101
|
Stage-specific H3K9me3 occupancy ensures retrotransposon silencing in human pre-implantation embryos. Cell Stem Cell 2022; 29:1051-1066.e8. [DOI: 10.1016/j.stem.2022.06.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/31/2022] [Accepted: 06/01/2022] [Indexed: 12/13/2022]
|
102
|
Haws SA, Simandi Z, Barnett RJ, Phillips-Cremins JE. 3D genome, on repeat: Higher-order folding principles of the heterochromatinized repetitive genome. Cell 2022; 185:2690-2707. [PMID: 35868274 DOI: 10.1016/j.cell.2022.06.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 12/16/2022]
Abstract
Nearly half of the human genome is comprised of diverse repetitive sequences ranging from satellite repeats to retrotransposable elements. Such sequences are susceptible to stepwise expansions, duplications, inversions, and recombination events which can compromise genome function. In this review, we discuss the higher-order folding mechanisms of compartmentalization and loop extrusion and how they shape, and are shaped by, heterochromatin. Using primarily mammalian model systems, we contrast mechanisms governing H3K9me3-mediated heterochromatinization of the repetitive genome and highlight emerging links between repetitive elements and chromatin folding.
Collapse
Affiliation(s)
- Spencer A Haws
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zoltan Simandi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - R Jordan Barnett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer E Phillips-Cremins
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
103
|
Bernard LD, Dubois A, Heurtier V, Fischer V, Gonzalez I, Chervova A, Tachtsidi A, Gil N, Owens N, Bates L, Vandormael-Pournin S, Silva JCR, Ulitsky I, Cohen-Tannoudji M, Navarro P. OCT4 activates a Suv39h1-repressive antisense lncRNA to couple histone H3 Lysine 9 methylation to pluripotency. Nucleic Acids Res 2022; 50:7367-7379. [PMID: 35762231 PMCID: PMC9303268 DOI: 10.1093/nar/gkac550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 06/08/2022] [Accepted: 06/24/2022] [Indexed: 12/17/2022] Open
Abstract
Histone H3 Lysine 9 (H3K9) methylation, a characteristic mark of heterochromatin, is progressively implemented during development to contribute to cell fate restriction as differentiation proceeds. Accordingly, in undifferentiated and pluripotent mouse Embryonic Stem (ES) cells the global levels of H3K9 methylation are rather low and increase only upon differentiation. How global H3K9 methylation levels are coupled with the loss of pluripotency remains largely unknown. Here, we identify SUV39H1, a major H3K9 di- and tri-methylase, as an indirect target of the pluripotency network of Transcription Factors (TFs). We find that pluripotency TFs, principally OCT4, activate the expression of Suv39h1as, an antisense long non-coding RNA to Suv39h1. In turn, Suv39h1as downregulates Suv39h1 transcription in cis via a mechanism involving the modulation of the chromatin status of the locus. The targeted deletion of the Suv39h1as promoter region triggers increased SUV39H1 expression and H3K9me2 and H3K9me3 levels, affecting all heterochromatic regions, particularly peri-centromeric major satellites and retrotransposons. This increase in heterochromatinization efficiency leads to accelerated and more efficient commitment into differentiation. We report, therefore, a simple genetic circuitry coupling the genetic control of pluripotency with the global efficiency of H3K9 methylation associated with a major cell fate restriction, the irreversible loss of pluripotency.
Collapse
Affiliation(s)
- Laure D Bernard
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Department of Developmental and Stem Cell Biology, F-75015 Paris, France
- Sorbonne Université, Collège doctoral, F-75005 Paris, France
| | - Agnès Dubois
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Department of Developmental and Stem Cell Biology, F-75015 Paris, France
| | - Victor Heurtier
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Department of Developmental and Stem Cell Biology, F-75015 Paris, France
- Sorbonne Université, Collège doctoral, F-75005 Paris, France
| | - Véronique Fischer
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Department of Developmental and Stem Cell Biology, F-75015 Paris, France
| | - Inma Gonzalez
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Department of Developmental and Stem Cell Biology, F-75015 Paris, France
| | - Almira Chervova
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Department of Developmental and Stem Cell Biology, F-75015 Paris, France
| | - Alexandra Tachtsidi
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Department of Developmental and Stem Cell Biology, F-75015 Paris, France
- Sorbonne Université, Collège doctoral, F-75005 Paris, France
| | - Noa Gil
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Nick Owens
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Department of Developmental and Stem Cell Biology, F-75015 Paris, France
| | - Lawrence E Bates
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Sandrine Vandormael-Pournin
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Department of Developmental and Stem Cell Biology, F-75015 Paris, France
| | - José C R Silva
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou510005, Guangdong Province, China
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Michel Cohen-Tannoudji
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Department of Developmental and Stem Cell Biology, F-75015 Paris, France
| | - Pablo Navarro
- To whom correspondence should be addressed. Tel: +33 145688285;
| |
Collapse
|
104
|
A proposed unified interphase nucleus chromosome structure: Preliminary preponderance of evidence. Proc Natl Acad Sci U S A 2022; 119:e2119101119. [PMID: 35749363 PMCID: PMC9245672 DOI: 10.1073/pnas.2119101119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cryopreservation of the nuclear interior allows a large-scale interphase chromosome structure—present throughout the nucleus—to be seen in its native state by electron tomography. This structure appears as a coiled chain of nucleosomes, wrapped like a Slinky toy. This coiled structure can be further used to explain the enigmatic architectures of polytene and lampbrush chromosomes. In addition, this new structure can further be organized as chromosome territories: for example, all 46 human interphase chromosomes easily fit into a 10-μm-diameter nucleus. Thus, interphase chromosomes can be unified into a flexibly defined structure. Cryoelectron tomography of the cell nucleus using scanning transmission electron microscopy and deconvolution processing technology has highlighted a large-scale, 100- to 300-nm interphase chromosome structure, which is present throughout the nucleus. This study further documents and analyzes these chromosome structures. The paper is divided into four parts: 1) evidence (preliminary) for a unified interphase chromosome structure; 2) a proposed unified interphase chromosome architecture; 3) organization as chromosome territories (e.g., fitting the 46 human chromosomes into a 10-μm-diameter nucleus); and 4) structure unification into a polytene chromosome architecture and lampbrush chromosomes. Finally, the paper concludes with a living light microscopy cell study showing that the G1 nucleus contains very similar structures throughout. The main finding is that this chromosome structure appears to coil the 11-nm nucleosome fiber into a defined hollow structure, analogous to a Slinky helical spring [https://en.wikipedia.org/wiki/Slinky; motif used in Bowerman et al., eLife 10, e65587 (2021)]. This Slinky architecture can be used to build chromosome territories, extended to the polytene chromosome structure, as well as to the structure of lampbrush chromosomes.
Collapse
|
105
|
Abstract
Dramatic nuclear reorganization occurs during early development to convert terminally differentiated gametes to a totipotent zygote, which then gives rise to an embryo. Aberrant epigenome resetting severely impairs embryo development and even leads to lethality. How the epigenomes are inherited, reprogrammed, and reestablished in this critical developmental period has gradually been unveiled through the rapid development of technologies including ultrasensitive chromatin analysis methods. In this review, we summarize the latest findings on epigenetic reprogramming in gametogenesis and embryogenesis, and how it contributes to gamete maturation and parental-to-zygotic transition. Finally, we highlight the key questions that remain to be answered to fully understand chromatin regulation and nuclear reprogramming in early development.
Collapse
Affiliation(s)
- Zhenhai Du
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ke Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
106
|
Tan Y, Liu Q, Li Z, Yang S, Cui L. Epigenetics-mediated pathological alternations and their potential in antiphospholipid syndrome diagnosis and therapy. Autoimmun Rev 2022; 21:103130. [PMID: 35690246 DOI: 10.1016/j.autrev.2022.103130] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022]
Abstract
APS (antiphospholipid syndrome) is a systematic autoimmune disease accompanied with venous or arterial thrombosis and poor pregnant manifestations, partly attributing to the successive elevated aPL (antiphospholipid antibodies) and provoked prothrombotic and proinflammatory molecules production. Nowadays, most researches focus on the laboratory detection and clinic features of APS, but its precise etiology remains to be deeply explored. As we all know, the dysfunction of ECs (endothelial cells), monocytes, platelets, trophoblasts and neutrophils are key contributors to APS progression. Especially, their epigenetic variations, mainly including the promoter CpGs methylation, histone PTMs (post-translational modifications) and ncRNAs (noncoding RNAs), result in genes expression or silence engaged in inflammation initiation, thrombosis formation, autoimmune activation and APOs (adverse pregnancy outcomes) in APS. Given the potential of epigenetic markers serving as diagnostic biomarkers or therapeutic targets of APS, and the encouraging advancements in epigenetic drugs are being made. In this review, we would systematically introduce the epigenetic underlying mechanisms for APS progression, comprehensively elucidate the functional mechanisms of epigenetics in boosting ECs, monocytes, platelets, trophoblasts and neutrophils. Lastly, the application of epigenetic alterations for probing novel diagnostic, specific therapeutic and prognostic strategies would be proposed.
Collapse
Affiliation(s)
- Yuan Tan
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Qi Liu
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Zhongxin Li
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Shuo Yang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
107
|
Matsumura Y, Osborne TF, Sakai J. Epigenetic and environmental regulation of adipocyte function. J Biochem 2022; 172:9-16. [PMID: 35476139 DOI: 10.1093/jb/mvac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/26/2022] [Indexed: 11/14/2022] Open
Abstract
Adipocytes play an essential role in the maintenance of whole-body energy homeostasis. White adipocytes regulate energy storage, whereas brown and beige adipocytes regulate energy expenditure and heat production. De novo production of adipocytes (i.e., adipogenesis) and their functions are dynamically controlled by environmental cues. Environmental changes (e.g., temperature, nutrients, hormones, cytokines) are transmitted via intracellular signaling to facilitate short-term responses and long-term adaptation in adipocytes; however, the molecular mechanisms that link the environment and epigenome are poorly understood. Our recent studies have demonstrated that environmental cues dynamically regulate interactions between transcription factors and epigenomic chromatin regulators, which together trigger combinatorial changes in chromatin structure to influence gene expression in adipocytes. Thus, environmental sensing by the concerted action of multiple chromatin-associated protein complexes is a key determinant of the epigenetic regulation of adipocyte functions.
Collapse
Affiliation(s)
- Yoshihiro Matsumura
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Timothy F Osborne
- Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, and Medicine in the Division of Endocrinology, Diabetes and Metabolism of the Johns Hopkins University School of Medicine, Petersburg, FL, USA
| | - Juro Sakai
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan.,Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| |
Collapse
|
108
|
Dietlein F, Wang AB, Fagre C, Tang A, Besselink NJM, Cuppen E, Li C, Sunyaev SR, Neal JT, Van Allen EM. Genome-wide analysis of somatic noncoding mutation patterns in cancer. Science 2022; 376:eabg5601. [PMID: 35389777 PMCID: PMC9092060 DOI: 10.1126/science.abg5601] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We established a genome-wide compendium of somatic mutation events in 3949 whole cancer genomes representing 19 tumor types. Protein-coding events captured well-established drivers. Noncoding events near tissue-specific genes, such as ALB in the liver or KLK3 in the prostate, characterized localized passenger mutation patterns and may reflect tumor-cell-of-origin imprinting. Noncoding events in regulatory promoter and enhancer regions frequently involved cancer-relevant genes such as BCL6, FGFR2, RAD51B, SMC6, TERT, and XBP1 and represent possible drivers. Unlike most noncoding regulatory events, XBP1 mutations primarily accumulated outside the gene's promoter, and we validated their effect on gene expression using CRISPR-interference screening and luciferase reporter assays. Broadly, our study provides a blueprint for capturing mutation events across the entire genome to guide advances in biological discovery, therapies, and diagnostics.
Collapse
Affiliation(s)
- Felix Dietlein
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.,Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.,Corresponding author. (E.M.V.A.); (F.D.)
| | - Alex B. Wang
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Christian Fagre
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Anran Tang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.,Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Nicolle J. M. Besselink
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands.,Hartwig Medical Foundation, 1098 XH Amsterdam, Netherlands
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Shamil R. Sunyaev
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - James T. Neal
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Eliezer M. Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.,Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.,Corresponding author. (E.M.V.A.); (F.D.)
| |
Collapse
|
109
|
Mendonca A, Sánchez O, Zhao H, Lin L, Min A, Yuan C. Development and application of novel BiFC probes for cell sorting based on epigenetic modification. Cytometry A 2022; 101:339-350. [PMID: 35001539 PMCID: PMC11998899 DOI: 10.1002/cyto.a.24530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
The epigenetic signature of cancer cells varies with disease progression and drug treatment, necessitating the study of these modifications with single cell resolution over time. The rapid detection and sorting of cells based on their underlying epigenetic modifications by flow cytometry can enable single cell measurement and tracking to understand tumor heterogeneity and progression warranting the development of a live-cell compatible epigenome probes. In this work, we developed epigenetic probes based on bimolecular fluorescence complementation (BiFC) and demonstrated their capabilities in quantifying and sorting cells based on their epigenetic modification contents. The sorted cells are viable and exhibit distinctive responses to chemo-therapy drugs. Notably, subpopulations of MCF7 cells with higher H3K9me3 levels are more likely to develop resistance to Doxorubicin. Subpopulations with higher 5mC levels, on the other hand, tend to be more responsive. Overall, we report for the first time, the application of novel split probes in flow cytometry application and elucidated the potential role of 5mC and H3K9me3 in determining drug responses.
Collapse
Affiliation(s)
- Agnes Mendonca
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Oscar Sánchez
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Han Zhao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Li Lin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Alan Min
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
- Purdue University Center for Cancer Research, West Lafayette, Indiana, USA
| |
Collapse
|
110
|
Rcor2 Is Required for Somatic Differentiation and Represses Germline Cell Fate. Stem Cells Int 2022; 2022:5283615. [PMID: 35345626 PMCID: PMC8957467 DOI: 10.1155/2022/5283615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/07/2022] [Accepted: 01/19/2022] [Indexed: 11/18/2022] Open
Abstract
Rcor2, the corepressor 2 of REST, a transcriptional repressor, is predominantly expressed in embryonic stem cells (ESCs) and plays a major role in regulating ESC pluripotency and neurogenesis. The function of Rcor2 in development of other germ layers is yet unclear. We utilized a Rcor2-/- mouse embryonic stem cell (mESC) line to investigate the role of Rcor2 in mESC differentiation. Rcor2-/- mESC shows reduced proliferation and severely compromised capacity to differentiate to all three germ layers. In contrast, Rcor2 knockout promotes primordial germ cells (PGCs) specific gene expression and possibly PGC formation. Mechanistically, we revealed that Rcor2 inhibits expression of genes required for PGC development, such as Dppa3 and Dazl, by associating to their promoters and enhancing local suppressive H3K9me3 modifications. Our results suggest that Rcor2 plays an important role in somatic cell fate determination by suppressing PGC differentiation through regulating epigenetic modifications of PGC specific genes.
Collapse
|
111
|
Methylation of Subtelomeric Chromatin Modifies the Expression of the lncRNA TERRA, Disturbing Telomere Homeostasis. Int J Mol Sci 2022; 23:ijms23063271. [PMID: 35328692 PMCID: PMC8955364 DOI: 10.3390/ijms23063271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
The long noncoding RNA (lncRNA) telomeric repeat-containing RNA (TERRA) has been associated with telomeric homeostasis, telomerase recruitment, and the process of chromosome healing; nevertheless, the impact of this association has not been investigated during the carcinogenic process. Determining whether changes in TERRA expression are a cause or a consequence of cell transformation is a complex task because studies are usually carried out using either cancerous cells or tumor samples. To determine the role of this lncRNA in cellular aging and chromosome healing, we evaluated telomeric integrity and TERRA expression during the establishment of a clone of untransformed myeloid cells. We found that reduced expression of TERRA disturbed the telomeric homeostasis of certain loci, but the expression of the lncRNA was affected only when the methylation of subtelomeric bivalent chromatin domains was compromised. We conclude that the disruption in TERRA homeostasis is a consequence of cellular transformation and that changes in its expression profile can lead to telomeric and genomic instability.
Collapse
|
112
|
Zhang H, Romero H, Schmidt A, Gagova K, Qin W, Bertulat B, Lehmkuhl A, Milden M, Eck M, Meckel T, Leonhardt H, Cardoso MC. MeCP2-induced heterochromatin organization is driven by oligomerization-based liquid–liquid phase separation and restricted by DNA methylation. Nucleus 2022; 13:1-34. [PMID: 35156529 PMCID: PMC8855868 DOI: 10.1080/19491034.2021.2024691] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Hui Zhang
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Hector Romero
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Annika Schmidt
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Katalina Gagova
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Weihua Qin
- Faculty of Biology, Ludwig Maximilians University Munich, Munich, Germany
| | - Bianca Bertulat
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Anne Lehmkuhl
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Manuela Milden
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Malte Eck
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Tobias Meckel
- Department of Chemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Heinrich Leonhardt
- Faculty of Biology, Ludwig Maximilians University Munich, Munich, Germany
| | - M. Cristina Cardoso
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
113
|
Kanki Y, Muramatsu M, Miyamura Y, Kikuchi K, Higashijima Y, Nakaki R, Suehiro JI, Sasaki Y, Kubota Y, Koseki H, Morioka H, Kodama T, Nakao M, Kurotaki D, Aburatani H, Minami T. Bivalent-histone-marked immediate-early gene regulation is vital for VEGF-responsive angiogenesis. Cell Rep 2022; 38:110332. [PMID: 35139389 DOI: 10.1016/j.celrep.2022.110332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 08/28/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022] Open
Abstract
Endothelial cells (ECs) are phenotypically heterogeneous, mainly due to their dynamic response to the tissue microenvironment. Vascular endothelial cell growth factor (VEGF), the best-known angiogenic factor, activates calcium-nuclear factor of activated T cells (NFAT) signaling following acute angiogenic gene transcription. Here, we evaluate the global mapping of VEGF-mediated dynamic transcriptional events, focusing on major histone-code profiles using chromatin immunoprecipitation sequencing (ChIP-seq). Remarkably, the gene loci of immediate-early angiogenic transcription factors (TFs) exclusively acquire bivalent H3K4me3-H3K27me3 double-positive histone marks after the VEGF stimulus. Moreover, NFAT-associated Pax transactivation domain-interacting protein (PTIP) directs bivalently marked TF genes transcription through a limited polymerase II running. The non-canonical polycomb1 variant PRC1.3 specifically binds to and allows the transactivation of PRC2-enriched bivalent angiogenic TFs until conventional PRC1-mediated gene silencing is achieved. Knockdown of these genes abrogates post-natal aberrant neovessel formation via the selective inhibition of indispensable bivalent angiogenic TF gene transcription. Collectively, the reported dynamic histone mark landscape may uncover the importance of immediate-early genes and the development of advanced anti-angiogenic strategies.
Collapse
Affiliation(s)
- Yasuharu Kanki
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; Laboratory of Sports Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaragi 305-8574, Japan
| | - Masashi Muramatsu
- Division of Molecular and Vascular Biology, IRDA, Kumamoto University, 2-2-1 Honjo Chuo-ku, Kumamoto 860-0811, Japan
| | - Yuri Miyamura
- Division of Molecular and Vascular Biology, IRDA, Kumamoto University, 2-2-1 Honjo Chuo-ku, Kumamoto 860-0811, Japan
| | - Kenta Kikuchi
- Laboratory of Chromatin Organization in Immune Cell Development, IRCMS, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yoshiki Higashijima
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; Department of Bioinformational Pharmacology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Ryo Nakaki
- Division of Genome Science, RCAST, The University of Tokyo, Tokyo 153-8904, Japan
| | - Jun-Ichi Suehiro
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Tokyo 181-0004, Japan
| | - Yuji Sasaki
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan; Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Haruhiko Koseki
- Laboratories of Developmental Genetics, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroshi Morioka
- Department of Life Science, Kumamoto University, Kumamoto 862-0973, Japan
| | - Tatsuhiko Kodama
- Division of Systems Biology, RCAST, The University of Tokyo, Tokyo 153-8904, Japan
| | - Mitsuyoshi Nakao
- Departments of Medical Cell Biology, IMEG, Kumamoto University, Kumamoto 860-0811, Japan
| | - Daisuke Kurotaki
- Laboratory of Chromatin Organization in Immune Cell Development, IRCMS, Kumamoto University, Kumamoto 860-0811, Japan
| | - Hiroyuki Aburatani
- Division of Genome Science, RCAST, The University of Tokyo, Tokyo 153-8904, Japan
| | - Takashi Minami
- Division of Molecular and Vascular Biology, IRDA, Kumamoto University, 2-2-1 Honjo Chuo-ku, Kumamoto 860-0811, Japan.
| |
Collapse
|
114
|
Tinsley SL, Allen-Petersen BL. PP2A and cancer epigenetics: a therapeutic opportunity waiting to happen. NAR Cancer 2022; 4:zcac002. [PMID: 35118387 PMCID: PMC8807117 DOI: 10.1093/narcan/zcac002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/08/2021] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
The epigenetic state of chromatin is altered by regulators which influence gene expression in response to environmental stimuli. While several post-translational modifications contribute to chromatin accessibility and transcriptional programs, our understanding of the role that specific phosphorylation sites play is limited. In cancer, kinases and phosphatases are commonly deregulated resulting in increased oncogenic signaling and loss of epigenetic regulation. Aberrant epigenetic states are known to promote cellular plasticity and the development of therapeutic resistance in many cancer types, highlighting the importance of these mechanisms to cancer cell phenotypes. Protein Phosphatase 2A (PP2A) is a heterotrimeric holoenzyme that targets a diverse array of cellular proteins. The composition of the PP2A complex influences its cellular targets and activity. For this reason, PP2A can be tumor suppressive or oncogenic depending on cellular context. Understanding the nuances of PP2A regulation and its effect on epigenetic alterations can lead to new therapeutic avenues that afford more specificity and contribute to the growth of personalized medicine in the oncology field. In this review, we summarize the known PP2A-regulated substrates and potential phosphorylation sites that contribute to cancer cell epigenetics and possible strategies to therapeutically leverage this phosphatase to suppress tumor growth.
Collapse
Affiliation(s)
- Samantha L Tinsley
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
115
|
Guerra MV, Cáceres MI, Herrera-Soto A, Arredondo SB, Varas-Godoy M, van Zundert B, Varela-Nallar L. H3K9 Methyltransferases Suv39h1 and Suv39h2 Control the Differentiation of Neural Progenitor Cells in the Adult Hippocampus. Front Cell Dev Biol 2022; 9:778345. [PMID: 35096813 PMCID: PMC8791356 DOI: 10.3389/fcell.2021.778345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
In the dentate gyrus of the adult hippocampus new neurons are generated from neural precursor cells through different stages including proliferation and differentiation of neural progenitor cells and maturation of newborn neurons. These stages are controlled by the expression of specific transcription factors and epigenetic mechanisms, which together orchestrate the progression of the neurogenic process. However, little is known about the involvement of histone posttranslational modifications, a crucial epigenetic mechanism in embryonic neurogenesis that regulates fate commitment and neuronal differentiation. During embryonic development, the repressive modification trimethylation of histone H3 on lysine 9 (H3K9me3) contributes to the cellular identity of different cell-types. However, the role of this modification and its H3K9 methyltransferases has not been elucidated in adult hippocampal neurogenesis. We determined that during the stages of neurogenesis in the adult mouse dentate gyrus and in cultured adult hippocampal progenitors (AHPs), there was a dynamic change in the expression and distribution of H3K9me3, being enriched at early stages of the neurogenic process. A similar pattern was observed in the hippocampus for the dimethylation of histone H3 on lysine 9 (H3K9me2), another repressive modification. Among H3K9 methyltransferases, the enzymes Suv39h1 and Suv39h2 exhibited high levels of expression at early stages of neurogenesis and their expression decreased upon differentiation. Pharmacological inhibition of these enzymes by chaetocin in AHPs reduced H3K9me3 and concomitantly decreased neuronal differentiation while increasing proliferation. Moreover, Suv39h1 and Suv39h2 knockdown in newborn cells of the adult mouse dentate gyrus by retrovirus-mediated RNA interference impaired neuronal differentiation of progenitor cells. Our results indicate that H3K9me3 and H3K9 methyltransferases Suv39h1 and Suv39h2 are critically involved in the regulation of adult hippocampal neurogenesis by controlling the differentiation of neural progenitor cells.
Collapse
Affiliation(s)
- Miguel V Guerra
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Matías I Cáceres
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Andrea Herrera-Soto
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Sebastián B Arredondo
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Manuel Varas-Godoy
- Cancer Cell Biology Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Brigitte van Zundert
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | - Lorena Varela-Nallar
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
116
|
Pei Y, Qian Y, Wang H, Tan L. Epigenetic Regulation of Ferroptosis-Associated Genes and Its Implication in Cancer Therapy. Front Oncol 2022; 12:771870. [PMID: 35174081 PMCID: PMC8841808 DOI: 10.3389/fonc.2022.771870] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Ferroptosis is an evolutionarily conserved form of regulated cell death triggered by iron-dependent phospholipid peroxidation. Ferroptosis contributes to the maintenance of tissue homeostasis under physiological conditions while its aberration is tightly connected with lots of pathophysiological processes such as acute tissue injury, chronic degenerative disease, and tumorigenesis. Epigenetic regulation controls chromatin structure and gene expression by writing/reading/erasing the covalent modifications on DNA, histone, and RNA, without altering the DNA sequence. Accumulating evidences suggest that epigenetic regulation is involved in the determination of cellular vulnerability to ferroptosis. Here, we summarize the recent advances on the epigenetic mechanisms that control the expression of ferroptosis-associated genes and thereby the ferroptosis process. Moreover, the potential value of epigenetic drugs in targeting or synergizing ferroptosis during cancer therapy is also discussed.
Collapse
Affiliation(s)
- Yanzi Pei
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yujie Qian
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Li Tan, ; Hao Wang,
| | - Li Tan
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- *Correspondence: Li Tan, ; Hao Wang,
| |
Collapse
|
117
|
Kieffer SR, Lowndes NF. Immediate-Early, Early, and Late Responses to DNA Double Stranded Breaks. Front Genet 2022; 13:793884. [PMID: 35173769 PMCID: PMC8841529 DOI: 10.3389/fgene.2022.793884] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/10/2022] [Indexed: 12/18/2022] Open
Abstract
Loss or rearrangement of genetic information can result from incorrect responses to DNA double strand breaks (DSBs). The cellular responses to DSBs encompass a range of highly coordinated events designed to detect and respond appropriately to the damage, thereby preserving genomic integrity. In analogy with events occurring during viral infection, we appropriate the terms Immediate-Early, Early, and Late to describe the pre-repair responses to DSBs. A distinguishing feature of the Immediate-Early response is that the large protein condensates that form during the Early and Late response and are resolved upon repair, termed foci, are not visible. The Immediate-Early response encompasses initial lesion sensing, involving poly (ADP-ribose) polymerases (PARPs), KU70/80, and MRN, as well as rapid repair by so-called ‘fast-kinetic’ canonical non-homologous end joining (cNHEJ). Initial binding of PARPs and the KU70/80 complex to breaks appears to be mutually exclusive at easily ligatable DSBs that are repaired efficiently by fast-kinetic cNHEJ; a process that is PARP-, ATM-, 53BP1-, Artemis-, and resection-independent. However, at more complex breaks requiring processing, the Immediate-Early response involving PARPs and the ensuing highly dynamic PARylation (polyADP ribosylation) of many substrates may aid recruitment of both KU70/80 and MRN to DSBs. Complex DSBs rely upon the Early response, largely defined by ATM-dependent focal recruitment of many signalling molecules into large condensates, and regulated by complex chromatin dynamics. Finally, the Late response integrates information from cell cycle phase, chromatin context, and type of DSB to determine appropriate pathway choice. Critical to pathway choice is the recruitment of p53 binding protein 1 (53BP1) and breast cancer associated 1 (BRCA1). However, additional factors recruited throughout the DSB response also impact upon pathway choice, although these remain to be fully characterised. The Late response somehow channels DSBs into the appropriate high-fidelity repair pathway, typically either ‘slow-kinetic’ cNHEJ or homologous recombination (HR). Loss of specific components of the DSB repair machinery results in cells utilising remaining factors to effect repair, but often at the cost of increased mutagenesis. Here we discuss the complex regulation of the Immediate-Early, Early, and Late responses to DSBs proceeding repair itself.
Collapse
|
118
|
Yao Y, Wen Q, Zhang T, Yu C, Chan KM, Gan H. Advances in Approaches to Study Chromatin-Mediated Epigenetic Memory. ACS Synth Biol 2022; 11:16-25. [PMID: 34965084 DOI: 10.1021/acssynbio.1c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chromatin structure contains critical epigenetic information in various forms, such as histone post-translational modifications (PTMs). The deposition of certain histone PTMs can remodel the chromatin structure, resulting in gene expression alteration. The epigenetic information carried by histone PTMs could be inherited by daughter cells to maintain the gene expression status. Recently, studies revealed that several conserved replisome proteins regulate the recycling of parental histones carrying epigenetic information in Saccharomyces cerevisiae. Hence, the proper recycling and deposition of parental histones onto newly synthesized DNA strands is presumed to be essential for epigenetic inheritance. Here, we first reviewed the fundamental mechanisms of epigenetic modification establishment and maintenance discovered within fungal models. Next, we discussed the functions of parental histone chaperones and the potential impacts of the parental histone recycling process on heterochromatin-mediated transcriptional silencing inheritance. Subsequently, we summarized novel synthetic biology approaches developed to analyze individual epigenetic components during epigenetic inheritance in fungal and mammalian systems. These newly emerged research paradigms enable us to dissect epigenetic systems in a bottom-up manner. Furthermore, we highlighted the approaches developed in this emerging field and discussed the potential applications of these engineered regulators to building synthetic epigenetic systems.
Collapse
Affiliation(s)
- Yuan Yao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qing Wen
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianjun Zhang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Chuanhe Yu
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518172, China
| | - Haiyun Gan
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
119
|
Zhang L, Geng X, Wang F, Tang J, Ichida Y, Sharma A, Jin S, Chen M, Tang M, Pozo FM, Wang W, Wang J, Wozniak M, Guo X, Miyagi M, Jin F, Xu Y, Yao X, Zhang Y. 53BP1 regulates heterochromatin through liquid phase separation. Nat Commun 2022; 13:360. [PMID: 35042897 PMCID: PMC8766474 DOI: 10.1038/s41467-022-28019-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/03/2022] [Indexed: 01/09/2023] Open
Abstract
Human 53BP1 is primarily known as a key player in regulating DNA double strand break (DSB) repair choice; however, its involvement in other biological process is less well understood. Here, we report a previously uncharacterized function of 53BP1 at heterochromatin, where it undergoes liquid-liquid phase separation (LLPS) with the heterochromatin protein HP1α in a mutually dependent manner. Deletion of 53BP1 results in a reduction in heterochromatin centers and the de-repression of heterochromatic tandem repetitive DNA. We identify domains and residues of 53BP1 required for its LLPS, which overlap with, but are distinct from, those involved in DSB repair. Further, 53BP1 mutants deficient in DSB repair, but proficient in LLPS, rescue heterochromatin de-repression and protect cells from stress-induced DNA damage and senescence. Our study suggests that in addition to DSB repair modulation, 53BP1 contributes to the maintenance of heterochromatin integrity and genome stability through LLPS.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA.
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Xinran Geng
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Fangfang Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jinshan Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yu Ichida
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Arishya Sharma
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Sora Jin
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Mingyue Chen
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Mingliang Tang
- College of Life Sciences, Wuhan University, Wuhan, Hubei, 430068, China
| | - Franklin Mayca Pozo
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Wenxiu Wang
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Janet Wang
- Department of Genetics and Genome Sciences, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Michal Wozniak
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH, 45435, USA
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | - Xiaoxia Guo
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Masaru Miyagi
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Fulai Jin
- Department of Genetics and Genome Sciences, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Yongjie Xu
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH, 45435, USA
| | - Xinsheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Youwei Zhang
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
120
|
von Grüning H, Coradin M, Mendoza MR, Reader J, Sidoli S, Garcia BA, Birkholtz LM. A dynamic and combinatorial histone code drives malaria parasite asexual and sexual development. Mol Cell Proteomics 2022; 21:100199. [PMID: 35051657 PMCID: PMC8941266 DOI: 10.1016/j.mcpro.2022.100199] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Histone posttranslational modifications (PTMs) frequently co-occur on the same chromatin domains or even in the same molecule. It is now established that these “histone codes” are the result of cross talk between enzymes that catalyze multiple PTMs with univocal readout as compared with these PTMs in isolation. Here, we performed a comprehensive identification and quantification of histone codes of the malaria parasite, Plasmodium falciparum. We used advanced quantitative middle-down proteomics to identify combinations of PTMs in both the proliferative, asexual stages and transmissible, sexual gametocyte stages of P. falciparum. We provide an updated, high-resolution compendium of 77 PTMs on H3 and H3.3, of which 34 are newly identified in P. falciparum. Coexisting PTMs with unique stage distinctions were identified, indicating that many of these combinatorial PTMs are associated with specific stages of the parasite life cycle. We focused on the code H3R17me2K18acK23ac for its unique presence in mature gametocytes; chromatin proteomics identified a gametocyte-specific SAGA-like effector complex including the transcription factor AP2-G2, which we tied to this specific histone code, as involved in regulating gene expression in mature gametocytes. Ultimately, this study unveils previously undiscovered histone PTMs and their functional relationship with coexisting partners. These results highlight that investigating chromatin regulation in the parasite using single histone PTM assays might overlook higher-order gene regulation for distinct proliferation and differentiation processes. First middle-down chromatin proteomics compendium of the malaria parasite, Plasmodium falciparum. Novel histone PTMs (including arginine methylation) in both asexual parasites and transmissible gametocytes. Histone PTM cross talk is dynamic life cycle stage stratified. Gametocytes rely on histone PTM connectivity to allow onward transmission. AP2-G2 is an important effector of H3K18acK23ac in mature gametocytes.
Collapse
Affiliation(s)
- Hilde von Grüning
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa; Institute for Sustainable Malaria Control, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa
| | - Mariel Coradin
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariel R Mendoza
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa; Institute for Sustainable Malaria Control, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa.
| |
Collapse
|
121
|
Vu H, Ernst J. Universal annotation of the human genome through integration of over a thousand epigenomic datasets. Genome Biol 2022; 23:9. [PMID: 34991667 PMCID: PMC8734071 DOI: 10.1186/s13059-021-02572-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/08/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Genome-wide maps of chromatin marks such as histone modifications and open chromatin sites provide valuable information for annotating the non-coding genome, including identifying regulatory elements. Computational approaches such as ChromHMM have been applied to discover and annotate chromatin states defined by combinatorial and spatial patterns of chromatin marks within the same cell type. An alternative "stacked modeling" approach was previously suggested, where chromatin states are defined jointly from datasets of multiple cell types to produce a single universal genome annotation based on all datasets. Despite its potential benefits for applications that are not specific to one cell type, such an approach was previously applied only for small-scale specialized purposes. Large-scale applications of stacked modeling have previously posed scalability challenges. RESULTS Using a version of ChromHMM enhanced for large-scale applications, we apply the stacked modeling approach to produce a universal chromatin state annotation of the human genome using over 1000 datasets from more than 100 cell types, with the learned model denoted as the full-stack model. The full-stack model states show distinct enrichments for external genomic annotations, which we use in characterizing each state. Compared to per-cell-type annotations, the full-stack annotations directly differentiate constitutive from cell type-specific activity and is more predictive of locations of external genomic annotations. CONCLUSIONS The full-stack ChromHMM model provides a universal chromatin state annotation of the genome and a unified global view of over 1000 datasets. We expect this to be a useful resource that complements existing per-cell-type annotations for studying the non-coding human genome.
Collapse
Affiliation(s)
- Ha Vu
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, 90095, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, 90095, USA
| | - Jason Ernst
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, 90095, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at University of California, Los Angeles, CA, 90095, USA
- Computer Science Department, University of California, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Computational Medicine, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
122
|
Tomimatsu K, Bihary D, Olan I, Parry AJ, Schoenfelder S, Chan ASL, Slater GSC, Ito Y, Rugg-Gunn PJ, Kirschner K, Bermejo-Rodriguez C, Seko T, Kugoh H, Shiraishi K, Sayama K, Kimura H, Fraser P, Narita M, Samarajiwa SA, Narita M. Locus-specific induction of gene expression from heterochromatin loci during cellular senescence. NATURE AGING 2022; 2:31-45. [PMID: 37118356 DOI: 10.1038/s43587-021-00147-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 11/04/2021] [Indexed: 04/30/2023]
Abstract
Senescence is a fate-determined state, accompanied by reorganization of heterochromatin. Although lineage-appropriate genes can be temporarily repressed through facultative heterochromatin, stable silencing of lineage-inappropriate genes often involves the constitutive heterochromatic mark, histone H3 lysine 9 trimethylation (H3K9me3). The fate of these heterochromatic genes during senescence is unclear. In the present study, we show that a small number of lineage-inappropriate genes, exemplified by the LCE2 skin genes, are derepressed during senescence from H3K9me3 regions in fibroblasts. DNA FISH experiments reveal that these gene loci, which are condensed at the nuclear periphery in proliferative cells, are decompacted during senescence. Decompaction of the locus is not sufficient for LCE2 expression, which requires p53 and C/EBPβ signaling. NLRP3, which is predominantly expressed in macrophages from an open topologically associated domain (TAD), is also derepressed in senescent fibroblasts due to the local disruption of the H3K9me3-rich TAD that contains it. NLRP3 has been implicated in the amplification of inflammatory cytokine signaling in senescence and aging, highlighting the functional relevance of gene induction from 'permissive' H3K9me3 regions in senescent cells.
Collapse
Affiliation(s)
- Kosuke Tomimatsu
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Shiga University of Medical Science, Shiga, Japan
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Dóra Bihary
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Ioana Olan
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Aled J Parry
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Stefan Schoenfelder
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK
| | - Adelyne S L Chan
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Guy St C Slater
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Yoko Ito
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- International University of Health and Welfare, Tochigi, Japan
| | | | - Kristina Kirschner
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Institute for Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Camino Bermejo-Rodriguez
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Tomomi Seko
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Japan
- Chromosome Engineering Research Center, Tottori University, Yonago, Japan
| | - Hiroyuki Kugoh
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Japan
- Chromosome Engineering Research Center, Tottori University, Yonago, Japan
| | - Ken Shiraishi
- Department of Dermatology, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Koji Sayama
- Department of Dermatology, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Hiroshi Kimura
- Tokyo Tech World Research Hub Initiative and Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Peter Fraser
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Masako Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| | - Shamith A Samarajiwa
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK.
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Tokyo Tech World Research Hub Initiative and Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
123
|
Hada M, Miura H, Tanigawa A, Matoba S, Inoue K, Ogonuki N, Hirose M, Watanabe N, Nakato R, Fujiki K, Hasegawa A, Sakashita A, Okae H, Miura K, Shikata D, Arima T, Shirahige K, Hiratani I, Ogura A. Highly rigid H3.1/H3.2-H3K9me3 domains set a barrier for cell fate reprogramming in trophoblast stem cells. Genes Dev 2022; 36:84-102. [PMID: 34992147 PMCID: PMC8763053 DOI: 10.1101/gad.348782.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/21/2021] [Indexed: 01/22/2023]
Abstract
Here, Hada et al. comprehensively analyzed epigenomic features of mouse trophoblast stem cells (TSCs). They used genome-wide, high-throughput analyses to show that the TSC genome contains large-scale (>1-Mb) rigid heterochromatin architectures that have a high degree of histone H3.1/3.2–H3K9me3 accumulation, termed TSC-defined highly heterochromatinized domains (THDs), and are uniquely developed in placental lineage cells that serve to protect them from fate reprogramming to stably maintain placental function. The placenta is a highly evolved, specialized organ in mammals. It differs from other organs in that it functions only for fetal maintenance during gestation. Therefore, there must be intrinsic mechanisms that guarantee its unique functions. To address this question, we comprehensively analyzed epigenomic features of mouse trophoblast stem cells (TSCs). Our genome-wide, high-throughput analyses revealed that the TSC genome contains large-scale (>1-Mb) rigid heterochromatin architectures with a high degree of histone H3.1/3.2–H3K9me3 accumulation, which we termed TSC-defined highly heterochromatinized domains (THDs). Importantly, depletion of THDs by knockdown of CAF1, an H3.1/3.2 chaperone, resulted in down-regulation of TSC markers, such as Cdx2 and Elf5, and up-regulation of the pluripotent marker Oct3/4, indicating that THDs maintain the trophoblastic nature of TSCs. Furthermore, our nuclear transfer technique revealed that THDs are highly resistant to genomic reprogramming. However, when H3K9me3 was removed, the TSC genome was fully reprogrammed, giving rise to the first TSC cloned offspring. Interestingly, THD-like domains are also present in mouse and human placental cells in vivo, but not in other cell types. Thus, THDs are genomic architectures uniquely developed in placental lineage cells, which serve to protect them from fate reprogramming to stably maintain placental function.
Collapse
Affiliation(s)
- Masashi Hada
- Bioresource Engineering Division, Bioresource Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan.,Institute of Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Hisashi Miura
- Laboratory for Developmental Epigenetics, RIKEN Center for Developmental Biology, Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Akie Tanigawa
- Laboratory for Developmental Epigenetics, RIKEN Center for Developmental Biology, Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Shogo Matoba
- Bioresource Engineering Division, Bioresource Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan.,Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Kimiko Inoue
- Bioresource Engineering Division, Bioresource Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan.,Graduate school of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Narumi Ogonuki
- Bioresource Engineering Division, Bioresource Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | - Michiko Hirose
- Bioresource Engineering Division, Bioresource Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | - Naomi Watanabe
- Bioresource Engineering Division, Bioresource Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | - Ryuichiro Nakato
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Katsunori Fujiki
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Ayumi Hasegawa
- Bioresource Engineering Division, Bioresource Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | - Akihiko Sakashita
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroaki Okae
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai 980-8575, Japan
| | - Kento Miura
- Bioresource Engineering Division, Bioresource Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan.,Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Daiki Shikata
- Bioresource Engineering Division, Bioresource Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai 980-8575, Japan
| | - Katsuhiko Shirahige
- Institute of Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Developmental Biology, Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.,RIKEN Cluster for Pioneering Research, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, Bioresource Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan.,Graduate school of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.,RIKEN Cluster for Pioneering Research, Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
124
|
Ma X, Cao X, Zhu L, Li Y, Wang X, Wu B, Wei G, Hui L. Pre-existing chromatin accessibility of switchable repressive compartment delineates cell plasticity. Natl Sci Rev 2021; 9:nwab230. [PMID: 35795460 PMCID: PMC9249582 DOI: 10.1093/nsr/nwab230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
Cell plasticity endows differentiated cells with competence to be reprogrammed to other lineages. Although extrinsic factors driving cell-identity conversion have been extensively characterized, it remains elusive which intrinsic epigenetic attributes, including high-order chromatin organization, delineate cell plasticity. By analysing the transcription-factor-induced transdifferentiation from fibroblasts to hepatocytes, we uncovered contiguous compartment-switchable regions (CSRs) as a unique chromatin unit. Specifically, compartment B-to-A CSRs, enriched with hepatic genes, possessed a mosaic status of inactive chromatin and pre-existing and continuous accessibility in fibroblasts. Pre-existing accessibility enhanced the binding of inducible factor Foxa3, which triggered epigenetic activation and chromatin interaction as well as hepatic gene expression. Notably, these changes were restrained within B-to-A CSR boundaries that were defined by CTCF occupancy. Moreover, such chromatin organization and mosaic status were detectable in different cell types and involved in multiple reprogramming processes, suggesting an intrinsic chromatin attribute in understanding cell plasticity.
Collapse
Affiliation(s)
- Xiaolong Ma
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai200031, China
| | - Xuan Cao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Linying Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai200031, China
| | - Ying Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Xuelong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Baihua Wu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai200031, China
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Lijian Hui
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai200031, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing100101, China
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou215121, Jiangsu Province, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai201210, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
| |
Collapse
|
125
|
Sánchez OF, Lin LF, Xie J, Freeman JL, Yuan C. Lead exposure induces dysregulation of constitutive heterochromatin hallmarks in live cells. Curr Res Toxicol 2021; 3:100061. [PMID: 35005634 PMCID: PMC8717252 DOI: 10.1016/j.crtox.2021.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022] Open
Abstract
Lead (Pb) is a heavy metal contaminant commonly found in air, soil, and drinking water due to legacy uses. Excretion of ingested Pb can result in extensive kidney damages due to elevated oxidative stress. Epigenetic alterations induced by exposure to Pb have also been implied but remain poorly understood. In this work, we assessed changes in repressive epigenetic marks, namely DNA methylation (meCpG) and histone 3 lysine 9 tri-methylation (H3K9me3) after exposure to Pb. Live cell epigenetic probes coupled to bimolecular fluorescence complementation (BiFC) were used to monitor changes in the selected epigenetic marks. Exposure to Pb significantly lowered meCpG and H3K9me3 levels in HEK293T cells suggesting global changes in constitutive heterochromatin. A heterodimeric pair of probes that tags chromatin regions enriched in both meCpG and H3K9me3 further confirmed our findings. The observed epigenetic changes can be partially attributed to aberrant transcriptional changes induced by Pb, such as overexpression of TET1 after Pb exposure. Lastly, we monitored changes in selected heterochromatin marks after removal of Pb and found that changes in these markers do not immediately recover to their original level suggesting potential long-term damages to chromatin structure.
Collapse
Affiliation(s)
- Oscar F. Sánchez
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Li F. Lin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Jennifer L. Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center of Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center of Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
126
|
Ispada J, Milazzotto MP. Silencing mark H3K27me3 is differently reprogrammed in bovine embryos with distinct kinetics of development. Reprod Domest Anim 2021; 57:333-336. [PMID: 34854135 DOI: 10.1111/rda.14060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/28/2021] [Indexed: 11/30/2022]
Abstract
The kinetics of the first cleavages is a predictor of blastocyst development and implantation. For bovine embryos, this attribute was previously related to distinct metabolic, molecular and epigenetic profiles, including DNA and histone modifications. In the present work, we described the dynamics of trimethylation of lysine 27 on histone H3 (H3K27me3) in fast and slow developing embryos and verified if this epigenetic mark was also influenced by the speed of the first cleavages. In vitro-produced bovine embryos were classified as fast (4 or more cells) or slow (2 cells) at 40 hr post fertilization (hpf) and either collected or cultured until 96 hpf or 186 hpf. Immunofluorescence analysis was performed in these three time points and showed that although both groups presented the same levels of H3K27me3 at 40 hpf, slow embryos presented a pronounced increase in this mark at 186 hpf when compared to fast embryos, resulting in blastocysts with remarkable differences in H3K27me3 levels. In conclusion, the increased levels of this repressive histone post-translation modification (PTM) might be an attempt of slow embryos to promote gene expression control and chromatin integrity, since it was already reported that these embryos present reduced levels of other epigenetic repressive marks as DNA methylation and trimethylation of lysine 9 on histone H3 (H3K9me3).
Collapse
Affiliation(s)
- Jessica Ispada
- Laboratory of Cellular and Molecular Biology, Center of Natural and Human Science, Federal University of ABC, Santo Andre, Brazil.,Institute of Biomedical Sciences, University of Sao Paulo, Butanta, Brazil
| | - Marcella Pecora Milazzotto
- Laboratory of Cellular and Molecular Biology, Center of Natural and Human Science, Federal University of ABC, Santo Andre, Brazil.,Institute of Biomedical Sciences, University of Sao Paulo, Butanta, Brazil
| |
Collapse
|
127
|
Defective chromatin architectures in embryonic stem cells derived from somatic cell nuclear transfer impair their differentiation potentials. Cell Death Dis 2021; 12:1085. [PMID: 34785659 PMCID: PMC8595669 DOI: 10.1038/s41419-021-04384-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/08/2022]
Abstract
Nuclear transfer embryonic stem cells (ntESCs) hold enormous promise for individual-specific regenerative medicine. However, the chromatin states of ntESCs remain poorly characterized. In this study, we employed ATAC-seq and Hi-C techniques to explore the chromatin accessibility and three-dimensional (3D) genome organization of ntESCs. The results show that the chromatin accessibility and genome structures of somatic cells are re-arranged to ESC-like states overall in ntESCs, including compartments, topologically associating domains (TADs) and chromatin loops. However, compared to fertilized ESCs (fESCs), ntESCs show some abnormal openness and structures that have not been reprogrammed completely, which impair the differentiation potential of ntESCs. The histone modification H3K9me3 may be involved in abnormal structures in ntESCs, including incorrect compartment switches and incomplete TAD rebuilding. Moreover, ntESCs and iPSCs show high similarity in 3D genome structures, while a few differences are detected due to different somatic cell origins and reprogramming mechanisms. Through systematic analyses, our study provides a global view of chromatin accessibility and 3D genome organization in ntESCs, which can further facilitate the understanding of the similarities and differences between ntESCs and fESCs.
Collapse
|
128
|
Wakim JG, Sandholtz SH, Spakowitz AJ. Impact of chromosomal organization on epigenetic drift and domain stability revealed by physics-based simulations. Biophys J 2021; 120:4932-4943. [PMID: 34687722 DOI: 10.1016/j.bpj.2021.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/07/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
We examine the relationship between the size of domains of epigenetic marks and the stability of those domains using our theoretical model that captures the physical mechanisms governing the maintenance of epigenetic modifications. We focus our study on histone H3 lysine-9 trimethylation, one of the most common and consequential epigenetic marks with roles in chromatin compaction and gene repression. Our model combines the effects of methyl spreading by methyltransferases and chromatin segregation into heterochromatin and euchromatin because of preferential heterochromatin protein 1 (HP1) binding. Our model indicates that, although large methylated domains are passed successfully from one chromatin generation to the next, small alterations to the methylation sequence are not maintained during chromatin replication. Using our predictive model, we investigate the size required for an epigenetic domain to persist over chromatin generations while surrounded by a much larger domain of opposite methylation and compaction state. We find that there is a critical size threshold in the hundreds-of-nucleosomes scale above which an epigenetic domain will be reliably maintained over generations. The precise size of the threshold differs for heterochromatic and euchromatic domains. Our results are consistent with natural alterations to the epigenetic sequence occurring during embryonic development and due to age-related epigenetic drift.
Collapse
Affiliation(s)
- Joseph G Wakim
- Department of Chemical Engineering, Stanford University, Stanford, California
| | | | - Andrew J Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, California; Department of Materials Science and Engineering, Stanford University, Stanford, California; Biophysics Program, Stanford University, Stanford, California; Department of Applied Physics, Stanford University, Stanford, California.
| |
Collapse
|
129
|
Li S, Chen LL, Wang XH, Zhu HJ, Li XL, Feng X, Guo L, Ou XH, Ma JY. Chromosomal variants accumulate in genomes of the spontaneous aborted fetuses revealed by chromosomal microarray analysis. PLoS One 2021; 16:e0259518. [PMID: 34727132 PMCID: PMC8562782 DOI: 10.1371/journal.pone.0259518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/20/2021] [Indexed: 01/18/2023] Open
Abstract
Spontaneous abortion is an impeding factor for the success rates of human assistant reproductive technology (ART). Causes of spontaneous abortion include not only the pregnant mothers’ health conditions and lifestyle habits, but also the fetal development potential. Evidences had shown that fetal chromosome aneuploidy is associated with fetal spontaneous abortion, however, it is still not definite that whether other genome variants, like copy number variations (CNVs) or loss of heterozygosity (LOHs) is associated with the spontaneous abortion. To assess the relationship between the fetal genome variants and abortion during ART, a chromosomal microarray data including chromosomal information of 184 spontaneous aborted fetuses, 147 adult female patients and 78 adult male patients during ART were collected. We firstly analyzed the relationship of fetal aneuploidy with maternal ages and then compared the numbers and lengths of CNVs (< 4Mbp) and LOHs among adults and aborted fetuses. In addition to the already known association between chromosomal aneuploidy and maternal ages, from the chromosomal microarray data we found that the numbers and the accumulated lengths of short CNVs and LOHs in the aborted fetuses were significantly larger or longer than those in adults. Our findings indicated that the increased numbers and accumulated lengths of CNVs or LOHs might be associated with the spontaneous abortion during ART.
Collapse
Affiliation(s)
- Sen Li
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lei-Ling Chen
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xing-Hua Wang
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Hai-Jing Zhu
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiao-Long Li
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xie Feng
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lei Guo
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiang-Hong Ou
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jun-Yu Ma
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- * E-mail:
| |
Collapse
|
130
|
The histone chaperone FACT facilitates heterochromatin spreading by regulating histone turnover and H3K9 methylation states. Cell Rep 2021; 37:109944. [PMID: 34731638 PMCID: PMC8608617 DOI: 10.1016/j.celrep.2021.109944] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/14/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Heterochromatin formation requires three distinct steps: nucleation, self-propagation (spreading) along the chromosome, and faithful maintenance after each replication cycle. Impeding any of those steps induces heterochromatin defects and improper gene expression. The essential histone chaperone FACT (facilitates chromatin transcription) has been implicated in heterochromatin silencing, but the mechanisms by which FACT engages in this process remain opaque. Here, we pinpoint its function to the heterochromatin spreading process in fission yeast. FACT impairment reduces nucleation-distal H3K9me3 and HP1/Swi6 accumulation at subtelomeres and derepresses genes in the vicinity of heterochromatin boundaries. FACT promotes spreading by repressing heterochromatic histone turnover, which is crucial for the H3K9me2 to me3 transition that enables spreading. FACT mutant spreading defects are suppressed by removal of the H3K9 methylation antagonist Epe1. Together, our study identifies FACT as a histone chaperone that promotes heterochromatin spreading and lends support to the model that regulated histone turnover controls the propagation of repressive methylation marks. Heterochromatin establishment requires distinct nucleation and spreading steps. Murawska et al. show that the conserved and essential histone chaperone FACT facilitates the heterochromatin spreading process by maintaining low heterochromatic histone turnover, which enables a productive H3K9 trimethylation step by the methyltransferase Clr4 in fission yeast.
Collapse
|
131
|
Hu H, Khodadadi-Jamayran A, Dolgalev I, Cho H, Badri S, Chiriboga LA, Zeck B, Lopez De Rodas Gregorio M, Dowling CM, Labbe K, Deng J, Chen T, Zhang H, Zappile P, Chen Z, Ueberheide B, Karatza A, Han H, Ranieri M, Tang S, Jour G, Osman I, Sucker A, Schadendorf D, Tsirigos A, Schalper KA, Velcheti V, Huang HY, Jin Y, Ji H, Poirier JT, Li F, Wong KK. Targeting the Atf7ip-Setdb1 Complex Augments Antitumor Immunity by Boosting Tumor Immunogenicity. Cancer Immunol Res 2021; 9:1298-1315. [PMID: 34462284 PMCID: PMC9414288 DOI: 10.1158/2326-6066.cir-21-0543] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/20/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023]
Abstract
Substantial progress has been made in understanding how tumors escape immune surveillance. However, few measures to counteract tumor immune evasion have been developed. Suppression of tumor antigen expression is a common adaptive mechanism that cancers use to evade detection and destruction by the immune system. Epigenetic modifications play a critical role in various aspects of immune invasion, including the regulation of tumor antigen expression. To identify epigenetic regulators of tumor antigen expression, we established a transplantable syngeneic tumor model of immune escape with silenced antigen expression and used this system as a platform for a CRISPR-Cas9 suppressor screen for genes encoding epigenetic modifiers. We found that disruption of the genes encoding either of the chromatin modifiers activating transcription factor 7-interacting protein (Atf7ip) or its interacting partner SET domain bifurcated histone lysine methyltransferase 1 (Setdb1) in tumor cells restored tumor antigen expression. This resulted in augmented tumor immunogenicity concomitant with elevated endogenous retroviral (ERV) antigens and mRNA intron retention. ERV disinhibition was associated with a robust type I interferon response and increased T-cell infiltration, leading to rejection of cells lacking intact Atf7ip or Setdb1. ATF7IP or SETDB1 expression inversely correlated with antigen processing and presentation pathways, interferon signaling, and T-cell infiltration and cytotoxicity in human cancers. Our results provide a rationale for targeting Atf7ip or Setdb1 in cancer immunotherapy.
Collapse
Affiliation(s)
- Hai Hu
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, New York
| | - Alireza Khodadadi-Jamayran
- Division of Advanced Research Technologies, Applied Bioinformatics Laboratories and Genome Technology Center, NYU School of Medicine, New York, New York
| | - Igor Dolgalev
- Division of Advanced Research Technologies, Applied Bioinformatics Laboratories and Genome Technology Center, NYU School of Medicine, New York, New York
- Department of Pathology, NYU School of Medicine, New York, New York
| | - Hyunwoo Cho
- Division of Advanced Research Technologies, Applied Bioinformatics Laboratories and Genome Technology Center, NYU School of Medicine, New York, New York
- Department of Pathology, NYU School of Medicine, New York, New York
- Department of Radiation Oncology, NYU School of Medicine, New York, New York
| | - Sana Badri
- Department of Pathology, NYU School of Medicine, New York, New York
| | - Luis A Chiriboga
- Department of Pathology, NYU School of Medicine, New York, New York
| | - Briana Zeck
- Department of Pathology, NYU School of Medicine, New York, New York
| | | | - Catríona M Dowling
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, New York
- School of Medicine, University of Limerick, Limerick, Ireland
| | - Kristen Labbe
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, New York
| | - Jiehui Deng
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, New York
| | - Ting Chen
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, New York
| | - Hua Zhang
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, New York
| | - Paul Zappile
- Division of Advanced Research Technologies, Genome Technology Center, NYU School of Medicine, New York, New York
| | - Ze Chen
- Department of Medicine, NYU School of Medicine, New York
| | | | - Angeliki Karatza
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, New York
| | - Han Han
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, New York
| | - Michela Ranieri
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, New York
| | - Sittinon Tang
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, New York
| | - George Jour
- Department of Pathology, NYU School of Medicine, New York, New York
| | - Iman Osman
- Department of Dermatology, NYU School of Medicine, New York, New York
| | - Antje Sucker
- Department of Dermatology, University Hospital, Essen, Germany
| | | | - Aristotelis Tsirigos
- Division of Advanced Research Technologies, Applied Bioinformatics Laboratories and Genome Technology Center, NYU School of Medicine, New York, New York
- Department of Pathology, NYU School of Medicine, New York, New York
| | - Kurt A Schalper
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Vamsidhar Velcheti
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, New York
| | - Hsin-Yi Huang
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, New York
| | - Yujuan Jin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - John T Poirier
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, New York
| | - Fei Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Kwok-Kin Wong
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, New York.
| |
Collapse
|
132
|
Patel D, Patel M, Datta S, Singh U. CGGBP1-dependent CTCF-binding sites restrict ectopic transcription. Cell Cycle 2021; 20:2387-2401. [PMID: 34585631 PMCID: PMC8794514 DOI: 10.1080/15384101.2021.1982508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/25/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022] Open
Abstract
Binding sites of the chromatin regulator protein CTCF function as important landmarks in the human genome. The recently characterized CTCF-binding sites at LINE-1 repeats depend on another repeat-regulatory protein CGGBP1. These CGGBP1-dependent CTCF-binding sites serve as potential barrier elements for epigenetic marks such as H3K9me3. Such CTCF-binding sites are associated with asymmetric H3K9me3 levels as well as RNA levels in their flanks. The functions of these CGGBP1-dependent CTCF-binding sites remain unknown. By performing targeted studies on candidate CGGBP1-dependent CTCF-binding sites cloned in an SV40 promoter-enhancer episomal system we show that these regions act as inhibitors of ectopic transcription from the SV40 promoter. CGGBP1-dependent CTCF-binding sites that recapitulate their genomic function of loss of CTCF binding upon CGGBP1 depletion and H3K9me3 asymmetry in immediate flanks are also the ones that show the strongest inhibition of ectopic transcription. By performing a series of strand-specific reverse transcription PCRs we demonstrate that this ectopic transcription results in the synthesis of RNA from the SV40 promoter in a direction opposite to the downstream reporter gene in a strand-specific manner. The unleashing of the bidirectionality of the SV40 promoter activity and a breach of the transcription barrier seems to depend on depletion of CGGBP1 and loss of CTCF binding proximal to the SV40 promoter. RNA-sequencing reveals that CGGBP1-regulated CTCF-binding sites act as barriers to transcription at multiple locations genome-wide. These findings suggest a role of CGGBP1-dependent binding sites in restricting ectopic transcription.
Collapse
Affiliation(s)
- Divyesh Patel
- HoMeCell Lab, Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
- Research Programs Unit, Applied Tumor Genomics Program, Faculty of Medicine, University of Helsinki, Biomedicum, Helsinki, Finland
| | - Manthan Patel
- HoMeCell Lab, Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Subhamoy Datta
- HoMeCell Lab, Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Umashankar Singh
- HoMeCell Lab, Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| |
Collapse
|
133
|
Vojvoda Zeljko T, Ugarković Đ, Pezer Ž. Differential enrichment of H3K9me3 at annotated satellite DNA repeats in human cell lines and during fetal development in mouse. Epigenetics Chromatin 2021; 14:47. [PMID: 34663449 PMCID: PMC8524813 DOI: 10.1186/s13072-021-00423-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/05/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Trimethylation of histone H3 on lysine 9 (H3K9me3) at satellite DNA sequences has been primarily studied at (peri)centromeric regions, where its level shows differences associated with various processes such as development and malignant transformation. However, the dynamics of H3K9me3 at distal satellite DNA repeats has not been thoroughly investigated. RESULTS We exploit the sets of publicly available data derived from chromatin immunoprecipitation combined with massively parallel DNA sequencing (ChIP-Seq), produced by the The Encyclopedia of DNA Elements (ENCODE) project, to analyze H3K9me3 at assembled satellite DNA repeats in genomes of human cell lines and during mouse fetal development. We show that annotated satellite elements are generally enriched for H3K9me3, but its level in cancer cell lines is on average lower than in normal cell lines. We find 407 satellite DNA instances with differential H3K9me3 enrichment between cancer and normal cells including a large 115-kb cluster of GSATII elements on chromosome 12. Differentially enriched regions are not limited to satellite DNA instances, but instead encompass a wider region of flanking sequences. We found no correlation between the levels of H3K9me3 and noncoding RNA at corresponding satellite DNA loci. The analysis of data derived from multiple tissues identified 864 instances of satellite DNA sequences in the mouse reference genome that are differentially enriched between fetal developmental stages. CONCLUSIONS Our study reveals significant differences in H3K9me3 level at a subset of satellite repeats between biological states and as such contributes to understanding of the role of satellite DNA repeats in epigenetic regulation during development and carcinogenesis.
Collapse
Affiliation(s)
| | | | - Željka Pezer
- Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia.
| |
Collapse
|
134
|
Morc3 silences endogenous retroviruses by enabling Daxx-mediated histone H3.3 incorporation. Nat Commun 2021; 12:5996. [PMID: 34650047 PMCID: PMC8516933 DOI: 10.1038/s41467-021-26288-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
Endogenous retroviruses (ERVs) comprise a significant portion of mammalian genomes. Although specific ERV loci feature regulatory roles for host gene expression, most ERV integrations are transcriptionally repressed by Setdb1-mediated H3K9me3 and DNA methylation. However, the protein network which regulates the deposition of these chromatin modifications is still incompletely understood. Here, we perform a genome-wide single guide RNA (sgRNA) screen for genes involved in ERV silencing and identify the GHKL ATPase protein Morc3 as a top-scoring hit. Morc3 knock-out (ko) cells display de-repression, reduced H3K9me3, and increased chromatin accessibility of distinct ERV families. We find that the Morc3 ATPase cycle and Morc3 SUMOylation are important for ERV chromatin regulation. Proteomic analyses reveal that Morc3 mutant proteins fail to interact with the histone H3.3 chaperone Daxx. This interaction depends on Morc3 SUMOylation and Daxx SUMO binding. Notably, in Morc3 ko cells, we observe strongly reduced histone H3.3 on Morc3 binding sites. Thus, our data demonstrate Morc3 as a critical regulator of Daxx-mediated histone H3.3 incorporation to ERV regions. Endogenous retroviruses (ERVs) compose a significant portion of mammalian genomes; however, how ERVs are regulated is not well known. Here the authors performed a genome-wide sgRNA screen to identify Morc3 as a mediator of ERV silencing. They show Morc3 associates with the H3.3 chaperone Daxx, and that loss of Morc3 leads to reduced H3.3 at ERVs.
Collapse
|
135
|
Forsyth RG, Krenács T, Athanasou N, Hogendoorn PCW. Cell Biology of Giant Cell Tumour of Bone: Crosstalk between m/wt Nucleosome H3.3, Telomeres and Osteoclastogenesis. Cancers (Basel) 2021; 13:5119. [PMID: 34680268 PMCID: PMC8534144 DOI: 10.3390/cancers13205119] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Giant cell tumour of bone (GCTB) is a rare and intriguing primary bone neoplasm. Worrisome clinical features are its local destructive behaviour, its high tendency to recur after surgical therapy and its ability to create so-called benign lung metastases (lung 'plugs'). GCTB displays a complex and difficult-to-understand cell biological behaviour because of its heterogenous morphology. Recently, a driver mutation in histone H3.3 was found. This mutation is highly conserved in GCTB but can also be detected in glioblastoma. Denosumab was recently introduced as an extra option of medical treatment next to traditional surgical and in rare cases, radiotherapy. Despite these new insights, many 'old' questions about the key features of GCTB remain unanswered, such as the presence of telomeric associations (TAs), the reactivation of hTERT, and its slight genomic instability. This review summarises the recent relevant literature of histone H3.3 in relation to the GCTB-specific G34W mutation and pays specific attention to the G34W mutation in relation to the development of TAs, genomic instability, and the characteristic morphology of GCTB. As pieces of an etiogenetic puzzle, this review tries fitting all these molecular features and the unique H3.3 G34W mutation together in GCTB.
Collapse
Affiliation(s)
- Ramses G. Forsyth
- Department of Pathology, University Hospital Brussels (UZB), Laarbeeklaan 101, 1090 Brussels, Belgium;
- Labaratorium for Experimental Pathology (EXPA), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Tibor Krenács
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllöi ut 26, 1085 Budapest, Hungary;
| | - Nicholas Athanasou
- Department of Histopathology, Nuffield Orthopaedic Centre, University of Oxford, NDORMS, Oxford OX3 7HE, UK;
| | - Pancras C. W. Hogendoorn
- Department of Pathology, University Hospital Brussels (UZB), Laarbeeklaan 101, 1090 Brussels, Belgium;
- Labaratorium for Experimental Pathology (EXPA), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllöi ut 26, 1085 Budapest, Hungary;
- Department of Histopathology, Nuffield Orthopaedic Centre, University of Oxford, NDORMS, Oxford OX3 7HE, UK;
- Department of Pathology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2300 RC Leiden, The Netherlands
| |
Collapse
|
136
|
Zhu M, Peng R, Liang X, Lan Z, Tang M, Hou P, Song JH, Mak CSL, Park J, Zheng SE, Huang A, Ma X, Chen R, Chang Q, Logothetis CJ, Jain AK, Lin SH, Katayama H, Hanash S, Wang G. P4HA2-induced prolyl hydroxylation suppresses YAP1-mediated prostate cancer cell migration, invasion, and metastasis. Oncogene 2021; 40:6049-6056. [PMID: 34471235 PMCID: PMC8526415 DOI: 10.1038/s41388-021-02000-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
Yes-associated protein 1 (YAP1), a key player in the Hippo pathway, has been shown to play a critical role in tumor progression. However, the role of YAP1 in prostate cancer cell invasion, migration, and metastasis is not well defined. Through functional, transcriptomic, epigenomic, and proteomic analyses, we showed that prolyl hydroxylation of YAP1 plays a critical role in the suppression of cell migration, invasion, and metastasis in prostate cancer. Knockdown (KD) or knockout (KO) of YAP1 led to an increase in cell migration, invasion, and metastasis in prostate cancer cells. Microarray analysis showed that the EMT pathway was activated in Yap1-KD cells. ChIP-seq analysis showed that YAP1 target genes are enriched in pathways regulating cell migration. Mass spectrometry analysis identified P4H prolyl hydroxylase in the YAP1 complex and YAP1 was hydroxylated at multiple proline residues. Proline-to-alanine mutations of YAP1 isoform 3 identified proline 174 as a critical residue, and its hydroxylation suppressed cell migration, invasion, and metastasis. KO of P4ha2 led to an increase in cell migration and invasion, which was reversed upon Yap1 KD. Our study identified a novel regulatory mechanism of YAP1 by which P4HA2-dependent prolyl hydroxylation of YAP1 determines its transcriptional activities and its function in prostate cancer metastasis.
Collapse
Affiliation(s)
- Ming Zhu
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ruiqing Peng
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xin Liang
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhengdao Lan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ming Tang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Pingping Hou
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jian H. Song
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Celia Sze Ling Mak
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiwon Park
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shui-er Zheng
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ailing Huang
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xingdi Ma
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ruidong Chen
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qing Chang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abhinav K. Jain
- Department of Epigenetics and Molecular Carcinogenesis & Epigenomics Profiling Core Facility, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sue-Hwa Lin
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guocan Wang
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
137
|
|
138
|
β-actin dependent chromatin remodeling mediates compartment level changes in 3D genome architecture. Nat Commun 2021; 12:5240. [PMID: 34475390 PMCID: PMC8413440 DOI: 10.1038/s41467-021-25596-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
β-actin is a crucial component of several chromatin remodeling complexes that control chromatin structure and accessibility. The mammalian Brahma-associated factor (BAF) is one such complex that plays essential roles in development and differentiation by regulating the chromatin state of critical genes and opposing the repressive activity of polycomb repressive complexes (PRCs). While previous work has shown that β-actin loss can lead to extensive changes in gene expression and heterochromatin organization, it is not known if changes in β-actin levels can directly influence chromatin remodeling activities of BAF and polycomb proteins. Here we conduct a comprehensive genomic analysis of β-actin knockout mouse embryonic fibroblasts (MEFs) using ATAC-Seq, HiC-seq, RNA-Seq and ChIP-Seq of various epigenetic marks. We demonstrate that β-actin levels can induce changes in chromatin structure by affecting the complex interplay between chromatin remodelers such as BAF/BRG1 and EZH2. Our results show that changes in β-actin levels and associated chromatin remodeling activities can not only impact local chromatin accessibility but also induce reversible changes in 3D genome architecture. Our findings reveal that β-actin-dependent chromatin remodeling plays a role in shaping the chromatin landscape and influences the regulation of genes involved in development and differentiation.
Collapse
|
139
|
Building Pluripotency Identity in the Early Embryo and Derived Stem Cells. Cells 2021; 10:cells10082049. [PMID: 34440818 PMCID: PMC8391114 DOI: 10.3390/cells10082049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
The fusion of two highly differentiated cells, an oocyte with a spermatozoon, gives rise to the zygote, a single totipotent cell, which has the capability to develop into a complete, fully functional organism. Then, as development proceeds, a series of programmed cell divisions occur whereby the arising cells progressively acquire their own cellular and molecular identity, and totipotency narrows until when pluripotency is achieved. The path towards pluripotency involves transcriptome modulation, remodeling of the chromatin epigenetic landscape to which external modulators contribute. Both human and mouse embryos are a source of different types of pluripotent stem cells whose characteristics can be captured and maintained in vitro. The main aim of this review is to address the cellular properties and the molecular signature of the emerging cells during mouse and human early development, highlighting similarities and differences between the two species and between the embryos and their cognate stem cells.
Collapse
|
140
|
Liquid-liquid phase separation in human health and diseases. Signal Transduct Target Ther 2021; 6:290. [PMID: 34334791 PMCID: PMC8326283 DOI: 10.1038/s41392-021-00678-1] [Citation(s) in RCA: 332] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/26/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence suggests that liquid-liquid phase separation (LLPS) represents a vital and ubiquitous phenomenon underlying the formation of membraneless organelles in eukaryotic cells (also known as biomolecular condensates or droplets). Recent studies have revealed evidences that indicate that LLPS plays a vital role in human health and diseases. In this review, we describe our current understanding of LLPS and summarize its physiological functions. We further describe the role of LLPS in the development of human diseases. Additionally, we review the recently developed methods for studying LLPS. Although LLPS research is in its infancy-but is fast-growing-it is clear that LLPS plays an essential role in the development of pathophysiological conditions. This highlights the need for an overview of the recent advances in the field to translate our current knowledge regarding LLPS into therapeutic discoveries.
Collapse
|
141
|
Diverse heterochromatin-associated proteins repress distinct classes of genes and repetitive elements. Nat Cell Biol 2021; 23:905-914. [PMID: 34354237 PMCID: PMC9248069 DOI: 10.1038/s41556-021-00725-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 06/30/2021] [Indexed: 12/28/2022]
Abstract
Heterochromatin, typically marked by histone H3 trimethylation at lysine 9 (H3K9me3) or lysine 27 (H3K27me3), represses different protein-coding genes in different cells, as well as repetitive elements. The basis for locus specificity is unclear. Previously, we identified 172 proteins that are embedded in sonication-resistant heterochromatin (srHC) harbouring H3K9me3. Here, we investigate in humans how 97 of the H3K9me3-srHC proteins repress heterochromatic genes. We reveal four groups of srHC proteins that each repress many common genes and repeat elements. Two groups repress H3K9me3-embedded genes with different extents of flanking srHC, one group is specific for srHC genes with H3K9me3 and H3K27me3, and one group is specific for genes with srHC as the primary feature. We find that the enhancer of rudimentary homologue (ERH) is conserved from Schizosaccharomyces pombe in repressing meiotic genes and, in humans, now represses other lineage-specific genes and repeat elements. The study greatly expands our understanding of H3K9me3-based gene repression in vertebrates.
Collapse
|
142
|
Decombe S, Loll F, Caccianini L, Affannoukoué K, Izeddin I, Mozziconacci J, Escudé C, Lopes J. Epigenetic rewriting at centromeric DNA repeats leads to increased chromatin accessibility and chromosomal instability. Epigenetics Chromatin 2021; 14:35. [PMID: 34321103 PMCID: PMC8317386 DOI: 10.1186/s13072-021-00410-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/18/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Centromeric regions of human chromosomes contain large numbers of tandemly repeated α-satellite sequences. These sequences are covered with constitutive heterochromatin which is enriched in trimethylation of histone H3 on lysine 9 (H3K9me3). Although well studied using artificial chromosomes and global perturbations, the contribution of this epigenetic mark to chromatin structure and genome stability remains poorly known in a more natural context. RESULTS Using transcriptional activator-like effectors (TALEs) fused to a histone lysine demethylase (KDM4B), we were able to reduce the level of H3K9me3 on the α-satellites repeats of human chromosome 7. We show that the removal of H3K9me3 affects chromatin structure by increasing the accessibility of DNA repeats to the TALE protein. Tethering TALE-demethylase to centromeric repeats impairs the recruitment of HP1α and proteins of Chromosomal Passenger Complex (CPC) on this specific centromere without affecting CENP-A loading. Finally, the epigenetic re-writing by the TALE-KDM4B affects specifically the stability of chromosome 7 upon mitosis, highlighting the importance of H3K9me3 in centromere integrity and chromosome stability, mediated by the recruitment of HP1α and the CPC. CONCLUSION Our cellular model allows to demonstrate the direct role of pericentromeric H3K9me3 epigenetic mark on centromere integrity and function in a natural context and opens interesting possibilities for further studies regarding the role of the H3K9me3 mark.
Collapse
Affiliation(s)
- Sheldon Decombe
- Laboratoire Structure et Instabilité des Génomes, INSERM U1154, CNRS UM7196, Muséum National d'Histoire Naturelle, 43 rue Cuvier, 75005, Paris, France.,DCCBR, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - François Loll
- Laboratoire Structure et Instabilité des Génomes, INSERM U1154, CNRS UM7196, Muséum National d'Histoire Naturelle, 43 rue Cuvier, 75005, Paris, France.,INSERM, UMR 1229, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, 44042, Nantes, France
| | - Laura Caccianini
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, Paris-Science Lettres, Sorbonne Université, 75005, Paris, France
| | - Kévin Affannoukoué
- Institut Langevin, ESPCI Paris, PSL Université, CNRS, 75005, Paris, France.,Institut Fresnel, Aix Marseille Université CNRS Centrale Marseille, Marseille, France
| | - Ignacio Izeddin
- Institut Langevin, ESPCI Paris, PSL Université, CNRS, 75005, Paris, France
| | - Julien Mozziconacci
- Laboratoire Structure et Instabilité des Génomes, INSERM U1154, CNRS UM7196, Muséum National d'Histoire Naturelle, 43 rue Cuvier, 75005, Paris, France
| | - Christophe Escudé
- Laboratoire Structure et Instabilité des Génomes, INSERM U1154, CNRS UM7196, Muséum National d'Histoire Naturelle, 43 rue Cuvier, 75005, Paris, France
| | - Judith Lopes
- Laboratoire Structure et Instabilité des Génomes, INSERM U1154, CNRS UM7196, Muséum National d'Histoire Naturelle, 43 rue Cuvier, 75005, Paris, France.
| |
Collapse
|
143
|
Kim MH, Ayuningtyas FD, Kino-Oka M. Novel approach to enhance aggregate migration-driven epigenetic memory which induces cardiomyogenic differentiation on a dendrimer-immobilized surface. J Biosci Bioeng 2021; 132:390-398. [PMID: 34284946 DOI: 10.1016/j.jbiosc.2021.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
The dynamic migratory behavior of human mesenchymal stem cells (hMSCs) has a significant impact on the epigenetic profiles that determine fate choice and lineage commitment during differentiation. Here we report a novel approach to enhance repeated migration-driven epigenetic memory which induces cardiomyogenic differentiation on a dendrimer surface with fifth generation (G5). Cells exhibited the formation of cell aggregates on the G5 surface through active migration with morphological changes, and these aggregates showed strong expression of the cardiac-specific marker cardiac troponin T (cTnT) at 10 days. When cell aggregates were passaged onto a fresh G5 surface over three passages of 40 days, the expression levels of the multiple cardiac-specific markers including GATA4, NKX2.5, MYH7, and TNNT2 were higher compared to those passaged as single cells. To investigate whether cardiomyogenic differentiation of hMSCs was enhanced by repeated aggregate migration-driven epigenetic memory, cells on the G5 surface were reseeded onto a fresh G5 surface during three passages using aggregate-based and single cell-based passage methods. Analyses of global changes in H3 histone modifications exhibited pattern of increased H3K9ac and H3K27me3, and decreased H3K9me3 in aggregate-based passage cultures during three passages. However, the pattern of their histone modification on the PS surface was repeated after the initialization and reformation during three passages in single cell-based passage cultures. Thus, repetitive aggregate migratory behavior during aggregate-based passage led to a greater degree of histone modification, as well as gene expression changes suggestive of cardiomyogenic differentiation.
Collapse
Affiliation(s)
- Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Fitria Dwi Ayuningtyas
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
144
|
Weirich S, Khella MS, Jeltsch A. Structure, Activity and Function of the Suv39h1 and Suv39h2 Protein Lysine Methyltransferases. Life (Basel) 2021; 11:life11070703. [PMID: 34357075 PMCID: PMC8303541 DOI: 10.3390/life11070703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
SUV39H1 and SUV39H2 were the first protein lysine methyltransferases that were identified more than 20 years ago. Both enzymes introduce di- and trimethylation at histone H3 lysine 9 (H3K9) and have important roles in the maintenance of heterochromatin and gene repression. They consist of a catalytically active SET domain and a chromodomain, which binds H3K9me2/3 and has roles in enzyme targeting and regulation. The heterochromatic targeting of SUV39H enzymes is further enhanced by the interaction with HP1 proteins and repeat-associated RNA. SUV39H1 and SUV39H2 recognize an RKST motif with additional residues on both sides, mainly K4 in the case of SUV39H1 and G12 in the case of SUV39H2. Both SUV39H enzymes methylate different non-histone proteins including RAG2, DOT1L, SET8 and HupB in the case of SUV39H1 and LSD1 in the case of SUV39H2. Both enzymes are expressed in embryonic cells and have broad expression profiles in the adult body. SUV39H1 shows little tissue preference except thymus, while SUV39H2 is more highly expressed in the brain, testis and thymus. Both enzymes are connected to cancer, having oncogenic or tumor-suppressive roles depending on the tumor type. In addition, SUV39H2 has roles in the brain during early neurodevelopment.
Collapse
Affiliation(s)
- Sara Weirich
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany; (S.W.); (M.S.K.)
| | - Mina S. Khella
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany; (S.W.); (M.S.K.)
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo 11566, Egypt
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany; (S.W.); (M.S.K.)
- Correspondence:
| |
Collapse
|
145
|
Atanasoff-Kardjalieff AK, Lünne F, Kalinina S, Strauss J, Humpf HU, Studt L. Biosynthesis of Fusapyrone Depends on the H3K9 Methyltransferase, FmKmt1, in Fusarium mangiferae. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:671796. [PMID: 37744112 PMCID: PMC10512364 DOI: 10.3389/ffunb.2021.671796] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/09/2021] [Indexed: 09/26/2023]
Abstract
The phytopathogenic fungus Fusarium mangiferae belongs to the Fusarium fujikuroi species complex (FFSC). Members of this group cause a wide spectrum of devastating diseases on diverse agricultural crops. F. mangiferae is the causal agent of the mango malformation disease (MMD) and as such detrimental for agriculture in the southern hemisphere. During plant infection, the fungus produces a plethora of bioactive secondary metabolites (SMs), which most often lead to severe adverse defects on plants health. Changes in chromatin structure achieved by posttranslational modifications (PTM) of histones play a key role in regulation of fungal SM biosynthesis. Posttranslational tri-methylation of histone 3 lysine 9 (H3K9me3) is considered a hallmark of heterochromatin and established by the SET-domain protein Kmt1. Here, we show that FmKmt1 is involved in H3K9me3 in F. mangiferae. Loss of FmKmt1 only slightly though significantly affected fungal hyphal growth and stress response and is required for wild type-like conidiation. While FmKmt1 is largely dispensable for the biosynthesis of most known SMs, removal of FmKMT1 resulted in an almost complete loss of fusapyrone and deoxyfusapyrone, γ-pyrones previously only known from Fusarium semitectum. Here, we identified the polyketide synthase (PKS) FmPKS40 to be involved in fusapyrone biosynthesis, delineate putative cluster borders by co-expression studies and provide insights into its regulation.
Collapse
Affiliation(s)
- Anna K. Atanasoff-Kardjalieff
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | - Friederike Lünne
- Institute of Food Chemistry, Westfälische Wilhelms-Universität, Münster, Germany
| | - Svetlana Kalinina
- Institute of Food Chemistry, Westfälische Wilhelms-Universität, Münster, Germany
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität, Münster, Germany
| | - Lena Studt
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| |
Collapse
|
146
|
Gong Y, Li Z, Zou S, Deng D, Lai P, Hu H, Yao Y, Hu L, Zhang S, Li K, Wei T, Zhao X, Xiao G, Chen Z, Jiang Y, Bai X, Zou Z. Vangl2 limits chaperone-mediated autophagy to balance osteogenic differentiation in mesenchymal stem cells. Dev Cell 2021; 56:2103-2120.e9. [PMID: 34214490 DOI: 10.1016/j.devcel.2021.06.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/04/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022]
Abstract
Lysosomes are the recycling center and nutrient signaling hub of the cell. Here, we show that lysosomes also control mesenchymal stem cell (MSC) differentiation by proteomic reprogramming. The chaperone-mediated autophagy (CMA) lysosome subgroup promotes osteogenesis, while suppressing adipogenesis, by selectively removing osteogenesis-deterring factors, especially master transcriptional factors, such as adipogenic TLE3, ZNF423, and chondrogenic SOX9. The activity of the CMA-committed lysosomes in MSCs are controlled by Van-Gogh-like 2 (Vangl2) at lysosomes. Vangl2 directly binds to lysosome-associated membrane protein 2A (LAMP-2A) and targets it for degradation. MSC-specific Vangl2 ablation in mice increases LAMP-2A expression and CMA-lysosome numbers, promoting bone formation while reducing marrow fat. The Vangl2:LAMP-2A ratio in MSCs correlates inversely with the capacity of the cells for osteoblastic differentiation in humans and mice. These findings demonstrate a critical role for lysosomes in MSC lineage acquisition and establish Vangl2-LAMP-2A signaling as a critical control mechanism.
Collapse
Affiliation(s)
- Yan Gong
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ziqi Li
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shitian Zou
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Daizhao Deng
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pinglin Lai
- State Key Laboratory of Organ Failure Research, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, China
| | - Hongling Hu
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yongzhou Yao
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Le Hu
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sheng Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kai Li
- State Key Laboratory of Organ Failure Research, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, China
| | - Tiantian Wei
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyang Zhao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Guozhi Xiao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zifeng Chen
- Department of Orthopedic Trauma, Panyu District Central Hospital of Guangzhou, Guangzhou 511400, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China.
| | - Zhipeng Zou
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
147
|
Klonou A, Korkolopoulou P, Gargalionis AN, Kanakoglou DS, Katifelis H, Gazouli M, Chlamydas S, Mitsios A, Kalamatianos T, Stranjalis G, Themistocleous MS, Papavassiliou KA, Sgouros S, Papavassiliou AG, Piperi C. Histone Mark Profiling in Pediatric Astrocytomas Reveals Prognostic Significance of H3K9 Trimethylation and Histone Methyltransferase SUV39H1. Neurotherapeutics 2021; 18:2073-2090. [PMID: 34296393 PMCID: PMC8609021 DOI: 10.1007/s13311-021-01090-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 02/04/2023] Open
Abstract
Alterations in global histone methylation regulate gene expression and participate in cancer onset and progression. The profile of histone methylation marks in pediatric astrocytomas is currently understudied with limited data on their distribution among grades. The global expression patterns of repressive histone marks H3K9me3, H3K27me3, and H4K20me3 and active H3K4me3 and H3K36me3 along with their writers SUV39H1, SETDB1, EZH2, MLL2, and SETD2 were investigated in 46 pediatric astrocytomas and normal brain tissues. Associations between histone marks and modifying enzymes with clinicopathological characteristics and disease-specific survival were studied along with their functional impact in proliferation and migration of pediatric astrocytoma cell lines using selective inhibitors in vitro. Upregulation of histone methyltransferase gene expression and deregulation of histone code were detected in astrocytomas compared to normal brain tissues, with higher levels of SUV39H1, SETDB1, and SETD2 as well as H4K20me3 and H3K4me3 histone marks. Pilocytic astrocytomas exhibited lower MLL2 levels compared to diffusely infiltrating tumors indicating a differential pattern of epigenetic regulator expression between the two types of astrocytic neoplasms. Moreover, higher H3K9me3, H3K36me3, and SETDB1 expression was detected in grade IIΙ/IV compared to grade II astrocytomas. In univariate analysis, elevated H3K9me3 and MLL2 and diminished SUV39H1 expression adversely affected survival. Upon multivariate survival analysis, only SUV39H1 expression was revealed as an independent prognostic factor of adverse significance. Treatment of pediatric astrocytoma cell lines with SUV39H1 inhibitor reduced proliferation and cell migration. Our data implicate H3K9me3 and SUV39H1 in the pathobiology of pediatric astrocytomas, with SUV39H1 yielding prognostic information independent of other clinicopathologic variables.
Collapse
Affiliation(s)
- Alexia Klonou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527, Athens, Greece
| | - Penelope Korkolopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Antonios N Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527, Athens, Greece
| | - Dimitrios S Kanakoglou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Hector Katifelis
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Sarantis Chlamydas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527, Athens, Greece
| | - Andreas Mitsios
- Department of Neurosurgery, Agia Sofia' Children's Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Theodosis Kalamatianos
- Department of Neurosurgery, 'Evangelismos' Hospital, Medical School, National and Kapodistrian University of Athens, 10676, Athens, Greece
| | - George Stranjalis
- Department of Neurosurgery, 'Evangelismos' Hospital, Medical School, National and Kapodistrian University of Athens, 10676, Athens, Greece
| | - Marios S Themistocleous
- Department of Neurosurgery, Agia Sofia' Children's Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Kostas A Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527, Athens, Greece
| | - Spyros Sgouros
- Department of Pediatric Neurosurgery, 'Mitera' Children's Hospital, Medical School, National and Kapodistrian University of Athens, 15123, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527, Athens, Greece.
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527, Athens, Greece.
| |
Collapse
|
148
|
Different Flavors of Astrocytes: Revising the Origins of Astrocyte Diversity and Epigenetic Signatures to Understand Heterogeneity after Injury. Int J Mol Sci 2021; 22:ijms22136867. [PMID: 34206710 PMCID: PMC8268487 DOI: 10.3390/ijms22136867] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are a specific type of neuroglial cells that confer metabolic and structural support to neurons. Astrocytes populate all regions of the nervous system and adopt a variety of phenotypes depending on their location and their respective functions, which are also pleiotropic in nature. For example, astrocytes adapt to pathological conditions with a specific cellular response known as reactive astrogliosis, which includes extensive phenotypic and transcriptional changes. Reactive astrocytes may lose some of their homeostatic functions and gain protective or detrimental properties with great impact on damage propagation. Different astrocyte subpopulations seemingly coexist in reactive astrogliosis, however, the source of such heterogeneity is not completely understood. Altered cellular signaling in pathological compared to healthy conditions might be one source fueling astrocyte heterogeneity. Moreover, diversity might also be encoded cell-autonomously, for example as a result of astrocyte subtype specification during development. We hypothesize and propose here that elucidating the epigenetic signature underlying the phenotype of each astrocyte subtype is of high relevance to understand another regulative layer of astrocyte heterogeneity, in general as well as after injury or as a result of other pathological conditions. High resolution methods should allow enlightening diverse cell states and subtypes of astrocyte, their adaptation to pathological conditions and ultimately allow controlling and manipulating astrocyte functions in disease states. Here, we review novel literature reporting on astrocyte diversity from a developmental perspective and we focus on epigenetic signatures that might account for cell type specification.
Collapse
|
149
|
Villarreal A, Vidos C, Monteverde Busso M, Cieri MB, Ramos AJ. Pathological Neuroinflammatory Conversion of Reactive Astrocytes Is Induced by Microglia and Involves Chromatin Remodeling. Front Pharmacol 2021; 12:689346. [PMID: 34234677 PMCID: PMC8255379 DOI: 10.3389/fphar.2021.689346] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/25/2021] [Indexed: 01/06/2023] Open
Abstract
Following brain injury or in neurodegenerative diseases, astrocytes become reactive and may suffer pathological remodeling, features of which are the loss of their homeostatic functions and a pro-inflammatory gain of function that facilitates neurodegeneration. Pharmacological intervention to modulate this astroglial response and neuroinflammation is an interesting new therapeutic research strategy, but it still requires a deeper understanding of the underlying cellular and molecular mechanisms of the phenomenon. Based on the known microglial–astroglial interaction, the prominent role of the nuclear factor kappa B (NF-κB) pathway in mediating astroglial pathological pro-inflammatory gain of function, and its ability to recruit chromatin-remodeling enzymes, we first explored the microglial role in the initiation of astroglial pro-inflammatory conversion and then monitored the progression of epigenetic changes in the astrocytic chromatin. Different configurations of primary glial culture were used to modulate microglia–astrocyte crosstalk while inducing pro-inflammatory gain of function by lipopolysaccharide (LPS) exposure. In vivo, brain ischemia by cortical devascularization (pial disruption) was performed to verify the presence of epigenetic marks in reactive astrocytes. Our results showed that 1) microglia is required to initiate the pathological conversion of astrocytes by triggering the NF-κB signaling pathway; 2) this interaction is mediated by soluble factors and induces stable astroglial phenotypic changes; 3) the pathological conversion promotes chromatin remodeling with stable increase in H3K9K14ac, temporary increase in H3K27ac, and temporary reduction in heterochromatin mark H3K9me3; and 4) in vivo reactive astrocytes show increased H3K27ac mark in the neuroinflammatory milieu from the ischemic penumbra. Our findings indicate that astroglial pathological pro-inflammatory gain of function is associated with profound changes in the configuration of astrocytic chromatin, which in turn are initiated by microglia-derived cues. These results open a new avenue in the study of potential pharmacological interventions that modify the initiation and stabilization of astroglial pathological remodeling, which would be useful in acute and chronic CNS injury. Epigenetic changes represent a plausible pharmacological target to interfere with the stabilization of the pathological astroglial phenotype.
Collapse
Affiliation(s)
- Alejandro Villarreal
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Camila Vidos
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Matías Monteverde Busso
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Primera Unidad Académica de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Belén Cieri
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Primera Unidad Académica de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alberto Javier Ramos
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Primera Unidad Académica de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
150
|
Giblin W, Bringman-Rodenbarger L, Guo AH, Kumar S, Monovich AC, Mostafa AM, Skinner ME, Azar M, Mady AS, Chung CH, Kadambi N, Melong KA, Lee HJ, Zhang L, Sajjakulnukit P, Trefely S, Varner EL, Iyer S, Wang M, Wilmott JS, Soyer HP, Sturm RA, Pritchard AL, Andea AA, Scolyer RA, Stark MS, Scott DA, Fullen DR, Bosenberg MW, Chandrasekaran S, Nikolovska-Coleska Z, Verhaegen ME, Snyder NW, Rivera MN, Osterman AL, Lyssiotis CA, Lombard DB. The deacylase SIRT5 supports melanoma viability by influencing chromatin dynamics. J Clin Invest 2021; 131:138926. [PMID: 33945506 PMCID: PMC8203465 DOI: 10.1172/jci138926] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Cutaneous melanoma remains the most lethal skin cancer, and ranks third among all malignancies in terms of years of life lost. Despite the advent of immune checkpoint and targeted therapies, only roughly half of patients with advanced melanoma achieve a durable remission. Sirtuin 5 (SIRT5) is a member of the sirtuin family of protein deacylases that regulates metabolism and other biological processes. Germline Sirt5 deficiency is associated with mild phenotypes in mice. Here we showed that SIRT5 was required for proliferation and survival across all cutaneous melanoma genotypes tested, as well as uveal melanoma, a genetically distinct melanoma subtype that arises in the eye and is incurable once metastatic. Likewise, SIRT5 was required for efficient tumor formation by melanoma xenografts and in an autochthonous mouse Braf Pten-driven melanoma model. Via metabolite and transcriptomic analyses, we found that SIRT5 was required to maintain histone acetylation and methylation levels in melanoma cells, thereby promoting proper gene expression. SIRT5-dependent genes notably included MITF, a key lineage-specific survival oncogene in melanoma, and the c-MYC proto-oncogene. SIRT5 may represent a druggable genotype-independent addiction in melanoma.
Collapse
Affiliation(s)
- William Giblin
- Department of Pathology and
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | - Ahmed M. Mostafa
- Department of Pathology and
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | | | | | | | | | | | - Ho-Joon Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter Sajjakulnukit
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sophie Trefely
- Department of Cancer Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Metabolic Disease Research, Department of Microbiology and Immunology, Temple University, Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Erika L. Varner
- Center for Metabolic Disease Research, Department of Microbiology and Immunology, Temple University, Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sowmya Iyer
- Department of Pathology and MGH Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - James S. Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - H. Peter Soyer
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Australia
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Richard A. Sturm
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Australia
| | - Antonia L. Pritchard
- Institute of Health Research and Innovation, University of the Highlands and Islands, An Lóchran, Inverness, United Kingdom
- Oncogenomics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Aleodor A. Andea
- Department of Pathology and
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, and NSW Pathology, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Mitchell S. Stark
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Australia
| | - David A. Scott
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Douglas R. Fullen
- Department of Pathology and
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Marcus W. Bosenberg
- Departments of Pathology and Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering and
- Program in Chemical Biology
- Center for Computational Medicine and Bioinformatics, and
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Zaneta Nikolovska-Coleska
- Department of Pathology and
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Nathaniel W. Snyder
- Center for Metabolic Disease Research, Department of Microbiology and Immunology, Temple University, Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Miguel N. Rivera
- Department of Pathology and MGH Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Andrei L. Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Costas A. Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Division of Gastroenterology, Department of Internal Medicine and
| | - David B. Lombard
- Department of Pathology and
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Institute of Gerontology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|