101
|
Igaki T. Correcting developmental errors by apoptosis: lessons from Drosophila JNK signaling. Apoptosis 2009; 14:1021-8. [PMID: 19466550 DOI: 10.1007/s10495-009-0361-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spatio-temporal regulation of the cell death machinery is essential for normal development and homeostasis of multicellular organisms. While the molecular basis for the central cell death machinery driven by caspases is now well documented, its regulatory mechanisms, especially in the context of living animals, remain to be clarified. The c-Jun N-terminal kinase (JNK) pathway is an evolutionarily conserved kinase cascade that regulates the apoptotic machinery. In mammals, JNK signaling has been implicated in stress-induced apoptosis. Drosophila genetics has now provided evidence of a novel role for JNK-mediated cell death signaling in eliminating developmentally aberrant cells from a tissue. The JNK-dependent cell-elimination system is orchestrated by cell-cell communication between normal and aberrant cells and is essential for ensuring developmental robustness, as well as for protecting organisms against fatal abnormalities such as neoplastic development. These processes are mediated by cell competition, morphogenetic apoptosis, and intrinsic tumor suppression. A combinatorial approach using both genetic and live-imaging systems in Drosophila will be extremely powerful to decipher how JNK-mediated apoptosis works within multicellular communities.
Collapse
Affiliation(s)
- Tatsushi Igaki
- Department of Cell Biology, G-COE, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| |
Collapse
|
102
|
Enzler T, Chang X, Facchinetti V, Melino G, Karin M, Su B, Gallagher E. MEKK1 Binds HECT E3 Ligase Itch by Its Amino-Terminal RING Motif to Regulate Th2 Cytokine Gene Expression. THE JOURNAL OF IMMUNOLOGY 2009; 183:3831-8. [DOI: 10.4049/jimmunol.0803412] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
103
|
Mathew SJ, Haubert D, Krönke M, Leptin M. Looking beyond death: a morphogenetic role for the TNF signalling pathway. J Cell Sci 2009; 122:1939-46. [PMID: 19494121 DOI: 10.1242/jcs.044487] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tumour necrosis factor alpha (TNFalpha) is a pro-inflammatory mediator with the capacity to induce apoptosis. An integral part of its apoptotic and inflammatory programmes is the control of cell shape through modulation of the cytoskeleton, but it is now becoming apparent that this morphogenetic function of TNF signalling is also employed outside inflammatory responses and is shared by the signalling pathways of other members of the TNF-receptor superfamily. Some proteins that are homologous to the components of the TNF signalling pathway, such as the adaptor TNF-receptor-associated factor 4 and the ectodysplasin A receptor (and its ligand and adaptors), have dedicated morphogenetic roles. The mechanism by which TNF signalling affects cell shape is not yet fully understood, but Rho-family GTPases have a central role. The fact that the components of the TNF signalling pathway are evolutionarily old suggests that an ancestral cassette from unicellular organisms has diversified its functions into partly overlapping morphogenetic, inflammatory and apoptotic roles in multicellular higher organisms.
Collapse
Affiliation(s)
- Sam J Mathew
- Institute for Genetics, University of Cologne, Zülpicher Strasse 47, D-50674 Köln, Germany
| | | | | | | |
Collapse
|
104
|
Tokusumi T, Sorrentino RP, Russell M, Ferrarese R, Govind S, Schulz RA. Characterization of a lamellocyte transcriptional enhancer located within the misshapen gene of Drosophila melanogaster. PLoS One 2009; 4:e6429. [PMID: 19641625 PMCID: PMC2713827 DOI: 10.1371/journal.pone.0006429] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 07/01/2009] [Indexed: 12/14/2022] Open
Abstract
Drosophila has emerged as an excellent model system in which to study cellular and genetic aspects of hematopoiesis. Under normal developmental conditions and in wild-type genetic backgrounds, Drosophila possesses two types of blood cells, crystal cells and plasmatocytes. Upon infestation by a parasitic wasp or in certain altered genetic backgrounds, a third hemocyte class called the lamellocyte becomes apparent. Herein we describe the characterization of a novel transcriptional regulatory module, a lamellocyte-active enhancer of the misshapen gene. This transcriptional control sequence appears to be inactive in all cell types of the wild-type larva, including crystal cells and plasmatocytes. However, in lamellocytes induced by wasp infestation or by particular genetic conditions, the enhancer is activated and it directs reporter GFP or DsRed expression exclusively in lamellocytes. The lamellocyte control region was delimited to a 140-bp intronic sequence that contains an essential DNA recognition element for the AP-1 transcription factor. Additionally, mutation of the kayak gene encoding the dFos subunit of AP-1 led to a strong suppression of lamellocyte production in tumorous larvae. As misshapen encodes a protein kinase within the Jun N-terminal kinase signaling pathway that functions to form an active AP-1 complex, the lamellocyte-active enhancer likely serves as a transcriptional target within a genetic auto-regulatory circuit that promotes the production of lamellocytes in immune-challenged or genetically- compromised animals.
Collapse
Affiliation(s)
- Tsuyoshi Tokusumi
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Richard Paul Sorrentino
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Mark Russell
- Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Roberto Ferrarese
- Department of Biology, City University of New York, New York, New York, United States of America
| | - Shubha Govind
- Department of Biology, City University of New York, New York, New York, United States of America
| | - Robert A. Schulz
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
105
|
Solon J, Kaya-Copur A, Colombelli J, Brunner D. Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell 2009; 137:1331-42. [PMID: 19563762 DOI: 10.1016/j.cell.2009.03.050] [Citation(s) in RCA: 378] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/19/2009] [Accepted: 03/23/2009] [Indexed: 01/03/2023]
Abstract
Dorsal closure is a tissue-modeling process in the developing Drosophila embryo during which an epidermal opening is closed. It begins with the appearance of a supracellular actin cable that surrounds the opening and provides a contractile force. Amnioserosa cells that fill the opening produce an additional critical force pulling on the surrounding epidermal tissue. We show that this force is not gradual but pulsed and occurs long before dorsal closure starts. Quantitative analysis, combined with laser cutting experiments and simulations, reveals that tension-based dynamics and cell coupling control the force pulses. These constitutively pull the surrounding epidermal tissue dorsally, but the displacement is initially transient. It is translated into dorsal-ward movement only with the help of the actin cable, which acts like a ratchet, counteracting ventral-ward epidermis relaxation after force pulses. Our work uncovers a sophisticated mechanism of cooperative force generation between two major forces driving morphogenesis.
Collapse
Affiliation(s)
- Jerome Solon
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
106
|
Carrozzino F, Pugnale P, Féraille E, Montesano R. Inhibition of basal p38 or JNK activity enhances epithelial barrier function through differential modulation of claudin expression. Am J Physiol Cell Physiol 2009; 297:C775-87. [PMID: 19605737 DOI: 10.1152/ajpcell.00084.2009] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tight junctions (TJs) form a barrier to the paracellular diffusion of ions and solutes across epithelia. Although transmembrane proteins of the claudin family have emerged as critical determinants of TJ permeability, little is known about the signaling pathways that control their expression. The aim of this study was to assess the role of three mitogen-activated protein kinases (MAPKs), i.e., extracellular signal-regulated kinase-1/2 (ERK1/2), c-Jun NH(2)-terminal kinases (JNKs), and p38 kinases, in the regulation of epithelial barrier function and claudin expression in mammary epithelial cells. Addition of either PD169316 (a p38 inhibitor) or SP600125 (a JNK inhibitor) induced formation of domes (a phenomenon dependent on TJ barrier function) and enhanced transepithelial electrical resistance, whereas U0126 (an inhibitor of the ERK1/2 activators MEK1/MEK2) had no significant effect. Similar results were obtained using mechanistically unrelated p38 or JNK inhibitors. PD169316 increased the expression of claudin-4 and -8, whereas SP600125 increased claudin-4 and -9 and downregulated claudin-8. Silencing of p38alpha by isoform-specific small interfering RNAs increased claudin-4 and -8 mRNAs, whereas silencing of p38beta only increased claudin-4 mRNA. Silencing of either JNK1 or JNK2 increased claudin-9 mRNA expression while decreasing claudin-8 mRNA. Moreover, selective silencing of JNK2 increased claudin-4 and -7 mRNAs. Finally, both PD169316 and SP600125 inhibited the paracellular diffusion of Na(+) and Cl(-) across epithelial monolayers. Collectively, these results provide evidence that inhibition of either p38 or JNK enhances epithelial barrier function by selectively modulating claudin expression, implying that the basal activity of these MAPKs exerts a tonic effect on TJ ionic permeability.
Collapse
Affiliation(s)
- Fabio Carrozzino
- Dept. of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | | | | | | |
Collapse
|
107
|
Tateossian H, Hardisty-Hughes RE, Morse S, Romero MR, Hilton H, Dean C, Brown SD. Regulation of TGF-beta signalling by Fbxo11, the gene mutated in the Jeff otitis media mouse mutant. PATHOGENETICS 2009; 2:5. [PMID: 19580641 PMCID: PMC2714483 DOI: 10.1186/1755-8417-2-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 07/06/2009] [Indexed: 01/27/2023]
Abstract
Background Jeff is a dominant mouse mutant displaying chronic otitis media. The gene underlying Jeff is Fbxo11, a member of the large F-box family, which are specificity factors for the SCF E3 ubiquitin ligase complex. Jeff homozygotes die shortly after birth displaying a number of developmental abnormalities including cleft palate and eyes open at birth. TGF-β signalling is involved in a number of epithelial developmental processes and we have investigated the impact of the Jeff mutation on the expression of this pathway. Results Phospho-Smad2 (pSmad2) is significantly upregulated in epithelia of Jeff homozygotes. Moreover, there was a significant increase in nuclear localization of pSmad2 in contrast to wild type. Mice heterozygous for both Jeff and Smad2 mutations recapitulate many of the features of the Jeff homozygous phenotype. However, tissue immunoprecipitations failed to detect any interaction between Fbxo11 and Smad2. Fbxo11 is known to neddylate p53, a co-factor of pSmad2, but we did not find any evidence of genetic interactions between Jeff and p53 mutants. Nevertheless, p53 levels are substantially reduced in Jeff mice suggesting that Fbxo11 plays a role in stabilizing p53. Conclusion Overall, our findings support a model whereby Fbxo11, possibly via stabilization of p53, is required to limit the accumulation of pSmad2 in the nucleus of epithelial cells of palatal shelves, eyelids and airways of the lungs. The finding that Fbxo11 impacts upon TGF-β signalling has important implications for our understanding of the underlying disease mechanisms of middle ear inflammatory disease.
Collapse
|
108
|
Desai LP, White SR, Waters CM. Mechanical stretch decreases FAK phosphorylation and reduces cell migration through loss of JIP3-induced JNK phosphorylation in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2009; 297:L520-9. [PMID: 19574423 DOI: 10.1152/ajplung.00076.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
JNK is a nonreceptor kinase involved in the early events that signal cell migration after injury. However, the linkage to early signals required to initiate the migration response to JNK has not been defined in airway epithelial cells, which exist in an environment subjected to cyclic mechanical strain (MS). The present studies demonstrate that the JNK/stress-activated protein kinase-associated protein 1 (JSAP1; also termed JNK-interacting protein 3, JIP3), a scaffold factor for MAPK cascades that links JNK activation to focal adhesion kinase (FAK), are both associated and activated following mechanical injury in 16HBE14o- human airway epithelial cells and that both FAK and JIP3 phosphorylation seen after injury are decreased in cells subjected to cyclic MS. Overexpression of either wild-type (WT)-FAK or WT-JIP3 enhanced phosphorylation and kinase activation of JNK and reduced the inhibitory effect of cyclic MS. These results suggest that cyclic MS impairs signaling of cell migration after injury via a pathway that involves FAK-JIP3-JNK.
Collapse
Affiliation(s)
- Leena P Desai
- Dept. of Physiology, The Univ. of Tennessee Health Science Center, 894 Union Ave, Rm. 426, Memphis, TN 38163-0001, USA
| | | | | |
Collapse
|
109
|
Sancho R, Nateri AS, de Vinuesa AG, Aguilera C, Nye E, Spencer-Dene B, Behrens A. JNK signalling modulates intestinal homeostasis and tumourigenesis in mice. EMBO J 2009; 28:1843-54. [PMID: 19521338 DOI: 10.1038/emboj.2009.153] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 05/12/2009] [Indexed: 01/08/2023] Open
Abstract
Wnt signalling is a crucial signalling pathway controlling intestinal homeostasis and cancer. We show here that the JNK MAP kinase pathway and one of its most important substrates, the AP-1 transcription factor c-Jun, modulates Wnt signalling strength in the intestine. Transgenic gut-specific augmentation of JNK signalling stimulated progenitor cell proliferation and migration, resulting in increased villus length. In the crypt, c-Jun protein was highly expressed in progenitor cells and the absence of c-Jun resulted in decreased proliferation and villus length. In addition to several known c-Jun/AP-1 target genes, expression of Wnt target genes Axin2 and Lgr5 were stimulated by JNK activation, suggesting a cross talk of JNK to Wnt signalling. Expression of the Wnt pathway component TCF4 was controlled by JNK activity, and chromatin immunoprecipitation and reporter assays identified tcf4 as a direct c-Jun target gene. Consequently, increased JNK activity accelerated tumourigenesis in a model of colorectal carcinogenesis. As c-jun is a direct target of the TCF4/beta-catenin complex, the control of tcf4 expression by JNK/c-Jun leads to a positive feedback loop that connects JNK and Wnt signalling. This mechanism regulates the physiological function of progenitor cells and oncogenic transformation.
Collapse
Affiliation(s)
- Rocio Sancho
- Mammalian Genetics Laboratory, CRUK London Research Institute, Lincoln's Inn Fields Laboratories, London, UK
| | | | | | | | | | | | | |
Collapse
|
110
|
|
111
|
Tiwari AK, Roy JK. Mutation in Rab11 results in abnormal organization of ommatidial cells and activation of JNK signaling in the Drosophila eye. Eur J Cell Biol 2009; 88:445-60. [PMID: 19473727 DOI: 10.1016/j.ejcb.2009.02.188] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 02/16/2009] [Accepted: 02/23/2009] [Indexed: 02/01/2023] Open
Abstract
Rab11(mo), a P insertion line of Rab11 showed degenerated ommatidia and excess cell death in larval/pupal eyes. Here, we demonstrate that Rab11 is essential for normal organization of ommatidial cells and their survival in Drosophila, and a mutation in this gene results in cytoskeleton disruption and activation of JNK signaling in the eye. The spatial organization of various cell types in compound eye, viz., cone, photoreceptor, pigment and bristle cells, were disrupted in Rab11 mutants as revealed by immunostaining of F-actin and adherens and septate junction proteins. Genetic interaction studies indicated that mutation in Rab11 upregulates Drosophila apoptotic genes, rpr, hid and grim. In order to study the pathway that causes excessive cell death in Rab11 mutants, the JNK pathway was chosen and genetic interaction analyses were carried out between Rab11 and candidates of the JNK signaling pathway. A downregulation of JNK signaling rescued the phenotype in Rab11 mutant eyes significantly while overexpression of JNK in the eyes using UAS-eiger, UAS-dtak1 or EP(2)0578, resulted in enhancement of the eye phenotype indicating a link between Rab11 and the JNK signaling pathway.
Collapse
Affiliation(s)
- Anand K Tiwari
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
112
|
Thomas C, Rousset R, Noselli S. JNK signalling influences intracellular trafficking during Drosophila morphogenesis through regulation of the novel target gene Rab30. Dev Biol 2009; 331:250-60. [PMID: 19427848 DOI: 10.1016/j.ydbio.2009.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 04/30/2009] [Accepted: 05/03/2009] [Indexed: 10/20/2022]
Abstract
JNK-mediated closure of the Drosophila dorsal epidermis during embryogenesis is a well-characterised model for morphogenesis. However, little is known about how JNK signalling modifies particular cellular behaviours such as intracellular transport. Here we demonstrate that the gene encoding the small GTPase Rab30 is a new JNK transcriptional target whose function is required during embryonic and adult morphogenesis including JNK-dependent dorsal closure, embryonic head involution and thorax closure. Using immuno-fluorescence and live imaging, we show that EGFP-Rab30 localises to trans-Golgi in addition to small unidentified vesicles, and moves in a microtubule-dependent, polarised dorso-ventral manner in the leading edge during dorsal closure. We propose that JNK activity upregulates genes involved in intracellular transport in order to provide an increased level of trafficking activity in cells undergoing complex morphogenetic arrangements such as dorsal closure.
Collapse
Affiliation(s)
- Chloe Thomas
- Institute of Developmental Biology and Cancer, University of Nice, UMR CNRS, France
| | | | | |
Collapse
|
113
|
Karin M, Gallagher E. TNFR signaling: ubiquitin-conjugated TRAFfic signals control stop-and-go for MAPK signaling complexes. Immunol Rev 2009; 228:225-40. [PMID: 19290931 DOI: 10.1111/j.1600-065x.2008.00755.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nearly two decades after the initial cloning and identification of the founding father of the tumor necrosis factor receptor (TNFR) family, much has been learned about the mechanisms by which these receptors signal to critical transcription factors and other targets that regulate gene expression and cellular physiology. Mitogen-activated protein kinases (MAPKs) and inhibitor of nuclear factor (NF)-kappaB (I kappaB) kinases (IKKs) were identified early on as the upstream kinases responsible for activation of activator-protein 1 (AP-1) and NF-kappaB, respectively, and later on for their ability to control life-or-death decisions in TNF-stimulated cells. Both of these critical pathways are regulated at the level of MAPK kinase kinases (MAP3Ks), after which point they diverge. Recent work, however, illustrates that protein ubiquitination cascades play a critical initiating role in TNFR signaling and account for spatial and temporal separation of IKK and MAPK signaling cascades and thereby determine biological specificity and outcome. Cellular inhibitors of apoptosis (cIAPs) 1 and 2 are ubiquitin (Ub) ligases (E3s) that mediate canonical Lys48-linked ubiquitination of TNFR-associated factor 3 (TRAF3), marking it for subsequent degradation by the proteasome. TRAF3 degradation releases the brake on TRAF2/6:MAP3K signaling complexes responsible for MAPK activation, leading to their translocation from the cytoplasmic segment of the receptor to the cytosol where they initiate MAPK phosphorylation and activation. By contrast, IKK activation proceeds considerably faster than MAPK activation, takes place at the receptor, and is independent of cIAP1/2 activity and TRAF3 degradation. This arrangement may be important for ensuring the proper delivery of NF-kappaB-dependent survival signals and conversion of JNK-promoted death signals to proliferative ones.
Collapse
Affiliation(s)
- Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093-0723, USA.
| | | |
Collapse
|
114
|
Huang J, Dattilo LK, Rajagopal R, Liu Y, Kaartinen V, Mishina Y, Deng CX, Umans L, Zwijsen A, Roberts AB, Beebe DC. FGF-regulated BMP signaling is required for eyelid closure and to specify conjunctival epithelial cell fate. Development 2009; 136:1741-50. [PMID: 19369394 DOI: 10.1242/dev.034082] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
There are conflicting reports about whether BMP signaling is required for eyelid closure during fetal development. This question was addressed using mice deficient in BMP or TGFbeta signaling in prospective eyelid and conjunctival epithelial cells. Genes encoding two type I BMP receptors, the type II TGFbeta receptor, two BMP- or two TGFbeta-activated R-Smads or the co-Smad Smad4 were deleted from the ocular surface ectoderm using Cre recombinase. Only mice with deletion of components of the BMP pathway had an 'eyelid open at birth' phenotype. Mice lacking Fgf10 or Fgfr2 also have open eyelids at birth. To better understand the pathways that regulate BMP expression and function during eyelid development, we localized BMPs and BMP signaling intermediates in Fgfr2 and Smad4 conditional knockout (CKO) mice. We found that Fgfr2 was required for the expression of Bmp4, the normal distribution of Shh signaling and for preserving the differentiation of the conjunctival epithelium. FGF signaling also promoted the expression of the Wnt antagonist Sfrp1 and suppressed Wnt signaling in the prospective eyelid epithelial cells, independently of BMP function. Transcripts encoding Foxc1 and Foxc2, which were previously shown to be necessary for eyelid closure, were not detectable in Smad4(CKO) animals. c-Jun, another key regulator of eyelid closure, was present and phosphorylated in eyelid periderm cells at the time of fusion, but failed to translocate to the nucleus in the absence of BMP function. Smad4(CKO) mice also showed premature differentiation of the conjunctival epithelium, conjunctival hyperplasia and the acquisition of epidermal characteristics, including formation of an ectopic row of hair follicles in place of the Meibomian glands. A second row of eyelashes is a feature of human lymphedema-distichiasis syndrome, which is associated with mutations in FOXC2.
Collapse
Affiliation(s)
- Jie Huang
- Department of Ophthalmology and Visual Sciences, Washington University, St Louis, MO 63130, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Stigliano I, Puricelli L, Filmus J, Sogayar MC, Bal de Kier Joffé E, Peters MG. Glypican-3 regulates migration, adhesion and actin cytoskeleton organization in mammary tumor cells through Wnt signaling modulation. Breast Cancer Res Treat 2009; 114:251-62. [PMID: 18404367 DOI: 10.1007/s10549-008-0009-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 04/03/2008] [Indexed: 12/24/2022]
Abstract
Glypican-3 (GPC3) is a proteoglycan involved in migration, proliferation and cell survival modulation in several tissues. There are many reports demonstrating a downregulation of GPC3 expression in some human tumors, including mesothelioma, ovarian and breast cancer. Previously, we determined that GPC3 reexpression in the murine mammary adenocarcinoma LM3 cells induced an impairment of their in vivo invasive and metastatic capacities together with a higher susceptibility to in vitro apoptosis. Currently, the signaling mechanism of GPC3 is not clear. First, it was speculated that GPC3 regulates the insulin-like growth factor (IGF) signaling system. This hypothesis, however, has been strongly challenged. Recently, several reports indicated that at least in some cell types GPC3 serves as a selective regulator of Wnt signaling. Here we provide new data demonstrating that GPC3 regulates Wnt pathway in the metastatic adenocarcinoma mammary LM3 cell line. We found that GPC3 is able to inhibit canonical Wnt signals involved in cell proliferation and survival, as well as it is able to activate non canonical pathway, which directs cell morphology and migration. This is the first report indicating that breast tumor cell malignant properties can be reverted, at least in part, by GPC3 modulation of Wnt signaling. Our results are consistent with the potential role of GPC3 as a metastasis suppressor.
Collapse
Affiliation(s)
- Ivan Stigliano
- Cell Biology Department, Research Area, Institute of Oncology Angel H Roffo, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
116
|
Harris TJ, Sawyer JK, Peifer M. Chapter 3 How the Cytoskeleton Helps Build the Embryonic Body Plan. Curr Top Dev Biol 2009; 89:55-85. [DOI: 10.1016/s0070-2153(09)89003-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
117
|
Bakal C, Linding R, Llense F, Heffern E, Martin-Blanco E, Pawson T, Perrimon N. Phosphorylation networks regulating JNK activity in diverse genetic backgrounds. Science 2008; 322:453-6. [PMID: 18927396 PMCID: PMC2581798 DOI: 10.1126/science.1158739] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cellular signaling networks have evolved to enable swift and accurate responses, even in the face of genetic or environmental perturbation. Thus, genetic screens may not identify all the genes that regulate different biological processes. Moreover, although classical screening approaches have succeeded in providing parts lists of the essential components of signaling networks, they typically do not provide much insight into the hierarchical and functional relations that exist among these components. We describe a high-throughput screen in which we used RNA interference to systematically inhibit two genes simultaneously in 17,724 combinations to identify regulators of Drosophila JUN NH(2)-terminal kinase (JNK). Using both genetic and phosphoproteomics data, we then implemented an integrative network algorithm to construct a JNK phosphorylation network, which provides structural and mechanistic insights into the systems architecture of JNK signaling.
Collapse
Affiliation(s)
- Chris Bakal
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02215, USA.
| | | | | | | | | | | | | |
Collapse
|
118
|
Pallet N, Bouvier N, Bendjallabah A, Rabant M, Flinois JP, Hertig A, Legendre C, Beaune P, Thervet E, Anglicheau D. Cyclosporine-induced endoplasmic reticulum stress triggers tubular phenotypic changes and death. Am J Transplant 2008; 8:2283-96. [PMID: 18785955 DOI: 10.1111/j.1600-6143.2008.02396.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The molecular mechanisms by which cyclosporine induces chronic nephrotoxicity remain poorly understood. A previous transcriptomic study suggested that cyclosporine might induce endoplasmic reticulum (ER) stress in human tubular cells. The aim of the present study was to characterize the features of tubular ER stress induced by cyclosporine and to investigate its effects on cell differentiation and viability. Using primary cultures of human tubular cells, we confirmed that cyclosporine is responsible for ER stress in vitro. This was also confirmed in vivo in the rat. In vitro, cyclosporine and other ER stress inducers were responsible for epithelial phenotypic changes leading to the generation of protomyofibroblasts, independent of transforming growth factor-beta signaling. RNA interference directed against cyclophilin A supported the role of its inhibition in triggering ER stress as well as epithelial phenotypic changes induced by cyclosporine. Salubrinal, which is known to protect cells from ER stress, significantly reduced epithelial phenotypic changes and cytotoxicity induced by cyclosporine in vitro. Salubrinal also reduced cyclosporine nephrotoxicity in rat kidneys. Thus, we describe a novel mechanism that initiates dedifferentiation and tubular cell death upon cyclosporine treatment. These results provide an interesting framework for further nephroprotective therapies by targeting ER stress.
Collapse
Affiliation(s)
- N Pallet
- INSERM U775, Université Paris Descartes, Centre Universitaire des Saints-Pères, Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Hislop NR, Caddy J, Ting SB, Auden A, Vasudevan S, King SL, Lindeman GJ, Visvader JE, Cunningham JM, Jane SM. Grhl3 and Lmo4 play coordinate roles in epidermal migration. Dev Biol 2008; 321:263-72. [DOI: 10.1016/j.ydbio.2008.06.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Revised: 05/28/2008] [Accepted: 06/18/2008] [Indexed: 11/28/2022]
|
120
|
Lecaudey V, Cakan-Akdogan G, Norton WHJ, Gilmour D. Dynamic Fgf signaling couples morphogenesis and migration in the zebrafish lateral line primordium. Development 2008; 135:2695-705. [PMID: 18599504 DOI: 10.1242/dev.025981] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The collective migration of cells in the form of cohesive tissues is a hallmark of both morphogenesis and repair. The extrinsic cues that direct these complex migrations usually act by regulating the dynamics of a specific subset of cells, those at the leading edge. Given that normally the function of tissue migration is to lay down multicellular structures, such as branched epithelial networks or sensory organs, it is surprising how little is known about the mechanisms that organize cells behind the leading edge. Cells of the zebrafish lateral line primordium switch from mesenchyme-like leader cells to epithelial rosettes that develop into mechanosensory organs. Here, we show that this transition is regulated by an Fgf signaling circuit that is active within the migrating primordium. Point sources of Fgf ligand drive surrounding cells towards a ;non-leader' fate by increasing their epithelial character, a prerequisite for rosette formation. We demonstrate that the dynamic expression of Fgf ligands determines the spatiotemporal pattern of epithelialization underlying sensory organ formation in the lateral line. Furthermore, this work uncovers a surprising link between internal tissue organization and collective migration.
Collapse
Affiliation(s)
- Virginie Lecaudey
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany
| | | | | | | |
Collapse
|
121
|
Bernardino L, Agasse F, Silva B, Ferreira R, Grade S, Malva JO. Tumor necrosis factor-alpha modulates survival, proliferation, and neuronal differentiation in neonatal subventricular zone cell cultures. Stem Cells 2008; 26:2361-71. [PMID: 18583543 DOI: 10.1634/stemcells.2007-0914] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tumor necrosis factor (TNF)-alpha has been reported to modulate brain injury, but remarkably, little is known about its effects on neurogenesis. We report that TNF-alpha strongly influences survival, proliferation, and neuronal differentiation in cultured subventricular zone (SVZ) neural stem/progenitor cells derived from the neonatal P1-3 C57BL/6 mice. By using single-cell calcium imaging, we developed a method, based on cellular response to KCl and/or histamine, that allows the functional evaluation of neuronal differentiation. Exposure of SVZ cultures to 1 and 10 ng/ml mouse or 1 ng/ml human recombinant TNF-alpha resulted in increased differentiation of cells displaying a neuronal-like profile of [Ca2+](i) responses, compared with the predominant profile of immature cells observed in control, nontreated cultures. Moreover, by using neutralizing antibodies for each TNF-alpha receptor, we found that the proneurogenic effect of 1 ng/ml TNF-alpha is mediated via tumor necrosis factor receptor 1 activation. Accordingly, the percentage of neuronal nuclear protein-positive neurons was increased following exposure to mouse TNF-alpha. Interestingly, exposure of SVZ cultures to 1 ng/ml TNF-alpha induced cell proliferation, whereas 10 and 100 ng/ml TNF-alpha induced apoptotic cell death. Moreover, we found that exposure of SVZ cells to TNF-alpha for 15 minutes or 6 hours caused an increase in the phospho-stress-activated protein kinase/c-Jun N-terminal kinase immunoreactivity initially in the nucleus and then in growing axons, colocalizing with tau, consistent with axonogenesis. Taken together, these results show that TNF-alpha induces neurogenesis in neonatal SVZ cell cultures of mice. TNF-alpha, a proinflammatory cytokine and a proneurogenic factor, may play a central role in promoting neurogenesis and brain repair in response to brain injury and infection.
Collapse
Affiliation(s)
- Liliana Bernardino
- Center for Neuroscience and Cell Biology, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
122
|
Yu L, Qi M, Sheff MA, Elion EA. Counteractive control of polarized morphogenesis during mating by mitogen-activated protein kinase Fus3 and G1 cyclin-dependent kinase. Mol Biol Cell 2008; 19:1739-52. [PMID: 18256288 PMCID: PMC2291402 DOI: 10.1091/mbc.e07-08-0757] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 01/18/2008] [Accepted: 01/29/2008] [Indexed: 01/10/2023] Open
Abstract
Cell polarization in response to external cues is critical to many eukaryotic cells. During pheromone-induced mating in Saccharomyces cerevisiae, the mitogen-activated protein kinase (MAPK) Fus3 induces polarization of the actin cytoskeleton toward a landmark generated by the pheromone receptor. Here, we analyze the role of Fus3 activation and cell cycle arrest in mating morphogenesis. The MAPK scaffold Ste5 is initially recruited to the plasma membrane in random patches that polarize before shmoo emergence. Polarized localization of Ste5 is important for shmooing. In fus3 mutants, Ste5 is recruited to significantly more of the plasma membrane, whereas recruitment of Bni1 formin, Cdc24 guanine exchange factor, and Ste20 p21-activated protein kinase are inhibited. In contrast, polarized recruitment still occurs in a far1 mutant that is also defective in G1 arrest. Remarkably, loss of Cln2 or Cdc28 cyclin-dependent kinase restores polarized localization of Bni1, Ste5, and Ste20 to a fus3 mutant. These and other findings suggest Fus3 induces polarized growth in G1 phase cells by down-regulating Ste5 recruitment and by inhibiting Cln/Cdc28 kinase, which prevents basal recruitment of Ste5, Cdc42-mediated asymmetry, and mating morphogenesis.
Collapse
Affiliation(s)
- Lu Yu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115-5730
| | - Maosong Qi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115-5730
| | - Mark A. Sheff
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115-5730
| | - Elaine A. Elion
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115-5730
| |
Collapse
|
123
|
Lu Z, Liu W, Huang H, He Y, Han Y, Rui Y, Wang Y, Li Q, Ruan K, Ye Z, Low BC, Meng A, Lin SC. Protein encoded by the Axin(Fu) allele effectively down-regulates Wnt signaling but exerts a dominant negative effect on c-Jun N-terminal kinase signaling. J Biol Chem 2008; 283:13132-9. [PMID: 18316368 DOI: 10.1074/jbc.m710595200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Axin plays an architectural role in many important signaling pathways that control various aspects of development and tumorigenesis, including the Wnt, transforming growth factor-beta, MAP kinase pathways, as well as p53 activation cascades. It is encoded by the mouse Fused (Fu) locus; the Axin(Fu) allele is caused by insertion of an IAP transposon. Axin(Fu/Fu) mice display varying phenotypes ranging from embryonic lethality to relatively normal adulthood with kinky tails. However, the protein product(s) has not been identified or characterized. In the present study, we conducted immunoprecipitation using brain extracts from the Axin(Fu) mice with specific antibodies against different regions of Axin and found that a truncated Axin containing amino acids 1-596 (designated as Axin(Fu-NT)) and the full-length complement of Axin (Axin(WT)) can both be generated from the Axin(Fu) allele. When tested for functionality changes, Axin(Fu-NT) was found to abolish Axin-mediated activation of JNK, which plays a critical role in dorsoventral patterning. Together with a proteomics approach, we found that Axin(Fu-NT) contains a previously uncharacterized dimerization domain and can form a heterodimeric interaction with Axin(WT). The Axin(Fu-NT)/Axin(WT) is not conducive to JNK activation, providing a molecular explanation for the dominant negative effect of Axin(Fu-NT) on JNK activation by wild-type Axin. Importantly, Axin(Fu-NT) exhibits no difference in the inhibition of Wnt signaling compared with Axin(WT) as determined by reporter gene assays, interaction with key Wnt regulators, and expression of Wnt marker genes in zebrafish embryos, suggesting that altered JNK signaling contributes, at least in part, to the developmental defects seen in Axin(Fu) mice.
Collapse
Affiliation(s)
- Zailian Lu
- School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Li C, Ge B, Nicotra M, Stern JNH, Kopcow HD, Chen X, Strominger JL. JNK MAP kinase activation is required for MTOC and granule polarization in NKG2D-mediated NK cell cytotoxicity. Proc Natl Acad Sci U S A 2008; 105:3017-22. [PMID: 18287025 PMCID: PMC2268577 DOI: 10.1073/pnas.0712310105] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Indexed: 02/06/2023] Open
Abstract
Interaction of the activating receptor NKG2D with its ligands is a major stimulatory pathway for cytotoxicity of natural killer (NK) cells. Here, the signaling pathway involved after NKG2D ligation is examined. Either incubation of the NKG2D-bearing human NKL tumor cell line with K562 target cells or cross-linking with NKG2D mAb induced strong activation of the mitogen-activated protein (MAP) kinases. Selective inhibition of JNK MAP kinase with four different means of inhibition greatly reduced NKG2D-mediated cytotoxicity toward target cells and furthermore, blocked the movement of the microtubule organizing center (MTOC), granzyme B (a component of cytotoxic granules), and paxillin (a scaffold protein) to the immune synapse. NKG2D-induced activation of JNK kinase was also blocked by inhibitors of Src protein tyrosine kinases and phospholipase PLCgamma, upstream of JNK. Similarly, a second MAP kinase pathway through ERK was previously shown to be required for NK cell cytotoxicity. Thus, activation of two MAP kinase pathways is required for cytotoxic granule and MTOC polarization and for cytotoxicity of human NK cells when NKG2D is ligated.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Cell Polarity/immunology
- Cytotoxicity Tests, Immunologic
- Enzyme Activation/immunology
- Flow Cytometry
- Granzymes/metabolism
- Humans
- Immunoblotting
- JNK Mitogen-Activated Protein Kinases/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Microscopy, Confocal
- Microtubule-Organizing Center/metabolism
- NK Cell Lectin-Like Receptor Subfamily K
- Paxillin/metabolism
- RNA, Small Interfering/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, Natural Killer Cell
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Changlin Li
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Baoxue Ge
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Matthew Nicotra
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Joel N. H. Stern
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Hernan D. Kopcow
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Xi Chen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Jack L. Strominger
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
125
|
Neill GW, Harrison WJ, Ikram MS, Williams TDL, Bianchi LS, Nadendla SK, Green JL, Ghali L, Frischauf AM, O'Toole EA, Aberger F, Philpott MP. GLI1 repression of ERK activity correlates with colony formation and impaired migration in human epidermal keratinocytes. Carcinogenesis 2008; 29:738-46. [PMID: 18281251 DOI: 10.1093/carcin/bgn037] [Citation(s) in RCA: 273] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Basal cell carcinoma (BCC) of the skin is a highly compact, non-metastatic epithelial tumour type that may arise from the aberrant propagation of epidermal or progenitor stem cell (SC) populations. Increased expression of GLI1 is a common feature of BCC and is linked to the induction of epidermal SC markers in immortalized N/Tert-1 keratinocytes. Here, we demonstrate that GLI1 over-expression is linked to additional SC characteristics in N/Tert-1 cells including reduced epidermal growth factor receptor (EGFR) expression and compact colony formation that is associated with repressed extracellular signal-regulated kinase (ERK) activity. Colony formation and repressed ERK activity remain evident when EGFR is increased exogenously to the basal levels in GLI1 cells revealing that ERK is additionally inhibited downstream of the receptor. Exposure to epidermal growth factor (EGF) to increase ERK activity and promote migration negates GLI1 colony formation with cells displaying an elongated, fibroblast-like morphology. However, as determined by Snail messenger RNA and E-cadherin protein expression this is not associated with epithelial-mesenchymal transition (EMT), and GLI1 actually represses induction of the EMT marker vimentin in EGF-stimulated cells. Instead, live cell imaging revealed that the elongated morphology of EGF/GLI1 keratinocytes stems from their being 'stretched' due to migrating cells displaying inefficient cell-cell detachment and impaired tail retraction. Taken together, these data suggest that GLI1 opposes EGFR signalling to maintain the epithelial phenotype. Finally, ERK activity was predominantly negative in 13/14 BCCs (superficial/nodular), indicating that GLI1 does not routinely co-operate with ERK to induce the formation of this common skin tumour.
Collapse
Affiliation(s)
- Graham W Neill
- Centre for Cutaneous Research, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, 4 Newark Street, London E1 2AT, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Jiao X, Katiyar S, Liu M, Mueller SC, Lisanti MP, Li A, Pestell TG, Wu K, Ju X, Li Z, Wagner EF, Takeya T, Wang C, Pestell RG. Disruption of c-Jun reduces cellular migration and invasion through inhibition of c-Src and hyperactivation of ROCK II kinase. Mol Biol Cell 2008; 19:1378-90. [PMID: 18216279 DOI: 10.1091/mbc.e07-08-0753] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The spread of metastatic tumors to different organs is associated with poor prognosis. The metastatic process requires migration and cellular invasion. The protooncogene c-jun encodes the founding member of the activator protein-1 family and is required for cellular proliferation and DNA synthesis in response to oncogenic signals and plays an essential role in chemical carcinogenesis. The role of c-Jun in cellular invasion remains to be defined. Genetic deletion of c-Jun in transgenic mice is embryonic lethal; therefore, transgenic mice encoding a c-Jun gene flanked by LoxP sites (c-jun(f/f)) were used. c-jun gene deletion reduced c-Src expression, hyperactivated ROCK II signaling, and reduced cellular polarity, migration, and invasiveness. c-Jun increased c-Src mRNA abundance and c-Src promoter activity involving an AP-1 site in the c-Src promoter. Transduction of c-jun(-/-) cells with either c-Jun or c-Src retroviral expression systems restored the defective cellular migration of c-jun(-/-) cells. As c-Src is a critical component of pathways regulating proliferation, survival, and metastasis, the induction of c-Src abundance, by c-Jun, provides a novel mechanism of cooperative signaling in cellular invasion.
Collapse
Affiliation(s)
- Xuanmao Jiao
- Department of Cancer Biology and Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Donet E, Bosch P, Sanchis A, Bayo P, Ramírez A, Cascallana JL, Bravo A, Pérez P. Transrepression function of the glucocorticoid receptor regulates eyelid development and keratinocyte proliferation but is not sufficient to prevent skin chronic inflammation. Mol Endocrinol 2008; 22:799-812. [PMID: 18174358 DOI: 10.1210/me.2007-0284] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids (GCs) play a key role in skin homeostasis and stress responses acting through the GC receptor (GR), which modulates gene expression by DNA binding-dependent (transactivation) and -independent (transrepression) mechanisms. To delineate which mechanisms underlie the beneficial and adverse effects mediated by GR in epidermis and other epithelia, we have generated transgenic mice that express a mutant GR (P493R, A494S), which is defective for transactivation but retains transrepression activity, under control of the keratin 5 promoter (K5-GR-TR mice). K5-GR-TR embryos exhibited eyelid opening at birth and corneal defects that resulted in corneal opacity in the adulthood. Transgenic embryos developed normal skin, although epidermal atrophy and focal alopecia was detected in adult mice. GR-mediated transrepression was sufficient to inhibit keratinocyte proliferation induced by acute and chronic phorbol 12-myristate 13-acetate exposure, as demonstrated by morphometric analyses, bromodeoxyuridine incorporation, and repression of keratin 6, a marker of hyperproliferative epidermis. These antiproliferative effects were mediated through negative interference of GR with MAPK/activator protein-1 and nuclear factor-kappaB activities, although these interactions occurred with different kinetics. However, phorbol 12-myristate 13-acetate-induced inflammation was only partially inhibited by GR-TR, which efficiently repressed IL-1beta and MMP-3 genes while weakly repressing IL-6 and TNF-alpha. Our data highlight the relevance of deciphering the mechanisms underlying GR actions on epithelial morphogenesis as well as for its therapeutic use to identify more restricted targets of GC administration.
Collapse
Affiliation(s)
- Eva Donet
- Centro de Investigación Príncipe Felipe, E-46013 Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Shen J, DiCorleto PE. ADP stimulates human endothelial cell migration via P2Y1 nucleotide receptor-mediated mitogen-activated protein kinase pathways. Circ Res 2008; 102:448-56. [PMID: 18174464 DOI: 10.1161/circresaha.107.165795] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extensive research on the role of ADP in platelet activation led to the design of new anti-thrombotic drugs, such as clopidogrel (Plavix; sanofi-aventis); however, very little is known about the ADP-preferring nucleotide receptors (P2Y1, P2Y12, and P2Y13) in endothelium. Here, we show that ADP stimulates migration of cultured human umbilical vein endothelial cells (HUVECs) in both Boyden chamber and in vitro wound repair assays. This promigratory effect was mimicked by 2-MeSADP, but not by AMP, and was inhibited by MRS2179 (P2Y1 receptor antagonist) but not by AR-C69931MX (P2Y12/13 receptor antagonist). RT-PCR revealed abundant P2Y1, barely detectable P2Y12, and absent P2Y13 receptor message in these cells. In addition, both ADP and 2-MeSADP, but not AMP, activated the mitogen-activated protein kinase pathways as evidenced by increased phosphorylation of extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK), and p38 kinase. ADP also stimulated phosphorylation of p90RSK, a downstream substrate of phosphorylated ERK1/2, and induced phosphorylation of such transcription factors downstream of the JNK and p38 pathways as c-Jun and activating transcription factor-2. These signaling events were inhibited by MRS2179 but not by AR-C69931MX. Furthermore, blockade of the ERK or JNK pathways by U0126 and SP600125, respectively, abolished ADP- and 2-MeSADP-stimulated HUVEC migration. However, inhibition of the p38 pathway by SB203580 partially suppressed ADP- and 2-MeSADP-induced HUVEC migration. We conclude that ADP promotes human endothelial cell migration by activating P2Y1 receptor-mediated MAPK pathways, possibly contributing to reendothelialization and angiogenesis after vascular injury.
Collapse
Affiliation(s)
- Jianzhong Shen
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | | |
Collapse
|
129
|
Heasley LE, Winn RA. Analysis of Wnt7a-stimulated JNK activity and cJun phosphorylation in non-small cell lung cancer cells. Methods Mol Biol 2008; 468:187-96. [PMID: 19099255 DOI: 10.1007/978-1-59745-249-6_14] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The cJun N-terminal kinases (JNKs) are activated in response to diverse growth factors and morphogens, including specific Wnt proteins. Genetic approaches have defined key roles for the JNKs as mediators of the Wnt-regulated epithelial cell programs including planar cell polarity and convergent extension. Moreover, our recent studies demonstrate that the JNK pathway is activated by Wnt-7a and Fzd9 to promote an epithelial differentiation program in lung cancer cells. In comparison to cell stresses such as hypertonicity or ultraviolet irradiation, which strongly activate JNKs, morphogens and growth factors induce activation of the pathway that is more modest and that may be difficult to assess by immunoblotting approaches with anti-phospho-JNK antibodies. We find that the tight binding of JNKs by their substrate, cJun, provides the basis for a simple and reliable assay for measuring JNK activity in cells stimulated with Wnt proteins and growth factors.
Collapse
Affiliation(s)
- Lynn E Heasley
- Department of Medicine, University of Colorado Health Sciences Centre, Denver, USA
| | | |
Collapse
|
130
|
Takatori A, Geh E, Chen L, Zhang L, Meller J, Xia Y. Differential transmission of MEKK1 morphogenetic signals by JNK1 and JNK2. Development 2008; 135:23-32. [DOI: 10.1242/dev.007120] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
JNK1 and JNK2 are two ubiquitously expressed isoforms that exert redundant roles in many physiological processes, but the extent of their relative contributions to these processes has not been well characterized. We show that both JNK isoforms transmit MEK kinase 1 (MEKK1)-mediated morphogenetic signals during mouse embryonic eyelid closure. However, JNK1 and JNK2 are not synonymous, because MEKK1 is haploinsufficient for normal eyelid closure in Jnk1-null mice, but is haplosufficient in Jnk2-null mice. In the Mekk1 heterozygous background, a more efficient phosphorylation of JNK1 than JNK2 leads to differential downstream reactions, such as c-Jun phosphorylation and PAI1 expression in the developing eyelid epithelium. Differences in efficiency of phosphorylation are attributed to JNK1 Gly177 and Ser179 - residues that are absent in JNK2 - which promote a less ordered structural conformation. This leads to more favorable JNK phosphorylation by activin B morphogenetic signals mediated by the MEKK1-MKK4 pathway. Interestingly, Mekk1-Jnk1-Jnk2 triple hemizygotes display a partial eye-open phenotype at birth, suggesting that all three genes dose-dependently contribute to morphogenetic eyelid closure. We propose that a MEKK1-JNK1/2 axis governs the JNK activation levels to control downstream transcriptional events and eyelid morphogenesis and that reduction of upstream MEKK1 signals uncovers analogous but differential roles of JNK1 and JNK2 in a biological process.
Collapse
Affiliation(s)
- Atsushi Takatori
- Department of Environmental Health and Center of Environmental Genetics,University of Cincinnati Medical Center, 123 E. Shields Street, Cincinnati, OH 45267-0056, USA
| | - Esmond Geh
- Department of Environmental Health and Center of Environmental Genetics,University of Cincinnati Medical Center, 123 E. Shields Street, Cincinnati, OH 45267-0056, USA
| | - Liang Chen
- Department of Environmental Health and Center of Environmental Genetics,University of Cincinnati Medical Center, 123 E. Shields Street, Cincinnati, OH 45267-0056, USA
| | - Lin Zhang
- Department of Environmental Health and Center of Environmental Genetics,University of Cincinnati Medical Center, 123 E. Shields Street, Cincinnati, OH 45267-0056, USA
- Department of Central Lab, Southern Medical University, Tonghe, Guangzhou,People's Republic of China
| | - Jarek Meller
- Department of Environmental Health and Center of Environmental Genetics,University of Cincinnati Medical Center, 123 E. Shields Street, Cincinnati, OH 45267-0056, USA
| | - Ying Xia
- Department of Environmental Health and Center of Environmental Genetics,University of Cincinnati Medical Center, 123 E. Shields Street, Cincinnati, OH 45267-0056, USA
| |
Collapse
|
131
|
Westerlund N, Zdrojewska J, Courtney MJ, Coffey ET. Superior cervical ganglion-10 protein as a molecular effector of c-Jun N-terminal kinase 1: implications for the therapeutic targeting of Jun N-terminal kinase in nerve regeneration. Expert Opin Ther Targets 2007; 12:31-43. [DOI: 10.1517/14728222.12.1.31] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
132
|
Kumamoto H, Ooya K. Immunohistochemical detection of phosphorylated JNK, p38 MAPK, and ERK5 in ameloblastic tumors. J Oral Pathol Med 2007; 36:543-9. [PMID: 17850438 DOI: 10.1111/j.1600-0714.2007.00555.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND To evaluate roles of mitogen-activated protein kinases (MAPKs) in oncogenesis and cytodifferentiation of odontogenic tumors, expression of phosphorylated JNK (p-JNK), p38 MAPK (p-p38 MAPK), and ERK5 (p-ERK5) was analyzed in ameloblastic tumors as well as in tooth germs. METHODS Ten tooth germs, 47 ameloblastomas, and 5 malignant ameloblastic tumors were examined immunohistochemically with the antibodies against p-JNK, p-p38 MAPK, and p-ERK5. RESULTS Immunoreactivity for p-JNK was detected in epithelial or neoplastic cells detached from the basement membrane in 7 tooth germs and 7 ameloblastomas, and the expression levels of p-JNK in ameloblastic tumors were significantly lower than that in tooth germs. Expression of p-p38 MAPK was found in epithelial or neoplastic cells in tooth germs and ameloblastic tumors except for two ameloblastomas, and increased expression was found in keratinizing cells of acanthomatous ameloblastomas. The expression level of p-p38 MAPK in ameloblastomas was significantly higher than the levels in tooth germs and malignant ameloblastic tumors. Immunoreactivity for p-ERK5 was found predominantly in epithelial or neoplastic cells near the basement membrane in tooth germs and ameloblastic tumors. The expression levels of p-ERK5 in ameloblastic tumors were slightly higher than that in tooth germs, and plexiform ameloblastomas showed significantly higher p-ERK5 expression than follicular ameloblastomas. CONCLUSION Expression of p-JNK, p-p38 MAPK, and p-ERK5 in tooth germs and ameloblastic tumors suggests that these MAPK signaling pathways contribute to cell proliferation, differentiation, or apoptosis in both normal and neoplastic odontogenic tissues. Altered expression of these phosphorylated MAPKs in ameloblastic tumors may be involved in oncogenesis and tumor cell differentiation.
Collapse
Affiliation(s)
- H Kumamoto
- Department of Oral Medicine and Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| | | |
Collapse
|
133
|
Stevens TL, Rogers EM, Koontz LM, Fox DT, Homem CCF, Nowotarski SH, Artabazon NB, Peifer M. Using Bcr-Abl to examine mechanisms by which abl kinase regulates morphogenesis in Drosophila. Mol Biol Cell 2007; 19:378-93. [PMID: 17959833 DOI: 10.1091/mbc.e07-01-0008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Signaling by the nonreceptor tyrosine kinase Abelson (Abl) plays key roles in normal development, whereas its inappropriate activation helps trigger the development of several forms of leukemia. Abl is best known for its roles in axon guidance, but Abl and its relatives also help regulate embryonic morphogenesis in epithelial tissues. Here, we explore the role of regulation of Abl kinase activity during development. We first compare the subcellular localization of Abl protein and of active Abl, by using a phosphospecific antibody, providing a catalog of places where Abl is activated. Next, we explore the consequences for morphogenesis of overexpressing wild-type Abl or expressing the activated form found in leukemia, Bcr-Abl. We find dose-dependent effects of elevating Abl activity on morphogenetic movements such as head involution and dorsal closure, on cell shape changes, on cell protrusive behavior, and on the organization of the actin cytoskeleton. Most of the effects of Abl activation parallel those caused by reduction in function of its target Enabled. Abl activation leads to changes in Enabled phosphorylation and localization, suggesting a mechanism of action. These data provide new insight into how regulated Abl activity helps direct normal development and into possible biological functions of Bcr-Abl.
Collapse
Affiliation(s)
- Traci L Stevens
- Department of Biology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Rui Y, Xu Z, Xiong B, Cao Y, Lin S, Zhang M, Chan SC, Luo W, Han Y, Lu Z, Ye Z, Zhou HM, Han J, Meng A, Lin SC. A beta-catenin-independent dorsalization pathway activated by Axin/JNK signaling and antagonized by aida. Dev Cell 2007; 13:268-82. [PMID: 17681137 DOI: 10.1016/j.devcel.2007.07.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2007] [Revised: 04/16/2007] [Accepted: 07/12/2007] [Indexed: 12/16/2022]
Abstract
Axin is a scaffold protein that controls multiple important pathways, including the canonical Wnt pathway and JNK signaling. Here we have identified an Axin-interacting protein, Aida, which blocks Axin-mediated JNK activation by disrupting Axin homodimerization. During investigation of in vivo functions of Axin/JNK signaling and aida in development, it was found that Axin, besides ventralizing activity by facilitating beta-catenin degradation, possesses a dorsalizing activity that is mediated by Axin-induced JNK activation. This dorsalizing activity is repressed when aida is overexpressed in zebrafish embryos. Whereas Aida-MO injection leads to dorsalized embryos, JNK-MO and MKK4-MO can ventralize embryos. The anti-dorsalization activity of aida is conferred by its ability to block Axin-mediated JNK activity. We further demonstrate that dorsoventral patterning regulated by Axin/JNK signaling is independent of maternal or zygotic Wnt signaling. We have thus identified a dorsalization pathway that is exerted by Axin/JNK signaling and its inhibitor Aida during vertebrate embryogenesis.
Collapse
Affiliation(s)
- Yanning Rui
- Key Laboratory of Ministry of Education for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361005, Xiamen, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Chan A, Akhtar M, Brenner M, Zheng Y, Gulko PS, Symons M. The GTPase Rac regulates the proliferation and invasion of fibroblast-like synoviocytes from rheumatoid arthritis patients. Mol Med 2007. [PMID: 17622308 DOI: 10.2119/2007-00025.chan] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblast-like synoviocytes (FLS) isolated from joints of rheumatoid arthritis (RA) patients display proliferative and invasive properties reminiscent of those of malignant tumor cells. Rac small GTPases play an important role in tumor cell proliferation and invasion. We therefore investigated the potential role of Rac proteins in the proliferative and invasive behavior of RA-FLS. We showed that inhibiting Rac activity with the Rac-specific small molecule inhibitor NSC23766 causes a strong inhibition of RA-FLS proliferation, without affecting cell survival. Rac inhibition also results in a strong reduction in RA-FLS invasion through reconstituted extracellular matrix and a less marked inhibition of two-dimensional migration as measured by monolayer wound healing. We also showed that small interfering RNA-mediated depletion of Rac1 inhibits RA-FLS proliferation and invasion to a similar extent as NSC23766. These results demonstrate for the first time that Rac proteins play an important role in the aggressive behavior of FLS isolated from RA patients. In addition, we observed that inhibiting Rac proteins prevents JNK activation and that the JNK inhibitor SP600125 strongly inhibits RA-FLS invasion, suggesting that Rac-mediated JNK activation contributes to the role of Rac proteins in the invasive behavior of RA-FLS. In conclusion, Rac-controlled signaling pathways may present a new source of drug targets for therapeutic intervention in RA.
Collapse
Affiliation(s)
- Amanda Chan
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research at North Shore-LIJ, Manhasset, New York 11030, USA
| | | | | | | | | | | |
Collapse
|
136
|
Kato S, Mohri Y, Matsuo T, Ogawa E, Umezawa A, Okuyama R, Nishimori K. Eye-open at birth phenotype with reduced keratinocyte motility in LGR4 null mice. FEBS Lett 2007; 581:4685-90. [PMID: 17850793 DOI: 10.1016/j.febslet.2007.08.064] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 08/27/2007] [Indexed: 01/14/2023]
Abstract
We observed a consistent eye-open at birth (EOB) phenotype in mouse pups homozygous for a leucine-rich repeat containing G-protein coupled receptor 4 (Lgr4) allele deleting the whole transmembrane domain coding region. An in vitro wound-healing scratch assay showed notably reduced keratinocyte motility in the null mice. Phalloidin staining of F-actin in the eyelid epidermis was also reduced. We also generated keratinocyte-specific Lgr4 deficient mice, circumventing the embryonic/neonatal lethality and kidney abnormalities. Most of the conditional Lgr4 knockout mice showed the EOB phenotype. Thus, Lgr4 might be a novel gene class regulating cell motility.
Collapse
Affiliation(s)
- Shigeki Kato
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
137
|
Abstract
Cell motility makes essential contributions to normal embryonic development and homeostasis. It is also thought to contribute in important ways to tumor metastasis. Because of this dual importance, cell migration has been extensively studied. The fruit fly Drosophila melanogaster has served as an important model organism for genetic analysis of many aspects of developmental biology, including cell migration. Here we describe the various types of cell movements that have been studied in detail, which represent models for epithelial-to-mesenchymal transition, transepithelial migration, inflammation, wound healing and invasion. We summarize what has been learned about the molecular control of cell migration from genetic studies in the fly. In addition, we describe recent efforts to model tumor metastasis directly in Drosophila by expressing oncogenes and/or mutating tumor suppressor genes. Together these studies suggest that Drosophila has much to offer as a model for varied aspects of tumor metastasis.
Collapse
Affiliation(s)
- Anna C-C Jang
- Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| | | | | |
Collapse
|
138
|
Jaźwińska A, Badakov R, Keating MT. Activin-βA Signaling Is Required for Zebrafish Fin Regeneration. Curr Biol 2007; 17:1390-5. [PMID: 17683938 DOI: 10.1016/j.cub.2007.07.019] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Revised: 06/29/2007] [Accepted: 07/06/2007] [Indexed: 12/28/2022]
Abstract
Vertebrate limb regeneration occurs in anamniotes such as newts, salamanders, and zebrafish. After appendage amputation, the resection site is covered by a wound epidermis capping the underlying mature tissues of the stump from which the blastema emerges. The blastema is a mass of progenitor cells that constitute an apical growth zone. During outgrowth formation, the proximal blastemal cells progressively leave the zone and undergo the differentiation that results in the replacement of the amputated structures. Little is known about the mechanisms triggering regenerative events after injury. The zebrafish caudal fin provides a valuable model to study the mechanisms of regeneration. Zebrafish blastemal cells express specific genes, such as the homeobox-containing transcription factors msxB and msxC, and secreted signal FGF20a. In this study, we set out to identify signals that are transcriptionally upregulated after fin amputation and before blastema formation. Accordingly, a gene encoding a TGFbeta-related ligand, activin-betaA (actbetaA), was found to be strongly induced within 6 hr after fin amputation at the wound margin, and later in the blastema. Inhibition of Activin signaling through two specific chemical inhibitors, SB431542 and SB505124, lead to the early and complete block of regeneration. The morpholino knockdown of actbetaA and its receptor alk4 impaired the progression of regeneration. Closer examination of the phenotype revealed that Activin signaling is necessary for cell migration during wound healing and blastemal proliferation. These findings reveal a role of Activin-betaA signaling in the tissue repair after injury and subsequent outgrowth formation during epigenetic regeneration of the vertebrate appendage.
Collapse
Affiliation(s)
- Anna Jaźwińska
- Department of Cardiology, Children's Hospital Boston, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
139
|
Chan A, Akhtar M, Brenner M, Zheng Y, Gulko PS, Symons M. The GTPase Rac regulates the proliferation and invasion of fibroblast-like synoviocytes from rheumatoid arthritis patients. MOLECULAR MEDICINE (CAMBRIDGE, MASS.) 2007; 13:297-304. [PMID: 17622308 PMCID: PMC1906689 DOI: 10.2119/2007–00025.chan] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 03/25/2007] [Indexed: 02/02/2023]
Abstract
Fibroblast-like synoviocytes (FLS) isolated from joints of rheumatoid arthritis (RA) patients display proliferative and invasive properties reminiscent of those of malignant tumor cells. Rac small GTPases play an important role in tumor cell proliferation and invasion. We therefore investigated the potential role of Rac proteins in the proliferative and invasive behavior of RA-FLS. We showed that inhibiting Rac activity with the Rac-specific small molecule inhibitor NSC23766 causes a strong inhibition of RA-FLS proliferation, without affecting cell survival. Rac inhibition also results in a strong reduction in RA-FLS invasion through reconstituted extracellular matrix and a less marked inhibition of two-dimensional migration as measured by monolayer wound healing. We also showed that small interfering RNA-mediated depletion of Rac1 inhibits RA-FLS proliferation and invasion to a similar extent as NSC23766. These results demonstrate for the first time that Rac proteins play an important role in the aggressive behavior of FLS isolated from RA patients. In addition, we observed that inhibiting Rac proteins prevents JNK activation and that the JNK inhibitor SP600125 strongly inhibits RA-FLS invasion, suggesting that Rac-mediated JNK activation contributes to the role of Rac proteins in the invasive behavior of RA-FLS. In conclusion, Rac-controlled signaling pathways may present a new source of drug targets for therapeutic intervention in RA.
Collapse
Affiliation(s)
- Amanda Chan
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research at North Shore-LIJ, Manhasset, New York, USA
| | - Mumtaz Akhtar
- Department of Pharmaceutical Sciences, St. Johns University, Queens, New York, USA
| | - Max Brenner
- Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research at North Shore-LIJ, Manhasset, New York, USA
| | - Yi Zheng
- Division of Experimental Hematology, Children’s Hospital Research Foundation, Cincinnati, Ohio, USA
| | - Percio S Gulko
- Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research at North Shore-LIJ, Manhasset, New York, USA
- Division of Rheumatology, Department of Medicine, North Shore University Hospital, Manhasset, New York, USA
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Marc Symons
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research at North Shore-LIJ, Manhasset, New York, USA
- Department of Surgery, Department of Medicine, North Shore University Hospital, Manhasset, New York, USA
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Address correspondence and reprint requests to Marc Symons, Center for Oncology and Cell Biology, Feinstein Institute for Medical Research at North Shore-LIJ, 350 Community Drive, Manhasset, NY 11030. Phone: 516-562-1193; Fax: 516-365-5090; E-mail:
| |
Collapse
|
140
|
Neilson EG. Plasticity, nuclear diapause, and a requiem for the terminal differentiation of epithelia. J Am Soc Nephrol 2007; 18:1995-8. [PMID: 17568015 DOI: 10.1681/asn.2007040457] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Eric G Neilson
- Department of Medicine, D-3100 Medical Center North, Vanderbilt University School of Medicine, Nashville, TN 37232-2358, USA.
| |
Collapse
|
141
|
Chuang YY, Valster A, Coniglio SJ, Backer JM, Symons M. The atypical Rho family GTPase Wrch-1 regulates focal adhesion formation and cell migration. J Cell Sci 2007; 120:1927-34. [PMID: 17504809 DOI: 10.1242/jcs.03456] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wrch-1 (Wnt-regulated Cdc42 homolog) is a new member of the Rho family that was identified as a gene transcriptionally upregulated by Wnt-1. Wrch-1 has no detectable GTPase activity and displays very high intrinsic guanine nucleotide exchange, implying that it is constitutively GTP-bound. The biological functions of Wrch-1 largely remain to be characterized. Here, we report that Wrch-1 prominently localizes to focal adhesions. Depletion of Wrch-1 by small interfering RNA increases focal adhesion formation, whereas Wrch-1 overexpression disassembles focal adhesions. Wrch-1 depletion inhibits myosin-light-chain phosphorylation, which in turn leads to an increase in the number of focal adhesions and inhibits cell migration in response to wound healing. Depletion of Wrch-1 also inhibits Akt and JNK activation. Although pharmacological inhibitors of Akt and JNK inhibit cell migration, they do not affect focal adhesions. Thus, our data suggest that Wrch-1 regulates cell migration by multiple mechanisms: on the one hand Wrch-1 controls focal adhesions by regulating myosin light chain and on the other hand Wrch-1 stimulates the activation of Akt and JNK.
Collapse
Affiliation(s)
- Ya-yu Chuang
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research at North Shore-LIJ, North Shore University Hospital, Manhasset, NY 11030, USA
| | | | | | | | | |
Collapse
|
142
|
Chung HA, Yamamoto TS, Ueno N. ANR5, an FGF target gene product, regulates gastrulation in Xenopus. Curr Biol 2007; 17:932-9. [PMID: 17475493 DOI: 10.1016/j.cub.2007.04.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 04/11/2007] [Accepted: 04/12/2007] [Indexed: 11/23/2022]
Abstract
Gastrulation is a morphogenetic process in which tightly coordinated cell and tissue movements establish the three germ layers (ectoderm, mesoderm, and endoderm) to define the anterior-to-posterior embryonic organization [1]. To elicit this movement, cells modulate membrane protrusions and undergo dynamic cell interactions. Here we report that ankyrin repeats domain protein 5 (xANR5), a novel FGF target gene product, regulates cell-protrusion formation and tissue separation, a process that develops the boundary between the ectoderm and mesoderm [2, 3], during Xenopus gastrulation. Loss of xANR5 function by antisense morpholino oligonucleotide (MO) caused a short trunk and spina bifida without affecting mesodermal gene expressions. xANR5-MO also blocked elongation of activin-treated animal caps (ACs) and tissue separation. The dorsal cells of xANR5-MO-injected embryos exhibited markedly reduced membrane protrusions, which could be restored by coinjecting active Rho. Active Rho also rescued the xANR5-MO-inhibited tissue separation. We further demonstrated that xANR5 interacted physically and functionally with paraxial protocadherin (PAPC), which has known functions in cell-sorting behavior, tissue separation, and gastrulation cell movements [4-6], to regulate early morphogenesis. Our findings reveal for the first time that xANR5 acts through Rho to regulate gastrulation and is an important cytoplasmic partner of PAPC, whose cytoplasmic partner was previously unknown.
Collapse
Affiliation(s)
- Hyeyoung A Chung
- Division of Morphogenesis, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
| | | | | |
Collapse
|
143
|
Jung JW, Hwang SY, Hwang JS, Oh ES, Park S, Han IO. Ionising radiation induces changes associated with epithelial-mesenchymal transdifferentiation and increased cell motility of A549 lung epithelial cells. Eur J Cancer 2007; 43:1214-24. [PMID: 17379505 DOI: 10.1016/j.ejca.2007.01.034] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 11/20/2006] [Accepted: 01/11/2007] [Indexed: 01/13/2023]
Abstract
Radiotherapy remains a major therapeutic option for patients with advanced lung cancer. Nevertheless, the effects of irradiation on malignant biological behaviours (e.g. migration and transformation of cancer cells) have yet to be clarified. We conducted an in vitro study to investigate the radiation-induced alterations including morphology, adhesion, and cell motility of A549 human lung cancer cells. These changes, which are associated with epithelial-mesenchymal transdifferentiation (EMT), seem to be linked to radiation-induced fibrosis, which represents one of the most common long-term adverse effects of curative radiotherapy. In addition, loss of intercellular adhesion and increased cell motility may be involved in post-radiotherapy-associated metastasis. We showed that stress fibres and focal adhesions are increased and that cell-cell junctions are decreased in response to ionising radiation. Radiation also significantly increased cell motility. The p38-specific inhibitor, SB203580, reduced the radiation-promoted migration of A549 cells, whereas SP600125, a JNK MAPK-specific inhibitor, inhibited both inherent and radiation-mediated cell motility. Consistent with this observation, radiation up-regulated the phosphorylation of p38 MAPK. Current approaches to cancer treatment involving more intensive radiotherapy regimens have been suggested to be associated with a higher incidence of local or distant metastasis. Therefore, a subset of patients may benefit from a combination of radiotherapy with inhibitors of EMT or cell migration.
Collapse
Affiliation(s)
- Jae-Won Jung
- Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Korea
| | | | | | | | | | | |
Collapse
|
144
|
Witt A, Hines LM, Collins NL, Hu Y, Gunawardane RN, Moriera D, Raphael J, Jepson D, Koundinya M, Rolfs A, Taron B, Isakoff SJ, Brugge JS, LaBaer J. Functional proteomics approach to investigate the biological activities of cDNAs implicated in breast cancer. J Proteome Res 2007; 5:599-610. [PMID: 16512675 PMCID: PMC2522320 DOI: 10.1021/pr050395r] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Functional proteomics approaches that comprehensively evaluate the biological activities of human cDNAs may provide novel insights into disease pathogenesis. To systematically investigate the functional activity of cDNAs that have been implicated in breast carcinogenesis, we generated a collection of cDNAs relevant to breast cancer, the Breast Cancer 1000 (BC1000), and conducted screens to identify proteins that induce phenotypic changes that resemble events which occur during tumor initiation and progression. Genes were selected for this set using bioinformatics and data mining tools that identify genes associated with breast cancer. Greater than 1000 cDNAs were assembled and sequence verified with high-throughput recombination-based cloning. To our knowledge, the BC1000 represents the first publicly available sequence-validated human disease gene collection. The functional activity of a subset of the BC1000 collection was evaluated in cell-based assays that monitor changes in cell proliferation, migration, and morphogenesis in MCF-10A mammary epithelial cells expressing a variant of ErbB2 that can be inducibly activated through dimerization. Using this approach, we identified many cDNAs, encoding diverse classes of cellular proteins, that displayed activity in one or more of the assays, thus providing insights into a large set of cellular proteins capable of inducing functional alterations associated with breast cancer development.
Collapse
Affiliation(s)
- Abigail Witt
- Department of Cell Biology, Harvard Medical School, Boston MA 02115
| | - Lisa M. Hines
- Harvard Institute of Proteomics, Harvard Medical School, 320 Charles Street, Cambridge, MA 02141
| | | | - Yanhui Hu
- Harvard Institute of Proteomics, Harvard Medical School, 320 Charles Street, Cambridge, MA 02141
| | | | - Donna Moriera
- Harvard Institute of Proteomics, Harvard Medical School, 320 Charles Street, Cambridge, MA 02141
| | - Jacob Raphael
- Harvard Institute of Proteomics, Harvard Medical School, 320 Charles Street, Cambridge, MA 02141
| | - Daniel Jepson
- Harvard Institute of Proteomics, Harvard Medical School, 320 Charles Street, Cambridge, MA 02141
| | - Malvika Koundinya
- Harvard Institute of Proteomics, Harvard Medical School, 320 Charles Street, Cambridge, MA 02141
| | - Andreas Rolfs
- Harvard Institute of Proteomics, Harvard Medical School, 320 Charles Street, Cambridge, MA 02141
| | - Barbara Taron
- Harvard Institute of Proteomics, Harvard Medical School, 320 Charles Street, Cambridge, MA 02141
| | - Steven J. Isakoff
- Department of Cell Biology, Harvard Medical School, Boston MA 02115
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Joan S. Brugge
- Department of Cell Biology, Harvard Medical School, Boston MA 02115
- Corresponding authors Joshua LaBaer, Ph. 617 324-0827, Fax 617 324-0824, , Joan S. Brugge, Ph. 617 432 3974, Fax 617 432 3969,
| | - Joshua LaBaer
- Harvard Institute of Proteomics, Harvard Medical School, 320 Charles Street, Cambridge, MA 02141
- Corresponding authors Joshua LaBaer, Ph. 617 324-0827, Fax 617 324-0824, , Joan S. Brugge, Ph. 617 432 3974, Fax 617 432 3969,
| |
Collapse
|
145
|
Steinmetz PRH, Zelada-Gonzáles F, Burgtorf C, Wittbrodt J, Arendt D. Polychaete trunk neuroectoderm converges and extends by mediolateral cell intercalation. Proc Natl Acad Sci U S A 2007; 104:2727-32. [PMID: 17301244 PMCID: PMC1815249 DOI: 10.1073/pnas.0606589104] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During frog and fish development, convergent extension movements transform the spherical gastrula into an elongated neurula. Such transformation of a ball- into a worm-shaped embryo is an ancestral and fundamental feature of bilaterian development, yet this is modified or absent in the protostome model organisms Caenorhabditis or Drosophila. In the polychaete annelid Platynereis dumerilii, early embryonic and larval stages resemble a sphere that subsequently elongates into worm shape. Cellular and molecular mechanisms of polychaete body elongation are yet unknown. Our in vivo time-lapse analysis of Platynereis axis elongation reveals that the polychaete neuroectoderm converges and extends by mediolateral cell intercalation. This occurs on both sides of the neural midline, the line of fusion of the slit-like blastopore. Convergent extension moves apart mouth and anus that are both derived from the blastopore. Tissue elongation is actin-dependent but microtubule-independent. Dependence on JNK activity and spatially restricted expression of strabismus indicates involvement of the noncanonical Wnt pathway. We detect a morphogenetic boundary between the converging and extending trunk neuroectoderm and the anterior otx-expressing head neuroectoderm that does not elongate. Our comparative analysis uncovers striking similarities but also differences between convergent extension in the polychaete and in the frog (the classical vertebrate model for convergent extension). Based on these findings, we propose that convergent extension movements of the trunk neuroectoderm represent an ancestral feature of bilaterian development that triggered the separation of mouth and anus along the elongating trunk.
Collapse
Affiliation(s)
- Patrick R. H. Steinmetz
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69012 Heidelberg, Germany
| | - Fabiola Zelada-Gonzáles
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69012 Heidelberg, Germany
| | - Carola Burgtorf
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69012 Heidelberg, Germany
| | - Joachim Wittbrodt
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69012 Heidelberg, Germany
| | - Detlev Arendt
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69012 Heidelberg, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
146
|
Williams MJ, Habayeb MS, Hultmark D. Reciprocal regulation of Rac1 and Rho1 inDrosophilacirculating immune surveillance cells. J Cell Sci 2007; 120:502-11. [PMID: 17227793 DOI: 10.1242/jcs.03341] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In many cell types it is evident that the small GTPases Rac and Rho regulate each other's activities. What is unclear is exactly how this regulation occurs. To further elucidate this interaction we examined the activities of Rac1 and Rho1 in Drosophila cellular immune surveillance cells. In larvae the cellular immune response involves circulating cells (hemocytes) that can be recruited from a hematopoietic organ located behind the brain, as well as a sessile population found just underneath the larval cuticle. We demonstrate for the first time that Rho-kinase activation requires both Rho1 and the Drosophila c-Jun N-terminal kinase (Basket). We also show that Rac1, via Basket, regulates Rho1 activity, possibly by inhibiting RhoGAPp190. In the reciprocal pathway, co-expression of dominant negative Rho-kinase and constitutive active Rho1 induces a Rac1-like phenotype. This induction requires the formin Diaphanous. Co-expression of dominant negative Rho-kinase and constitutive active Rho1 also induces filopodia formation, with Diaphanous enriched at the tips. The Rac1-like phenotypes, and filopodia formation, could be blocked by co-expression of dominant negative Rac1. Finally, though dominant negative Rac1 is able to block filopodia formation in the overexpression experiments, only Rac2 is necessary for filopodia formed by hemocytes after parasitization.
Collapse
Affiliation(s)
- Michael J Williams
- Umeå Centre for Molecular Pathogenesis (UCMP), Umeå University, S-901 87, Umeå, Sweden.
| | | | | |
Collapse
|
147
|
Bayarsaikhan M, Takino T, Gantulga D, Sato H, Ito T, Yoshioka K. Regulation of N-cadherin-based cell–cell interaction by JSAP1 scaffold in PC12h cells. Biochem Biophys Res Commun 2007; 353:357-62. [PMID: 17188238 DOI: 10.1016/j.bbrc.2006.12.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 12/05/2006] [Indexed: 12/16/2022]
Abstract
We previously reported that the level of c-Jun NH2-terminal kinase (JNK)/stress-activated protein kinase-associated protein 1 (JSAP1), a scaffold protein for JNK signaling, increases dramatically during nerve growth factor (NGF)-induced differentiation of PC12h cells. In the present study, we investigated the function of JSAP1 during PC12h cell differentiation by knocking down the level of JSAP1. The depletion of JSAP1 caused NGF-treated PC12h cells to form aggregates and impaired their differentiation. The aggregation was not observed in JSAP1-depleted cells that were untreated or treated with epidermal growth factor. Immunocytochemical studies indicated that N-cadherin, but not E-cadherin, was localized to sites of cell-cell contact in the aggregated cells. Furthermore, an inhibitory anti-N-cadherin antibody completely blocked the aggregation. Taken together, these results suggest that JSAP1 regulates cell-cell interactions in PC12h cells specifically in the NGF-induced signaling pathway, and does so by modulating N-cadherin.
Collapse
Affiliation(s)
- Munkhuu Bayarsaikhan
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-0934, Japan
| | | | | | | | | | | |
Collapse
|
148
|
Vervoort VS, Roselli S, Oshima RG, Pasquale EB. Splice variants and expression patterns of SHEP1, BCAR3 and NSP1, a gene family involved in integrin and receptor tyrosine kinase signaling. Gene 2007; 391:161-70. [PMID: 17270363 PMCID: PMC1876674 DOI: 10.1016/j.gene.2006.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 12/12/2006] [Accepted: 12/12/2006] [Indexed: 01/26/2023]
Abstract
SHEP1, BCAR3 and NSP1 are the three members of a family of cytoplasmic proteins involved in cell adhesion/migration and antiestrogen resistance. All three proteins contain an SH2 domain and an exchange factor-like domain that binds both Ras GTPases and the scaffolding protein Cas. SHEP1, BCAR3 and NSP1 mRNAs are widely expressed in tissues, and SHEP1 and BCAR3 have multiple splice variants that differ in their 5' untranslated regions and in some cases the beginning of their coding regions. Interestingly, our data suggest that SHEP1 is highly expressed in blood vessels in mouse breast cancer models. In contrast, BCAR3 and NSP1 are more highly expressed than SHEP1 in breast cancer cells. These expression patterns suggest differential roles for the three genes during breast cancer progression in either the vasculature or the tumor cells.
Collapse
Affiliation(s)
| | - Séverine Roselli
- The Burnham Institute for Medical Research, La Jolla, California 92037
| | - Robert G Oshima
- The Burnham Institute for Medical Research, La Jolla, California 92037
- Pathology Department, University of California San Diego, La Jolla, California 92093
| | - Elena B Pasquale
- The Burnham Institute for Medical Research, La Jolla, California 92037
- Pathology Department, University of California San Diego, La Jolla, California 92093
- Correspondence: Elena B. Pasquale, The Burnham Institute for Medical Research, 10901 N. Torrey Pines Rd., La Jolla CA 92037, 858 646 3131 (telephone), 858 646 3199 (FAX),
| |
Collapse
|
149
|
Dow LE, Humbert PO. Polarity Regulators and the Control of Epithelial Architecture, Cell Migration, and Tumorigenesis. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 262:253-302. [PMID: 17631191 DOI: 10.1016/s0074-7696(07)62006-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A large body of work on Drosophila melanogaster has identified and characterized a number of key polarity regulators, many of which are required for the regulation of multiple other processes including proliferation, migration, invasion, and tumorigenesis. Humans possess either single or multiple homologues of each of the Drosophila polarity proteins, and in most cases, these are highly conserved between species, implying an important and conserved function for each of the polarity complexes. Recent studies in cultured mammalian epithelial cells have shed some light on the requirement for the polarity complexes in the regulation of epithelial cell function, including an unexpected link to the regulation of directed cell migration. However, many questions still remain regarding the molecular mechanisms of polarity regulation and whether disruption of polarity protein function is an important step in the development of human cancers. Here we will review what is currently understood about the regulation of cell polarity, migration, and invasion and the level of functional conservation between Drosophila and mammalian tissues. Particular reference will be made as to how the Scribble and Par polarity complexes may be involved in the regulation of apical-basal polarity, migration, and tumorigenesis.
Collapse
Affiliation(s)
- Lukas E Dow
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Center, Melbourne, Australia
| | | |
Collapse
|
150
|
Fant M, Barerra-Saldana H, Dubinsky W, Poindexter B, Bick R. The PLAC1 protein localizes to membranous compartments in the apical region of the syncytiotrophoblast. Mol Reprod Dev 2007; 74:922-9. [PMID: 17186554 DOI: 10.1002/mrd.20673] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
PLAC1 is a trophoblast-specific gene that maps to a locus on the X-chromosome important to placental development. We have previously shown that PLAC1 gene expression is linked to trophoblast differentiation. The objective of this study was to define the localization of the PLAC1 polypeptide as a prerequisite to understanding its function. Polyclonal antibodies specific for the putative PLAC1 polypeptide were generated. The subcellular localization of PLAC1 in the trophoblast was examined by immunohistochemical analysis of human placenta complemented by immunoblot analysis of subcellular fractions. Brightfield immunohistochemical analysis of placental tissue indicated that the PLAC1 protein localizes to the differentiated syncytiotrophoblast in the apical region of the cell. Deconvlution immunofluorescence microscopy confirmed localization to the apical region of the syncytiotrophoblast. Its distribution included both intracellular compartments as well as loci in close association with the maternal-facing, microvillous brush border membrane (MVM). These findings were supported by immunoblot analysis of subcellular fractions. A 30 kDa band was associated with the microsomal fraction of placental lysates but not the mitochondrial, nuclear, or soluble fractions, suggesting PLAC1 is targeted to a membrane location. Plasma membranes were obtained from the fetal-facing, basal surface (BM) and the maternal-facing, MVM of the syncytiotrophoblast membrane. PLAC1 immunoreactivity was only detected in membrane fractions derived from the apical MVM consistent with immunohistochemical analyses. These data demonstrate that the PLAC1 protein is restricted primarily to the differentiated trophoblast, localizing to intracellular membranous compartment(s) in the apical region of the syncytiotrophoblast and associated with its apical, microvillous membrane surface.
Collapse
Affiliation(s)
- Michael Fant
- Department of Pediatrics, University of Texas Health Science Center, Houston, Texas 77030, USA.
| | | | | | | | | |
Collapse
|