101
|
Dietrich F, Figueiró F, Filippi-Chiela EC, Cappellari AR, Rockenbach L, Tremblay A, de Paula PB, Roesler R, Filho AB, Sévigny J, Morrone FB, Battastini AMO. Ecto-5′-nucleotidase/CD73 contributes to the radiosensitivity of T24 human bladder cancer cell line. J Cancer Res Clin Oncol 2018; 144:469-482. [DOI: 10.1007/s00432-017-2567-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/27/2017] [Indexed: 02/03/2023]
|
102
|
Hou C, Zhang R, Zhang K, Chen X. Total glycosides of Paeony shows Neuroprotective effects against Semen Strychni-induced neurotoxicity by recovering secretion of hormones and improving brain energy metabolism. Metab Brain Dis 2017; 32:2033-2044. [PMID: 28852923 DOI: 10.1007/s11011-017-0082-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 08/01/2017] [Indexed: 11/27/2022]
Abstract
In this study, we investigated the protective effect of total glycosides of paeony against Semen Strychni-induced neurotoxicity and discussed some probably mechanisms. Levels of estrone, estradiol, estriol and growth hormone in male rats' serum were determined by ELISA, levels of ATP and substances associated with energy metabolism in rats' brain were determined by HPLC and levels of progesterone was determined by a UPLC-MS/MS method. The results showed that neurotoxicity induced by Semen Strychni could cause a significant decrease (p < 0.05, compare to the blank group) in secretion of estrogens and GH and disorder brain energy metabolism at the same time. While, rats with total glycosides of paeony pre-protection (orally administrated with total glycosides of paeony for 15 days before administrating Semen Strychni extract) showed a much better condition in the secretion of hormones and brain energy metabolism, and showed no significant changes in most of those associated substances when comparing to the blank group. Our study indicated that total glycosides of paeony have neuroprotective effects on Semen Strychni-induced neurotoxicity. It could recover the disordered hormone secretion and improve the brain energy metabolism. Total glycosides of paeony is potential to be further used in clinic to protect against neurotoxicity induced by other reasons.
Collapse
Affiliation(s)
- Chenzhi Hou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ruowen Zhang
- Southern Research Institute, 2000 9th Ave.s., Birmingham, AL, 35205, USA
| | - Kexia Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiaohui Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
103
|
Wang H, Liu Z, Wang S, Cui D, Zhang X, Liu Y, Zhang Y. UHPLC-Q-TOF/MS based plasma metabolomics reveals the metabolic perturbations by manganese exposure in rat models. Metallomics 2017; 9:192-203. [PMID: 28133682 DOI: 10.1039/c7mt00007c] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although manganese (Mn) is an essential metal ion biological cofactor, high concentrations could potentially induce an accumulation in the brain and lead to manganism. However, there is no "gold standard" for manganism assessment due to a lack of objective biomarkers. We hypothesized that Mn-induced alterations are associated with metabolic responses to manganism. Here we use an untargeted metabolomics approach by performing ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) on control and Mn-treated rat plasma, to identify metabolic disruptions under high Mn exposure conditions. Sprague-Dawley rats had access to deionized drinking water that was either Mn-free or contained 200 mg Mn per L for 5 weeks. Mn-exposure significantly increased liver Mn concentration in comparison with the control, and also resulted in extensive necrosis and dissolved nuclei, which suggested liver damage from hepatic histopathology. Principal component analysis readily distinguished the metabolomes between the control group and the Mn-treated group. Using multivariate and univariate analysis, Mn significantly altered the concentrations of 36 metabolites (12 metabolites showed a remarkable increase in number and 24 metabolites reduced significantly in concentration) in the plasma of the Mn-treated group. Major alterations were observed for purine metabolism, amino acid metabolism and fatty acid metabolism. These data provide metabolic evidence and putative biomarkers for the Mn-induced alterations in plasma metabolism. The targets of these metabolites have the potential to improve our understanding of cell-level Mn trafficking and homeostatic mechanisms.
Collapse
Affiliation(s)
- Hui Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling 712100, China. and Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Zhiqi Liu
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shengyi Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Dongan Cui
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xinke Zhang
- College of Veterinary Medicine, Northwest A & F University, Yangling 712100, China.
| | - Yongming Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Yihua Zhang
- College of Veterinary Medicine, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
104
|
Welihinda AA, Kaur M, Raveendran KS, Amento EP. Enhancement of inosine-mediated A 2AR signaling through positive allosteric modulation. Cell Signal 2017; 42:227-235. [PMID: 29126977 DOI: 10.1016/j.cellsig.2017.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/20/2017] [Accepted: 11/06/2017] [Indexed: 12/14/2022]
Abstract
Inosine is an endogenous nucleoside that is produced by metabolic deamination of adenosine. Inosine is metabolically more stable (half-life 15h) than adenosine (half-life <10s). Inosine exerts anti-inflammatory and immunomodulatory effects similar to those observed with adenosine. These effects are mediated in part through the adenosine A2A receptor (A2AR). Relative to adenosine inosine exhibits a lower affinity towards the A2AR. Therefore, it is generally believed that inosine is incapable of activating the A2AR through direct engagement, but indirectly activates the A2AR upon metabolic conversion to higher affinity adenosine. A handful of studies, however, have provided evidence for direct inosine engagement at the A2AR leading to activation of downstream signaling events and inhibition of cytokine production. Here, we demonstrate that under conditions devoid of adenosine, inosine as well as an analog of inosine 6-S-[(4-Nitrophenyl)methyl]-6-thioinosine selectively and dose-dependently activated A2AR-mediated cAMP production and ERK1/2 phosphorylation in CHO cells stably expressing the human A2AR. Inosine also inhibited LPS-stimulated TNF-α, CCL3 and CCL4 production by splenic monocytes in an A2AR-dependent manner. In addition, we demonstrate that a positive allosteric modulator (PAM) of the A2AR enhanced inosine-mediated cAMP production, ERK1/2 phosphorylation and inhibition of pro-inflammatory cytokine and chemokine production. The cumulative effects of allosteric enhancement of adenosine-mediated and inosine-mediated A2AR activation may be the basis for the sustained anti-inflammatory and immunomodulatory effects observed in vivo and thereby provide insights into potential therapeutic interventions for inflammation- and immune-mediated diseases.
Collapse
Affiliation(s)
- Ajith A Welihinda
- Molecular Medicine Research Institute, 428 Oakmead Parkway, Sunnyvale, CA 94085.
| | - Manmeet Kaur
- Molecular Medicine Research Institute, 428 Oakmead Parkway, Sunnyvale, CA 94085
| | - Kaviya S Raveendran
- Molecular Medicine Research Institute, 428 Oakmead Parkway, Sunnyvale, CA 94085
| | - Edward P Amento
- Molecular Medicine Research Institute, 428 Oakmead Parkway, Sunnyvale, CA 94085
| |
Collapse
|
105
|
Cheng W, Zhang X, Song Q, Lu W, Wu T, Zhang Q, Li C. Determination and comparative analysis of 13 nucleosides and nucleobases in natural fruiting body of Ophiocordyceps sinensis and its substitutes. Mycology 2017; 8:318-326. [PMID: 30123652 PMCID: PMC6059082 DOI: 10.1080/21501203.2017.1385546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/23/2017] [Indexed: 12/25/2022] Open
Abstract
Nucleosides and nucleobases are one of the most important indicators of quality control. A sensitive and reliable high performance liquid chromatography-ultraviolet method was applied to analyse 13 nucleosides and nucleobases simultaneously in 15 batches of nine Ophiocordyceps species and its allies in China. Principal component analysis (PCA) and cluster analysis were conducted by SPSS 22.0 software (IBM Corp., Armonk, NY, USA). The 15 samples of Cordyceps were differentiated successfully based on their nucleoside and nucleobase content. Total nucleosides content in mycelium was significantly higher than that in the natural fruiting bodies of Ophiocordyceps sinensis (NFOS). Five nucleosides or nucleobases - adenine (A), guanosine (Gu), uracil (U), uridine (Ur) and guanine (G) - were the major components contributed to the total variance according to PCA. The profiles of the 13 tested nucleosides and nucleobases (including adenosine, cytidine, guanosine, inosine, thymidine, uridine, cordycepin, adenine, cytosine, guanine, thymine, uracil and hypoxanthine) can discriminate different samples and can be candidate indicators applied for the quality control of Ophiocordyceps and its allies.
Collapse
Affiliation(s)
- Wenming Cheng
- School of Pharmacy, Anhui Provincial Key Laboratory of Bioactivity of Natural Product, Anhui Medical University, Hefei, Anhui, China
| | - Xun Zhang
- School of Pharmacy, Anhui Provincial Key Laboratory of Bioactivity of Natural Product, Anhui Medical University, Hefei, Anhui, China
| | - Qiang Song
- School of Pharmacy, Anhui Provincial Key Laboratory of Bioactivity of Natural Product, Anhui Medical University, Hefei, Anhui, China
| | - Weili Lu
- School of Pharmacy, Anhui Provincial Key Laboratory of Bioactivity of Natural Product, Anhui Medical University, Hefei, Anhui, China
| | - Tingni Wu
- School of Pharmacy, Anhui Provincial Key Laboratory of Bioactivity of Natural Product, Anhui Medical University, Hefei, Anhui, China
| | - Qunlin Zhang
- School of Pharmacy, Anhui Provincial Key Laboratory of Bioactivity of Natural Product, Anhui Medical University, Hefei, Anhui, China
| | - Chunru Li
- Zhejiang BioAsia Institute of Life Science, Pinghu, Zhejiang, China
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
106
|
Muller L, Simms P, Hong CS, Nishimura MI, Jackson EK, Watkins SC, Whiteside TL. Human tumor-derived exosomes (TEX) regulate Treg functions via cell surface signaling rather than uptake mechanisms. Oncoimmunology 2017; 6:e1261243. [PMID: 28919985 DOI: 10.1080/2162402x.2016.1261243] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 12/21/2022] Open
Abstract
Tumor-derived exosomes (TEX) are ubiquitously present in the tumor microenvironment and plasma of cancer patients. TEX carry a cargo of multiple stimulatory and inhibitory molecules and deliver them to recipient cells, serving as a communication network for the tumor. The mechanisms TEX use for delivering messages to recipient cells were evaluated using PKH26-labeled TEX produced by cultured human tumor cells, exosomes produced by dendritic cells-derived exosomes (DEX), or exosomes isolated from plasma of cancer patients (EXO). Human T-cell subsets, B cells, NK cells, and monocytes were co-incubated with TEX, DEX, or EXO and binding or internalization of labeled vesicles was evaluated by confocal microscopy and/or Amnis-based flow cytometry. Vesicle-induced Ca2+ influx in recipient T cells was monitored, and TEX-induced inosine production in Treg was determined by mass spectrometry. In contrast to B cells, NK cells or monocytes, conventional T cells did not internalize labeled vesicles. Minimal exosome uptake was only evident in Treg following prolonged co-incubation with TEX. All exosomes induced Ca2+ influx in T cells, with TEX and EXO isolated from cancer patients' plasma delivering the strongest, sustained signaling to Treg. Such sustained signaling resulted in the significant upregulation of the conversion of extracellular ATP to inosine (adenosine metabolite) by Treg, suggesting that TEX signaling could have functional consequences in these recipient cells. Thus, modulation of Treg suppressor functions by TEX is mediated by mechanisms dependent on cell surface signaling and does not require TEX internalization by recipient cells.
Collapse
Affiliation(s)
- Laurent Muller
- Department of Otolaryngology and Head and Neck Surgery, University Hospital Basel, Switzerland.,University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Patricia Simms
- Loyola University Chicago, Oncology Research Institute, Maywood, CA, USA
| | - Chang-Sook Hong
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | | | - Edwin K Jackson
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Simon C Watkins
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Theresa L Whiteside
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Departments of Pathology, Immunology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
107
|
Soares MSP, Zanusso Costa M, da Silva TM, Gazal M, Couto CATD, Nogueira Debom G, Rodrigues R, Hofstätter Azambuja J, André Casali E, Moritz CEJ, Frescura Duarte M, Braganhol E, Moro Stefanello F, Maria Spanevello R. Methionine and/or Methionine Sulfoxide Alter Ectoenzymes Activities in Lymphocytes and Inflammatory Parameters in Serum from Young Rats: Acute and Chronic Effects. Cell Biochem Biophys 2017; 76:243-253. [PMID: 28726179 DOI: 10.1007/s12013-017-0815-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 05/24/2017] [Indexed: 02/06/2023]
Abstract
In this study we investigated the effect of acute and chronic treatment with Met and/or methionine sulfoxide (MetO) on ectonucleotidases and cholinesterases activities from lymphocytes and purine derivatives compounds, C-protein reactive, interleukin-10, interleukin-6, and tumor necrosis factor-α levels in serum of young rats. Adenosine triphosphate hydrolysis was decreased in lymphocytes 1 h after treatment by MetO and Met + MetO. However, adenosine triphosphate and adenosine diphosphate hydrolysis in lymphocytes was increased in the groups MetO and Met + MetO and adenosine deaminase activity was increased in MetO 3 h after the treatment. Acetylcholinesterase activity was increased in lymphocytes after 3 h and 21 days of treatment by MetO and Met + MetO, while serum butyrycholinesterase activity was decreased after 1 h and 21 days of treatment in the same groups. In chronic treatment, interleukin-6 and tumor necrosis factor-α level were increased, while that interleukin-10 level was decreased by Met, MetO, and Met + MetO when compared to control group. C-protein reactive level was increased by MetO and Met + MetO. Adenosine triphosphate and adenosine monophosphate levels were reduced in all amino acids treated groups, while adenosine diphosphate and hypoxanthine were enhanced by MetO and Met + MetO. Adenosine and xanthine were reduced in the MetO group, whereas inosine levels were decreased in the MetO and Met + MetO groups. These findings help to understand the inflammatory alterations observed in hypermethioninemia.
Collapse
Affiliation(s)
- Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Marcelo Zanusso Costa
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Tatiane Morgana da Silva
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Marta Gazal
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Carlus Augustu Tavares do Couto
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Gabriela Nogueira Debom
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Rodrigo Rodrigues
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Juliana Hofstätter Azambuja
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Emerson André Casali
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cesar Eduardo Jacintho Moritz
- Programa de Pós-Graduação em Ciências do Movimento Humano, Escola de Educação Física, Fisioterapia e Dança, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marta Frescura Duarte
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.,Laboratório de Análises Clínicas Labimed, Universidade Luterana do Brasil, Santa Maria, RS, Brazil
| | - Elizandra Braganhol
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| |
Collapse
|
108
|
Giuliani P, Zuccarini M, Buccella S, Peña-Altamira LE, Polazzi E, Virgili M, Monti B, Poli A, Rathbone MP, Di Iorio P, Ciccarelli R, Caciagli F. Evidence for purine nucleoside phosphorylase (PNP) release from rat C6 glioma cells. J Neurochem 2017; 141:208-221. [PMID: 28251649 DOI: 10.1111/jnc.14004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 12/26/2022]
Abstract
Intracellular purine turnover is mainly oriented to preserving the level of triphosphate nucleotides, fundamental molecules in vital cell functions that, when released outside cells, act as receptor signals. Conversely, high levels of purine bases and uric acid are found in the extracellular milieu, even in resting conditions. These compounds could derive from nucleosides/bases that, having escaped to cell reuptake, are metabolized by extracellular enzymes similar to the cytosolic ones. Focusing on purine nucleoside phosphorylase (PNP) that catalyzes the reversible phosphorolysis of purine (deoxy)-nucleosides/bases, we found that it is constitutively released from cultured rat C6 glioma cells into the medium, and has a molecular weight and enzyme activity similar to the cytosolic enzyme. Cell exposure to 10 μM ATP or guanosine triphosphate (GTP) increased the extracellular amount of all corresponding purines without modifying the levels/activity of released PNP, whereas selective activation of ATP P2Y1 or adenosine A2A metabotropic receptors increased PNP release and purine base formation. The reduction to 1% in oxygen supply (2 h) to cells decreased the levels of released PNP, leading to an increased presence of extracellular nucleosides and to a reduced formation of xanthine and uric acid. Conversely, 2 h cell re-oxygenation enhanced the extracellular amounts of both PNP and purine bases. Thus, hypoxia and re-oxygenation modulated in opposite manner the PNP release/activity and, thereby, the extracellular formation of purine metabolism end-products. In conclusion, extracellular PNP and likely other enzymes deputed to purine base metabolism are released from cells, contributing to the purinergic system homeostasis and exhibiting an important pathophysiological role.
Collapse
Affiliation(s)
- Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,Aging Research Center and Translational Medicine (CeSI-MeT), University of Chieti-Pescara, Chieti, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,Aging Research Center and Translational Medicine (CeSI-MeT), University of Chieti-Pescara, Chieti, Italy
| | - Silvana Buccella
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,Aging Research Center and Translational Medicine (CeSI-MeT), University of Chieti-Pescara, Chieti, Italy
| | | | - Elisabetta Polazzi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marco Virgili
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Alessandro Poli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Michel P Rathbone
- Department of Medicine, Division of Neurology, McMaster University - Juravinski Hospital, Hamilton, Ontario, Canada
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,Aging Research Center and Translational Medicine (CeSI-MeT), University of Chieti-Pescara, Chieti, Italy
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,Aging Research Center and Translational Medicine (CeSI-MeT), University of Chieti-Pescara, Chieti, Italy
| | - Francesco Caciagli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,Aging Research Center and Translational Medicine (CeSI-MeT), University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
109
|
Glutamatergic system and mTOR-signaling pathway participate in the antidepressant-like effect of inosine in the tail suspension test. J Neural Transm (Vienna) 2017; 124:1227-1237. [DOI: 10.1007/s00702-017-1753-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/01/2017] [Indexed: 12/20/2022]
|
110
|
Whiteside TL. Targeting adenosine in cancer immunotherapy: a review of recent progress. Expert Rev Anticancer Ther 2017; 17:527-535. [PMID: 28399672 DOI: 10.1080/14737140.2017.1316197] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The adenosine pathway plays a key role in modulating immune responses in health and in disease. In health, anti-inflammatory effects of adenosine balance pro-inflammatory ATP, limiting tissue destruction by activated immune cells. In disease, this balance is disturbed. Areas covered: This review focuses on cancer and explains how in the microenvironment, the ATP-adenosine balance shifts towards an excess of extracellular adenosine Expert commentary: The CD73-adenosine axis plays a key role in the inhibition of anti-tumor functions of immune effector cells. Today, adenosine emerges as one of the immune checkpoints that are implicated in the tumor escape from the host immune system. The adenosine pathway is currently viewed as a significant barrier to the effectiveness of immune therapies and becomes an important therapeutic target in cancer. Pharmacologic inhibitors or antibodies specific for the components of the adenosine pathways or adenosine receptors show efficacy in pre-clinical studies and are entering the clinical arena.
Collapse
Affiliation(s)
- Theresa L Whiteside
- a Department of Pathology, Immunology and Otolaryngology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| |
Collapse
|
111
|
Inosine attenuates spontaneous activity in the rat neurogenic bladder through an A 2B pathway. Sci Rep 2017; 7:44416. [PMID: 28294142 PMCID: PMC5353659 DOI: 10.1038/srep44416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/07/2017] [Indexed: 01/16/2023] Open
Abstract
Neurogenic detrusor overactivity (NDO) is among the most challenging complications of spinal cord injury (SCI). A recent report by us demonstrated an improvement in NDO in SCI rats following chronic systemic treatment with the purine nucleoside inosine. The objective of this study was to investigate the mechanism of action of inosine underlying improvement of NDO. Male Sprague-Dawley rats underwent complete spinal cord transection at T8. Inosine (1 mM) delivered intravesically to SCI rats during conscious cystometry significantly decreased the frequency of spontaneous non-voiding contractions. In isolated tissue assays, inosine (1 mM) significantly decreased the amplitude of spontaneous activity (SA) in SCI bladder muscle strips. This effect was prevented by a pan-adenosine receptor antagonist CGS15943, but not by A1 or A3 receptor antagonists. The A2A antagonist ZM241385 and A2B antagonist PSB603 prevented the effect of inosine. The effect of inosine was mimicked by the adenosine receptor agonist NECA and the A2B receptor agonist BAY60-6583. The inhibition of SA by inosine was not observed in the presence of the BK antagonist, iberiotoxin, but persisted in the presence of KATP and SK antagonists. These findings demonstrate that inosine acts via an A2B receptor-mediated pathway that impinges on specific potassium channel effectors.
Collapse
|
112
|
Otis JP, Pike AC, Torrealba JR, Carey HV. Hibernation reduces cellular damage caused by warm hepatic ischemia-reperfusion in ground squirrels. J Comp Physiol B 2017; 187:639-648. [PMID: 28144740 DOI: 10.1007/s00360-017-1056-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/06/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022]
Abstract
During the hibernation season, livers from 13-lined ground squirrels (Ictidomys tridecemlineatus) are resistant to damage induced by ex vivo, cold ischemia-warm reperfusion (IR) compared with livers from summer squirrels or rats. Here, we tested the hypothesis that hibernation also reduces damage to ground squirrel livers in an in vivo, warm IR model, which more closely resembles complications associated with traumatic injury or surgical interventions. We also examined whether protection is mediated by two metabolites, inosine and biliverdin, that are elevated in ground squirrel liver during interbout arousals. Active squirrels in spring and hibernators during natural arousals to euthermia (body temperature 37 °C) were subject to liver IR or sham treatments. A subset of hibernating squirrels was pre-treated with compounds that inhibit inosine synthesis/signaling or biliverdin production. This model of liver IR successfully induced hepatocellular damage as indicated by increased plasma liver enzymes (ALT, AST) and hepatocyte apoptosis index compared to sham in both seasons, with greater elevations in spring squirrels. In addition, liver congestion increased after IR to a similar degree in spring and hibernating groups. Microvesicular steatosis was not affected by IR within the same season but was greater in sham squirrels in both seasons. Plasma IL-6 increased ~twofold in hibernators pre-treated with a biliverdin synthesis inhibitor (SnPP) prior to IR, but was not altered by IR in untreated squirrels. The results show that hibernation provides protection to ground squirrel livers subject to warm IR. Further research is needed to clarify mechanisms responsible for endogenous protection of liver tissue under ischemic stress.
Collapse
Affiliation(s)
- Jessica P Otis
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA
| | - Amanda C Pike
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA
| | - Jose R Torrealba
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hannah V Carey
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA.
| |
Collapse
|
113
|
He B, Hoang TK, Wang T, Ferris M, Taylor CM, Tian X, Luo M, Tran DQ, Zhou J, Tatevian N, Luo F, Molina JG, Blackburn MR, Gomez TH, Roos S, Rhoads JM, Liu Y. Resetting microbiota by Lactobacillus reuteri inhibits T reg deficiency-induced autoimmunity via adenosine A2A receptors. J Exp Med 2016; 214:107-123. [PMID: 27994068 PMCID: PMC5206500 DOI: 10.1084/jem.20160961] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/17/2016] [Accepted: 11/29/2016] [Indexed: 12/13/2022] Open
Abstract
He et al. show that T reg deficiency markedly induces autoimmunity and shifts gut microbiota. Remodeling microbiota by Lactobacillus reuteri was found to inhibit autoimmunity via the metabolite inosine, which interacts with the adenosine A2A receptor. This finding establishes a link between the gut microbiota, A2A receptors, and autoimmunity induced by T reg cell deficiency. Regulatory T (T reg) cell deficiency causes lethal, CD4+ T cell–driven autoimmune diseases. Stem cell transplantation is used to treat these diseases, but this procedure is limited by the availability of a suitable donor. The intestinal microbiota drives host immune homeostasis by regulating the differentiation and expansion of T reg, Th1, and Th2 cells. It is currently unclear if T reg cell deficiency–mediated autoimmune disorders can be treated by targeting the enteric microbiota. Here, we demonstrate that Foxp3+ T reg cell deficiency results in gut microbial dysbiosis and autoimmunity over the lifespan of scurfy (SF) mouse. Remodeling microbiota with Lactobacillus reuteri prolonged survival and reduced multiorgan inflammation in SF mice. L. reuteri changed the metabolomic profile disrupted by T reg cell deficiency, and a major effect was to restore levels of the purine metabolite inosine. Feeding inosine itself prolonged life and inhibited multiorgan inflammation by reducing Th1/Th2 cells and their associated cytokines. Mechanistically, the inhibition of inosine on the differentiation of Th1 and Th2 cells in vitro depended on adenosine A2A receptors, which were also required for the efficacy of inosine and of L. reuteri in vivo. These results reveal that the microbiota–inosine–A2A receptor axis might represent a potential avenue for combatting autoimmune diseases mediated by T reg cell dysfunction.
Collapse
Affiliation(s)
- Baokun He
- Pediatrics Gastroenterology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030.,Pediatric Research Center, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030
| | - Thomas K Hoang
- Pediatrics Gastroenterology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030.,Pediatric Research Center, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030
| | - Ting Wang
- Pediatrics Gastroenterology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030.,Pediatric Research Center, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030
| | - Michael Ferris
- Department of Microbiology, Immunology and Parasitology, Louisiana State University School of Medicine, New Orleans, LA 70118
| | - Christopher M Taylor
- Department of Microbiology, Immunology and Parasitology, Louisiana State University School of Medicine, New Orleans, LA 70118
| | - Xiangjun Tian
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Meng Luo
- Department of Microbiology, Immunology and Parasitology, Louisiana State University School of Medicine, New Orleans, LA 70118
| | - Dat Q Tran
- Pediatric Research Center, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030
| | - Jain Zhou
- Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030
| | - Nina Tatevian
- Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030
| | - Fayong Luo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030
| | - Jose G Molina
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030
| | - Thomas H Gomez
- Center for Laboratory Animal Medicine and Care, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Stefan Roos
- Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden.,BioGaia AB, 103 64 Stockholm, Sweden
| | - J Marc Rhoads
- Pediatrics Gastroenterology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030 .,Pediatric Research Center, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030
| | - Yuying Liu
- Pediatrics Gastroenterology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030 .,Pediatric Research Center, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030
| |
Collapse
|
114
|
Signaling pathways underlying the antidepressant-like effect of inosine in mice. Purinergic Signal 2016; 13:203-214. [PMID: 27966087 DOI: 10.1007/s11302-016-9551-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/01/2016] [Indexed: 12/15/2022] Open
Abstract
Inosine is a purine nucleoside formed by the breakdown of adenosine that elicits an antidepressant-like effect in mice through activation of adenosine A1 and A2A receptors. However, the signaling pathways underlying this effect are largely unknown. To address this issue, the present study investigated the influence of extracellular-regulated protein kinase (ERK)1/2, Ca2+/calmoduline-dependent protein kinase (CaMKII), protein kinase A (PKA), phosphoinositide 3-kinase (PI3K)/Akt, and glycogen synthase kinase 3beta (GSK-3β) modulation in the antiimmobility effect of inosine in the tail suspension test (TST) in mice. In addition, we attempted to verify if inosine treatment was capable of altering the immunocontent and phosphorylation of the transcription factor cyclic adenosine monophosphatate (cAMP) response-binding element protein (CREB) in mouse prefrontal cortex and hippocampus. Intracerebroventricular administration of U0126 (5 μg/mouse, MEK1/2 inhibitor), KN-62 (1 μg/mouse, CaMKII inhibitor), H-89 (1 μg/mouse, PKA inhibitor), and wortmannin (0.1 μg/mouse, PI3K inhibitor) prevented the antiimmobility effect of inosine (10 mg/kg, intraperitoneal (i.p.)) in the TST. Also, administration of a sub-effective dose of inosine (0.1 mg/kg, i.p.) in combination with a sub-effective dose of AR-A014418 (0.001 μg/mouse, GSK-3β inhibitor) induced a synergic antidepressant-like effect. None of the treatments altered locomotor activity of mice. Moreover, 24 h after a single administration of inosine (10 mg/kg, i.p.), CREB phosphorylation was increased in the hippocampus. Our findings provided new evidence that the antidepressant-like effect of inosine in the TST involves the activation of PKA, PI3K/Akt, ERK1/2, and CaMKII and the inhibition of GSK-3β. These results contribute to the comprehension of the mechanisms underlying the purinergic system modulation and indicate the intracellular signaling pathways involved in the antidepressant-like effect of inosine in a preclinical test of depression.
Collapse
|
115
|
Moritz CEJ, Teixeira BC, Rockenbach L, Reischak-Oliveira A, Casali EA, Battastini AMO. Altered extracellular ATP, ADP, and AMP hydrolysis in blood serum of sedentary individuals after an acute, aerobic, moderate exercise session. Mol Cell Biochem 2016; 426:55-63. [PMID: 27854073 DOI: 10.1007/s11010-016-2880-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/08/2016] [Indexed: 12/13/2022]
Abstract
Nucleotidases participate in the regulation of physiological and pathological events, such as inflammation and coagulation. Exercise promotes distinct adaptations, and can influence purinergic signaling. In the present study, we investigated soluble nucleotidase activities in the blood serum of sedentary young male adults at pre- and post-acute moderate aerobic exercise. In addition, we evaluated how this kind of exercise could influence adenine nucleotide concentrations in the blood serum. Sedentary individuals were submitted to moderate aerobic exercise on a treadmill; blood samples were collected pre- and post-exercise, and serum was separated for analysis. Results showed increases in ATP, ADP, and AMP hydrolysis post-exercise, compared to pre-exercise values. The ecto-nucleotide pyrophosphatase/phosphodiesterase was also evaluated, showing an increased activity post-exercise, compared to pre-exercise. Purine levels were analyzed by HPLC in the blood serum, pre- and post-exercise. Decreased levels of ATP and ADP were found post-exercise, in contrast with pre-exercise values. Conversely, post-exercise levels of adenosine and inosine increased compared to pre-exercise levels. Our results indicate an influence of acute exercise on ATP metabolism, modifying enzymatic behavior to promote a protective biological environment.
Collapse
Affiliation(s)
- Cesar Eduardo Jacintho Moritz
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bruno Costa Teixeira
- Programa de Pós-Graduação em Ciência do Movimento Humano, Escola de Educação Física, Universidade Federado do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Educação Física, Universidade Regional Integrada do Alto Uruguai e das Missões, São Luiz Gonzaga, RS, Brazil
| | - Liliana Rockenbach
- Progama de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alvaro Reischak-Oliveira
- Programa de Pós-Graduação em Ciência do Movimento Humano, Escola de Educação Física, Universidade Federado do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Emerson André Casali
- Departamento de Bioquímica, Instituto de Ciências Básicas, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS, 90035-003, Brazil
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Maria Oliveira Battastini
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Progama de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
116
|
Michalke B. Review about the manganese speciation project related to neurodegeneration: An analytical chemistry approach to increase the knowledge about manganese related parkinsonian symptoms. J Trace Elem Med Biol 2016; 37:50-61. [PMID: 27006066 DOI: 10.1016/j.jtemb.2016.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/03/2016] [Accepted: 03/06/2016] [Indexed: 12/20/2022]
Abstract
Neurodegenerative diseases get a growing relevance for societies. But yet the complex multi-factorial mechanisms of these diseases are not fully understood, although it is well accepted that metal ions may play a crucial role. Manganese (Mn) is a transition metal which has essential biochemical functions but from occupational exposure scenarios it appeared that Mn can cause severe neurological damage. This "two-faces"-nature of manganese initiated us to start a project on Mn-speciation, since different element species are known to exhibit different impacts on health. A summary about the step-wise developments and findings from our working group was presented during the annual conference of the German trace element society in 2015. This paper summarizes now the contribution to this conference. It is intended to provide a complete picture of the so far evolved puzzle from our studies regarding manganese, manganese speciation and metabolomics as well as Mn-related mechanisms of neural damage. Doing so, the results of the single studies are now summarized in a connected way and thus their interrelationships are demonstrated. In short terms, we found that Mn-exposure leads to an increase of low molecular weight Mn compounds, above all Mn-citrate complex, which gets even enriched across neural barriers (NB). At a Mn serum concentration between 1.5 and 1.9μg/L a carrier switch from Mn-transferrin to Mn-citrate was observed. We concluded that the Mn-citrate complex is that important Mn-carrier to NB which can be found also beyond NB in human cerebrospinal fluid (CSF) or brain of exposed rats. In brain of Mn-exposed rats manganese leads to a decreased iron (Fe) concentration, to a shift from Fe(III) to Fe(II) after long term exposure and thus to a shift toward oxidative stress. This was additionally supported by an increase of markers for oxidative stress, inflammation or lipid peroxidation at increased Mn concentration in brain extracts. Furthermore, glutamate and acetylcholineesterase were elevated and many metabolite concentrations were significantly changed.
Collapse
Affiliation(s)
- Bernhard Michalke
- Helmholtz Zentrum München-Deutsches Forschungszentrum für Gesundheit und Umwelt, Research Unit Analytical BioGeoChemistry, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany.
| |
Collapse
|
117
|
GC-MS-based metabolomic study on the antidepressant-like effects of diterpene ginkgolides in mouse hippocampus. Behav Brain Res 2016; 314:116-24. [PMID: 27498146 DOI: 10.1016/j.bbr.2016.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 07/28/2016] [Accepted: 08/01/2016] [Indexed: 12/29/2022]
Abstract
Ginkgo biloba extract (GBE), including EGb-761, have been suggested to have antidepressant activity based on previous behavioral and biochemical analyses. However, because GBE contain many constituents, the mechanisms underlying this suggested antidepressant activity are unclear. Here, we investigated the antidepressant-like effects of diterpene ginkgolides (DG), an important class of constituents in GBE, and studied their effects in the mouse hippocampus using a GC-MS-based metabolomics approach. Mice were randomly divided into five groups and injected daily until testing with 0.9% NaCl solution, one of three doses of DG (4.06, 12.18, and 36.54mg/kg), or venlafaxine. Sucrose preference (SPT) and tail suspension (TST) tests were then performed to evaluate depressive-like behaviors in mice. DG (12.18 and 36.54mg/kg) and venlafaxine (VLX) administration significantly increased hedonic behavior in mice in the SPT. DG (12.18mg/kg) treatment also shortened immobility time in the TST, suggestive of antidepressant-like effects. Significant differences in the metabolic profile in the DG (12.18mg/kg) compared with the control or VLX group indicative of an antidepressant-like effect were observed using multivariate analysis. Eighteen differential hippocampal metabolites were identified that discriminated the DG (12.18mg/kg) and control groups. These biochemical changes involved neurotransmitter metabolism, oxidative stress, glutathione metabolism, lipid metabolism, energy metabolism, and kynurenic acid, providing clues to the therapeutic mechanisms of DG. Thus, this study showed that DG has antidepressant-like activities in mice and shed light on the biological mechanisms underlying the effects of diterpene ginkgolides on behavior, providing an important drug candidate for the treatment of depression.
Collapse
|
118
|
Cutler RG, Camandola S, Malott KF, Edelhauser MA, Mattson MP. The Role of Uric Acid and Methyl Derivatives in the Prevention of Age-Related Neurodegenerative Disorders. Curr Top Med Chem 2016; 15:2233-8. [PMID: 26059354 DOI: 10.2174/1568026615666150610143234] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/13/2015] [Accepted: 05/04/2015] [Indexed: 12/13/2022]
Abstract
High uric acid (UA levels have been correlated with a reduced risk of many neurodegenerative diseases through mechanisms involving chelating Fenton reaction transitional metals, antioxidant quenching of superoxide and hydroxyl free radicals, and as an electron donor that increases antioxidant enzyme activity (e.g. SOD. However, the clinical usefulness of UA is limited by its' low water solubility and propensity to form inflammatory crystals at hyperuricemic levels. This review focuses on the role of UA in neuroprotection, as well as potential strategies aimed at increasing UA levels in the soluble range, and the potential therapeutic use of more water-soluble methyl-UA derivatives from the natural catabolic end-products of dietary caffeine, theophylline, and theobromine.
Collapse
Affiliation(s)
- Roy G Cutler
- Laboratory of Neurosciences, 251 Bayview Blvd, Baltimore, MD, 21224, U.S.A.
| | | | | | | | | |
Collapse
|
119
|
Junqueira SC, dos Santos Coelho I, Lieberknecht V, Cunha MP, Calixto JB, Rodrigues ALS, Santos ARS, Dutra RC. Inosine, an Endogenous Purine Nucleoside, Suppresses Immune Responses and Protects Mice from Experimental Autoimmune Encephalomyelitis: a Role for A2A Adenosine Receptor. Mol Neurobiol 2016; 54:3271-3285. [DOI: 10.1007/s12035-016-9893-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 04/17/2016] [Indexed: 11/30/2022]
|
120
|
Scano P, Rosa A, Incani A, Maestrale C, Santucciu C, Perra D, Vascellari S, Pani A, Ligios C. (1)H NMR brain metabonomics of scrapie exposed sheep. MOLECULAR BIOSYSTEMS 2016; 11:2008-16. [PMID: 25959287 DOI: 10.1039/c5mb00138b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
While neurochemical metabolite modifications, determined by different techniques, have been diffusely reported in human and mice brains affected by transmissible spongiform encephalopathies (TSEs), this aspect has been little studied in the natural animal hosts with the same pathological conditions so far. Herein, we investigated, by high resolution (1)H NMR spectroscopy and multivariate statistical data analysis, the brain metabolite profile of sheep exposed to a scrapie agent in a naturally affected flock. On the basis of clinical examinations and western blotting analysis for the pathological prion protein (PrP(Sc)) in brain tissues, sheep were catalogued as not infected (H), infected with clinical signs (S), and infected without clinical signs (A). By discriminant analysis of spectral data, comparing S vs. H, we found a different metabolite distribution, with inosine, cytosine, creatine, and lactate being higher in S than in H brains, while the branched chain amino acids (leucine, isoleucine, and valine), phenylalanine, uracil, tyrosine, gamma-amino butyric acid, total aspartate (aspartate + N-acetyl aspartate) being lower in S. By a soft independent modelling of class analogy approach, 1 out of 3 A samples was assigned to class H. Furthermore, A brains were found to be higher in choline and choline-containing compounds. By means of partial least squares regression, an excellent correlation was found between the PrP(Sc) amount and the (1)H NMR metabolite profile of infected (S and A) sheep, and the metabolite mostly correlated with PrP(Sc) was alanine. The overall results, obtained using different chemometric tools, were able to describe a brain metabolite profile of infected sheep with and without clinical signs, compared to healthy ones, and indicated alanine as a biomarker for PrP(Sc) amounts in scrapie brains.
Collapse
Affiliation(s)
- Paola Scano
- Department of Chemical and Geological Sciences, University of Cagliari, Monserrato, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Ledesma-Amaro R, Buey RM, Revuelta JL. The filamentous fungus Ashbya gossypii as a competitive industrial inosine producer. Biotechnol Bioeng 2016; 113:2060-3. [PMID: 26927228 DOI: 10.1002/bit.25965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/04/2016] [Accepted: 02/21/2016] [Indexed: 01/06/2023]
Abstract
Inosine is a nucleoside with growing biotechnological interest due to its recently attributed beneficial health effects and as a convenient precursor of the umami flavor. At present, most of the industrial inosine production relies on bacterial fermentations. In this work, we have metabolically engineered the filamentous fungus Ashbya gossypii to obtain strains able to excrete high amounts of inosine to the culture medium. We report that the disruption of only two key genes of the purine biosynthetic pathway efficiently redirect the metabolic flux, increasing 200-fold the excretion of inosine with respect to the wild type, up to 2.2 g/L. These results allow us to propose A. gossypii as a convenient candidate for large-scale nucleoside production, especially in view of the several advantages that Ashbya has with respect to the bacterial systems used at present for the industrial production of this food additive. Biotechnol. Bioeng. 2016;113: 2060-2063. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rodrigo Ledesma-Amaro
- Metabolic Engineering Group, Departamento de Microbiologia y Genetica, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, 37007, Spain
| | - Rubén M Buey
- Metabolic Engineering Group, Departamento de Microbiologia y Genetica, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, 37007, Spain
| | - José Luis Revuelta
- Metabolic Engineering Group, Departamento de Microbiologia y Genetica, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, 37007, Spain.
| |
Collapse
|
122
|
Welihinda AA, Kaur M, Greene K, Zhai Y, Amento EP. The adenosine metabolite inosine is a functional agonist of the adenosine A2A receptor with a unique signaling bias. Cell Signal 2016; 28:552-60. [PMID: 26903141 DOI: 10.1016/j.cellsig.2016.02.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/10/2016] [Accepted: 02/15/2016] [Indexed: 01/12/2023]
Abstract
Inosine is an endogenous purine nucleoside that is produced by catabolism of adenosine. Adenosine has a short half-life (approximately 10s) and is rapidly deaminated to inosine, a stable metabolite with a half-life of approximately 15h. Resembling adenosine, inosine acting through adenosine receptors (ARs) exerts a wide range of anti-inflammatory and immunomodulatory effects in vivo. The immunomodulatory effects of inosine in vivo, at least in part, are mediated via the adenosine A2A receptor (A2AR), an observation that cannot be explained fully by in vitro pharmacological characterization of inosine at the A2AR. It is unclear whether the in vivo effects of inosine are due to inosine or a metabolite of inosine engaging the A2AR. Here, utilizing a combination of label-free, cell-based, and membrane-based functional assays in conjunction with an equilibrium agonist-binding assay we provide evidence for inosine engagement at the A2AR and subsequent activation of downstream signaling events. Inosine-mediated A2AR activation leads to cAMP production with an EC50 of 300.7μM and to extracellular signal-regulated kinase-1 and -2 (ERK1/2) phosphorylation with an EC50 of 89.38μM. Our data demonstrate that inosine produces ERK1/2-biased signaling whereas adenosine produces cAMP-biased signaling at the A2AR, highlighting pharmacological differences between these two agonists. Given the in vivo stability of inosine, our data suggest an additional, previously unrecognized, mechanism that utilizes inosine to functionally amplify and prolong A2AR activation in vivo.
Collapse
Affiliation(s)
- Ajith A Welihinda
- Molecular Medicine Research Institute, 428 Oakmead Parkway, Sunnyvale, CA 94085, United States.
| | - Manmeet Kaur
- Molecular Medicine Research Institute, 428 Oakmead Parkway, Sunnyvale, CA 94085, United States
| | - Kelly Greene
- Molecular Medicine Research Institute, 428 Oakmead Parkway, Sunnyvale, CA 94085, United States
| | - Yongjiao Zhai
- Molecular Medicine Research Institute, 428 Oakmead Parkway, Sunnyvale, CA 94085, United States
| | - Edward P Amento
- Molecular Medicine Research Institute, 428 Oakmead Parkway, Sunnyvale, CA 94085, United States
| |
Collapse
|
123
|
Li P, Liao S, Wang J, Xu D, Zhang Q, Yang M, Kong L. NMR metabolic profiling of lipopolysaccharide-induced mice sepsis and the treatment effects of berberine. RSC Adv 2016. [DOI: 10.1039/c6ra04717c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
1H NMR metabolomics to study lipopolysaccharide-induced mice sepsis and the treatment effects of berberine.
Collapse
Affiliation(s)
- Pei Li
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Shanting Liao
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Junsong Wang
- Center for Molecular Metabolism
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- P. R. China
| | - Dingqiao Xu
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Qian Zhang
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Minghua Yang
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| |
Collapse
|
124
|
de Oliveira ED, Schallenberger C, Böhmer AE, Hansel G, Fagundes AC, Milman M, Silva MDP, Oses JP, Porciúncula LO, Portela LV, Elisabetsky E, Souza DO, Schmidt AP. Mechanisms involved in the antinociception induced by spinal administration of inosine or guanine in mice. Eur J Pharmacol 2015; 772:71-82. [PMID: 26712379 DOI: 10.1016/j.ejphar.2015.12.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 11/27/2022]
Abstract
It is well known that adenine-based purines exert multiple effects on pain transmission. Recently, we have demonstrated that guanine-based purines may produce some antinociceptive effects against chemical and thermal pain in mice. The present study was designed to investigate the antinociceptive effects of intrathecal (i.t.) administration of inosine or guanine in mice. Additionally, investigation into the mechanisms of action of these purines, their general toxicity and measurements of CSF purine levels were performed. Animals received an i.t. injection of vehicle (30mN NaOH), inosine or guanine (up to 600nmol) and submitted to several pain models and behavioural paradigms. Guanine and inosine produced dose-dependent antinociceptive effects in the tail-flick, hot-plate, intraplantar (i.pl.) glutamate, i.pl. capsaicin and acetic acid pain models. Additionally, i.t. inosine inhibited the biting behaviour induced by spinal injection of capsaicin and i.t. guanine reduced the biting behaviour induced by spinal injection of glutamate or AMPA. Intrathecal administration of inosine (200nmol) induced an approximately 115-fold increase on CSF inosine levels. This study provides new evidence on the mechanism of action of extracellular guanine and inosine presenting antinociceptive effects following spinal administration. These effects seem to be related, at least partially, to the modulation of A1 adenosine receptors.
Collapse
Affiliation(s)
- Enderson D de Oliveira
- Department of Biochemistry, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cristhine Schallenberger
- Department of Biochemistry, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana Elisa Böhmer
- Department of Biochemistry, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Gisele Hansel
- Department of Biochemistry, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Aécio C Fagundes
- Department of Biochemistry, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Michael Milman
- Department of Biochemistry, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marcos D P Silva
- Department of Biochemistry, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jean P Oses
- Programa de Pós-graduação em Saúde e Comportamento, Centro de Ciências da Vida e da Saúde e Hospital Universitário São Francisco de Paula, Universidade Católica de Pelotas, Pelotas, RS, Brazil
| | - Lisiane O Porciúncula
- Department of Biochemistry, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Luís V Portela
- Department of Biochemistry, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Elaine Elisabetsky
- Department of Pharmacology, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Diogo O Souza
- Department of Biochemistry, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - André P Schmidt
- Department of Biochemistry, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Anaesthesia and Perioperative Medicine, Hospital de Clínicas de Porto Alegre (HCPA), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Division of Anaesthesia, Department of Surgery, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| |
Collapse
|
125
|
Bergamin LS, Braganhol E, Figueiró F, Casali EA, Zanin RF, Sévigny J, Battastini AMO. Involvement of purinergic system in the release of cytokines by macrophages exposed to glioma-conditioned medium. J Cell Biochem 2015; 116:721-9. [PMID: 25546398 DOI: 10.1002/jcb.25018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 11/13/2014] [Indexed: 12/20/2022]
Abstract
Macrophages are involved in cancer progression. M1 macrophages have an antitumor effect, whereas M2 phenotype are associated with tumor growth. The progression of gliomas involves the participation of an inflammatory microenvironment. Adenosine triphosphate (ATP) can act as pro-inflammatory signal, whereas adenosine has opposite properties. The biological effects of extracellular nucleotides/nucleosides mediated by purinergic receptors are controlled by ectonucleotidases. In the present work, we evaluated whether glioma-conditioned medium (GL-CM) modulates macrophage differentiation and the participation of ATP and adenosine in the release of pro-and anti-inflammatory cytokines by these cells. The results show that macrophages exposed to GL-CM were modulated to an M2-like phenotype. HPLC analysis of GL-CM demonstrated the presence of significant amounts of ATP and its metabolites. Macrophages exposed to GL-CM presented decreased ATP and AMP hydrolysis and increased IL-10 and MCP-1 secretion, effects that were diminished by P1 or P2 antagonists. GL-CM did not alter the release of IL-6 by macrophages, although treatment with ATP promoted an increase in the release of IL-6, which was prevented by a P2X7 antagonist. In summary, we found that A2A and P2X7 activation is necessary for IL-10, MCP-1, and IL-6 release by macrophages exposed to GL-CM, which, in turn, modulates the macrophages to M2-phenotype. The present study establishes a relationship between M2-like polarization, cytokine release and purinergic receptor activation in macrophages exposed to GL-CM. Therefore, the data presented herein contributes to advancing in the field of cancer-related inflammation and point specific purinergic receptors as targets for modulation of the phenotype of glioma-associated macrophages.
Collapse
Affiliation(s)
- Letícia Scussel Bergamin
- Departamento de Bioquímica, Instituto de Ciências Básica da Saúde, UFRGS, Porto Alegre, RS, Brasil
| | | | | | | | | | | | | |
Collapse
|
126
|
Iskierko Z, Sosnowska M, Sharma PS, Benincori T, D’Souza F, Kaminska I, Fronc K, Noworyta K. Extended-gate field-effect transistor (EG-FET) with molecularly imprinted polymer (MIP) film for selective inosine determination. Biosens Bioelectron 2015; 74:526-33. [DOI: 10.1016/j.bios.2015.06.073] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/12/2015] [Accepted: 06/27/2015] [Indexed: 11/28/2022]
|
127
|
Chung YG, Seth A, Doyle C, Franck D, Kim D, Cristofaro V, Benowitz LI, Tu DD, Estrada CR, Mauney JR, Sullivan MP, Adam RM. Inosine Improves Neurogenic Detrusor Overactivity following Spinal Cord Injury. PLoS One 2015; 10:e0141492. [PMID: 26529505 PMCID: PMC4631513 DOI: 10.1371/journal.pone.0141492] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/07/2015] [Indexed: 12/22/2022] Open
Abstract
Neurogenic detrusor overactivity and the associated loss of bladder control are among the most challenging complications of spinal cord injury (SCI). Anticholinergic agents are the mainstay for medical treatment of detrusor overactivity. However, their use is limited by significant side effects such that a search for new treatments is warranted. Inosine is a naturally occurring purine nucleoside with neuroprotective, neurotrophic and antioxidant effects that is known to improve motor function in preclinical models of SCI. However, its effect on lower urinary tract function has not been determined. The objectives of this study were to determine the effect of systemic administration of inosine on voiding function following SCI and to delineate potential mechanisms of action. Sprague−Dawley rats underwent complete spinal cord transection, or cord compression by application of an aneurysm clip at T8 for 30 sec. Inosine (225 mg/kg) or vehicle was administered daily via intraperitoneal injection either immediately after injury or after a delay of 8 wk. At the end of treatment, voiding behavior was assessed by cystometry. Levels of synaptophysin (SYP), neurofilament 200 (NF200) and TRPV1 in bladder tissues were measured by immunofluorescence imaging. Inosine administration decreased overactivity in both SCI models, with a significant decrease in the frequency of spontaneous non−voiding contractions during filling, compared to vehicle−treated SCI rats (p<0.05), including under conditions of delayed treatment. Immunofluorescence staining demonstrated increased levels of the pan-neuronal marker SYP and the Adelta fiber marker NF200, but decreased staining for the C-fiber marker, TRPV1 in bladder tissues from inosine-treated rats compared to those from vehicle-treated animals, including after delayed treatment. These findings demonstrate that inosine prevents the development of detrusor overactivity and attenuates existing overactivity following SCI, and may achieve its effects through modulation of sensory neurotransmission.
Collapse
Affiliation(s)
- Yeun Goo Chung
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Abhishek Seth
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Claire Doyle
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Debra Franck
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Daniel Kim
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Neurosurgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Vivian Cristofaro
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Urology, VA Boston Healthcare System, West Roxbury, Massachusetts, United States of America
- Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Larry I. Benowitz
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Neurosurgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Duong D. Tu
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carlos R. Estrada
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joshua R. Mauney
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Maryrose P. Sullivan
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Urology, VA Boston Healthcare System, West Roxbury, Massachusetts, United States of America
- Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- * E-mail: (MPS); (RMA)
| | - Rosalyn M. Adam
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (MPS); (RMA)
| |
Collapse
|
128
|
Tritten L, Keiser J, Karwa T, Utzinger J, Holmes E, Saric J. Comparing systemic metabolic responses in mice to single or dual infection with Plasmodium berghei and Heligmosomoides bakeri. MOLECULAR BIOSYSTEMS 2015; 10:2358-67. [PMID: 24960299 DOI: 10.1039/c4mb00097h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Concomitant infections with Plasmodium and gastrointestinal nematodes are frequently observed in humans. At the metabolic level, the cross-talk between the host and multiple coexisting pathogens is poorly characterized. The purpose of this study was to give a comprehensive insight into the systemic metabolic phenotype of mice with a single or dual infection with Plasmodium berghei and Heligmosomoides bakeri. Four groups of eight NMRI female mice were infected with P. berghei or H. bakeri, or with both species concurrently. An additional group remained uninfected, and served as control. Mice were sacrificed at day 19 of the experiment. We collected samples from the liver, spleen, kidney, three intestinal regions, and four brain regions. All biological samples were subjected to (1)H nuclear magnetic resonance spectroscopy, combined with multivariate data analysis, to establish metabolic fingerprints of each tissue from the various infection groups. Compared to uninfected mice, single and dual species infection models showed unique metabolic profiles. P. berghei exerted major effects on glycolysis, tricarboxylic acid cycle, and nucleotide and amino acid metabolism in all studied tissues with the exception of the gut. H. bakeri was characterized by a dysregulation of choline and lipid metabolism in most tissues examined with a particularly strong imprint in the jejunum. Simultaneous co-infection with P. berghei and H. bakeri induced the strongest and most diverse effects in the liver and spleen but led to only minor changes in the intestinal and cerebral parts assessed. Infection with P. berghei showed more pronounced and systemic alterations in the mice metabolic profile than H. bakeri infection. The metabolic fingerprints in the co-infection models were driven by P. berghei infection, whilst the presence of H. bakeri in co-infections had little effect. However, simultaneous co-infection showed indeed the least metabolic disruptions in the peripheral tissues, namely the gut and brain.
Collapse
Affiliation(s)
- Lucienne Tritten
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
129
|
Neth K, Lucio M, Walker A, Zorn J, Schmitt-Kopplin P, Michalke B. Changes in Brain Metallome/Metabolome Pattern due to a Single i.v. Injection of Manganese in Rats. PLoS One 2015; 10:e0138270. [PMID: 26383269 PMCID: PMC4575095 DOI: 10.1371/journal.pone.0138270] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/27/2015] [Indexed: 12/20/2022] Open
Abstract
Exposure to high concentrations of Manganese (Mn) is known to potentially induce an accumulation in the brain, leading to a Parkinson related disease, called manganism. Versatile mechanisms of Mn-induced brain injury are discussed, with inactivation of mitochondrial defense against oxidative stress being a major one. So far, studies indicate that the main Mn-species entering the brain are low molecular mass (LMM) compounds such as Mn-citrate. Applying a single low dose MnCl2 injection in rats, we observed alterations in Mn-species pattern within the brain by analysis of aqueous brain extracts by size-exclusion chromatography—inductively coupled plasma mass spectrometry (SEC-ICP-MS). Additionally, electrospray ionization—ion cyclotron resonance-Fourier transform-mass spectrometry (ESI-ICR/FT-MS) measurement of methanolic brain extracts revealed a comprehensive analysis of changes in brain metabolisms after the single MnCl2 injection. Major alterations were observed for amino acid, fatty acid, glutathione, glucose and purine/pyrimidine metabolism. The power of this metabolomic approach is the broad and detailed overview of affected brain metabolisms. We also correlated results from the metallomic investigations (Mn concentrations and Mn-species in brain) with the findings from metabolomics. This strategy might help to unravel the role of different Mn-species during Mn-induced alterations in brain metabolism.
Collapse
Affiliation(s)
- Katharina Neth
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München—German Research Center for Environment and Health (GmbH), Ingolstädter Landstrasse 1, D-85764, Neuherberg, Germany
- * E-mail:
| | - Marianna Lucio
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München—German Research Center for Environment and Health (GmbH), Ingolstädter Landstrasse 1, D-85764, Neuherberg, Germany
| | - Alesia Walker
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München—German Research Center for Environment and Health (GmbH), Ingolstädter Landstrasse 1, D-85764, Neuherberg, Germany
| | - Julia Zorn
- Research Unit Comparative Medicine, Helmholtz Zentrum München—German Research Center for Environment and Health (GmbH), Ingolstädter Landstrasse 1, D-85764, Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München—German Research Center for Environment and Health (GmbH), Ingolstädter Landstrasse 1, D-85764, Neuherberg, Germany
- Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, D- 85354, Freising-Weihenstephan, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München—German Research Center for Environment and Health (GmbH), Ingolstädter Landstrasse 1, D-85764, Neuherberg, Germany
| |
Collapse
|
130
|
Modulatory effects of inosine, guanosine and uridine on lipopolysaccharide-evoked increase in spike-wave discharge activity in Wistar Albino Glaxo/Rijswijk rats. Brain Res Bull 2015; 118:46-57. [DOI: 10.1016/j.brainresbull.2015.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/05/2015] [Accepted: 09/07/2015] [Indexed: 12/20/2022]
|
131
|
Prabu S, Sivakumar K, Swaminathan M, Rajamohan R. Preparation and characterization of host-guest system between inosine and β-cyclodextrin through inclusion mode. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 147:151-157. [PMID: 25829161 DOI: 10.1016/j.saa.2015.03.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 02/06/2015] [Accepted: 03/02/2015] [Indexed: 06/04/2023]
Abstract
Inosine is a nucleoside that is formed when hypoxanthine is attached to a ribose ring (also known as a ribofuranose) via a β-N₉-glycosidic bond. Inosine is commonly found in tRNAs. Inosine (INS) has been used widely as an antiviral drug. The inclusion complex of INS with β-CDx in solution phase is studied by ground and excited state with UV-visible and fluorescence spectroscopy, respectively. A binding constant and stoichiometric ratio between INS and β-CDx are calculated by BH equation. The lifetime and relative amplitude of INS is increases with increasing the concentrations of β-CDx, confirms the formation of inclusion complex in liquid state. The solid complexes are prepared by kneading method (KM) and co-precipitation method (CP). The solid complex is characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), powder X-ray diffraction (XRD) and differential scanning colorimetry (DSC). CP method gives the solid product with good yield than that of physical mixture and KM method. The structure of complex is proposed based on the study of Patch - Dock server.
Collapse
Affiliation(s)
- Samikannu Prabu
- Research and Development Centre, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India; Department of Chemistry, SKP. Engineering College, Tiruvannamalai 606 611, Tamil Nadu, India
| | | | | | - Rajaram Rajamohan
- Research and Development Centre, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India; Department of Chemistry, SKP. Institute of Technology, Tiruvannamalai 606 611, Tamil Nadu, India.
| |
Collapse
|
132
|
Kovács Z, Kékesi KA, Dobolyi Á, Lakatos R, Juhász G. Absence epileptic activity changing effects of non-adenosine nucleoside inosine, guanosine and uridine in Wistar Albino Glaxo Rijswijk rats. Neuroscience 2015; 300:593-608. [PMID: 26037802 DOI: 10.1016/j.neuroscience.2015.05.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 05/07/2015] [Accepted: 05/21/2015] [Indexed: 01/21/2023]
Abstract
Adenosine (Ado) and non-adenosine (non-Ado) nucleosides such as inosine (Ino), guanosine (Guo) and uridine (Urd) may have regionally different roles in the regulation of physiological and pathophysiological processes in the central nervous system (CNS) such as epilepsy. It was demonstrated previously that Ino and Guo decreased quinolinic acid (QA)-induced seizures and Urd reduced penicillin-, bicuculline- and pentylenetetrazole (PTZ)-induced seizures. It has also been demonstrated that Ino and Urd may exert their effects through GABAergic system by altering the function of GABA(A) type of gamma-aminobutyric acid receptors (GABAA receptors) whereas Guo decreases glutamate-induced excitability through glutamatergic system, which systems (GABAergic and glutamatergic) are involved in pathomechanisms of absence epilepsy. Thus, we hypothesized that Ino and Guo, similarly to the previously described effect of Urd, might also decrease absence epileptic activity. We investigated in the present study whether intraperitoneal (i.p.) application of Ino (500 and 1000mg/kg), Guo (20 and 50mg/kg), Urd (500 and 1000mg/kg), GABA(A) receptor agonist muscimol (1 and 3mg/kg), GABA(A) receptor antagonist bicuculline (2 and 4mg/kg), non-selective Ado receptor antagonist theophylline (5 and 10mg/kg) and non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo (a,d) cyclohepten-5,10-imine maleate (MK-801, 0.0625 and 0.1250mg/kg) alone and in combination have modulatory effects on absence epileptic activity in Wistar Albino Glaxo Rijswijk (WAG/Rij) rats. We found that Guo decreased the number of spike-wave discharges (SWDs) whereas Ino increased it dose-dependently. We strengthened that Urd can decrease absence epileptic activity. Our results suggest that Guo, Urd and their analogs could be potentially effective drugs for treatment of human absence epilepsy.
Collapse
Affiliation(s)
- Z Kovács
- Department of Zoology, University of West Hungary, Savaria Campus, Károlyi Gáspár tér 4., Szombathely 9700, Hungary.
| | - K A Kékesi
- Laboratory of Proteomics, Eötvös Loránd University, Pázmány Péter sétány 1C, Budapest 1117, Hungary; Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1C, Budapest 1117, Hungary.
| | - Á Dobolyi
- MTA-ELTE NAP Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Pázmány Péter sétány 1C, Budapest 1117, Hungary; Laboratory of Neuromorphology and Human Brain Tissue Bank, Department of Anatomy, Histology and Embryology, Semmelweis University, Tűzoltó u. 58., Budapest 1094, Hungary.
| | - R Lakatos
- Department of Zoology, University of West Hungary, Savaria Campus, Károlyi Gáspár tér 4., Szombathely 9700, Hungary.
| | - G Juhász
- Laboratory of Proteomics, Eötvös Loránd University, Pázmány Péter sétány 1C, Budapest 1117, Hungary; MTA-TTK NAP MS Neuroproteomics Research Group, Hungarian Academy of Sciences, Magyar tudósok körútja 2., Budapest 1117, Hungary.
| |
Collapse
|
133
|
Fuentes E, Palomo I. Extracellular ATP metabolism on vascular endothelial cells: A pathway with pro-thrombotic and anti-thrombotic molecules. Vascul Pharmacol 2015; 75:1-6. [PMID: 25989108 DOI: 10.1016/j.vph.2015.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 04/16/2015] [Accepted: 05/09/2015] [Indexed: 12/20/2022]
Abstract
Vascular endothelial contributes to the metabolism and interconversion of extracellular adenine nucleotides via ecto-ATPase/ADPase (CD39) and ecto-5'nucleotidase (CD73) activities. These enzymes collectively dephosphorylate ATP, ADP, and AMP with the production of additional adenosine. In the vascular system, adenine nucleotides (ATP and ADP) and nucleoside adenosine represent an important class of extracellular molecules involved in modulating the processes linked to vascular thrombosis exerting various effects in platelets. Yet, the mechanisms by which the extracellular ATP metabolism in the local environment trigger pro-thrombotic and anti-thrombotic states are yet to be fully elucidated. In this article, the relative contribution of extracellular ATP metabolism in platelet regulation is explored.
Collapse
Affiliation(s)
- Eduardo Fuentes
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001 Talca, Chile.
| | - Iván Palomo
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001 Talca, Chile.
| |
Collapse
|
134
|
Jz H, X W, J F, Bj R, Km W, Sc T, Jg P, Ra C, M L, M H. Metabolite Signatures in Hydrophilic Extracts of Mouse Lungs Exposed to Cigarette Smoke Revealed by 1H NMR Metabolomics Investigation. ACTA ACUST UNITED AC 2015; 5. [PMID: 26609465 PMCID: PMC4655886 DOI: 10.4172/2153-0769.1000143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1H-NMR metabolomics was used to investigate the changes of metabolites in the lungs of mice with and without being exposed to a controlled amount of cigarette smoke. It was found that the concentrations of adenosine derivatives (i.e. ATP, ADP and AMP), inosine and uridine were significantly changed in the lungs of mice exposed to cigarette smoke when compared with controls regardless the mice were obese or of regular weight. The decreased ATP, ADP, AMP and elevated inosine suggested that the deaminases in charge of adenosine derivatives to inosine derivatives conversion would be significantly changed in the lungs of mice exposed to cigarette smoke. Indeed, transcriptional study confirmed that the concentrations of adenosine monophosphate deaminase 2 and adenosine deaminase 2 were significantly changed in the lungs of mice exposed to cigarette smoke. We also found that the ratio of glycerophosphocholine (GPC) to phosphocholine (PC) was significantly increased in the lungs of obese mice compared with those of the regular weight mice. The GPC/PC ratio was further elevated in the lungs of obese group exposed to cigarette smoke.
Collapse
Affiliation(s)
- Hu Jz
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Wang X
- Pacific Northwest National Laboratory, Richland, WA, USA ; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan, China
| | - Feng J
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Robertson Bj
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Waters Km
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tilton Sc
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Pounds Jg
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Corley Ra
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Liu M
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan, China
| | - Hu M
- Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
135
|
Ledesma-Amaro R, Buey RM, Revuelta JL. Increased production of inosine and guanosine by means of metabolic engineering of the purine pathway in Ashbya gossypii. Microb Cell Fact 2015; 14:58. [PMID: 25889888 PMCID: PMC4407346 DOI: 10.1186/s12934-015-0234-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/25/2015] [Indexed: 11/25/2022] Open
Abstract
Background Inosine and guanosine monophosphate nucleotides are convenient sources of the umami flavor, with attributed beneficial health effects that have renewed commercial interest in nucleotide fermentations. Accordingly, several bacterial strains that excrete high levels of inosine and guanosine nucleosides are currently used in the food industry for this purpose. Results In the present study, we show that the filamentous fungus Ashbya gossypii, a natural riboflavin overproducer, excretes high amounts of inosine and guanosine nucleosides to the culture medium. Following a rational metabolic engineering approach of the de novo purine nucleotide biosynthetic pathway, we increased the excreted levels of inosine up to 27-fold. Conclusions We generated Ashbya gossypii strains with improved production titers of inosine and guanosine. Our results point to Ashbya gossypii as the first eukaryotic microorganism representing a promising candidate, susceptible to further manipulation, for industrial nucleoside fermentation. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0234-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rodrigo Ledesma-Amaro
- Departamento de Microbiología y Genética, Metabolic Engineering Group, Universidad de Salamanca, Laboratory 323, Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| | - Ruben M Buey
- Departamento de Microbiología y Genética, Metabolic Engineering Group, Universidad de Salamanca, Laboratory 323, Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| | - Jose Luis Revuelta
- Departamento de Microbiología y Genética, Metabolic Engineering Group, Universidad de Salamanca, Laboratory 323, Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| |
Collapse
|
136
|
Karabatsiakis A, Hamuni G, Wilker S, Kolassa S, Renu D, Kadereit S, Schauer M, Hennessy T, Kolassa IT. Metabolite profiling in posttraumatic stress disorder. J Mol Psychiatry 2015; 3:2. [PMID: 25848535 PMCID: PMC4367823 DOI: 10.1186/s40303-015-0007-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/08/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Traumatic stress does not only increase the risk for posttraumatic stress disorder (PTSD), but is also associated with adverse secondary physical health outcomes. Despite increasing efforts, we only begin to understand the underlying biomolecular processes. The hypothesis-free assessment of a wide range of metabolites (termed metabolite profiling) might contribute to the discovery of biological pathways underlying PTSD. METHODS Here, we present the results of the first metabolite profiling study in PTSD, which investigated peripheral blood serum samples of 20 PTSD patients and 18 controls. We performed liquid chromatography (LC) coupled to Quadrupole/Time-Of-Flight (QTOF) mass spectrometry. Two complementary statistical approaches were used to identify metabolites associated with PTSD status including univariate analyses and Partial Least Squares Discriminant Analysis (PLS-DA). RESULTS Thirteen metabolites displayed significant changes in PTSD, including four glycerophospholipids, and one metabolite involved in endocannabinoid signaling. A biomarker panel of 19 metabolites classifies PTSD with 85% accuracy, while classification accuracy from the glycerophospholipid with the highest differentiating ability already reached 82%. CONCLUSIONS This study illustrates the feasibility and utility of metabolite profiling for PTSD and suggests lipid-derived and endocannabinoid signaling as potential biological pathways involved in trauma-associated pathophysiology.
Collapse
Affiliation(s)
- Alexander Karabatsiakis
- Clinical & Biological Psychology, Ulm University, Albert-Einstein Allee 47, 89081 Ulm, Germany
| | - Gilava Hamuni
- Clinical & Biological Psychology, Ulm University, Albert-Einstein Allee 47, 89081 Ulm, Germany
| | - Sarah Wilker
- Clinical & Biological Psychology, Ulm University, Albert-Einstein Allee 47, 89081 Ulm, Germany
| | | | | | - Suzanne Kadereit
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Maggie Schauer
- Clinical Psychology & Neuropsychology, University of Konstanz, Konstanz, Germany
| | | | - Iris-Tatjana Kolassa
- Clinical & Biological Psychology, Ulm University, Albert-Einstein Allee 47, 89081 Ulm, Germany
| |
Collapse
|
137
|
Soares AS, Costa VM, Diniz C, Fresco P. Inosine strongly enhances proliferation of human C32 melanoma cells through PLC-PKC-MEK1/2-ERK1/2 and PI3K pathways. Basic Clin Pharmacol Toxicol 2015; 116:25-36. [PMID: 24909096 DOI: 10.1111/bcpt.12280] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 05/26/2014] [Indexed: 12/14/2022]
Abstract
Malignant melanoma is the most deadly type of skin cancer. The lack of effective pharmacological approaches for this tumour can be related to the incomplete understanding of the pathophysiological mechanisms involved in melanoma cell proliferation. Adenosine has growth-promoting and growth inhibitory effects on tumour cells. We aimed to investigate effects of adenosine and its metabolic product, inosine, on human C32 melanoma cells and the signalling pathways involved. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction and bromodeoxyuridine (BrdU) proliferation assays were used to evaluate adenosine, adenosine deaminase and inosine effects, in the absence or presence of adenosine receptor (AR), A3 AR and P2Y1 R antagonists and PLC, PKC, MEK1/2 and PI3K inhibitors. ERK1/2 levels were determined using an ELISA kit. Adenosine and inosine levels were quantified using an enzyme-coupled assay. Adenosine caused cell proliferation through AR activation. Adenosine deaminase increased inosine levels (nanomolar concentrations) on the extracellular space, in a time-dependent manner, inducing proliferation through A3 AR activation. Micromolar concentrations of inosine enhanced proliferation through A3 AR activation, causing an increase in ERK1/2 levels, and P2Y1 R activation via ENT-dependent mechanisms. We propose the simultaneous activation of PLC-PKC-MEK1/2-ERK1/2 and PI3K pathways as the main mechanism responsible for the proliferative effect elicited by inosine and its significant role in melanoma cancer progression.
Collapse
Affiliation(s)
- Ana Sofia Soares
- REQUIMTE, Laboratório de Farmacologia, Departamento de Ciências do Medicamento, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; MedInUP - Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Porto, Portugal
| | | | | | | |
Collapse
|
138
|
Fuentes E, Pereira J, Mezzano D, Alarcón M, Caballero J, Palomo I. Inhibition of platelet activation and thrombus formation by adenosine and inosine: studies on their relative contribution and molecular modeling. PLoS One 2014; 9:e112741. [PMID: 25393959 PMCID: PMC4231063 DOI: 10.1371/journal.pone.0112741] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/14/2014] [Indexed: 12/05/2022] Open
Abstract
Background The inhibitory effect of adenosine on platelet aggregation is abrogated after the addition of adenosine-deaminase. Inosine is a naturally occurring nucleoside degraded from adenosine. Objectives The mechanisms of antiplatelet action of adenosine and inosine in vitro and in vivo, and their differential biological effects by molecular modeling were investigated. Results Adenosine (0.5, 1 and 2 mmol/L) inhibited phosphatidylserine exposure from 52±4% in the control group to 44±4 (p<0.05), 29±2 (p<0.01) and 20±3% (p<0.001). P-selectin expression in the presence of adenosine 0.5, 1 and 2 mmol/L was inhibited from 32±4 to 27±2 (p<0.05), 14±3 (p<0.01) and 9±3% (p<0.001), respectively. At the concentrations tested, only inosine to 4 mmol/L had effect on platelet P-selectin expression (p<0.05). Adenosine and inosine inhibited platelet aggregation and ATP release stimulated by ADP and collagen. Adenosine and inosine reduced collagen-induced platelet adhesion and aggregate formation under flow. At the same concentrations adenosine inhibited platelet aggregation, decreased the levels of sCD40L and increased intraplatelet cAMP. In addition, SQ22536 (an adenylate cyclase inhibitor) and ZM241385 (a potent adenosine receptor A2A antagonist) attenuated the effect of adenosine on platelet aggregation induced by ADP and intraplatelet level of cAMP. Adenosine and inosine significantly inhibited thrombosis formation in vivo (62±2% occlusion at 60 min [n = 6, p<0.01] and 72±1.9% occlusion at 60 min, [n = 6, p<0.05], respectively) compared with the control (98±2% occlusion at 60 min, n = 6). A2A is the adenosine receptor present in platelets; it is known that inosine is not an A2A ligand. Docking of adenosine and inosine inside A2A showed that the main difference is the formation by adenosine of an additional hydrogen bond between the NH2 of the adenine group and the residues Asn253 in H6 and Glu169 in EL2 of the A2A receptor. Conclusion Therefore, adenosine and inosine may represent novel agents lowering the risk of arterial thrombosis.
Collapse
Affiliation(s)
- Eduardo Fuentes
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile
- Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, Talca, Chile
- * E-mail: (IP); (EF)
| | - Jaime Pereira
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Diego Mezzano
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo Alarcón
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile
- Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, Talca, Chile
| | - Julio Caballero
- Center for Bioinformatics and Molecular Simulations, Faculty of Engineering in Bioinformatics, Universidad de Talca, Talca, Chile
| | - Iván Palomo
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile
- Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, Talca, Chile
- * E-mail: (IP); (EF)
| |
Collapse
|
139
|
Patel N, Wu W, Mishra PK, Chen F, Millman A, Csóka B, Koscsó B, Eltzschig HK, Haskó G, Gause WC. A2B adenosine receptor induces protective antihelminth type 2 immune responses. Cell Host Microbe 2014; 15:339-50. [PMID: 24629340 DOI: 10.1016/j.chom.2014.02.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/22/2013] [Accepted: 02/04/2014] [Indexed: 02/06/2023]
Abstract
The type 2 immune response evoked by intestinal nematode parasites contributes to worm expulsion and tolerance to associated tissue damage. We investigated whether this host response is affected by blocking signaling by the putative endogenous danger signal adenosine, which can be released during inflammation and host cell damage. Specific blockade of the A2B adenosine receptor (A2BAR) inhibited worm elimination and the development of innate and adaptive components of the type 2 primary and memory response. Infected mice lacking A2BAR exhibited decreased M2 macrophage and eosinophil recruitment and reduced IL-4 and IL-13 cytokine production. Additionally, shortly after infection, upregulation of the alarmin IL-33, which drives type 2 immunity, and activation of innate lymphoid type 2 (ILC2) cells was inhibited, while exogenous IL-33 restored ILC2 cell activation and type 2 cytokine expression. Thus, adenosine acts as a danger-associated molecular pattern (DAMP) that initiates helminth-induced type 2 immune responses through A2BAR.
Collapse
Affiliation(s)
- Nirav Patel
- Department of Medicine, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07101, USA; Center for Immunity and Inflammation, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07101, USA
| | - Wenhui Wu
- Department of Medicine, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07101, USA; Center for Immunity and Inflammation, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07101, USA
| | - Pankaj K Mishra
- Department of Medicine, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07101, USA; Center for Immunity and Inflammation, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07101, USA
| | - Fei Chen
- Department of Medicine, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07101, USA; Center for Immunity and Inflammation, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07101, USA
| | - Ariel Millman
- Department of Medicine, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07101, USA; Center for Immunity and Inflammation, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07101, USA
| | - Balázs Csóka
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07101, USA; Department of Surgery, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07101, USA
| | - Balázs Koscsó
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07101, USA; Department of Surgery, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07101, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - György Haskó
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07101, USA; Department of Surgery, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07101, USA
| | - William C Gause
- Department of Medicine, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07101, USA; Center for Immunity and Inflammation, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07101, USA.
| |
Collapse
|
140
|
Adenosine A1 receptor-dependent antinociception induced by inosine in mice: pharmacological, genetic and biochemical aspects. Mol Neurobiol 2014; 51:1368-78. [PMID: 25064055 DOI: 10.1007/s12035-014-8815-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/11/2014] [Indexed: 01/15/2023]
Abstract
Inosine is an endogenous nucleoside that has anti-inflammatory and antinociceptive properties. Inosine is a metabolite of adenosine, and some of its actions suggest the involvement of adenosine A1 receptors (A1Rs). The purpose of this study was to better understand mechanisms of inosine-induced antinociception by investigating the role of A1Rs and purine metabolism inhibitors. Inosine antinociception was evaluated using the formalin test in mice. An A1R-selective antagonist (DPCPX), A1R knockout mice (gene deletion) and mice with A1R reduced expression (antisense oligonucleotides) were used to assess the role of A1Rs in the antinociceptive action of inosine. Binding assays were performed to compare the affinity of inosine and adenosine for A1Rs. Finally, the role of adenosine and inosine breakdown was assessed using deoxycoformycin (DCF) and forodesine (FDS) as enzymatic inhibitors of adenosine deaminase and purine nucleoside phosphorylase, respectively. Inosine induced antinociception in the formalin test when given by systemic, spinal and peripheral routes. Systemically, inosine exhibited a potency similar to adenosine, and its effects were inhibited by DPCPX. Inosine did not induce antinociception in A1R knockout mice or in mice with reduced A1R expression. In binding studies, inosine bound to A1Rs with an affinity similar to adenosine. DCF had no effect on inosine actions. FDS augmented the antinociceptive effect of a low systemic dose of inosine and, at a higher dose, induced antinociception by itself. Collectively, these data indicate that inosine is an agonist for A1Rs with antinociceptive properties and a potency similar to adenosine and can be considered another endogenous ligand for this receptor.
Collapse
|
141
|
Oral administration of inosine promotes recovery after experimental spinal cord injury in rat. Neurol Sci 2014; 35:1785-91. [DOI: 10.1007/s10072-014-1840-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/15/2014] [Indexed: 12/21/2022]
|
142
|
Muller-Haegele S, Muller L, Whiteside TL. Immunoregulatory activity of adenosine and its role in human cancer progression. Expert Rev Clin Immunol 2014; 10:897-914. [DOI: 10.1586/1744666x.2014.915739] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
143
|
Tonin AA, Da Silva AS, Casali EA, Silveira SS, Moritz CEJ, Camillo G, Flores MM, Fighera R, Thomé GR, Morsch VM, Schetinger MRC, Rue MDL, Vogel FSF, Lopes STA. Influence of infection by Toxoplasma gondii on purine levels and E-ADA activity in the brain of mice experimentally infected mice. Exp Parasitol 2014; 142:51-8. [PMID: 24768956 DOI: 10.1016/j.exppara.2014.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 04/03/2014] [Accepted: 04/14/2014] [Indexed: 12/20/2022]
Abstract
The aim of this study was to assess the purine levels and E-ADA activity in the brain of mice (BALB/c) experimentally infected with Toxoplasma gondii. In experiment I (n=24) the mice were infected with RH strain of T. gondii, while in experiment II (n=36) they were infected with strain ME-49 of T. gondii. Our results showed that, for RH strain (acute phase), an increase in both periods in the levels of ATP, ADP, AMP, adenosine, hypoxanthine, xanthine (only on day 6 PI) and uric acid (only on day 6 PI). By the other hand, the RH strain led, on days 4 and 6 PI, to a reduction in the concentration of inosine. ME-49, a cystogenic strain, showed some differences in acute and chronic phase, since on day 6 PI the levels of ATP and ADP were increased, while on day 30 these same nucleotides were reduced. On day 60 PI, ME-49 induced a reduction in the levels of ATP, ADP, AMP, adenosine, inosine and xanthine, while uric acid was increased. A decrease of E-ADA activity was observed in brain on days 4 and 6 PI (RH), and 30 PI (ME-49); however on day 60 PI E-ADA activity was increased for infection by ME-49 strain. Therefore, it was possible to conclude that infection with T. gondii changes the purine levels and the activity of E-ADA in brain, which may be associated with neurological signs commonly observed in this disease.
Collapse
Affiliation(s)
- Alexandre A Tonin
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Brazil; Department of Small Animal, Universidade Federal de Santa Maria, Brazil.
| | | | - Emerson A Casali
- Department of Morphological Science, Universidade Federal do Rio Grande do Sul, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Brazil
| | - Stephanie S Silveira
- Department of Morphological Science, Universidade Federal do Rio Grande do Sul, Brazil
| | - Cesar E J Moritz
- Department of Morphological Science, Universidade Federal do Rio Grande do Sul, Brazil
| | - Giovana Camillo
- Department of Preventive Veterinary Medicine, Universidade Federal de Santa Maria, Brazil
| | - Mariana M Flores
- Department of Veterinary Pathology, Universidade Federal de Santa Maria, Brazil
| | - Rafael Fighera
- Department of Veterinary Pathology, Universidade Federal de Santa Maria, Brazil
| | - Gustavo R Thomé
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Brazil
| | - Vera M Morsch
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Brazil
| | | | - Mario De La Rue
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Brazil; Department of Small Animal, Universidade Federal de Santa Maria, Brazil
| | - Fernanda S F Vogel
- Department of Preventive Veterinary Medicine, Universidade Federal de Santa Maria, Brazil
| | - Sonia T A Lopes
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Brazil; Department of Small Animal, Universidade Federal de Santa Maria, Brazil
| |
Collapse
|
144
|
Muto J, Lee H, Lee H, Uwaya A, Park J, Nakajima S, Nagata K, Ohno M, Ohsawa I, Mikami T. Oral administration of inosine produces antidepressant-like effects in mice. Sci Rep 2014; 4:4199. [PMID: 24569499 PMCID: PMC3935199 DOI: 10.1038/srep04199] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/06/2014] [Indexed: 12/22/2022] Open
Abstract
Inosine, a breakdown product of adenosine, has recently been shown to exert immunomodulatory and neuroprotective effects. We show here that the oral administration of inosine has antidepressant-like effects in two animal models. Inosine significantly enhanced neurite outgrowth and viability of primary cultured neocortical neurons, which was suppressed by adenosine A1 and A2A receptor agonists. Oral administration of inosine to mice transiently increased its concentration in the brain and enhanced neuronal proliferation in the dentate gyrus, accompanied by phosphorylation of mitogen-activated protein kinase and increase in transcript level of brain-derived neurotrophic factor. In stress models, oral inosine prevented an increase in immobility time in forced swim test after chronically unexpected stress and mitigated a reduction in sucrose preference after chronic social defeat stress. These results indicate that oral administration of inosine has the potential to prevent depressive disorder via adenosine receptors.
Collapse
Affiliation(s)
- Junko Muto
- 1] Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan [2] Department of Health and Sports Science, Nippon Medical School, Kawasaki, Japan
| | - Hosung Lee
- 1] Department of Health and Sports Science, Nippon Medical School, Kawasaki, Japan [2] Department of Biochemistry and Cell Biology, Institute of Development and Aging Science, Graduate School of Medicine, Nippon Medical School, Kawasaki, Japan
| | - Hyunjin Lee
- 1] Department of Health and Sports Science, Nippon Medical School, Kawasaki, Japan [2] Department of Biochemistry and Cell Biology, Institute of Development and Aging Science, Graduate School of Medicine, Nippon Medical School, Kawasaki, Japan
| | - Akemi Uwaya
- 1] Department of Health and Sports Science, Nippon Medical School, Kawasaki, Japan [2] Department of Biochemistry and Cell Biology, Institute of Development and Aging Science, Graduate School of Medicine, Nippon Medical School, Kawasaki, Japan
| | - Jonghyuk Park
- 1] Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan [2] Department of Health and Sports Science, Nippon Medical School, Kawasaki, Japan
| | - Sanae Nakajima
- 1] Department of Health and Sports Science, Nippon Medical School, Kawasaki, Japan [2] Department of Biochemistry and Cell Biology, Institute of Development and Aging Science, Graduate School of Medicine, Nippon Medical School, Kawasaki, Japan [3] Kyoritsu Women's Junior College, Tokyo, Japan
| | - Kazufumi Nagata
- 1] Department of Health and Sports Science, Nippon Medical School, Kawasaki, Japan [2] Department of Biochemistry and Cell Biology, Institute of Development and Aging Science, Graduate School of Medicine, Nippon Medical School, Kawasaki, Japan
| | - Makoto Ohno
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Ikuroh Ohsawa
- Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Toshio Mikami
- Department of Health and Sports Science, Nippon Medical School, Kawasaki, Japan
| |
Collapse
|
145
|
Experimental infection by Haemonchus contortus in lambs: influence of disease on purine levels in serum. Parasitology 2014; 141:898-903. [PMID: 24534114 DOI: 10.1017/s0031182013002370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of this study was to evaluate the purine levels of lambs experimentally infected with Haemonchus contortus. A total of 12 healthy lambs were divided into two groups, composed of 6 animals each: Group A represented the healthy animals (uninfected), while in Group B the animals were infected with 15 000 larvae of H. contortus. Blood was drawn on days 15, 45 and 75 post-infection (PI) in order to perform the purine analysis (ATP, ADP, AMP, adenosine, inosine, hypoxanthine, xanthine and uric acid) by high pressure liquid chromatography (HPLC) in serum. On day 15 PI a significant (P<0·05) increase in the levels of ATP and inosine was observed in the infected animals, unlike the levels of ADP, adenosine, xanthine and uric acid which were reduced. On day 45 PI a significant (P<0·05) increase in the ATP and xanthine levels in infected animals was observed, contrasting with reduced levels of ADP and uric acid. Finally, on day 75 PI an increase occurred in the levels of ATP, adenosine and hypoxanthine in infected lambs, concomitant with a reduction in the levels of ADP and uric acid (P<0·05). These changes in purine levels may influence the inflammatory process and the pathological events.
Collapse
|
146
|
Using caffeine and other adenosine receptor antagonists and agonists as therapeutic tools against neurodegenerative diseases: a review. Life Sci 2014; 101:1-9. [PMID: 24530739 DOI: 10.1016/j.lfs.2014.01.083] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 01/22/2014] [Accepted: 01/29/2014] [Indexed: 12/22/2022]
Abstract
Caffeine is the most consumed pychostimulant in the world, and it is known to affect basic and fundamental human processes such as sleep, arousal, cognition and learning and memory. It works as a nonselective blocker of adenosine receptors (A1, A2a, A2b and A3) and has been related to the regulation of heart rate, the contraction/relaxation of cardiac and smooth muscles, and the neural signaling in the central nervous system (CNS). Since the late 1990s, studies using adenosine receptor antagonists, such as Caffeine, to block the A1 and A2a adenosine receptor subtypes have shown to reduce the physical, cellular and molecular damages caused by a spinal cord injury (SCI) or a stroke (cerebral infarction) and by other neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Interestingly, other studies using adenosine receptor agonists have also shown to provide a neuroprotective effect on various models of neurodegenerative diseases through the reduction of excitatory neurotransmitter release, apoptosis and inflammatory responses, among others. The seemingly paradoxical use of both adenosine receptor agonists and antagonists as neuroprotective agents has been attributed to differences in dosage levels, drug delivery method, extracellular concentration of excitatory neurotransmitters and stage of disease progression. We discuss and compare recent findings using both antagonists and agonists of adenosine receptors in animal models and patients that have suffered spinal cord injuries, brain strokes, and Parkinson's and Alzheimer's diseases. Additionally, we propose alternative interpretations on the seemingly paradoxical use of these drugs as potential pharmacological tools to treat these various types of neurodegenerative diseases.
Collapse
|
147
|
Dachir S, Shabashov D, Trembovler V, Alexandrovich AG, Benowitz LI, Shohami E. Inosine improves functional recovery after experimental traumatic brain injury. Brain Res 2014; 1555:78-88. [PMID: 24502983 DOI: 10.1016/j.brainres.2014.01.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 01/16/2014] [Accepted: 01/27/2014] [Indexed: 11/18/2022]
Abstract
Despite years of research, no effective therapy is yet available for the treatment of traumatic brain injury (TBI). The most prevalent and debilitating features in survivors of TBI are cognitive deficits and motor dysfunction. A potential therapeutic method for improving the function of patients following TBI would be to restore, at least in part, plasticity to the CNS in a controlled way that would allow for the formation of compensatory circuits. Inosine, a naturally occurring purine nucleoside, has been shown to promote axon collateral growth in the corticospinal tract (CST) following stroke and focal TBI. In the present study, we investigated the effects of inosine on motor and cognitive deficits, CST sprouting, and expression of synaptic proteins in an experimental model of closed head injury (CHI). Treatment with inosine (100 mg/kg i.p. at 1, 24 and 48 h following CHI) improved outcome after TBI, significantly decreasing the neurological severity score (NSS, p<0.04 vs. saline), an aggregate measure of performance on several tasks. It improved non-spatial cognitive performance (object recognition, p<0.016 vs. saline) but had little effect on sensorimotor coordination (rotarod) and spatial cognitive functions (Y-maze). Inosine did not affect CST sprouting in the lumbar spinal cord but did restore levels of the growth-associated protein GAP-43 in the hippocampus, though not in the cerebral cortex. Our results suggest that inosine may improve functional outcome after TBI.
Collapse
Affiliation(s)
- Shlomit Dachir
- Department of Pharmacology, Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Dalia Shabashov
- Department of Pharmacology, Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Victoria Trembovler
- Department of Pharmacology, Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Alexander G Alexandrovich
- Department of Pharmacology, Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Larry I Benowitz
- Department of Neurosurgery, Children׳s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Esther Shohami
- Department of Pharmacology, Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|
148
|
Inosine enhances axon sprouting and motor recovery after spinal cord injury. PLoS One 2013; 8:e81948. [PMID: 24312612 PMCID: PMC3846725 DOI: 10.1371/journal.pone.0081948] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/18/2013] [Indexed: 11/19/2022] Open
Abstract
Although corticospinal tract axons cannot regenerate long distances after spinal cord injury, they are able to sprout collateral branches rostral to an injury site that can help form compensatory circuits in cases of incomplete lesions. We show here that inosine enhances the formation of compensatory circuits after a dorsal hemisection of the thoracic spinal cord in mature rats and improves coordinated limb use. Inosine is a naturally occurring metabolite of adenosine that crosses the cell membrane and, in neurons, activates Mst3b, a protein kinase that is part of a signal transduction pathway that regulates axon outgrowth. Compared to saline-treated controls, rats with dorsal hemisections that were treated with inosine showed three times as many synaptic contacts between corticospinal tract collaterals and long propriospinal interneurons that project from the cervical cord to the lumbar level. Inosine-treated rats also showed stronger serotonergic reinnervation of the lumbar cord than saline-treated controls, and performed well above controls in both open-field testing and a horizontal ladder rung-walking test. Inosine was equally effective whether delivered intracranially or intravenously, and has been shown to be safe for other indications in humans. Thus, inosine might be a useful therapeutic for improving outcome after spinal cord injury.
Collapse
|
149
|
Robin E, Sabourin J, Marcillac F, Raddatz E. Involvement of CD73, equilibrative nucleoside transporters and inosine in rhythm and conduction disturbances mediated by adenosine A1 and A2A receptors in the developing heart. J Mol Cell Cardiol 2013; 63:14-25. [DOI: 10.1016/j.yjmcc.2013.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
|
150
|
Kaster MP, Budni J, Gazal M, Cunha MP, Santos ARS, Rodrigues ALS. The antidepressant-like effect of inosine in the FST is associated with both adenosine A1 and A 2A receptors. Purinergic Signal 2013; 9:481-6. [PMID: 23613131 PMCID: PMC3757140 DOI: 10.1007/s11302-013-9361-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/27/2013] [Indexed: 12/31/2022] Open
Abstract
Inosine is an endogenous purine nucleoside, which is formed during the breakdown of adenosine. The adenosinergic system was already described as capable of modulating mood in preclinical models; we now explored the effects of inosine in two predictive models of depression: the forced swim test (FST) and tail suspension test (TST). Mice treated with inosine displayed higher anti-immobility in the FST (5 and 50 mg/kg, intraperitoneal route (i.p.)) and in the TST (1 and 10 mg/kg, i.p.) when compared to vehicle-treated groups. These antidepressant-like effects started 30 min and lasted for 2 h after intraperitoneal administration of inosine and were not accompanied by any changes in the ambulatory activity in the open-field test. Both adenosine A1 and A2A receptor antagonists prevented the antidepressant-like effect of inosine in the FST. In addition, the administration of an adenosine deaminase inhibitor (1 and 10 mg/kg, i.p.) also caused an antidepressant-like effect in the FST. These results indicate that inosine possesses an antidepressant-like effect in the FST and TST probably through the activation of adenosine A1 and A2A receptors, further reinforcing the potential of targeting the purinergic system to the management of mood disorders.
Collapse
Affiliation(s)
- Manuella P Kaster
- Department of Life and Health Sciences, Universidade Católica de Pelotas (UCPel), Pelotas, Rio Grande do Sul, Brazil.
| | | | | | | | | | | |
Collapse
|