101
|
Life Cycle Assessment and Preliminary Cost Evaluation of a Smart Packaging System. SUSTAINABILITY 2022. [DOI: 10.3390/su14127080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Smart food packaging (SP) is an innovative packaging system that can extend the shelf life of the product and reduce food waste. The objective of the study is the estimation of the environmental and economic sustainability of the overall life cycle of a SP including a chemical sensor able to detect modifications in the concentration of CO2, which is an indicator of food spoilage, and encapsulated oregano essential oil (OEO), capable of inhibiting the microbial growth. For this purpose, a life cycle assessment (LCA), following the ISO 14040 series and ReCiPe methodology, and an economic evaluation of SP, were performed. The environmental footprint (EF) of SP was compared to that of a conventional packaging (CP) in terms of packaging production, use and end of life (EoL) of both the packaging and the contained food product. The results demonstrated that the production of SP burdened by 67% the impact category of climate change. However, when adapting four use and EoL scenarios, namely the CP generates 30% food waste, whereas SP can generate 5% (optimistic scenario), 10% (realistic) or 20% (conservative) waste, SP proved to be environmentally superior in most impact categories.
Collapse
|
102
|
Boukoufi C, Boudier A, Maincent P, Vigneron J, Clarot I. Food-inspired innovations to improve the stability of active pharmaceutical ingredients. Int J Pharm 2022; 623:121881. [PMID: 35680111 DOI: 10.1016/j.ijpharm.2022.121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022]
Abstract
Food-processing and pharmaceutical industries share a lot of stability issues against the same physical, chemical, and microbiological phenomena. They also share some solutions to improve the stability as the use of preservatives and packaging. Ecological concerns lead to the development of tremendous innovations in food. Some of these innovations could also be beneficial in the pharmaceutical domain. The objective of this review is to evaluate the potential application of these findings in the pharmaceutical field and the main limits in terms of toxicity, environmental, economic and regulatory issues. The principal factors influencing the shelf-life were highlighted through the description of the stability studies usually performed in the pharmaceutical industry (according to European guidelines). To counter those factors, different solutions are currently available as preservatives and specific packaging. They were described and debated with an overview of recent food innovations in each field. The limits of the current solutions in the pharmaceutical field and the innovation in the food field have inspired a critical pharmaceutical outlook. The active and intelligent packaging for active pharmaceutical ingredients of the future is imagined.
Collapse
Affiliation(s)
- Célia Boukoufi
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France; Pharmacy Department, University Hospital, 54511 Vandoeuvre-lès-Nancy, France
| | | | | | - Jean Vigneron
- Pharmacy Department, University Hospital, 54511 Vandoeuvre-lès-Nancy, France
| | - Igor Clarot
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France.
| |
Collapse
|
103
|
Athira VA, Gokulvel E, Nandhu Lal AM, Venugopalan VV, Rajkumar, Venkatesh T. Advances in drying techniques for retention of antioxidants in agro produces. Crit Rev Food Sci Nutr 2022; 63:10849-10865. [PMID: 35653131 DOI: 10.1080/10408398.2022.2082371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Antioxidants are compounds that are essential for the human body which prevents cell from disease causing free radicals. Antioxidants are present in a wide range of fruits, vegetables, and spices. However, a considerable amount of antioxidants is lost during the post-harvest drying operation of agro produces for their shelf-life enhancement. Hence, retention of antioxidants becomes utmost importance in preserving the nutritional aspects of fruits and vegetables. Compared to conventional hot air drying, methods like freeze drying, vacuum drying, and dehumidified drying helps in the retention of antioxidants. However, the drawbacks prevalent in current drying practices, such as high-power consumption and high capital cost, could be eliminated by adopting novel drying mechanisms. This review focuses on various pretreatment methods like ultra-sonication, high pressure processing, pulsed electric field and ethanol treatment prior to drying operation helps in enhancing the drying efficiency with maximum retention of antioxidants. In addition, hybrid drying technologies such as microwave assisted drying, IR-radiated drying and electro-magnetic assisted drying methods also could significantly improve the retention of antioxidants.HIGHLIGHTSDrying is the most commonly adopted unit operation for enhancing the shelf life of perishable agro produces.However, drying is accompanied by loss of bioactive, color, texture, and sensory attributes.Compared to conventional drying techniques like hot air drying, methods like freeze drying, vacuum drying and dehumidified drying helps in the retention of antioxidants present in agro/food produces.Pretreatment methods like Ozonation, ultra-sonication, and UV radiation prior to drying are also found to improve the drying performance with good retention of antioxidants.Recent developments like microwave-assisted and IR-assisted drying methods perform well in the retention of antioxidants with less energy consumption.
Collapse
Affiliation(s)
- V A Athira
- Agro Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
| | - E Gokulvel
- Agro Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
| | - A M Nandhu Lal
- Agro Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
| | - V V Venugopalan
- Agro Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
| | - Rajkumar
- Research Planning and Business Development, CSIR - National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
| | - T Venkatesh
- Agro Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
104
|
Almasi H, Forghani S, Moradi M. Recent advances on intelligent food freshness indicators; an update on natural colorants and methods of preparation. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100839] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
105
|
Bankole OE, Verma DK, Chávez González ML, Ceferino JG, Sandoval-Cortés J, Aguilar CN. Recent trends and technical advancements in biosensors and their emerging applications in food and bioscience. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
106
|
Zheng Y, Li X, Huang Y, Li H, Chen L, Liu X. Two colorimetric films based on chitin whiskers and sodium alginate/gelatin incorporated with anthocyanins for monitoring food freshness. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107517] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
107
|
Rodrigues Arruda T, Campos Bernardes P, Robledo Fialho e Moraes A, de Fátima Ferreira Soares N. Natural bioactives in perspective: The future of active packaging based on essential oils and plant extracts themselves and those complexed by cyclodextrins. Food Res Int 2022; 156:111160. [DOI: 10.1016/j.foodres.2022.111160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
|
108
|
Engel JB, Luchese CL, Tessaro IC. Making the reuse of agro-industrial wastes a reality for starch-based packaging sector: A storage case study of carrot cake and cherry tomatoes. Int J Biol Macromol 2022; 206:740-749. [DOI: 10.1016/j.ijbiomac.2022.03.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 11/05/2022]
|
109
|
Properties and Applications of Intelligent Packaging Indicators for Food Spoilage. MEMBRANES 2022; 12:membranes12050477. [PMID: 35629803 PMCID: PMC9145781 DOI: 10.3390/membranes12050477] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023]
Abstract
Food packaging plays a vital role in the food supply chain by acting as an additional layer to protect against food contamination, but the main function of traditional conventional packaging is only to isolate food from the outside environment, and cannot provide related information about food spoilage. Intelligent packaging can feel, inspect, and record external or internal changes in food products to provide further information about food quality. Importantly, intelligent packaging indicators will account for a significant proportion of the food industry’s production, with promising application potential. In this review, we mainly summarize and review the upcoming progress in the classification, preparation, and application of food packaging indicators. Equally, the feasibility of 3D printing in the preparation of intelligent food packaging indicators is also discussed in detail, as well as the limitations and future directions of smart food packaging. Taken together, the information supported in this paper provides new insights into monitoring food spoilage and food quality.
Collapse
|
110
|
Zheng L, Liu L, Yu J, Shao P. Novel trends and applications of natural pH-responsive indicator film in food packaging for improved quality monitoring. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108769] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
111
|
Novel aldehyde sensitive bio-based colorimetric film for kiwi fruit freshness monitoring. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
112
|
Hashim SBH, Elrasheid Tahir H, Liu L, Zhang J, Zhai X, Ali Mahdi A, Nureldin Awad F, Hassan MM, Xiaobo Z, Jiyong S. Intelligent colorimetric pH sensoring packaging films based on sugarcane wax/agar integrated with butterfly pea flower extract for optical tracking of shrimp freshness. Food Chem 2022; 373:131514. [PMID: 34802808 DOI: 10.1016/j.foodchem.2021.131514] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/30/2022]
Abstract
A novel pH colorimetric film was prepared from various sugarcane wax (SW) concentrations (1, 1.5 and 2% w/v) on agar matrix (Agr) combined with butterfly pea flower (BF) extract for monitoring the shrimp freshness. A combination of BF anthocyanins with SW as lipid (hydrophobic) showed different changes in color under acidic conditions (pH 2-6) with slight changes under alkalinity (pH 7-12), which matched the visual color changes of two different ammonia vapors (50 and 100 mmol/l). FTIR, XRD spectra, and SEM micrographs revealed that SW was effectively fixed into the Agr-BF network during the film-forming process. The different homogenized SW films enhanced the physical and mechanical properties without significant differences in elongation and water vapor permeability. Remarkably, SW films displayed complete protection against UV-vis light (0%) and valuable reduction in visible light. This study presents SW colorimetric films as promising natural derivatives for smart packaging in tracking food freshness.
Collapse
Affiliation(s)
- Sulafa B H Hashim
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; Department of Food Technology, Faculty of Agricultural Technology and Fish Sciences, Alneelain University, Khartoum, Sudan
| | - Haroon Elrasheid Tahir
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Li Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Junjun Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xiaodong Zhai
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Amer Ali Mahdi
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | | | - Mahmoud M Hassan
- Department of Food Technology, Faculty of Agricultural Technology and Fish Sciences, Alneelain University, Khartoum, Sudan
| | - Zou Xiaobo
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Shi Jiyong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| |
Collapse
|
113
|
Kasaai MR. Bio-nano-composites containing at least two components, chitosan and zein, for food packaging applications: A review of the nano-composites in comparison with the conventional counterparts. Carbohydr Polym 2022; 280:119027. [PMID: 35027129 DOI: 10.1016/j.carbpol.2021.119027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022]
Abstract
Both chitosan and zein are safe industrial biopolymers for the 21St century, respecting environmentally concerns. This review mainly is focused on preparations, properties and applications of a promising food packaging material, chitosan-zein nano-composite (NC). The properties and applications of the NCs were compared with their conventional counterparts. The structure of chitosan- zein composites was proposed. A procedure for preparations of conventional and nano zein-chitosan composites was proposed. The sizes of composites depend on molecular weight of chitosan and zein, the ratio of chitosan/zein, and pH of chitosan-zein solutions. The NCs had superior mechanical, antimicrobial, antioxidant, and barrier properties compared with the conventional ones. The properties of the composites were further improved by introduction of bioactive compounds, fillers or plasticizers. The composites have potential to employ as coatings/packaging materials to protect mushroom, meats, and fresh fruits and vegetables.
Collapse
Affiliation(s)
- Mohammad Reza Kasaai
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Khazar Abad Road, Km. 9, P.O. Box, 578, Sari, Mazandaran, Iran.
| |
Collapse
|
114
|
Sadeghi K, Kim J, Seo J. Packaging 4.0: The threshold of an intelligent approach. Compr Rev Food Sci Food Saf 2022; 21:2615-2638. [DOI: 10.1111/1541-4337.12932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/04/2022] [Accepted: 02/04/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Kambiz Sadeghi
- Department of Packaging Yonsei University Wonju‐si Gangwon‐do South Korea
| | - Jongkyoung Kim
- Korea Conformity Laboratories Gumcheon‐gu Seoul South Korea
| | - Jongchul Seo
- Department of Packaging Yonsei University Wonju‐si Gangwon‐do South Korea
| |
Collapse
|
115
|
Flórez M, Guerra-Rodríguez E, Cazón P, Vázquez M. Chitosan for food packaging: Recent advances in active and intelligent films. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107328] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
116
|
Kan J, Liu J, Xu F, Yun D, Yong H, Liu J. Development of pork and shrimp freshness monitoring labels based on starch/polyvinyl alcohol matrices and anthocyanins from 14 plants: A comparative study. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107293] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
117
|
|
118
|
Huang H, Song Y, Zhang Y, Li Y, Li J, Lu X, Wang C. Electrospun Nanofibers: Current Progress and Applications in Food Systems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1391-1409. [PMID: 35089013 DOI: 10.1021/acs.jafc.1c05352] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrospinning has the advantages of simple manufacturing equipment, a low spinning cost, wide range of spinnable materials, and a controllable mild process, which can continuously fabricate submicron or nanoscale ultrafine polymer fibers without high temperature or high pressure. The obtained nanofibrous films may have a large specific surface area, unique pore structure, and easy-to-modify surface characteristics. This review briefly introduces the types and fiber structures of electrospinning and summarizes the applications of electrospinning for food production (e.g., delivery systems for functional food, filtration of beverages), food packaging (e.g., intelligent packaging, antibacterial packaging, antioxidant packaging), and food analysis (e.g., pathogen detection, antibiotic detection, pesticide residue detection, food compositions analysis), focusing on the advantages of electrospinning applications in food systems. Furthermore, the limitations and future research directions of the technique are discussed.
Collapse
Affiliation(s)
- Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Yudong Song
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Yaqiong Zhang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongxin Li
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Jiali Li
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
119
|
Azari A, Ahari H, Anvar AA. Increased shelf life of Oncorhynchus mykiss (Rainbow trout) through Cu-Clay nanocomposites. Food Sci Biotechnol 2022; 31:295-309. [PMID: 35273820 PMCID: PMC8885968 DOI: 10.1007/s10068-022-01031-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/30/2021] [Accepted: 01/06/2022] [Indexed: 11/04/2022] Open
Abstract
Microbial growth is widely responsible for shortened shelf life of cold water-living fish products. So, it seems that current chemical-based food packaging has no acceptable efficacy, and food industrialists tend to the usage of more novel approaches like active food packaging. Among them, there is a great research interest in nanotechnology-emerging approaches. This study aimed to investigate the anti-microbial efficacies of Polyethylene/CuNP/nanoclay nanocomposites to enhance the shelf life and physiochemical features of rainbow trout. Three main nanocomposites with various concentrations of Cu and clay nanoparticles were examined. SEM, XRD, and EDX (as physiochemical analysis), disk diffusion (as antimicrobial assays), total volatile nitrogen (TVB-N), and peroxide value (PV) (as biochemical parameters) were measured. Based on the results, nanocomposites could reduce the microorganism growth rate by reducing the number of colonies (33.3%), inhibitory activities against both gram-positive (8 mm) and gram-negative bacteria (10 mm), maintenance of TVB-N (42% reduction), and PV (44% reduction) below the standard range. To sum up, these new nanocomposites can be a good candidate to enhance the shelf life of Rainbow Trout. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01031-0.
Collapse
Affiliation(s)
- Armin Azari
- grid.411463.50000 0001 0706 2472Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Ahari
- grid.411463.50000 0001 0706 2472Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Ali Anvar
- grid.411463.50000 0001 0706 2472Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
120
|
V A, Badwaik LS. Recent advancement in improvement of properties of polysaccharides and proteins based packaging film with added nanoparticles: A review. Int J Biol Macromol 2022; 203:515-525. [PMID: 35122798 DOI: 10.1016/j.ijbiomac.2022.01.181] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 01/28/2023]
Abstract
Innovations and research on packaging materials are in a fast-growing stage to make them suitable for advanced packaging innovations and sustainability efforts. Biological macromolecules like algal polysaccharides, chitosan, gelatin and others like starch are explored for developing eco-friendly packaging alternatives. Compared to conventional synthetic polymers they have performance limitations that are tried to be overcome with added fillers. The unique properties of fillers in the nano range are explored for this. They can improve the overall property of polymer matrixes by improving barrier properties to oxygen and water vapour, increasing stability and mechanical strength. Exploring the possibilities of new nanoparticle-polymer combinations can bring novel properties in the packaging industry that can be used in smart and intelligent packaging areas. Thus studies on nanocomposite films from polysaccharides, protein compounds and nanoparticles can help to overcome the limitations of bio-polymers for novel packaging applications. This review covers the effect of nanoparticles on the optical, morphological, barrier, thermal and mechanical properties of polysaccharides and proteins based packaging film, along with the types of nanoparticles used in the composite films.
Collapse
Affiliation(s)
- Akhila V
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Napaam 784028, Assam, India
| | - Laxmikant S Badwaik
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Napaam 784028, Assam, India.
| |
Collapse
|
121
|
Halochromic and antioxidant capacity of smart films of chitosan/chitin nanocrystals with curcuma oil and anthocyanins. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
122
|
A Data-Driven Packaging Efficiency Optimization Method for a Low Carbon System in Agri-Products Cold Chain. SUSTAINABILITY 2022. [DOI: 10.3390/su14020858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The of monitoring the Internet of Things (IoT) in the cold chain allows process data, including packaging data, to be more easily accessible. Proper optimization modelling is the core driving force towards the green and low-carbon operation of cold chain logistics, laying the necessary foundation for the development of a data-driven modelling system. Since efficient packaging is necessary for loss control in the cold chain, its final efficiency during circulation is important for realizing continuous loss prevention and efficient supply. Thus, it is urgent to determine how to utilize these continuously acquired data and how to formulate a more accurate packaging efficiency control methodology in the agri-products cold chain. Through continuous monitoring, we examined the feasibility of this topic by focusing on the concept of data-driven evaluation modelling and the dynamic formation mechanism of comprehensive packaging efficiency in cold chain logistics. The packaging efficiency in the table grape cold chain was used as an example to evaluate the comprehensive efficiency evaluation index system and data-driven evaluation framework proposed in this paper. Our results indicate that the established methodology can adapt to the continuity of comprehensive packaging efficiency, also reflecting the comprehensive efficiency evaluation of the packaging for different times and distances. Through the evaluation of our results, the differences and the dynamic processes between different final packaging efficiencies at different moments are effectively displayed. Thus, the continuous improvement of a low-carbon system in cold chain logistics could be realized.
Collapse
|
123
|
Magar MH, Adole VA, Waghchaure RH, Pawar TB. Efficient photocatalytic degradation of eosin blue dye and antibacterial study using nanostructured zinc oxide and nickel modified zinc oxide. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
124
|
Fernandes GDJC, Silva KF, Marques CS, Benedito LZ, Cabral BR, Campelo PH, Borges SV, Marconcini JM, Magriotis ZM, Claro PIC, Dias MV. Development of an SO2 indicator label applied to shrimp. POLIMEROS 2022. [DOI: 10.1590/0104-1428.20220033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
125
|
Siddiqui J, Taheri M, Alam AU, Deen MJ. Nanomaterials in Smart Packaging Applications: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2101171. [PMID: 34514693 DOI: 10.1002/smll.202101171] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/01/2021] [Indexed: 05/22/2023]
Abstract
Food wastage is a critical and world-wide issue resulting from an excess of food supply, poor food storage, poor marketing, and unstable markets. Since food quality depends on consumer standards, it becomes necessary to monitor the quality to ensure it meets those standards. Embedding sensors with active nanomaterials in food packaging enables customers to monitor the quality of their food in real-time. Though there are many different sensors that can monitor food quality and safety, pH sensors and time-temperature indicators (TTIs) are the most critical metrics in indicating quality. This review showcases some of the recent progress, their importance, preconditions, and the various future needs of pH sensors and TTIs in food packaging for smart sensors in food packaging applications. In discussing these topics, this review includes the materials used to make these sensors, which vary from polymers, metals, metal-oxides, carbon-based materials; and their modes of fabrication, ranging from thin or thick film deposition methods, solution-based chemistry, and electrodeposition. By discussing the use of these materials, novel fabrication process, and problems for the two sensors, this review offers solutions to a brighter future for the use of nanomaterials for pH indicator and TTIs in food packaging applications.
Collapse
Affiliation(s)
- Junaid Siddiqui
- Electrical and Computer Engineering (ECE) Department, McMaster University, 1280 Main Street W, Hamilton, Ontario, L8S 4K1, Canada
| | - Mahtab Taheri
- Electrical and Computer Engineering (ECE) Department, McMaster University, 1280 Main Street W, Hamilton, Ontario, L8S 4K1, Canada
| | - Arif Ul Alam
- Electrical and Computer Engineering (ECE) Department, McMaster University, 1280 Main Street W, Hamilton, Ontario, L8S 4K1, Canada
| | - M Jamal Deen
- Electrical and Computer Engineering (ECE) Department, McMaster University, 1280 Main Street W, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
126
|
Pasupuleti VR. Nanoscience and nanotechnology advances in food industry. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
127
|
Ren QS, Fang K, Yang XT, Han JW. Ensuring the quality of meat in cold chain logistics: A comprehensive review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
128
|
Grzebieniarz W, Nowak N, Khachatryan G, Krzan M, Krystyjan M, Kosiński J, Khachatryan K. The Preparation and Characterization of Quantum Dots in Polysaccharide Carriers (Starch/Chitosan) as Elements of Smart Packaging and Their Impact on the Growth of Microorganisms in Food. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7732. [PMID: 34947326 PMCID: PMC8704001 DOI: 10.3390/ma14247732] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 12/26/2022]
Abstract
Nanocomposite materials are increasingly commonly used to ensure food safety and quality. Thanks to their unique properties, stemming from the presence of nanoparticles, they are used to develop advanced sensors and biosensors, e.g., for various harmful substances, heavy metals, microorganism growth, and environmental changes in food products. The aim of this study is to produce novel films based on natural resources-potato starch and chitosan-incorporating generated quantum dots of zinc sulfide and cadmium sulfide. The biocomposites were subjected to the following assays: FTIR spectroscopy, UV-VIS spectroscopy, photoluminescence spectroscopy, and SEM/TEM spectroscopy. Their mechanical properties were also analyzed, a colorimetric analysis was performed, and the water content, solubility, and water absorption capacity were determined. A storage test was also performed, using poultry meat covered with the produced films, to assess the microbiological quality. The results confirmed the presence of the quantum dots in the starch-chitosan matrix. The unique optical properties of the films were also demonstrated. It was shown that the composites with nanoparticles limited the growth of selected microorganisms in poultry meat. The food storage time was found to have an impact on the fluorescent properties of the composites. The results point to the possibility of using the produced films as active and smart packaging.
Collapse
Affiliation(s)
- Wiktoria Grzebieniarz
- Faculty of Food Technology, University of Agriculture in Krakow, Balicka Str. 122, 30-149 Krakow, Poland; (W.G.); (N.N.); (M.K.); (J.K.); (K.K.)
| | - Nikola Nowak
- Faculty of Food Technology, University of Agriculture in Krakow, Balicka Str. 122, 30-149 Krakow, Poland; (W.G.); (N.N.); (M.K.); (J.K.); (K.K.)
| | - Gohar Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Balicka Str. 122, 30-149 Krakow, Poland; (W.G.); (N.N.); (M.K.); (J.K.); (K.K.)
| | - Marcel Krzan
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek Str. 8, 30-239 Krakow, Poland
| | - Magdalena Krystyjan
- Faculty of Food Technology, University of Agriculture in Krakow, Balicka Str. 122, 30-149 Krakow, Poland; (W.G.); (N.N.); (M.K.); (J.K.); (K.K.)
| | - Jarosław Kosiński
- Faculty of Food Technology, University of Agriculture in Krakow, Balicka Str. 122, 30-149 Krakow, Poland; (W.G.); (N.N.); (M.K.); (J.K.); (K.K.)
| | - Karen Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Balicka Str. 122, 30-149 Krakow, Poland; (W.G.); (N.N.); (M.K.); (J.K.); (K.K.)
| |
Collapse
|
129
|
Zhou YH, Mujumdar AS, Vidyarthi SK, Zielinska M, Liu H, Deng LZ, Xiao HW. Nanotechnology for Food Safety and Security: A Comprehensive Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2013872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yu-Hao Zhou
- College of Engineering, China Agricultural University, Beijing, China
| | - Arun S. Mujumdar
- Department of Bioresource Engineering, McGill University, Quebec, Canada
| | - Sriram K. Vidyarthi
- Department of Biological and Agricultural Engineering, University of California, Davis, California, USA
| | - Magdalena Zielinska
- Department of Systems Engineering, University of Warmia and Mazury in Olsztyn, Poland
| | - Huilin Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Li-Zhen Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
130
|
Weligama Thuppahige VT, Karim MA. A comprehensive review on the properties and functionalities of biodegradable and semibiodegradable food packaging materials. Compr Rev Food Sci Food Saf 2021; 21:689-718. [DOI: 10.1111/1541-4337.12873] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 12/30/2022]
Affiliation(s)
- Vindya Thathsaranee Weligama Thuppahige
- Department of Food Science and Technology Faculty of Agriculture, University of Ruhuna Kamburupitiya Sri Lanka
- School of Mechanical, Medical and Process Engineering Queensland University of Technology Brisbane Australia
| | - Md Azharul Karim
- School of Mechanical, Medical and Process Engineering Queensland University of Technology Brisbane Australia
| |
Collapse
|
131
|
Azeredo HM, Correa DS. Smart choices: Mechanisms of intelligent food packaging. Curr Res Food Sci 2021; 4:932-936. [PMID: 34917950 PMCID: PMC8646162 DOI: 10.1016/j.crfs.2021.11.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/19/2022] Open
Abstract
Intelligent food packaging is usually designed to monitor the state of the food itself and/or the environment around it, as well as the interactions between them, providing customers with information on food quality and/or safety through a variety of signals. They involve indicators (which inform by direct visual changes about specific properties related to food quality) and sensors (which detect specific analytes by using receptors, transducers, and signal processing electronics). A third type of intelligent packaging is known as data carriers, which are not typically used for information on food quality, but rather to track the movement of food along the food supply chain. In this graphical review, the basic mechanisms of intelligent food packaging systems are presented, as well as their main applications, with particular emphasis on those focused on food quality monitoring.
Collapse
Affiliation(s)
- Henriette M.C. Azeredo
- Embrapa Agroindústria Tropical, R. Dra. Sara Mesquita, 2270, 60511-110, Fortaleza, CE, Brazil
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, R. 15 de Novembro, 1452, Caixa Postal 741, 13560-970, São Carlos, SP, Brazil
| | - Daniel Souza Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, R. 15 de Novembro, 1452, Caixa Postal 741, 13560-970, São Carlos, SP, Brazil
| |
Collapse
|
132
|
Cheng H, Xu H, Julian McClements D, Chen L, Jiao A, Tian Y, Miao M, Jin Z. Recent advances in intelligent food packaging materials: Principles, preparation and applications. Food Chem 2021; 375:131738. [PMID: 34922277 DOI: 10.1016/j.foodchem.2021.131738] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 11/24/2022]
Abstract
Traditionally, food packaging is used for improving food quality and providing consumers with descriptions of products. A new generation of intelligent ("smart") packaging materials is being developed to continuously monitor the properties of packaged foods and provide real-time information about their maturity, quality, and safety. In this paper, recent research in the development, properties, and applications of intelligent food packaging materials is summarized. Initially, we review the different sensing methods that can be used to detect alterations in food properties, such as those based on changes in time, temperature, humidity, oxygen levels, pH, chemical composition, or microbial contamination. The different approaches that can be used to design intelligent packaging materials are then highlighted, including films, bar codes, and labels. A number of applications of these packaging materials are then discussed to demonstrate their potential in the food industry. Finally, the challenges and future directions of food packaging are discussed.
Collapse
Affiliation(s)
- Hao Cheng
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Hao Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | | | - Long Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yaoqi Tian
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ming Miao
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
133
|
Zhang X, Ismail BB, Cheng H, Jin TZ, Qian M, Arabi SA, Liu D, Guo M. Emerging chitosan-essential oil films and coatings for food preservation - A review of advances and applications. Carbohydr Polym 2021; 273:118616. [PMID: 34561014 DOI: 10.1016/j.carbpol.2021.118616] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/28/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022]
Abstract
With the rising demand for fresh and ready-to-eat foods, antimicrobial packaging has been developed to control or prevent microbial growth as well as maintain food quality and safety. Chitosan is an advanced biomaterial for antimicrobial packaging to meet the growing needs of safe and biodegradable packaging. The application of natural essential oils as antimicrobial agents effectively controls the growth of spoilage and pathogenic microbes. Thus, chitosan edible coatings and films incorporated with essential oils have expanded the general applications of antimicrobial packaging in food products. This review summarized the effect of essential oils on modifying the physicochemical characteristics of chitosan-based films. Notably, the antimicrobial efficacy of the developed composite films or coatings was highlighted. The advances in the preparation methods and application of chitosan films were also discussed. Broadly, this review will promote the potential applications of chitosan-essential oils composite films or coatings in antimicrobial packaging for food preservation.
Collapse
Affiliation(s)
- Xinhui Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Tony Z Jin
- U. S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Mengyan Qian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | | | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
134
|
Shao P, Liu L, Yu J, Lin Y, Gao H, Chen H, Sun P. An overview of intelligent freshness indicator packaging for food quality and safety monitoring. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
135
|
Roy RG, Kumar A. The mediating role of parental playfulness on parent–child relationship and competence among parents of children with ASD. ADVANCES IN AUTISM 2021. [DOI: 10.1108/aia-02-2021-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
The difficulties of a child diagnosed with autism spectrum disorder (ASD) can lead to behaviours that are quite challenging for parents to understand and address. Most of the parental studies of ASD focus on the challenges faced by the parents. This study aims to adopt a strength-based model that investigates the mediating role of parental playfulness in the association between parent–child relationship and parental competence.
Design/methodology/approach
This study is a quantitative study that adopts a correlational research design. The mediation analysis explores the role of parental playfulness as a mediator in the association between parent–child relationship and parental competence. The sample consisted of 120 parents of children diagnosed with ASD from India, selected using a purposive sampling technique.
Findings
The mediation analysis results indicate that playfulness among parents of children with ASD was found to function as a partial mediator in the relationship between parent–child relationship and parental competence. This could suggest that more playful parents have better parent–child relationships and are competent in parenting.
Research limitations/implications
These findings have importance in understanding the role of playful interaction on parent–child relationships and parenting competence, having implications for further research. Enabling playfulness in parenting will enhance children and parents to promote their relationship and thus feel competent to bring positive light in their lives.
Practical implications
Most often, the clinicians are concerned with addressing only the autistic symptoms; it is also essential to look into parental well-being. Practical playful interaction training should help parents establish a rapport, understand, adjust and adapt with their child.
Social implications
Practical intervention and training plans can be suggested to all family members to improve the condition of the child and the family’s general well-being. As the study focused on the clinical population, the findings could provide useful inputs for mental health professionals and counsellors.
Originality/value
There are some theoretical and empirical evidence that support positive outcomes of playfulness on personal well-being (Atzaba Poria, in press; Yue et al., 2016; Proyer, 2014). Although there has been some interest in the impact of children’s playfulness on their development (Bundy, 1997), little is known about the influence of parental playfulness on parents and children. Therefore, addressing these gaps, this empirical study focusses on investigating the role of parental playfulness in parent–child relationship and parental competence, rather than considering external challenges of parents based on the ASD child’s behavioural challenges and autistic features.
Collapse
|
136
|
Electrospun nanofibers as food freshness and time-temperature indicators: A new approach in food intelligent packaging. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102804] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
137
|
Machiels J, Appeltans R, Bauer DK, Segers E, Henckens Z, Van Rompaey W, Adons D, Peeters R, Geiβler M, Kuehnoel K, Tempel L, Weissbach T, Hübler AC, Verma A, Ferraris E, Deferme W, Buntinx M. Screen Printed Antennas on Fiber-Based Substrates for Sustainable HF RFID Assisted E-Fulfilment Smart Packaging. MATERIALS 2021; 14:ma14195500. [PMID: 34639912 PMCID: PMC8509514 DOI: 10.3390/ma14195500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022]
Abstract
Intelligent packaging is an emerging technology, aiming to improve the standard communication function of packaging. Radio frequency identification (RFID) assisted smart packaging is of high interest, but the uptake is limited as the market needs cost-efficient and sustainable applications. The integration of screen printed antennas and RFID chips as smart labels in reusable cardboard packaging could offer a solution. Although paper is an interesting and recyclable material, printing on this substrate is challenging as the ink conductivity is highly influenced by the paper properties. In this study, the best paper/functional silver ink combinations were first selected out of 76 paper substrates based on the paper surface roughness, air permeance, sheet resistance and SEM characterization. Next, a flexible high frequency RFID chip (13.56 MHz) was connected on top of screen printed antennas with a conductive adhesive. Functional RFID labels were integrated in cardboard packaging and its potential application as reusable smart box for third party logistics was tested. In parallel, a web-based software application mimicking its functional abilities in the logistic cycle was developed. This multidisciplinary approach to developing an easy-scalable screen printed antenna and RFID-assisted smart packaging application is a good example for future implementation of hybrid electronics in sustainable smart packaging.
Collapse
Affiliation(s)
- Jarne Machiels
- Materials and Packaging Research & Services, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 27, B-3590 Diepenbeek, Belgium; (J.M.); (E.S.); (Z.H.); (W.V.R.); (D.A.); (R.P.)
- Functional Materials Engineering, Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium;
- IMEC vzw, Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | | | - Dieter Klaus Bauer
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany;
| | - Elien Segers
- Materials and Packaging Research & Services, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 27, B-3590 Diepenbeek, Belgium; (J.M.); (E.S.); (Z.H.); (W.V.R.); (D.A.); (R.P.)
- Functional Materials Engineering, Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium;
| | - Zander Henckens
- Materials and Packaging Research & Services, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 27, B-3590 Diepenbeek, Belgium; (J.M.); (E.S.); (Z.H.); (W.V.R.); (D.A.); (R.P.)
- Functional Materials Engineering, Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium;
| | - Wouter Van Rompaey
- Materials and Packaging Research & Services, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 27, B-3590 Diepenbeek, Belgium; (J.M.); (E.S.); (Z.H.); (W.V.R.); (D.A.); (R.P.)
- Functional Materials Engineering, Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium;
| | - Dimitri Adons
- Materials and Packaging Research & Services, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 27, B-3590 Diepenbeek, Belgium; (J.M.); (E.S.); (Z.H.); (W.V.R.); (D.A.); (R.P.)
| | - Roos Peeters
- Materials and Packaging Research & Services, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 27, B-3590 Diepenbeek, Belgium; (J.M.); (E.S.); (Z.H.); (W.V.R.); (D.A.); (R.P.)
| | - Marie Geiβler
- Papiertechnische Stiftung (PTS), Pirnaer Straβe 37, 01809 Heidenau, Germany; (M.G.); (K.K.); (L.T.)
| | - Katrin Kuehnoel
- Papiertechnische Stiftung (PTS), Pirnaer Straβe 37, 01809 Heidenau, Germany; (M.G.); (K.K.); (L.T.)
| | - Lydia Tempel
- Papiertechnische Stiftung (PTS), Pirnaer Straβe 37, 01809 Heidenau, Germany; (M.G.); (K.K.); (L.T.)
| | - Thomas Weissbach
- Institute for Print and Media Technology, Technische Universität Chemnitz, Reichenhainer Str. 70, 09126 Chemnitz, Germany; (T.W.); (A.C.H.)
| | - Arved Carl Hübler
- Institute for Print and Media Technology, Technische Universität Chemnitz, Reichenhainer Str. 70, 09126 Chemnitz, Germany; (T.W.); (A.C.H.)
| | - Akash Verma
- Manufacturing Processes and Systems, Department of Mechanical Engineering, KU Leuven, J. D. Nayerlaan 5, B-2860 Sint-Katelijne Waver, Belgium; (A.V.); (E.F.)
| | - Eleonora Ferraris
- Manufacturing Processes and Systems, Department of Mechanical Engineering, KU Leuven, J. D. Nayerlaan 5, B-2860 Sint-Katelijne Waver, Belgium; (A.V.); (E.F.)
| | - Wim Deferme
- Functional Materials Engineering, Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium;
- IMEC vzw, Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Mieke Buntinx
- Materials and Packaging Research & Services, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 27, B-3590 Diepenbeek, Belgium; (J.M.); (E.S.); (Z.H.); (W.V.R.); (D.A.); (R.P.)
- IMEC vzw, Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
- Correspondence: ; Tel.: +32-11-292155
| |
Collapse
|
138
|
Castellanos-Reyes K, Villalobos-Carvajal R, Beldarrain-Iznaga T. Fresh Mushroom Preservation Techniques. Foods 2021; 10:2126. [PMID: 34574236 PMCID: PMC8465629 DOI: 10.3390/foods10092126] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/28/2021] [Accepted: 09/03/2021] [Indexed: 01/04/2023] Open
Abstract
The production and consumption of fresh mushrooms has experienced a significant increase in recent decades. This trend has been driven mainly by their nutritional value and by the presence of bioactive and nutraceutical components that are associated with health benefits, which has led some to consider them a functional food. Mushrooms represent an attractive food for vegetarian and vegan consumers due to their high contents of high-biological-value proteins and vitamin D. However, due to their high respiratory rate, high water content, and lack of a cuticular structure, mushrooms rapidly lose quality and have a short shelf life after harvest, which limits their commercialization in the fresh state. Several traditional preservation methods are used to maintain their quality and extend their shelf life. This article reviews some preservation methods that are commonly used to preserve fresh mushrooms and promising new preservation techniques, highlighting the use of new packaging systems and regulations aimed at the development of more sustainable packaging.
Collapse
Affiliation(s)
- Katy Castellanos-Reyes
- Facultad de Ciencias Tecnológicas, Universidad Nacional de Agricultura, Carretera a Dulce Nombre de Culmí, km 215, Barrio El Espino, Catacamas 16201, Honduras;
- Food Engineering Department, Universidad del Bío-Bío, Av. Andrés Bello 720, P.O. Box 447, Chillán 3780000, Chile;
| | - Ricardo Villalobos-Carvajal
- Food Engineering Department, Universidad del Bío-Bío, Av. Andrés Bello 720, P.O. Box 447, Chillán 3780000, Chile;
| | - Tatiana Beldarrain-Iznaga
- Food Engineering Department, Universidad del Bío-Bío, Av. Andrés Bello 720, P.O. Box 447, Chillán 3780000, Chile;
| |
Collapse
|
139
|
Fostering Awareness on Environmentally Sustainable Technological Solutions for the Post-Harvest Food Supply Chain. Processes (Basel) 2021. [DOI: 10.3390/pr9091611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This study presents a current status and future trends of innovative and environmentally sustainable technological solutions for the post-harvest food supply chain and the food industry, in terms of ecological packaging, active, and/or intelligent packaging. All these concerns are currently highlighted due to the strong increase in the purchase/sale of products on online platforms, as well as the requirements for stricter food security and safety. Thus, this study aims to increase the global awareness of agro-industrial micro, small, and medium size enterprises for the adoption of innovative food solutions though industry digitalization (Industry 4.0), associated logistics and circular economy, with a concern for cybersecurity and products information, communication and shelf-life extension. The adoption of these guidelines will certainly foster along the complete food chain (from producer to consumer, with all intermediary parties) the awareness on environmentally sustainable technological solutions for the post-harvest food supply chain, and thus, promoting the future food sustainability required by the population increase, the climate change, the exodus of rural population to urban areas, and food loss and waste.
Collapse
|
140
|
Wen Y, Liu J, Jiang L, Zhu Z, He S, He S, Shao W. Development of intelligent/active food packaging film based on TEMPO-oxidized bacterial cellulose containing thymol and anthocyanin-rich purple potato extract for shelf life extension of shrimp. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100709] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
141
|
Tyagi P, Salem KS, Hubbe MA, Pal L. Advances in barrier coatings and film technologies for achieving sustainable packaging of food products – A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
142
|
Won S, Won K. Self-powered flexible oxygen sensors for intelligent food packaging. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
143
|
Folentarska A, Łagiewka J, Krystyjan M, Ciesielski W. Biodegradable Binary and Ternary Complexes from Renewable Raw Materials. Polymers (Basel) 2021; 13:polym13172925. [PMID: 34502965 PMCID: PMC8433750 DOI: 10.3390/polym13172925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
The aim of this paper is to investigate the interactions between polysaccharides with different electrical charges (anionic and neutral starches) and proteins and fats in food ingredients. Another objective is to understand the mechanisms of these systems and the interdependence between their properties and intermolecular interactions. At present, there are not many studies on ternary blends composed of natural food polymers: polysaccharides of different electrical charge (anionic and neutral starches), proteins and lipids. Additionally, there are no reports concerning what type of interactions between polysaccharide, proteins and lipids exist simultaneously when the components are mixed in different orders. This paper intends to fill this gap. It also presents the application of natural biopolymers in the food and non-food industries.
Collapse
Affiliation(s)
- Agnieszka Folentarska
- Faculty of Exact, Natural and Technical Sciences, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland; (A.F.); (J.Ł.)
| | - Jakub Łagiewka
- Faculty of Exact, Natural and Technical Sciences, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland; (A.F.); (J.Ł.)
| | - Magdalena Krystyjan
- Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149 Krakow, Poland;
| | - Wojciech Ciesielski
- Faculty of Exact, Natural and Technical Sciences, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland; (A.F.); (J.Ł.)
- Correspondence: or
| |
Collapse
|
144
|
Manoj D, Shanmugasundaram S, Anandharamakrishnan C. Nanosensing and nanobiosensing: Concepts, methods, and applications for quality evaluation of liquid foods. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
145
|
Zhang X, Guo M, Ismail BB, He Q, Jin TZ, Liu D. Informative and corrective responsive packaging: Advances in farm-to-fork monitoring and remediation of food quality and safety. Compr Rev Food Sci Food Saf 2021; 20:5258-5282. [PMID: 34318596 DOI: 10.1111/1541-4337.12807] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 11/28/2022]
Abstract
Microbial growth and fluctuations in environmental conditions have been shown to cause microbial contamination and deterioration of food. Thus, it is paramount to develop reliable strategies to effectively prevent the sale and consumption of contaminated or spoiled food. Responsive packaging systems are designed to react to specific stimuli in the food or environment, such as microorganisms or temperature, then implement an informational or corrective response. Informative responsive packaging is aimed at continuously monitoring the changes in food or environmental conditions and conveys this information to the users in real time. Meanwhile, packaging systems with the capacity to control contamination or deterioration are also of great interest. Encouragingly, corrective responsive packaging attempting to mitigate the adverse effects of condition fluctuations on food has been investigated. This packaging exerts its effects through the triggered release of active agents by environmental stimuli. In this review, informative and corrective responsive packaging is conceptualized clearly and concisely. The mechanism and characteristics of each type of packaging are discussed in depth. This review also summarized the latest research progress of responsive packaging and objectively appraised their advantages. Evidently, the mechanism through which packaging systems respond to microbial contamination and associated environmental factors was also highlighted. Moreover, risk concerns, related legislation, and consumer perspective in the application of responsive packaging are discussed as well. Broadly, this comprehensive review covering the latest information on responsive packaging aims to provide a timely reference for scientific research and offer guidance for presenting their applications in food industry.
Collapse
Affiliation(s)
- Xinhui Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Qiao He
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Tony Z Jin
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
146
|
Active packaging technologies for clean label food products: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01024-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
147
|
Vizárová K, Vajová I, Krivoňáková N, Tiňo R, Takáč Z, Vodný Š, Katuščák S. Regression Analysis of Orthogonal, Cylindrical and Multivariable Color Parameters for Colorimetric Surface pH Measurement of Materials. Molecules 2021; 26:molecules26123682. [PMID: 34208709 PMCID: PMC8234292 DOI: 10.3390/molecules26123682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
The surface pH is a critical factor in the quality and longevity of materials and products. Traditional fast colorimetric pH detection-based tests such as water quality control or pregnancy tests, when results are determined by the naked eye, cannot provide quantitative values. Using standard pH papers, paper-printed comparison charts, or colorimetric microfluidic paper-based analytical devices is not suitable for such technological applications and quality management systems (QMSs) where the particular tested material should contain a suitable indicator in situ, in its structure, either before or after the process, the technology or the apparatus that are being tested. This paper describes a method based on the combination of impregnation of a tested material with a pH indicator in situ, its exposure to a process of technology whose impact on pH value is to be tested, colorimetric pH measurement, and approximation of pH value using derived pH characteristic parameters (pH-CPs) based on CIE orthogonal and cylindrical color variables. The hypotheses were experimentally verified using the methyl red pH indicator, impregnating the acid lignin-containing paper, and preparing a calibration sample set with pH in the range 4 to 12 using controlled alkalization. Based on the performed measurements and statistical evaluation, it can be concluded that the best pH-CPs with the highest regression parameters for pH are √∆E, ln (a),√∆H (ab), a/L, h/b and ln (b/a). The experimental results show that the presented method allows a good estimation of pH detection of the material surfaces.
Collapse
Affiliation(s)
- Katarína Vizárová
- Department of Wood, Pulp and Paper, Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia; (I.V.); (R.T.); (S.K.)
- Correspondence: ; Tel.: +421-917-669-018
| | - Izabela Vajová
- Department of Wood, Pulp and Paper, Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia; (I.V.); (R.T.); (S.K.)
| | - Naďa Krivoňáková
- Institute of Information Engineering, Automation, and Mathematics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia; (N.K.); (Z.T.)
| | - Radko Tiňo
- Department of Wood, Pulp and Paper, Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia; (I.V.); (R.T.); (S.K.)
| | - Zdenko Takáč
- Institute of Information Engineering, Automation, and Mathematics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia; (N.K.); (Z.T.)
| | - Štefan Vodný
- Certex a.s., Radlinského 9, 812 37 Bratislava, Slovakia;
| | - Svetozár Katuščák
- Department of Wood, Pulp and Paper, Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia; (I.V.); (R.T.); (S.K.)
| |
Collapse
|
148
|
Kanatt SR. Active/smart carboxymethyl cellulose‐polyvinyl alcohol composite films containing rose petal extract for fish packaging. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sweetie R. Kanatt
- Food Technology Division Bhabha Atomic Research Centre Trombay Mumbai 400 085 India
| |
Collapse
|
149
|
Preethi R, Moses J, Anandharamakrishnan C. Development of anacardic acid incorporated biopolymeric film for active packaging applications. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
150
|
Amin U, Khan MU, Majeed Y, Rebezov M, Khayrullin M, Bobkova E, Shariati MA, Chung IM, Thiruvengadam M. Potentials of polysaccharides, lipids and proteins in biodegradable food packaging applications. Int J Biol Macromol 2021; 183:2184-2198. [PMID: 34062159 DOI: 10.1016/j.ijbiomac.2021.05.182] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/06/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
Bio-based packaging materials are gaining importance due to their biodegradability, sustainability and environmental friendliness. To control the food quality and improve the food safety standards, proteins polysaccharide and lipid-based packaging films are enriched with bioactive and functional substances. However, poor permeability and mechanical characteristics are the challenging areas in their commercialization. Scientists and researchers are using a combination of techniques i.e. hydrogels, crosslinking, etc. to improve the intermolecular forces between different components of the film formulation to counter these challenges More recently, biodegradable packaging materials, sometimes edible, are also used for the delivery of functional ingredients which reveals their potential for drug delivery to counter the nutrient deficiency problems. This study highlights the potentials of bio-based materials i.e. proteins, polysaccharides, lipids, etc. to develop biodegradable packaging materials. It also explores the additives used to improve the physicochemical and mechanical properties of biodegradable packaging materials. Furthermore, it highlights the novel trends in biodegradable packaging from a food safety and quality point of view.
Collapse
Affiliation(s)
- Usman Amin
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Usman Khan
- Department of Energy Systems Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Yaqoob Majeed
- Department of Food Engineering, University of Agriculture, Faisalabad 38000, Pakistan
| | - Maksim Rebezov
- V M Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 26 Talalikhina St., Moscow 109316, Russian Federation; Prokhorov General Physics Institute of the Russian Academy of Science, 38 Vavilova str., Moscow 119991, Russian Federation
| | - Mars Khayrullin
- Department of Technology of Food Products, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73, Zemlyanoy Val St., Moscow 109004, Russian Federation
| | - Elena Bobkova
- Department of Technology of Food Products, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73, Zemlyanoy Val St., Moscow 109004, Russian Federation
| | - Mohammad Ali Shariati
- Department of Technology of Food Products, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73, Zemlyanoy Val St., Moscow 109004, Russian Federation
| | - Ill Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|