] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
The purpose of this study is to investigate the effect of COD/N interference on mature anammox granular sludge formed by different biological carriers. Three anammox granular sludge rectors were established with no biological carriers (R1), GAC (R2) and PVA-gel bead (R3), respectively. As the COD/N ratio increased to 1:2, the activity of anaerobic ammonia oxidizing bacteria in R1 and R2 was significantly inhibited. However, the nitrogen removal effect of R3 did not decrease dramatically, and the nitrogen removal rate in this phase was 1.54 ± 0.05 kg N/m3·d. As the COD/N ratio increased to 1:1.5, the removal of NH4+-N in all reactors gradually decreased. The order of COD resistance of the three reactors in this study was R3 > R2 > R1. It was found that Candidatus Brocadia might be sensitive to the presence of organic matter. The abundance of heterotrophic denitrifying bacteria increased gradually in each reactor under increased influent COD/N ratios.
Collapse
Affiliation(s)
- Xinying Zhang
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Resources, Fuzhou University, Fuzhou 350108, China.
| | - Yang Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Resources, Fuzhou University, Fuzhou 350108, China
| | - Zong Ren Li
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Resources, Fuzhou University, Fuzhou 350108, China
| | - Jian Zhang
- Fujian Provincial Academy of Environmental Science, Fuzhou 350003, China
| | - Yiming Chen
- Fujian Provincial Academy of Environmental Science, Fuzhou 350003, China
| | - Qiaoying Wang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
114
|
Yan S, Cheng KY, Morris C, Douglas G, Ginige MP, Zheng G, Zhou L, Kaksonen AH. Sequential hydrotalcite precipitation and biological sulfate reduction for acid mine drainage treatment. CHEMOSPHERE 2020; 252:126570. [PMID: 32443266 DOI: 10.1016/j.chemosphere.2020.126570] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/09/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Hydrotalcite precipitation is a promising technology for the on-site treatment of acid mine drainage (AMD). This technology is underpinned by the synthesis of hydrotalcite that can effectively remove various contaminants. However, hydrotalcite precipitation has only limited capacity to facilitate sulfate removal from AMD. Therefore, the feasibility of coupling biological sulfate reduction with the hydrotalcite precipitation to maximize sulfate removal was evaluated in this study. AMD emanating from a gold mine (pH 4.3, sulfate 2000 mg L-1, with various metals including Al, Cd, Co, Cu, Fe, Mn, Ni, Zn) was first treated using the hydrotalcite precipitation. Subsequently, biological treatment of the post-hydrotalcite precipitation effluent was conducted in an ethanol-fed fluidized bed reactor (FBR) at a hydraulic retention time (HRT) of 0.8-1.6 day. The hydrotalcite precipitation readily neutralized the acidity of AMD and removed 10% of sulfate and over 99% of Al, Cd, Co, Cu, Fe, Mn, Ni, Zn. The overall sulfate removal increased to 73% with subsequent FBR treatment. Based on 454 pyrosequencing of 16S rRNA genes, the identified genera of sulfate-reducing bacteria (SRB) included Desulfovibrio, Desulfomicrobium and Desulfococcus. This study showed that sulfate-rich AMD can be effectively treated by integrating hydrotalcite precipitation and a biological sulfate reducing FBR.
Collapse
Affiliation(s)
- Su Yan
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, Western Australia (WA), 6014, Australia; Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ka Yu Cheng
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, Western Australia (WA), 6014, Australia; School of Engineering and Information Technology, Murdoch University, Perth, WA, Australia
| | - Christina Morris
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, Western Australia (WA), 6014, Australia
| | - Grant Douglas
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, Western Australia (WA), 6014, Australia
| | - Maneesha P Ginige
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, Western Australia (WA), 6014, Australia
| | - Guanyu Zheng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Anna H Kaksonen
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, Western Australia (WA), 6014, Australia; School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Nedlands, WA, 6009, Australia.
| |
Collapse
|
115
|
Acclimating activated sludge with co-metabolic substrates for enhancing treatment of low-concentration polyether wastewater. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
116
|
Peng S, Deng S, Li D, Xie B, Yang X, Lai C, Sun S, Yao H. Iron-carbon galvanic cells strengthened anaerobic/anoxic/oxic process (Fe/C-A2O) for high-nitrogen/phosphorus and low-carbon sewage treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137657. [PMID: 32199356 DOI: 10.1016/j.scitotenv.2020.137657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
The treatment of sewage with high-nitrogen/-phosphorus and low-carbon remains a challenge. A novel iron-carbon galvanic cells strengthened anaerobic/anoxic/oxic process (Fe/C-A2O) was developed for high-nitrogen/-phosphorus and low-carbon sewage treatment. The cost-effective iron-scraps (ISs) was recycled as Fe(0)-source under the mediation of Fe/C galvanic cell reaction to develop effective Fe(0)-oxidizing autotrophic-denitrification and -dephosphorization. Utilizing practical high-nitrogen/-phosphorus and low-carbon sewage as target wastewater, the performance, impact factors, contribution of Fe/C galvanic cell reactions, microbial characteristics, strengthening mechanisms, and application potential of Fe/C-A2O process were investigated. The Fe/C-A2O process achieved high TN and TP removal efficiencies of 92.0 ± 1.3% and 97.2 ± 0.9% with removal loads of 0.176 ± 0.002 kg TN/(m3·d) and 0.017 ± 0.002 kg TP/(m3·d), respectively. Optimal HRT of 12 h, DO of 4.0-4.5 mg/L, and reflux-ratio of 4:1 were obtained, and no sludge-reflux was required. Autotrophic-denitrification and -dephosphorization supported by the Fe/C galvanic cell reactions contributed 63.1% and 75.3% of TN and TP removal, respectively. Microbial characterization revealed the dominance of autotrophic denitrifiers (e.g., Thiobacillus), AOB (e.g., Nitrosomonas), NOB (e.g., Nitrospira), and heterotrophic denitrifiers (e.g., Zoogloea). The mechanism analysis demonstrated that Fe/C galvanic cells strengthened nitrogen removal by raising Fe2+/H2-supported autotrophic denitrification; and strengthened dephosphorization by introducing Fe3+-based PO43--precipitation and enhancing the denitrifying phosphate-accumulation by denitrifying phosphate-accumulating organisms (DPAOs). Based on the efficiency and cost evaluation, the ISs-based Fe/C-A2O process showed significant application potential as an upgrade strategy for traditional A2O process in advanced high-nitrogen/phosphorus and low-carbon sewage treatment.
Collapse
Affiliation(s)
- Shuai Peng
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Shihai Deng
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China; Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576 Singapore, Singapore.
| | - Desheng Li
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Binghan Xie
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576 Singapore, Singapore; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China
| | - Xue Yang
- Process & Engineering Center, National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, PR China
| | - Cai Lai
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Shaobin Sun
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Hong Yao
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| |
Collapse
|
117
|
Qi W, Taherzadeh MJ, Ruan Y, Deng Y, Chen JS, Lu HF, Xu XY. Denitrification performance and microbial communities of solid-phase denitrifying reactors using poly (butylene succinate)/bamboo powder composite. BIORESOURCE TECHNOLOGY 2020; 305:123033. [PMID: 32105848 DOI: 10.1016/j.biortech.2020.123033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
This study explored the denitrification performance of solid-phase denitrification (SPD) systems packed with poly (butylene succinate)/bamboo powder composite to treat synthetic aquaculture wastewater under different salinity conditions (0‰ Vs. 25‰). The results showed composite could achieve the maximum denitrification rates of 0.22 kg (salinity, 0‰) and 0.34 kg NO3--N m-3 d-1 (salinity, 25‰) over 200-day operation. No significant nitrite accumulation and less dissolved organic carbon (DOC) release (<15 mg/L) were found. The morphological and spectroscopic analyses demonstrated the mixture composites degradation. Microbial community analysis showed that Acidovorax, Simplicispira, Denitromonas, SM1A02, Marinicella and Formosa were the dominant genera for denitrifying bacteria, while Aspergillus was the major genus for denitrifying fungus. The co-network analysis also indicated the interactions between bacterial and fungal community played an important role in composite degradation and denitrification. The outcomes provided a potential strategy of DOC control and cost reduction for aquaculture nitrate removal by SPD.
Collapse
Affiliation(s)
- Wanhe Qi
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Yuhangtang Road 866, Hangzhou 310058, PR China
| | | | - Yunjie Ruan
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Yuhangtang Road 866, Hangzhou 310058, PR China; The Rural Development Academy, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, PR China.
| | - Yale Deng
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University, 6708 WD Wageningen, The Netherlands
| | - Ji-Shuang Chen
- Institute of Bioresource Engineering, Nanjing Technology University, Nanjing 210009, PR China; Bioresource Institute for Healthy Utilization (BIHU), Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Hui-Feng Lu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiang-Yang Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
118
|
Highly efficient nitrate and phosphorus removal and adsorption of tetracycline by precipitation in a chitosan/polyvinyl alcohol immobilized bioreactor. Bioprocess Biosyst Eng 2020; 43:1761-1771. [DOI: 10.1007/s00449-020-02365-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/25/2020] [Indexed: 01/21/2023]
|
119
|
Fan NS, Bai YH, Chen QQ, Shen YY, Huang BC, Jin RC. Deciphering the toxic effects of antibiotics on denitrification: Process performance, microbial community and antibiotic resistance genes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 262:110375. [PMID: 32250829 DOI: 10.1016/j.jenvman.2020.110375] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 06/11/2023]
Abstract
The extensive application of antibiotics, and the occurrence and spread of antibiotic resistance genes (ARGs) shade health risks to human and animal. The long-term effects of sulfamethoxazole (SMX) and tetracycline (TC) on denitrification process were evaluated in this study, with the focus on nitrogen removal performance, microbial community and ARGs. Results showed that low-concentration SMX and TC (<0.2 mg L-1) initially caused a deterioration in nitrogen removal performance, while higher concentrations (0.4-20 mg L-1) of both antibiotics had no further inhibitory influences. The abundances of ARGs in both systems generally increased during the whole period, and most of them had significant correlations with intI1, especially efflux-pump genes. Castellaniella, which was the dominant genus under antibiotic pressure, might be potential resistant bacteria. These findings provide an insight into the toxic effects of different antibiotics on denitrification process, and guides future efforts to control antibiotics pollution in ecosystems.
Collapse
Affiliation(s)
- Nian-Si Fan
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yu-Hui Bai
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Qian-Qian Chen
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yang-Yang Shen
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Bao-Cheng Huang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
120
|
Xu Z, Chen X, Li H, Wan D, Wan J. Combined heterotrophic and autotrophic system for advanced denitrification of municipal secondary effluent in full-scale plant and bacterial community analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:136981. [PMID: 32092802 DOI: 10.1016/j.scitotenv.2020.136981] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/15/2020] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
Total nitrogen (TN) removal is the major technical challenge for wastewater treatment plants to meet the more stringent discharge standard. In this study, lab- (0.05 m3/d), pilot- (1000 m3/d) and full-scale (10,000 m3/d) combined heterotrophic and autotrophic denitrification reactors (HARs) were designed and operated to treat municipal secondary effluent. During the 110-day stable operation, the effluent TN was reduced below 2.5 mg/L without secondary pollution causing by the excessive addition of organics, close to Class IV of Environmental Quality Standards for Surface Water. The bacterial richness and diversity increased with the expansion of reactor scale. Denitrifying bacteria (DB) dominated in all reactors, however, Thiomonas (12.42%), Methylotenera (6.35%), Thiobacillus (20.62%), Methyloverstatilis (5.44%) and Thauera (8.21%) were the main genera in lab-, pilot- and full-scale reactors respectively. The denitrification efficiency temporarily deteriorated at the later stage, and redundancy analysis (RDA) indicated the obviously increased sulfate reducing bacteria (SRB) and sulfide were main contributors. Sludge supplement rapidly recovered the reactors performance in five days. This study suggests that HARs could be a promising technique for advanced denitrification of the municipal secondary effluent.
Collapse
Affiliation(s)
- Zicong Xu
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Xiaolei Chen
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Haisong Li
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China.
| | - Dongjin Wan
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Junfeng Wan
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
121
|
Wang T, Wu T, Wang H, Dong W, Zhao Y, Chu Z, Yan G, Chang Y. Comparative Study of Denitrifying-MBBRs with Different Polyethylene Carriers for Advanced Nitrogen Removal of Real Reverse Osmosis Concentrate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082667. [PMID: 32295014 PMCID: PMC7215845 DOI: 10.3390/ijerph17082667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 11/16/2022]
Abstract
Nitrogen (N) remains a great challenge in wastewater treatment while attempts to remove N has continuously been a research point for decades. In this study, the long-term performance of four identical-shape denitrification MBBRs (moving bed biofilm reactors) with four different configurations of cylindrical polyethylene as carriers (Φ25 × 12, Φ25 × 4, Φ15 × 15, and Φ10 × 7 mm) for advanced N removal of real reverse osmosis concentrate was investigated in great detail. The N of the real concentrate can be effectively removed by denitrification MBBRs when the pH, temperature, hydraulic retention time (HRT), C/N ratio, and filling rate are 7.50–8.10, 24~26 °C, 12 hours, 6.6, and 50%, respectively. The results showed that the MBBR with the Φ15 × 15 poly-carrier had the best removal efficiency on NO3-–N (78.0 ± 15.8%), NO2-–N (43.79 ± 9.30%), NH4+–N (55.56 ± 22.28%), and TN (68.9 ± 12.4%). The highest biomass of 2.13 mg/g-carrier was in the Φ15 × 15 poly-carrier was compared with the other three carriers, while the genes of the Φ15 × 15 poly-carrier reactor were also the most abundant. Proteobacteria was the most abundant phylum in the system followed by Bacteroidetes and then Firmicutes. The entire experiment with various parameter examination supported that Φ15 × 15 poly-carrier MBBR was a promising system for N removal in high strength concentrate. Despite the lab-scale trial, the successful treatment of high strength real reverse osmosis concentrate demonstrated the reality of the treated effluent as possible reclaimed water, thus providing a good showcase of N-rich reverse osmosis concentrate purification in practical application.
Collapse
Affiliation(s)
- Tong Wang
- School of Civil Engineering, Chang’an University, Xi’an 710061, China; (T.W.); (T.W.)
| | - Tong Wu
- School of Civil Engineering, Chang’an University, Xi’an 710061, China; (T.W.); (T.W.)
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China; (W.D.); (G.Y.); (Y.C.)
- Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
| | - Haiyan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China; (W.D.); (G.Y.); (Y.C.)
- Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China
- Correspondence: (H.W.); (Y.Z.)
| | - Weiyang Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China; (W.D.); (G.Y.); (Y.C.)
- Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- UCD Dooge Center for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
- Correspondence: (H.W.); (Y.Z.)
| | - Zhaosheng Chu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
| | - Guokai Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China; (W.D.); (G.Y.); (Y.C.)
- Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China
| | - Yang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China; (W.D.); (G.Y.); (Y.C.)
- Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China
| |
Collapse
|
122
|
Liu S, Daigger GT, Liu B, Zhao W, Liu J. Enhanced performance of simultaneous carbon, nitrogen and phosphorus removal from municipal wastewater in an anaerobic-aerobic-anoxic sequencing batch reactor (AOA-SBR) system by alternating the cycle times. BIORESOURCE TECHNOLOGY 2020; 301:122750. [PMID: 31954969 DOI: 10.1016/j.biortech.2020.122750] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
The performance of simultaneous carbon (C), nitrogen (N) and phosphorus (P) removal was investigated by altering the cycle times in an anaerobic-aerobic-anoxic sequencing batch reactor (AOA-SBR) system. Results showed that the AOA-SBR system achieved high simultaneous C, N and P removal efficiency with a cycle time of 6 h, with average removal efficiencies for COD, TN, and TP of 96.81%, 96.32% and 94.33%, respectively. The highest anoxic removal rate of NOX-N was 203.44 mg·g-1- MLVSS·d-1. Meanwhile, anaerobic release rate and aerobic, anoxic removal rate of TP reached peak values of 104.31 and 85.81 mg·g-1- MLVSS·d-1, respectively. Microbial community analysis demonstrated that Proteobacteria, Bacteroidetes and Candidatus Saccharibacteria at phylum level and Betaproteobacteria, Gammaproteobacteria, Sphingobacteriia, Deltaproteobacteria and Alphaproteobacteria at the class level benefited AOA-SBR performance. Functional analysis of genes indicated that the metabolic potential related to C, N and P metabolism increased under the optimal cycle time condition.
Collapse
Affiliation(s)
- Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China; Henan Key Laboratory of Water Environment Simulation and Treatment, Zhengzhou 450046, China; Henan Engineering Research Center of Water Pollution and Soil Damage Remediation, Zhengzhou 450046, China; Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI 48109, USA.
| | - Glen T Daigger
- Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI 48109, USA.
| | - Bingtao Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China; Henan Key Laboratory of Water Environment Simulation and Treatment, Zhengzhou 450046, China; Henan Engineering Research Center of Water Pollution and Soil Damage Remediation, Zhengzhou 450046, China.
| | - Weiyan Zhao
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China
| | - Jing Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China
| |
Collapse
|
123
|
Effects of Hydraulic Retention Time and Influent Nitrate-N Concentration on Nitrogen Removal and the Microbial Community of an Aerobic Denitrification Reactor Treating Recirculating Marine Aquaculture System Effluent. WATER 2020. [DOI: 10.3390/w12030650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effects of hydraulic retention time (HRT) and influent nitrate-N concentration on nitrogen removal and the microbial community composition of an aerobic denitrification reactor treating recirculating marine aquaculture system effluent were evaluated. Results showed that over 98% of nitrogen was removed and ammonia-N and nitrite-N levels were below 1 mg/L when influent nitrate-N was below 150 mg/L and HRT over 5 h. The maximum nitrogen removal efficiency and nitrogen removal rate were observed at HRT of 6 or 7 h when influent nitrate-N was 150 mg/L. High-throughput DNA sequencing analysis revealed that the microbial phyla Proteobacteria and Bacteroidetes were predominant in the reactor, with an average relative total abundance above 70%. The relative abundance of denitrifying bacteria of genera Halomonas and Denitratisoma within the reactor decreased with increasing influent nitrate-N concentrations. Our results show the presence of an aerobically denitrifying microbial consortium with both expected and unexpected members, many of them relatively new to science. Our findings provide insights into the biological workings and inform the design and operation of denitrifying reactors for marine aquaculture systems.
Collapse
|
124
|
Zhang F, Li X, Wang Z, Jiang H, Ren S, Peng Y. Simultaneous Ammonium oxidation denitrifying (SAD) in an innovative three-stage process for energy-efficient mature landfill leachate treatment with external sludge reduction. WATER RESEARCH 2020; 169:115156. [PMID: 31669903 DOI: 10.1016/j.watres.2019.115156] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/28/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
High-loaded ammonia and low-strength organics mature landfill leachate is not effectively treated by conventional biological processes. Herein, an innovative solution was proposed using a three-stage Simultaneous Ammonium oxidation Denitrifying (SAD) process. Firstly, ammonia (1760 ± 126 mg N/L) in wastewater was oxidized to nitrite in a partial nitrification sequencing batch reactor (PN-SBR). Next, 93% PN-SBR effluent and concentrated external waste activated sludge (WAS; MLSS = 23057 ± 6014 mg/L) were introduced to an anoxic reactor for integrated fermentation and denitrification (IFD-SBR). Finally, ammonia (101.4 ± 13.8 mg N/L) released by fermentation in the IFD-SBR and residual 7% nitrite in the PN-SBR were removed through the anaerobic ammonium oxidation (anammox) process in the SAD up-flow anaerobic sludge bed (SAD-UASB). In addition, NO3--N generation during the anammox process could be reduced to nitrite by partial denitrification (PD) and reused as substrate for anammox. A satisfactory total nitrogen (TN) removal efficiency (98.3%), external sludge reduction rate (2.5 kg/m3 d) and effluent TN concentration (16.7 mg/L) were achieved after long-term operation (280 days). The IFD-SBR and SAD-UASB contributed to 81.9% and 12.3% nitrogen removal, respectively. Microbial analysis showed that anammox bacteria (1.5% Candidatus Brocadia) cooperated well with partial denitrifying bacteria (4.3% Thauera) in SAD-UASB, and average nitrogen removal contribution were 83.1% during significant stability of anammox and 9.2% during the denitrification process, respectively. The three-stage SAD process provides an environmental and economic approach for landfill leachate treatment since it has the advantage of 25.4% less oxygen, 100% organic matter savings and 47.9% less external sludge than traditional biological processes.
Collapse
Affiliation(s)
- Fangzhai Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Zhong Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Shang Ren
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
125
|
Zhang Z, Zhang Y, Chen Y. Recent advances in partial denitrification in biological nitrogen removal: From enrichment to application. BIORESOURCE TECHNOLOGY 2020; 298:122444. [PMID: 31784254 DOI: 10.1016/j.biortech.2019.122444] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 05/12/2023]
Abstract
To maximize energy recovery, carbon capture followed by shortcut nitrogen removal is becoming the most promising route in biological wastewater treatment. As the intermediate of microbial denitrification, nitrite could serve as a substrate for anammox bacteria, while N2O is a combustion promoter that can increase 37% energy release from CH4 than O2. Therefore, the important advances in partial denitrification (PD) that produces nitrite or N2O as the main product using inorganic or organic electron donors were critically reviewed. Specifically, the enrichment strategies of PD microorganisms were obtained by analyzing the selection pressures, metabolism, physiology, and microbiology of these microorganisms. Furthermore, some prospective and promising processes integrating PD microorganisms and the bottlenecks of current applications were discussed. The obtained knowledge would provide new insights into the upgrading of current WWTPs involving commitment to achieve nitrogen removal from wastewaters more economically and environmentally friendly.
Collapse
Affiliation(s)
- Zhengzhe Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yu Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
126
|
Boroumand Y, Razmjou A, Moazzam P, Mohagheghian F, Eshaghi G, Etemadifar Z, Asadnia M, Shafiei R. Mussel inspired bacterial denitrification of water using fractal patterns of polydopamine. JOURNAL OF WATER PROCESS ENGINEERING 2020; 33:101105. [DOI: 10.1016/j.jwpe.2019.101105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
|
127
|
Xiao H, Wu J, Peng H, Jiang Z. Mixed carbon source improves deep denitrification performance in up-flow anaerobic sludge bed reactor. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:763-772. [PMID: 32460279 DOI: 10.2166/wst.2020.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To investigate the advantages of mixed carbon source over a single one in deep denitrification, sodium acetate, glucose and their mixture were used as carbon sources in present study. Denitrification performance, effluent pH, microbial community and carbon source cost were taken into account. With the same influent NO3 --N concentration of 50 mg/L and the same C/N ratio of 1.5, the NO3 --N removal rate with the mixed carbon source (96.53%) was slightly lower than that with sodium acetate (98.15%), but significantly higher than that with glucose (74.69%). The specific denitrification rates of the sodium acetate, glucose and sodium acetate/glucose reactor were 47.7, 29.7 and 45.4 mg N/g VSS d, respectively. The effluent pH with sodium acetate varied in the range of 9.13-9.60, exceeding the discharge standard limit of 9.0, whereas the sodium acetate/glucose reactor could keep pH in the range of 7.80-8.23. The 16S rRNA gene-based high-throughput sequencing revealed that carbon sources determined the microbial community structure and the sludge Shannon index with the mixed carbon source was the highest. Furthermore, cost estimation indicated that the mixed carbon source was the cheapest. This study is significant as it tests reasonable selection of carbon sources for deep denitrification in practice.
Collapse
Affiliation(s)
- Hong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China E-mail:
| | - Jiaojiao Wu
- College of Environmental Sciences, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China E-mail:
| | - Hong Peng
- College of Environmental Sciences, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China E-mail:
| | - Zhongyao Jiang
- College of Environmental Sciences, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China E-mail:
| |
Collapse
|
128
|
Performance and microbial diversity of denitrifying biofilms on polyurethane foam coupled with various solid carbon sources for nitrate-rich water purification. Int Microbiol 2020; 23:405-413. [PMID: 31898031 DOI: 10.1007/s10123-019-00114-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/30/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
This study investigated the performance and microbial communities of denitrifying biofilms on polyurethane foam coupled with various solid carbon sources of acid- and alkali-pretreated rice straw and rice husk. Results showed that acid and alkali-pretreated rice straw both had higher TOC release rates (0.041-0.685 mg g-1 day-1) than those of rice husk (0.019-0.160 mg g-1 day-1) over a month, while acid pretreatment of rice husk and rice straw had a much higher organics release rate than that of alkali pretreatment and non-pretreatment, respectively. Acid-pretreated rice straw achieved the most efficient TN removal performance (82.06 ± 3.65%) with the lower occurrences of NH4+-N during denitrification than that of alkali-pretreated rice straw (80.05 ± 4.12%) over more than a month operation. However, alkali pretreatment of rice husk demonstrated much more significantly efficient TN removal efficiency (80.39 ± 2.1%) than did acid pretreatment (69.59 ± 13.43%). MiSeq sequencing analysis showed that the four biofilm samples attached on polyurethane foam with the addition of pretreated rice straw or rice husk had a range of 13-15 differentially abundant phylum and 81-123 differentially abundant genera in comparison with biofilm without extra solid carbon sources, and a higher TN removal efficiency demonstrated more types of differentially abundant genera.
Collapse
|
129
|
Optimization of Wastewater Phosphorus Removal in Winter Temperatures Using an Anaerobic–Critical Aerobic Strategy in a Pilot-Scale Sequencing Batch Reactor. WATER 2019. [DOI: 10.3390/w12010110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biological phosphorus removal using an anaerobic–aerobic sequencing batch reactor (SBR) in a low temperature can be difficult to remove, and aeration always accounts for nearly half of the total electricity costs at many wastewater treatment plants. In this study, a pilot-scale anaerobic–critical aerobic SBR (A–CA SBR) was developed for synthetic domestic wastewater. More importantly, the phase, whose concentration of diffused oxygen was controlled at 1.0–1.5 mg/L, was defined as a critical aerobic phase, which reduced expenses during the operation. To be specific, half of the ammonia was removed within 10 days and no NO3−–N was accumulated during the process. From the SEM and metagenome analysis, Rhodocyclus, Zooglea, Dechloromonas, and Simplicispira had the ability to remove phosphorus and NO3−–N simultaneously, which proved the existence of a potential double-layer sludge structure under an A–CA operational condition. All of the results disclose that the pilot-scale A–CA SBR is a reliable manipulation strategy for phosphorus removal under low temperatures, which can hopefully apply to practical wastewater remediation.
Collapse
|
130
|
Sun G, Wan J, Sun Y, Li H, Chang C, Wang Y. Enhanced removal of nitrate and refractory organic pollutants from bio-treated coking wastewater using corncobs as carbon sources and biofilm carriers. CHEMOSPHERE 2019; 237:124520. [PMID: 31404739 DOI: 10.1016/j.chemosphere.2019.124520] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/31/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
The quality of the bio-treated coking wastewater (BTCW) is difficult to meet increasingly stringent coking wastewater discharge standards and future wastewater recycling needs. In this study, the pre-treatment process of BTCW was installed including the two up-flow fixed-bed bioreactors (UFBRs) which were separately filled with alkali-pretreated or no alkali-pretreated corncobs used as solid carbon sources as well as biofilm carriers. Results showed that this pre-treatment process could significantly improve the biodegradability of BTCW and increase the C/N ratio. Thus, over 90% of residual nitrate in BTCW were removed stably. Furthermore, GC-MS analysis confirmed that the typical refractory organic matters decreased significantly after UFBRs pre-treatment. High-throughput sequencing analysis using 16S rRNA demonstrated that dominant denitrifiers, fermentative bacteria and refractory-organic-pollutants-degrading bacteria co-existed inside the UFBRs system. Compared with no alkali-pretreated corncobs, alkali-pretreated corncobs provided more porous structure and much stable release of carbon to guarantee the growth and the quantity of the functional bacteria such as denitrifiers. This study indicated that the UFBRs filled with alkali-pretreated corncobs could be utilized as an effective alternative for the enhanced treatment of the BTCW.
Collapse
Affiliation(s)
- Guoping Sun
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, China; School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, China
| | - Junfeng Wan
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, China; Henan Center for Outstanding Overseas Scientists, Zhengzhou, China.
| | - Yichen Sun
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, China
| | - Haisong Li
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, China
| | - Chun Chang
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, China; Henan Center for Outstanding Overseas Scientists, Zhengzhou, China
| | - Yan Wang
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
131
|
Jia L, Jiang B, Huang F, Hu X. Nitrogen removal mechanism and microbial community changes of bioaugmentation subsurface wastewater infiltration system. BIORESOURCE TECHNOLOGY 2019; 294:122140. [PMID: 31557654 DOI: 10.1016/j.biortech.2019.122140] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
Limited nitrogen removal capacity (mainly nitrate, NO3--N) remains a major challenge for subsurface wastewater infiltration system (SWIS). Two nitrogen-removing strains have been isolated from SWIS and inoculated to SWIS to investigate the effect of bioaugmentation on nitrogen removal performance and mechanism. The results showed bioaugmentation improved the removal efficiencies of NH4+-N from 86.81% to 92.86% and TN from 74.90% to 86.55% and running stability compared to unbioaugmentation SWIS. 16 s rRNA amplicon sequencing results of the bacterial indicated that bioaugmentation altered the microbial community structure especially at 150 cm depth and increased the relative abundance of bacteria associated with nitrogen removal, significantly increasing the abundance of Rhizobiales_Incertae_Sedis and Lachnospiraceae. Furthermore, the relation between internal microbial characteristics and operational factors indicated that Hyphomicrobiaceae and Gemmatimonadaceae were also closely related to nitrogen removal. Predicted function profiles revealed that bioaugmentation enhanced the activity of nitrogen removal enzymes (Hao, NorBC, NasAB, NarGHI, NirBD and NosZ).
Collapse
Affiliation(s)
- Liping Jia
- College of Resource and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Binhui Jiang
- College of Resource and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Fei Huang
- College of Resource and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Xiaomin Hu
- College of Resource and Civil Engineering, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
132
|
Jia Y, Zhou M, Chen Y, Luo J, Hu Y. Carbon selection for nitrogen degradation pathway by Stenotrophomonas maltophilia: Based on the balances of nitrogen, carbon and electron. BIORESOURCE TECHNOLOGY 2019; 294:122114. [PMID: 31520854 DOI: 10.1016/j.biortech.2019.122114] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
A novel strain DQ01 capable of simultaneous removal of nitrate and ammonium under the aerobic condition was isolated from the landfill leachate and identified as Stenotrophomonas maltophilia. The result showed that S. maltophilia had carbon selection for the nitrogen removal pathway, and preferred to utilize carboxylate rather than carbohydrate, as carboxylate could directly participate in TCA cycle without Embden Meyerhof Parmas (EMP). Nitrogen and carbon balances confirmed that the ammonium assimilation was the main or even sole removal pathway for S. maltophilia, and carboxylate was more conducive to heterotrophic nitrification-aerobic denitrification (HN-AD) process due to the serious self-alkalization and higher reduction potential of carboxylate, which followed: NH4+ → NO2- → NO3- → NO2- → NO due to the lack of nor and nos. Meanwhile, the higher C/N and nitrate could generate a more powerful ion transport driving force to accelerate the electron transfer in the denitrifying respiratory chain.
Collapse
Affiliation(s)
- Yating Jia
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Miaomiao Zhou
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Jun Luo
- South China Institute of Environmental Science, Ministry of Ecology and Environment of People's Republic of China, Guangzhou 510000, China
| | - Yongyou Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
133
|
Yuan R, Shen Y, Zhu N, Yin C, Yuan H, Dai X. Pretreatment-promoted sludge fermentation liquor improves biological nitrogen removal: Molecular insight into the role of dissolved organic matter. BIORESOURCE TECHNOLOGY 2019; 293:122082. [PMID: 31493732 DOI: 10.1016/j.biortech.2019.122082] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 05/22/2023]
Abstract
Waste activated sludge (WAS) can be used as carbon sources to support biological nutrient removal (BNR). In this study, thermal-alkaline (THALK), ozonation (OZN), electrolysis (EC) and NaClO-promoted electrolysis (EC-AOP) were investigated to facilitate WAS solubilization and production of volatile fatty acids (VFAs). EEMF-PARAFAC and FT-ICR-MS were employed to characterize the transformation of dissolved organic matter (DOM) in WAS fermentation liquors at molecular level. THALK achieved the highest fluorescence intensity of C1 protein after pretreatment. Proteins and lipids were the dominant DOM in the pretreated WAS, while the DOM shifted towards substances with higher H/C and lower O/C after fermentation. The BNR results showed that THALK (100%) and EC-AOP (96.9%) outperformed other groups (78.9-90.3%) in terms of NO3-N removal, indicating the significant impact of DOM compositions. Overall, these results demonstrated that THALK and EC-AOP effectively enhanced release of VFAs and DOM, which subsequently improved NO3-N removal efficiency.
Collapse
Affiliation(s)
- Rongxue Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanwen Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Nanwen Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200292, China.
| | - Changkai Yin
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haiping Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200292, China
| |
Collapse
|
134
|
Yamada T, Tsuji H, Daimon H. Nitrate removal performance and diversity of active denitrifying bacteria in denitrification reactors using poly(L-lactic acid) with enhanced chemical hydrolyzability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:36236-36247. [PMID: 31713134 DOI: 10.1007/s11356-019-06722-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Poly(L-lactic acid) (PLLA) can be used as an external electron donor in denitrification reactors to treat drinking water, aquaculture water, and industrial wastewater with an imbalanced carbon/nitrogen ratio. However, for PLLA to function in these applications, its chemical hydrolyzability requires improvement. Although the adjustment of the crystallinity (Xc) is effective in improving the hydrolyzability of PLLA, the condition for the Xc of PLLA, in which a sufficient amount of lactic acid is released for denitrification, must be clarified. Therefore, this study investigated the effective Xc range and optimal PLLA content as an electron donor for continuous nitrate removal in denitrification reactors. This study also explored the abundance, succession, and diversity of active denitrifying bacteria in denitrification reactors. The nitrate removal activity of activated sludge using the highly crystalline PLLA (Xc = 39.4%) was 1.8 mg NO3- -N g MLSS-1 h-1, which is 2.4 times higher than that using the nearly amorphous PLLA (Xc = 0.9%). During the 57 days of operation, the denitrification reactor with 3% (w/v) highly crystalline PLLA continued to completely remove nitrate, with a maximum nitrate removal activity of 22.8 mg NO3- -N g MLSS-1 h-1. The 16S rRNA amplicon sequencing and clone library analyses are using transcripts of two nitrite reductase genes, encoding cytochrome cd1 nitrite reductase, and copper-containing nitrite reductase revealed that bacteria belonging to the families Comamonadaceae, Rhodocyclaceae, and Alcaligenaceae were active denitrifying bacteria in the denitrification reactor using PLLA.
Collapse
Affiliation(s)
- Takeshi Yamada
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan.
| | - Hideto Tsuji
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan
| | - Hiroyuki Daimon
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan
- Core for Global Network Innovation in Technology Education, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan
| |
Collapse
|
135
|
Su JF, Xue L, Huang TL, Wei L, Gao CY, Wen Q. Performance and microbial community of simultaneous removal of NO 3--N, Cd 2+ and Ca 2+ in MBBR. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109548. [PMID: 31521921 DOI: 10.1016/j.jenvman.2019.109548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/27/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
A moving-bed biofilm reactor (MBBR) containing immobilized Acinetobacter sp.CN86 was operated to investigate the simultaneous denitrification, bio-mineralization and cadmium removal performance. Effects of hydraulic residence time (HRT) (4 h, 6 h and 8 h), pH (6.0, 7.0 and 8.0) and influent Cd2+ concentrations (10 mg/L, 30 mg/L and 50 mg/L) were assessed on the simultaneous removal of nitrate, Cd2+ and Ca2+. Results indicate that the highest pollutant removal efficiency (98.33% (1.866 mg/L·h) for NO3--N; 99.36% (1.242 mg/L·h) for Cd2+; 68.80% (15.480 mg/L·h) for Ca2+) was achieved under the conditions of a hydraulic residence time of 8 h, pH of 7.0 and initial Cd2+ concentration of 10 mg/L. Analyses of microbial distribution and community structures showed that Acinetobacter sp.CN86 was the main contributor (occupy 15.3% at the species level) to the effective removal of multiple pollutants in the MBBR. In addition, the main gas and precipitation components in the biofilm reactor were identified by gas chromatography, scanning electron microscope, and X-ray diffraction analyses.
Collapse
Affiliation(s)
- Jun Feng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Lei Xue
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ting Lin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Li Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China.
| | - Chun Yu Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qiong Wen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
136
|
Cui H, Yang Y, Ding Y, Li D, Zhen G, Lu X, Huang M, Huang X. A novel pilot-scale tubular bioreactor-enhanced floating treatment wetland for efficient in situ nitrogen removal from urban landscape water: Long-term performance and microbial mechanisms. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1498-1508. [PMID: 31102431 DOI: 10.1002/wer.1147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
In order to strengthen in situ nitrogen removal of urban landscape water, a novel pilot-scale tubular bioreactor-enhanced floating treatment wetland (TB-EFTW) was constructed, and the long-term performance and responsible microbial mechanisms were investigated in this study. The results showed that the system could remove 81.5% nitrogen from the landscape water after 240 days' operation. Moreover, the contribution rate of plant absorption to nitrogen was low (8.3%), which indicated that microbial biotransformation rather than plant absorption played a more key role in nitrogen removal in TB-EFTW system. The declining dissolved oxygen (DO) concentration along the axial direction of tubular bioreactor (TB) resulted in the sequential bacterial community of nitrifying, aerobic denitrifying, and anoxic denitrifying bacteria in the front, middle, and final part of TB. High-throughput sequencing results demonstrated that the internal environment of the system realized the coexistence of nitrifying, aerobic denitrifying and anoxic denitrifying process. The reason was mainly because that oxic-anoxic (O-A) areas were formed in sequence along the axial direction of tubular bioreactor. Overall, a unique advantage in nitrogen removal was achieved in TB-EFTW, which could provide important references for in situ treatment of urban landscape water. PRACTITIONER POINTS: TB-EFTW strengthened nitrogen removal for in situ urban landscape water treatment. Microbial conversion played a key role in nitrogen removal of the TB-EFTW system. The unique distribution of oxic-anoxic (O-A) areas was formed in sequence along the TB. Nitrification, aerobic, and anoxic denitrification were synergistically involved in the TB.
Collapse
Affiliation(s)
- He Cui
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yinchuan Yang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yu Ding
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Dan Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Institute of Eco-Chongming (IEC), Shanghai, China
| | - Minsheng Huang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Xiao Huang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| |
Collapse
|
137
|
Qie F, Zhu J, Rong J, Zong B. Biological removal of nitrogen oxides by microalgae, a promising strategy from nitrogen oxides to protein production. BIORESOURCE TECHNOLOGY 2019; 292:122037. [PMID: 31474540 DOI: 10.1016/j.biortech.2019.122037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Nitrogen oxides (NOx) are the components of fossil flue gases that give rise to serious environmental and health hazards. Among the available techniques for NOx removal, microalgae-based biological removal of NOx (BioDeNOx) is a promising and competent technology with eco-friendly path of low energy and low-cost solution for the pollution. In this review article, current biological technologies including bacteria-based and microalgae-related BioDeNOx are discussed. Comparing to direct BioDeNOx approach, indirect BioDeNOx by microalgae is more promising since it is more stable, reliable and efficient. By transforming inorganic nitrogen nutrients to organic nitrogen, microalgae can potentially play an important role in converting NOx into high-value added products. The microalgae-based BioDeNOx process displays an attractive prospect for flue gas treatment to reduce environmental NOx pollution and potentially supply protein products, establishing an efficient circular-economy strategy.
Collapse
Affiliation(s)
- Fengxiang Qie
- Research Centre of Renewable Energy, Research Institute of Petroleum Processing, Sinopec, Beijing 100083, PR China
| | - Junying Zhu
- Research Centre of Renewable Energy, Research Institute of Petroleum Processing, Sinopec, Beijing 100083, PR China
| | - Junfeng Rong
- Research Centre of Renewable Energy, Research Institute of Petroleum Processing, Sinopec, Beijing 100083, PR China.
| | - Baoning Zong
- Research Centre of Renewable Energy, Research Institute of Petroleum Processing, Sinopec, Beijing 100083, PR China
| |
Collapse
|
138
|
Li L, Yan G, Wang H, Chu Z, Li Z, Ling Y, Wu T. Denitrification and microbial community in MBBR using A. donax as carbon source and biofilm carriers for reverse osmosis concentrate treatment. J Environ Sci (China) 2019; 84:133-143. [PMID: 31284905 DOI: 10.1016/j.jes.2019.04.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
In this study, raw Arundo donax (A. donax) pieces were applied as carbon source and biofilm carriers for denitrification in a lab-scale moving bed biofilm reactor (MBBR) for the treatment of reverse osmosis concentrate gathered from local wastewater reuse plant. At stable phase (about 60 days), efficient denitrification performance was obtained with 73.2% ± 19.5% NO3--N average removal and 8.10 ± 3.45 g N/(m3·day) NO3--N average volumetric removal rate. Mass balance analysis showed that 4.84 g A. donax was required to remove 1 g TN. Quantitative real-time PCR analysis results showed that the copy numbers of 16S r-RNA, narG, nirS, nosZ and anammox gene of carrier biofilm and suspended activated sludge in the declination phase (BF2 and AS2) were lower than those of samples in the stable phase (BF1 and AS1), and relatively higher copy numbers of nirS and nirK genes with lower abundance of narG and nosZ genes were observed. High-throughput sequencing analysis was conducted for BF2 and AS2, and similar dominant phyla and classes with different abundance were obtained. The class Gammaproteobacteria affiliated with the phylum Proteobacteria was the most dominant microbial community in both BF2 (52.6%) and AS2 (41.7%). The PICRUSt prediction results indicated that 33 predictive specific genes were related to denitrification process, and the relative abundance of 18 predictive specific genes in BF2 were higher than those in AS2.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Guokai Yan
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haiyan Wang
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zhaosheng Chu
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zewen Li
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yu Ling
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tong Wu
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
139
|
Hu R, Zheng X, Zheng T, Xin J, Wang H, Sun Q. Effects of carbon availability in a woody carbon source on its nitrate removal behavior in solid-phase denitrification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 246:832-839. [PMID: 31229765 DOI: 10.1016/j.jenvman.2019.06.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/08/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Woody biomass is the most common natural carbon source applied in solid-phase denitrification (SPD). However, its denitrification ability is low in the SPD process due to its poor carbon availability. In this study, sawdust samples were pretreated to various degrees, and then filled into SPD bioreactors to reveal the relationship between carbon availability and denitrification behaviors. The behaviors include the denitrification process, internal effects of major factors (carbon availability, pH and temperature), and the presence of bacterial communities. Results shown that the long-term denitrification rate of pretreated sawdust was increased by 4.5-4.8 times over that of untreated sawdust (29.3 mg N L-1 sawdust d-1). However, despite improving the pretreatment degree of the sawdust in the bioreactor, the long-term denitrification rate shown no further increase. The denitrification rate was most influenced by the temperature, followed by the pH, and then the sawdust pretreatment degree. The denitrification rate increased with decreasing pH and rising temperature of the pretreated sawdust. The removed nitrate was rarely converted into nitrite or nitrous oxide, but ammonium was produced at high pH and temperature for the pretreated sawdust. The adverse effects of ammonium and dissolved organic carbon (DOC) reduced when the pH of the pretreated sawdust was lowered to 6.5. Hydrolytic and denitrifying bacteria formed the main SPD bioreactor bacteria, whose abundances increased with increasing sawdust pretreatment degree. The results were beneficial to reduce the hydrolytic retention time and adverse products for the SPD system using woody carbon source.
Collapse
Affiliation(s)
- Rongting Hu
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, Guangxi, China
| | - Xilai Zheng
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| | - Tianyuan Zheng
- Department of Environmental Informatics, Helmholtz Centre for Environmental Research-UFZ, 10 Permoserstrabe 15, 04318, Leipzig, Germany.
| | - Jia Xin
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| | - Huan Wang
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| | - Qiguo Sun
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
140
|
A Comparison of Clustering and Prediction Methods for Identifying Key Chemical–Biological Features Affecting Bioreactor Performance. Processes (Basel) 2019. [DOI: 10.3390/pr7090614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chemical–biological systems, such as bioreactors, contain stochastic and non-linear interactions which are difficult to characterize. The highly complex interactions between microbial species and communities may not be sufficiently captured using first-principles, stationary, or low-dimensional models. This paper compares and contrasts multiple data analysis strategies, which include three predictive models (random forests, support vector machines, and neural networks), three clustering models (hierarchical, Gaussian mixtures, and Dirichlet mixtures), and two feature selection approaches (mean decrease in accuracy and its conditional variant). These methods not only predict the bioreactor outcome with sufficient accuracy, but the important features correlated with said outcome are also identified. The novelty of this work lies in the extensive exploration and critique of a wide arsenal of methods instead of single methods, as observed in many papers of similar nature. The results show that random forest models predict the test set outcomes with the highest accuracy. The identified contributory features include process features which agree with domain knowledge, as well as several different biomarker operational taxonomic units (OTUs). The results reinforce the notion that both chemical and biological features significantly affect bioreactor performance. However, they also indicate that the quality of the biological features can be improved by considering non-clustering methods, which may better represent the true behaviour within the OTU communities.
Collapse
|
141
|
Xu Z, Dai X, Chai X. Effect of temperature on tertiary nitrogen removal from municipal wastewater in a PHBV/PLA-supported denitrification system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26893-26899. [PMID: 31302889 DOI: 10.1007/s11356-019-05823-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
In this study, a poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(lactic acid) (PHBV/PLA)-supported denitrification system was built to remove nitrogen from municipal wastewater treatment plant secondary effluent, and the influence of operating temperature on nitrogen removal was further investigated. Results indicated that a PHBV/PLA-supported denitrification system could effectively fulfill the tertiary nitrogen removal. The nitrogen removal efficiency gradually declined with the operating temperature decreasing, and the denitrification rate at 30 °C was 5 times higher than that at 10 °C. Meanwhile, it was found that a slight TOC accumulation only occurred at 30 °C (with an average of 2.03 mg/L) and was avoided at 10~20 °C. The reason for effluent TOC variation was further explained through the consumption and generation pathways of TOC in this system. Furthermore, the temperature coefficient was about 0.02919, indicating that the PHBV/PLA-supported denitrification system was a little sensitive to temperature. A better knowledge of the effect of operating temperature will be significant for the practical application of the solid-phase denitrification system.
Collapse
Affiliation(s)
- Zhongshuo Xu
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Fisheries Research Institute, Shanghai Fisheries Technical Extension Station, Shanghai, 200433, China
| | - Xiaohu Dai
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiaoli Chai
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
142
|
Peng C, Gao Y, Fan X, Peng P, Huang H, Zhang X, Ren H. Enhanced biofilm formation and denitrification in biofilters for advanced nitrogen removal by rhamnolipid addition. BIORESOURCE TECHNOLOGY 2019; 287:121387. [PMID: 31076293 DOI: 10.1016/j.biortech.2019.121387] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
Denitrification biofilters (DNBFs) are widely used in advanced nitrogen removal of wastewater with low C/N and effective biofilm formation is critical to their long-term operation. Hereby the influence of rhamnolipid addition in DNBFs was investigated for the first time. Gradient concentrations (0, 20, 40, 80, 120 mg/L) of rhamnolipid were applied to investigate nitrogen removal, biofilm properties and microbial community of lab-scale DNBFs. A significant increase of nitrogen removal was observed in rhamnolipid-treated DNBFs (p < 0.05). Total solid (TS), extracellular polymeric substances (EPS) and adhesion force of biofilms in DNBF with 120 mg/L rhamnolipid reached the maximum, which were 2.17, 2.15 and 3.36 times of those in the control, respectively. Moreover, rhamnolipid exhibited an improvement in abundance of Simplicispira and Gemmatimonas which were responsible for enhanced biofilm formation and denitrification. The results suggested that rhamnolipid addition can be a novel strategy to improve the start-up and denitrification performance of DNBFs.
Collapse
Affiliation(s)
- Chong Peng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yilin Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Xuan Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Pengcheng Peng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| |
Collapse
|
143
|
Zheng X, Zhang S, Huang D, Zhang L, Zhang J. A pilot-scale deep bed denitrification filter for secondary effluent treatment using sodium acetate as external carbon. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:491-499. [PMID: 30791185 DOI: 10.1002/wer.1035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
A pilot-scale quartz sand deep bed denitrification filter (DBDF) using sodium acetate as the additional carbon source was implemented to treat secondary effluent, with a high nitrate nitrogen (NO3 -N) concentration and low C/N ratio, from an urban municipal water resource recovery facility. By the 18th day, results showed that the removal efficiency of NO3 -N and the chemical oxygen demand (COD) were stable at above 85% and 70%, respectively. When the filter layer depth was set to 1,600 mm and the concentration of additional sodium acetate was maintained at 51 mg/L, the total nitrogen and COD concentrations of the DBDF effluent were stabilized below 5 and 30 mg/L, respectively. The quartz sand DBDF had a good effect on the removal of dissolved organic matter, especially for aromatic protein-like and tryptophan protein-like substances. Bacteria with denitrification function, such as Cloacibacterium and Zoogloea, became increasingly dominant with increasing filling layer depth. PRACTITIONER POINTS: The denitrification filter had a good effect on the removal of aromatic protein-like and tryptophan protein-like substances. Cloacibacterium and Zoogloea became increasingly dominant with increasing filling layer depth.
Collapse
Affiliation(s)
- Xiaowei Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Shenyao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Deying Huang
- Department of Chemistry, Fudan University, Shanghai, China
| | - Liu Zhang
- Anhui Academy of Environmental Sciences, Hefei, China
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| |
Collapse
|
144
|
Truu M, Oopkaup K, Krustok I, Kõiv-Vainik M, Nõlvak H, Truu J. Bacterial community activity and dynamics in the biofilm of an experimental hybrid wetland system treating greywater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:4013-4026. [PMID: 30554320 DOI: 10.1007/s11356-018-3940-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
The objectives of this study were to determine the biofilm microbial activity and bacterial community structure and successions in greywater treatment filters and to relate the treatment efficiency to the bacterial community parameters. This 10-month study was performed in a newly established experimental system for domestic greywater treatment that consisted of three parallel vertical flow filters (VFs) followed by a horizontal flow filter (HF). A rapid increase in the bacterial community abundance occurred during the first 85 days of filter operations, followed by a short-term decrease and the stabilization of the 16S rRNA gene copy numbers at average levels of 1.2 × 109 and 3.2 × 108 copies/g dw in VFs and HF, respectively, until the end of the experiment. The dominant bacterial phyla and genera differed between the VFs and HF. The temporal variation in the bacterial community structure was primarily related to the species replacement, and it was significantly affected by the influent organic carbon and nitrogen compounds in the VFs and the ammonia and organic carbon in the HF filters. Despite the differences in the community structure and assembly mechanisms, the temporal dynamics of the bacterial community showed high congruence between the filter types. The treatment efficiency was related to the biofilm bacterial community diversity and abundance and the abundance of certain bacterial genera in the VF filters. The results suggest that the dominant pathway of nitrogen removal by greywater treatment VFs occurs via coupled heterotrophic nitrification and denitrification, while the contribution of aerobic denitrification is temporally variable in these filters.
Collapse
Affiliation(s)
- Marika Truu
- Faculty of Science and Technology, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| | - Kristjan Oopkaup
- Faculty of Science and Technology, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| | - Ivo Krustok
- Department of Environmental Management, Ministry of the Environment, Narva St. 7a, 15172, Tallinn, Estonia
| | - Margit Kõiv-Vainik
- Faculty of Science and Technology, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| | - Hiie Nõlvak
- Faculty of Science and Technology, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| | - Jaak Truu
- Faculty of Science and Technology, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia.
| |
Collapse
|
145
|
Liu H, Zhou X, Zhang C, Zhang J. The cotreatment of landfill leachate and high-nitrate wastewater using SBRs: evaluation of denitrification performance and microbial analysis. RSC Adv 2019; 9:39572-39581. [PMID: 35541387 PMCID: PMC9076115 DOI: 10.1039/c9ra07966a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/11/2019] [Indexed: 11/21/2022] Open
Abstract
Resourceful disposal of landfill leachate has always been an intractable worldwide problem. This study was conducted to investigate the feasibility of biologically treating a combined waste stream of landfill leachate and high-concentration nitrate nitrogen (high-nitrate) wastewater. Raw landfill leachate was pretreated using anaerobic fermentation and ammonia stripping to improve biodegradability. The control sequencing batch reactor (SBR, named R0) was fed only with synthetic high-nitrate wastewater with sodium acetate as the carbon source, whereas the other experimental SBR (named R1) was loaded with mixtures containing leachates. Excessive increase in leachate adversely affected the cotreatment, and it was concluded that the landfill leachate volume ratio should never exceed 7.5% of the total wastewater (14% of the initial COD) based on further batch experiments. The maximum specific denitrification rate of 58.05 mg NO3−-N (gVSS h)−1 was attained in R1, while that of 32.32 mg NO3−-N (gVSS h)−1 was obtained in R0. Illumina MiSeq sequencing revealed that adding landfill leachate did not change the fact that Pseudomonas, Thauera, and Pannonibacter dominant in the sodium acetate supported the denitrification systems, but led to the adjustment of their relative abundance. Moreover, the narG, nirK, nirS, and norB denitrifying genes exhibited increased abundance by 138–980% in the cotreated system, which was confirmed by q-PCR analyses. These findings reveal that the denitrification efficiency of activated sludge in SBR cotreated with landfill leachate and high-nitrate wastewater significantly improved, and this may contribute toward the understanding of the molecular mechanisms of biological denitrification under the blending treatment of leachate and high-nitrate wastewater. Resourceful disposal of landfill leachate has always been an intractable worldwide problem.![]()
Collapse
Affiliation(s)
- Huaguang Liu
- School of Civil Engineering
- Guangzhou University
- Guangzhou
- China
| | - Xingyu Zhou
- Shenzhen Municipal Wastewater Treatment and Recycling Engineering Laboratory
- Shenzhen Water (Group) Co. Ltd
- China
- School of Environment
- Harbin Institute of Technology
| | - Chaoshen Zhang
- School of Civil Engineering
- Guangzhou University
- Guangzhou
- China
| | - Jinsong Zhang
- School of Civil Engineering
- Guangzhou University
- Guangzhou
- China
- Shenzhen Municipal Wastewater Treatment and Recycling Engineering Laboratory
| |
Collapse
|
146
|
Ni L, Wang Y, Lin X, Yan Y, Zhang Y, Wang W. Enhancement of the adaptability of anammox granules to zinc shock by appropriate organic carbon treatment. BIORESOURCE TECHNOLOGY 2018; 268:496-504. [PMID: 30114669 DOI: 10.1016/j.biortech.2018.08.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 05/27/2023]
Abstract
Heavy metals, which are commonly present in high ammonia-containing wastewater, can cause inhibitory effects to anammox reaction. This study proposes a novel approach to enhance the adaptability of anammox granules to heavy metal [Zn(II)] shock by organic carbon (sodium acetate, NaAc) treatment, paying special attention to optimization of the treatment dosage and duration. For granules treated with 200 mg chemical oxygen demand (COD)/L NaAc for 2 d, the activity recovery (six cycles) efficiency after Zn(II) (40 mg/L) shock reached 127.4%. The extracellular polymeric substance (EPS) production increased by 168% and heterotrophic bacteria mildly proliferated (increased by 14%) in such granules compared with the control. The dramatic recovery capacity was likely due to the entrapment and barrier function of EPS and the outer-layer proliferated heterotrophic bacteria. This finding offers a useful process to enable maximum adaptability of anammox granules from heavy metals shocks, allowing anammox technology to be more widely applied.
Collapse
Affiliation(s)
- Lingfeng Ni
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China.
| | - Ximao Lin
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Yuan Yan
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Yao Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| |
Collapse
|