101
|
Angelopoulou P, Giaouris E, Gardikis K. Applications and Prospects of Nanotechnology in Food and Cosmetics Preservation. NANOMATERIALS 2022; 12:nano12071196. [PMID: 35407315 PMCID: PMC9000819 DOI: 10.3390/nano12071196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022]
Abstract
Cosmetic and food products containing water are prone to contamination during the production, storage, and transit process, leading to product spoilage and degraded organoleptic characteristics. The efficient preservation of food and cosmetics is one of the most important issues the industry is facing today. The use of nanotechnology in food and cosmetics for preservation purposes offers the possibility to boost the activity of antimicrobial agents and/or promote their safer distribution into the end product upon incorporation into packaging or film constructions. In this review, current preservation strategies are discussed and the most recent studies in nanostructures used for preservation purposes are categorized and analyzed in a way that hopefully provides the most promising strategies for both the improvement of product safety and shelf-life extension. Packaging materials are also included since the container plays a major role in the preservation of such products. It is conclusively revealed that most of the applications refer to the nanocomposites as part of the packaging, mainly due to the various possibilities that nanoscience offers to this field. Apart from that, the route of exposure being either skin or the gastrointestinal system involves safety concerns, and since migration of nanoparticles (NPs) from their container can be measured, concerns can be minimized. Conclusion: Nanomaterial science has already made a significant contribution to food and cosmetics preservation, and rapid developments in the last years reinforce the belief that in the future much of the preservation strategies to be pursued by the two industries will be based on NPs and their nanocomposites.
Collapse
Affiliation(s)
- Paraskevi Angelopoulou
- IPSP Nanomedicine, Medical & Pharmacy Department, School of Health Sciences, National and Kapodistrian University of Athens, 15772 Athens, Greece;
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Greece;
| | - Efstathios Giaouris
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Greece;
| | - Konstantinos Gardikis
- IPSP Nanomedicine, Medical & Pharmacy Department, School of Health Sciences, National and Kapodistrian University of Athens, 15772 Athens, Greece;
- R&D Department, APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece
- Correspondence:
| |
Collapse
|
102
|
Design strategies for antiviral coatings and surfaces: A review ☆. APPLIED SURFACE SCIENCE ADVANCES 2022; 8:100224. [PMCID: PMC8865753 DOI: 10.1016/j.apsadv.2022.100224] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 05/31/2023]
Abstract
The routine disinfection and sanitization of surfaces, objects, and textiles has become a time-consuming but necessary task for managing the COVID-19 pandemic. Nonetheless, the excessive use of sanitizers and disinfectants promotes the development of antibiotic-resistant microbes. Moreover, that improper disinfection could lead to more virus transfer, which leads to more viral mutations. Recently developed antiviral surface coatings can reduce the reliance on traditional disinfectants. These surfaces remain actively antimicrobial between periods of active cleaning of the surfaces, allowing a much more limited and optimized use of disinfectants. The novel nature of these surfaces has led, however, to many inconsistencies within the rapidly growing literature. Here we provide tools to guide the design and development of antimicrobial and antiviral surfaces and coatings. We describe how engineers can best choose testing options and propose new avenues for antiviral testing. After defining testing protocols, we summarize potential inorganic and organic materials able to serve as antiviral surfaces and present their antiviral mechanisms. We discuss the main limitations to their application, including issues related to toxicity, antimicrobial resistance, and environmental concerns. We propose solutions to counter these limitations and highlight how the context of specific use of an antiviral surface must guide material selection. Finally, we discuss how the use of coatings that combine multiple antimicrobial mechanisms can avoid the development of antibiotic resistance and improve the antiviral properties of these surfaces.
Collapse
|
103
|
Wang X, Liu P, Wu Q, Zheng Z, Xie M, Chen G, Yu J, Wang X, Li G, Kaplan D. Sustainable Antibacterial and Anti-Inflammatory Silk Suture with Surface Modification of Combined-Therapy Drugs for Surgical Site Infection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11177-11191. [PMID: 35192338 DOI: 10.1021/acsami.2c00106] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Silk sutures with antibacterial and anti-inflammatory functions were developed for sustained dual-drug delivery to prevent surgical site infections (SSIs). The silk sutures were prepared with core-shell structures braided from degummed silk filaments and then coated with a silk fibroin (SF) layer loaded with berberine (BB) and artemisinin (ART). Both the rapid release of drugs to prevent initial biofilm formation and the following sustained release to maintain effective concentrations for more than 42 days were demonstrated. In vitro assays using human fibroblasts (Hs 865.Sk) demonstrated cell proliferation on the materials, and hemolysis was 2.4 ± 0.8%, lower than that required by ISO 10993-4 standard. The sutures inhibited platelet adhesion and promoted collagen deposition and blood vessel formation. In vivo assessments using Sprague-Dawley (SD) rats indicated that the coating reduced the expression of pro-inflammatory cytokines interleukin-10 (IL-10) and tumor necrosis factor-α (TNF-α), shortening the inflammatory period and promoting angiogenesis. The results demonstrated that these new sutures exhibited stable structures, favorable biocompatibility, and sustainable antibacterial and anti-inflammatory functions with potential for surgical applications.
Collapse
Affiliation(s)
- Xuchen Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Peixin Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Orthopedic Institute, Soochow University, Suzhou 215006, China
| | - Qinting Wu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Maobin Xie
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Guoqiang Chen
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Jia Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Orthopedic Institute, Soochow University, Suzhou 215006, China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - David Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
104
|
Tarbali S, Karami Mehrian S, Khezri S. Toxicity effects evaluation of green synthesized silver nanoparticles on intraperitoneally exposed male Wistar rats. Toxicol Mech Methods 2022; 32:488-500. [DOI: 10.1080/15376516.2022.2049412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sepideh Tarbali
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran.
| | - Saeed Karami Mehrian
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran.
- Department of Biology, Faculty of Sciences, University of Razi, Kermanshah, Iran
| | - Shiva Khezri
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran.
| |
Collapse
|
105
|
Chang Z, Karmakar B, Lu H, Lou X, Alotaibi SS, Salem Alkhayyat S, Albogami SM, Mostafa-Hedeab G, El-Saber Batiha G, El-kott AF, Elsaid FG, Al-Kahtani MA, Bani-Fwaz MZ. Preparation of gelatin/Ag NPs under ultrasound condition: A potent and green bio-nanocomposite for the treatment of pleomorphic hepatocellular carcinoma, morris hepatoma, and novikoff hepatoma. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
106
|
Ghosh U, Sayef Ahammed K, Mishra S, Bhaumik A. The Emerging Roles of Silver Nanoparticles to Target Viral Life Cycle and Detect Viral Pathogens. Chem Asian J 2022; 17:e202101149. [PMID: 35020270 PMCID: PMC9011828 DOI: 10.1002/asia.202101149] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/05/2022] [Indexed: 11/26/2022]
Abstract
Along the line of recent vaccine advancements, new antiviral therapeutics are compelling to combat viral infection-related public health crises. Several properties of silver nanoparticles (AgNPs) such as low level of cytotoxicity, ease of tunability of the AgNPs in the ultra-small nanoscale size and shape through different convenient bottom-up chemistry approaches, high penetration of the composite with drug formulations into host cells has made AgNPs, a promising candidate for developing antivirals. In this review, we have highlighted the recent advancements in the AgNPs based nano-formulations to target cellular mechanisms of viral propagation, immune modulation of the host, and the ability to synergistically enhance the activity of existing antiviral drugs. On the other hand, we have discussed the recent advancements on AgNPs based detection of viral pathogens from clinical samples using inherent physicochemical properties. This article will provide an overview of our current knowledge on AgNPs based formulations that has promising potential for developing a counteractive strategy against emerging and existing viruses.
Collapse
Affiliation(s)
- Ujjyani Ghosh
- Cancer & Inflammatory Disorder DivisionCSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata700032India
- Present address: The University of UtahSalt Lake CityUT84112USA
| | - Khondakar Sayef Ahammed
- Cancer & Inflammatory Disorder DivisionCSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata700032India
- Present address: The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical SciencesHoustonTX77030USA
| | - Snehasis Mishra
- Cancer & Inflammatory Disorder DivisionCSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata700032India
| | - Asim Bhaumik
- School of Materials SciencesIndian Association for the Cultivation of ScienceJadavpur, Kolkata700 032India
| |
Collapse
|
107
|
Jeevanandam J, Kiew SF, Boakye-Ansah S, Lau SY, Barhoum A, Danquah MK, Rodrigues J. Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. NANOSCALE 2022; 14:2534-2571. [PMID: 35133391 DOI: 10.1039/d1nr08144f] [Citation(s) in RCA: 234] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Green synthesis approaches are gaining significance as promising routes for the sustainable preparation of nanoparticles, offering reduced toxicity towards living organisms and the environment. Nanomaterials produced by green synthesis approaches can offer additional benefits, including reduced energy inputs and lower production costs than traditional synthesis, which bodes well for commercial-scale production. The biomolecules and phytochemicals extracted from microbes and plants, respectively, are active compounds that function as reducing and stabilizing agents for the green synthesis of nanoparticles. Microorganisms, such as bacteria, yeasts, fungi, and algae, have been used in nanomaterials' biological synthesis for some time. Furthermore, the use of plants or plant extracts for metal and metal-based hybrid nanoparticle synthesis represents a novel green synthesis approach that has attracted significant research interest. This review discusses various biosynthesis approaches via microbes and plants for the green preparation of metal and metal oxide nanoparticles and provides insights into the molecular aspects of the synthesis mechanisms and biomedical applications. The use of agriculture waste as a potential bioresource for nanoparticle synthesis and biomedical applications of biosynthesized nanoparticles is also discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Siaw Fui Kiew
- Curtin Malaysia Research Institute, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia
- Sarawak Biovalley Pilot Plant, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia
| | - Stephen Boakye-Ansah
- Rowan University, Henry M. Rowan College of Engineering, Department of Chemical Engineering, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Sie Yon Lau
- Department of Chemical Engineering, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia
| | - Ahmed Barhoum
- Nanostruc, Research Group, Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
- School of Chemical Sciences, Dublin City University, Dublin 9, D09 Y074 Dublin, Ireland
| | - Michael K Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
- School of Materials Science and Engineering, Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
108
|
Zhou J, Zheng X, Cai Q, Song C. Introducing a Novel Chemotherapeutic Drug for the Treatment of Lung Adenocarcinoma: Silver Nanoparticles Green-formulated by Cinnamomum verum. J Oleo Sci 2022; 71:371-378. [PMID: 35173088 DOI: 10.5650/jos.ess21316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study we report the green synthesis of nontoxic, stable, and small size silver nanoparticle by Cinnamomum verum with reducing/capping ability without any toxic reducing agents. The in situ prepared AgNPs were characterized by advanced physicochemical techniques like FE-SEM, TEM, and UV-Vis study. It has been established that AgNPs have a spherical shape with a mean diameter from 10 to 45 nm. In the antioxidant test, the IC50 of AgNPs and BHT against DPPH free radicals were 191 and 242 µg/mL, respectively. In the cellular and molecular part of the recent study, the treated cells with AgNPs were assessed by MTT assay for 48 h about the cytotoxicity and anti-human lung adenocarcinoma properties on normal (HUVEC) and lung adenocarcinoma cell lines i.e. PC-14, LC-2/ad, and HLC-1. The IC50 of AgNPs were 259, 291, and 395 µg/mL against PC-14, LC-2/ad, and HLC-1 cell lines, respectively. The viability of malignant lung cell line reduced dose-dependently in the presence of AgNPs.
Collapse
Affiliation(s)
- Jianzhong Zhou
- Department of Thoracic and Cardiovascular Surgery, Affiliated Hospital of Jinggangshan University
| | - Xiaogang Zheng
- Department of Emergency, Affiliated Hospital of Jinggangshan University
| | - Qigui Cai
- Department of Thoracic and Cardiovascular Surgery, Affiliated Hospital of Jinggangshan University
| | - Chunlin Song
- The Affiliated Hospital of Jinggangshan University, General Medicine
| |
Collapse
|
109
|
Ma J, Li K, Gu S. Selective strategies for antibacterial regulation of nanomaterials. RSC Adv 2022; 12:4852-4864. [PMID: 35425473 PMCID: PMC8981418 DOI: 10.1039/d1ra08996j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
Recalcitrant bacterial infection, as a worldwide challenge, causes large problems for human health and is attracting great attention. The excessive antibiotic-dependent treatment of infections is prone to induce antibiotic resistance. A variety of unique nanomaterials provide an excellent toolkit for killing bacteria and preventing drug resistance. It is of great importance to summarize the design rules of nanomaterials for inhibiting the growth of pathogenic bacteria. We completed a review involving the strategies for regulating antibacterial nanomaterials. First, we discuss the antibacterial manipulation of nanomaterials, including the interaction between the nanomaterial and the bacteria, the damage of the bacterial structure, and the inactivation of biomolecules. Next, we identify six main factors for controlling the antibacterial activity of nanomaterials, including their element composition, size dimensions, surface charge, surface topography, shape selection and modification density. Every factor possesses a preferable standard for maximizing antibacterial activity, providing universal rules for antibacterial regulation of nanomaterials. We hope this comprehensive review will help researchers to precisely design and synthesize nanomaterials, developing intelligent antibacterial agents to address bacterial infections.
Collapse
Affiliation(s)
- Jinliang Ma
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang Henan 471023 China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Kexin Li
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang Henan 471023 China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang Henan 471023 China
| |
Collapse
|
110
|
Jasrotia P, Nagpal M, Mishra CN, Sharma AK, Kumar S, Kamble U, Bhardwaj AK, Kashyap PL, Kumar S, Singh GP. Nanomaterials for Postharvest Management of Insect Pests: Current State and Future Perspectives. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2021.811056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Globally, between one quarter and one-third of total grains produced each year are lost during storage mainly through infestation of insect pests. Among the available control options such as chemical and physical techniques, fumigation with aluminum phosphide (AlP) is so far considered the best control strategy against storage insect pests. However, these insect pests are now developing resistance against AIP due to its indiscriminate use due to non-availability of any effective alternative control option. Resistance to AIP among storage insect pests is increasing, and its inhalation has shown adverse effects on animals and human beings. Nanotechnology has opened up a wide range of opportunities in various fields such as agriculture (pesticides, fertilizers, etc.), pharmaceuticals, and electronics. One of the applications of nanotechnology is the usage of nanomaterial-based insecticide formulations for mitigating field and storage insect pests. Several formulations, namely, nanoemulsions, nanosuspensions, controlled release formulations, and solid-based nanopesticides, have been developed with different modes of action and application. The major advantage is their small size which helps in proper spreading on the pest surface, and thus, better action than conventional pesticides is achieved. Besides their minute size, these have no or reduced harmful effects on non-target species. Nanopesticides can therefore provide green and efficient alternatives for the management of insect pests of field and storage. However, an outcry against the utilization of nano-based pesticides is also revealed. It is considered by some that nano-insecticides may also have hazardous effects on humans as well as on the environment. Due to limited available data, nanopesticides have become a double-edged weapon. Therefore, nanomaterials need to be evaluated extensively for their large-scale adoption. In this article, we reviewed the nanoformulations that are developed and have proved effective against the insect pests under postharvest storage of grains.
Collapse
|
111
|
Asgari P, Zolfaghari M, Bit-Lian Y, Abdi AH, Mohammadi Y, Bahramnezhad F. Comparison of Hydrocolloid Dressings and Silver Nanoparticles in Treatment of Pressure Ulcers in Patients with Spinal Cord Injuries: A Randomized Clinical Trial. J Caring Sci 2022; 11:1-6. [PMID: 35603087 PMCID: PMC9012899 DOI: 10.34172/jcs.2022.08] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/20/2021] [Indexed: 11/09/2022] Open
Abstract
Introduction: There are numerous dressings used to treat pressure ulcers (PUs), depending on their advantages to achieve optimum patient outcomes. This study aimed to compare hydrocolloid dressings and silver nanoparticles in treating PUs among patients with spinal cord injury (SCI). Methods: This randomized clinical trial was conducted on 70 patients with SCI in Iran. Participants were randomly divided into two equal groups (n=35) receiving silver nanoparticle dressing and hydrocolloid dressing, respectively. The groups were evaluated in four assessment periods using the Bates-Jensen Wound Assessment Tool (BWAT). Data analysis was performed using SPSS software version 13, repeated measures ANOVA, non-parametric tests, and chi-square. Results: Chi-square test was used to investigate the difference between the scores before the intervention, the results of which were not statistically significant. In repetitive measurements, the results of the analysis of variance showed that the average assessment score in both groups decreased and both dressings were effective in the treatment process. Although PU improvement status in the group that received silver nanoparticles was better, between-group analysis of variance did not show any statistically significant difference between the two groups. Conclusion: Our results indicated that silver nanoparticles and hydrocolloid dressings can be used interchangeably in the treatment of PUs.
Collapse
Affiliation(s)
- Parvaneh Asgari
- Department of Critical Care Nursing, School of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Zolfaghari
- Department of E-learning in Medical Education, Nursing and Midwifery Care Research Center, Virtual School, Tehran University of Medical Sciences, Tehran, Iran
| | - Yee Bit-Lian
- Cluster of Applied Sciences, Petaling Jaya Learning Centre, Open University Malaysia, 46350 Petaling Jaya, Malaysia
| | - Amir Hossien Abdi
- Department of Critical Care Nursing, School of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran, Iran
| | - Younes Mohammadi
- Department of Epidemiology, School of heath, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Bahramnezhad
- Department of Critical Care Nursing, Nursing and Midwifery Care Research Center, School of Nursing and Midwifery, Tehran
- Spiritual Health Group, Research Center of Quran, Hadith and Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
112
|
Bacitracin and isothiocyanate functionalized silver nanoparticles for synergistic and broad spectrum antibacterial and antibiofilm activity with selective toxicity to bacteria over mammalian cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112649. [PMID: 35034824 DOI: 10.1016/j.msec.2022.112649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 12/31/2022]
Abstract
Silver nanoparticles functionalized with bacitracin (BA), a cyclic peptide and isothiocyanate (ITC), a natural plant product, was fabricated. The particle size of AgNP-BA&ITC was optimized using full factorial design. The optimized particles were of 10-15 nm in size as seen under TEM and showed chemical signature of both bacitracin as well as isothiocynate in FTIR spectroscopy. XRD analysis confirmed the crystalline nature of these particles. Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) showed 21 mg/g silver content in AgNP-BA &ITC. These nanoparticles exhibited MIC in the range of 12.5-25 μg/mL and > 3 log10 reduction in cell viability for both Gram positive and Gram-negative bacteria. They clearly demonstrated biofilm inhibition (BIC90 = 150-400 μg/mL) as well as were capable of eradicating both young and mature preformed biofilms as observed by live/dead imaging and crystal violet assay. Further cytotoxicity assay suggests high selectivity (IC50/MIC90 value = 15.2-30.4) of these particles. The results in the present investigation provide role of these novel nanoparticles having substantially low silver content with reduced toxicity and good antibacterial and antibiofilm activity for external wound healing applications.
Collapse
|
113
|
Liu N, Li Y, Liu L, Liu X, Yin Y, Qu G, Shi J, Song M, He B, Hu L, Jiang G. Administration of Silver Nasal Spray Leads to Nanoparticle Accumulation in Rat Brain Tissues. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:403-413. [PMID: 34923819 DOI: 10.1021/acs.est.1c02532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The use of commercial products containing engineered nanomaterials in realistic scenarios may lead to the accumulation of exogenous particles in brain tissues. In this study, we simulated the use of silver (Ag) nasal spray in humans using Sprague-Dawley rats at 0.04 mg/kg/day. Silver-containing particles were explicitly identified in the rat brain after the administration of nasal sprays containing colloidal Ag or silver ions (Ag+) for 2 weeks using multiple methods. The accumulation of Ag-containing particles showed a delayed effect in different brain regions of the rats, with the mass concentration of particles increasing continuously for 1-2 weeks after the termination of administration. The size of the observed Ag-containing particles extracted from the brain tissues ranged from 18.3 to 120.4 nm. Further characterization by high-resolution transmission electron microscopy with energy-dispersive spectroscopy showed that the nanoparticles comprised both Ag and sulfur (S), with Ag/S atomic ratios of 1.1-7.1, suggesting that Ag-containing particles went through a series of transformations prior to or during their accumulation in the brain. Collectively, these findings provide evidence for the accumulation and transformation of Ag-containing particles in the rat brain, indicating a realistic risk to brain health resulting from the application of Ag-containing commercial products.
Collapse
Affiliation(s)
- Nian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yu Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
114
|
Ma J, Li K, Gu S, Wu Y, Zhang J, Wu J, Zhao L, Li X. Antimicrobial carbon-dot–stabilized silver nanoparticles. NEW J CHEM 2022. [DOI: 10.1039/d1nj05798g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon-dot–stabilized silver nanoparticles (CD–AgNPs) with high stability and low toxicity exhibit good antibacterial activity and broad-spectrum performance.
Collapse
Affiliation(s)
- Jinliang Ma
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Kexin Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Jing Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Jiafa Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Lina Zhao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Xuan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| |
Collapse
|
115
|
Design and synthesis of chitosan/agar/Ag NPs: A potent and green bio-nanocomposite for the treatment of glucocorticoid induced osteoporosis in rats. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
116
|
Wang X, Han ZC, Wei W, Hu H, Li P, Sun P, Liu X, Lv Z, Wang F, Cao Y, Guo Z, Li J, Zhao J. An unexpected all-metal aromatic tetranuclear silver cluster in human copper chaperone Atox1. Chem Sci 2022; 13:7269-7275. [PMID: 35799808 PMCID: PMC9214858 DOI: 10.1039/d1sc07122j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/28/2022] [Indexed: 11/21/2022] Open
Abstract
Metal clusters, such as iron–sulfur clusters, play key roles in sustaining life and are intimately involved in the functions of metalloproteins. Herein we report the formation and crystal structure of a planar square tetranuclear silver cluster when silver ions were mixed with human copper chaperone Atox1. Quantum chemical studies reveal that two Ag 5s1 electrons in the tetranuclear silver cluster fully occupy the one bonding molecular orbital, with the assumption that this Ag4 cluster is Ag42+, leading to extensive electron delocalization over the planar square and significant stabilization. This bonding pattern of the tetranuclear silver cluster represents an aromatic all-metal structure that follows a 4n + 2 electron counting rule (n = 0). This is the first time an all-metal aromatic silver cluster was observed in a protein. Metal clusters, such as iron–sulfur clusters, play key roles in sustaining life and are intimately involved in the functions of metalloproteins.![]()
Collapse
Affiliation(s)
- Xiuxiu Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zong-Chang Han
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Wei Wei
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- School of Life Sciences, Nanjing University, Nanjing 210023, China
- Shenzhen Research Institute, Nanjing University, Shenzhen 518000, China
| | - Hanshi Hu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Pengfei Li
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210023, China
| | - Peiqing Sun
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiangzhi Liu
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhijia Lv
- Elias James Corey Institute of Biomedical Research, Wuxi Biortus Biosciences Co., Ltd, Jiangyin 214437, China
| | - Feng Wang
- Elias James Corey Institute of Biomedical Research, Wuxi Biortus Biosciences Co., Ltd, Jiangyin 214437, China
| | - Yi Cao
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210023, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210023, China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- School of Life Sciences, Nanjing University, Nanjing 210023, China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210023, China
- Shenzhen Research Institute, Nanjing University, Shenzhen 518000, China
| |
Collapse
|
117
|
Zhou F, Zhu Y, Yang L, Yang DQ, Sacher E. Ag NP catalysis of Cu ions in the preparation of AgCu NPs and the mechanism of their enhanced antibacterial efficacy. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127831] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
118
|
Nano-silver functionalized polysaccharides as a platform for wound dressings: A review. Int J Biol Macromol 2022; 194:644-653. [PMID: 34822832 DOI: 10.1016/j.ijbiomac.2021.11.108] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022]
Abstract
The healing of defected skin tissue is a complex process, especially for chronic wounds. Poor healing of these wounds may cause extensive suffering and high cost for patients. Traditional wound dressings are typically designed for a single function and they cannot satisfy all requirements for the whole process of wound healing. Therefore, it is necessary to develop new types of wound dressings with multiple functions for wound healing. In particular, adding an antibacterial function has been shown to be of great benefit during tissue repair. Nano‑silver is widely used in wound treatment because of various advantages, such as its wide antibacterial spectrum and lower drug resistance. Therefore, wound dressings loaded with nano‑silver have attracted widespread attention in wound healing. Naturally derived polysaccharides hold great potential as wound dressings, because of their abundant availability, low prices and good biocompatibility. In this review, nano‑silver functionalized polysaccharide-based wound dressings are systematically reviewed, including their preparation methods, antibacterial performances and classification of nano‑silver wound dressings. Moreover, the toxicity of nano‑silver based wound dressings is discussed and the prospective research direction is elaborated. This review aims to provide readers with an overview of the latest developments in silver nanotechnology, and to provide a little guidance for the research of nano‑silver functionalized polysaccharide-based wound dressings.
Collapse
|
119
|
Sears LM, Wu L, Morrow BR, Hollis W, Cagna DR, Hong L. Effects of NanoAg-ACP Microparticles as Bioactive Fillers on the Mechanical and Remineralization Properties of Dental Resin Cement. J Prosthodont 2021; 31:705-713. [PMID: 34942682 DOI: 10.1111/jopr.13473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To investigate the potential of adding silver-nanoparticle-containing amorphous calcium phosphate microparticles as bioactive fillers into commercially available non-bioactive dental resin cement. MATERIALS AND METHODS Experimental cement was formulated by adding 7.5% silver-nanoparticle-containing amorphous calcium phosphate microparticles to Multilink Automix resin cement (Ivoclar Vivadent). The experimental cement was evaluated for shear bond strength (N=11 per group) and demineralization/remineralization (N=16 per group), with BioCem® Universal BioActive cement (NuSmile) as the positive control and Multilink Automix cement as the negative control. One-way analysis of variance and post hoc tests were used to assess the significance of differences among or between the groups RESULTS: : The addition of silver-nanoparticle-containing amorphous calcium phosphate microparticles at the level of 7.5% by weight into Multilink Automix did not have a statistically significant effect on the shear bond strength (p>0.05), but statistically significantly increased the depth of remineralization on both dentin and enamel (p=0.01 and p<0.001, respectively.) when compared to Multilink Automix alone. The experimental cement prepared in the present study was comparable to BioCem® on the depths of remineralization on both dentin and enamel (p=0.59 and p=0.99, respectively). CONCLUSION When incorporated into non-bioactive commercial dental resin cements as bioactive fillers at the level of 7.5% by weight, silver-nanoparticle-containing amorphous calcium phosphate microparticles could provide remineralization potential without affecting the shear bond strength. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Leila Marie Sears
- Department of Prosthodontics, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN
| | - Linfeng Wu
- Department of Pediatric Dentistry and Community Oral Health, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN
| | - Brian R Morrow
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN
| | - Wainscott Hollis
- Department of Prosthodontics, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN
| | - David R Cagna
- Department of Prosthodontics, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN
| | - Liang Hong
- Department of Pediatric Dentistry and Community Oral Health, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|
120
|
Paluszkiewicz P, Martuszewski A, Zaręba N, Wala K, Banasik M, Kepinska M. The Application of Nanoparticles in Diagnosis and Treatment of Kidney Diseases. Int J Mol Sci 2021; 23:ijms23010131. [PMID: 35008556 PMCID: PMC8745391 DOI: 10.3390/ijms23010131] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Nanomedicine is currently showing great promise for new methods of diagnosing and treating many diseases, particularly in kidney disease and transplantation. The unique properties of nanoparticles arise from the diversity of size effects, used to design targeted nanoparticles for specific cells or tissues, taking renal clearance and tubular secretion mechanisms into account. The design of surface particles on nanoparticles offers a wide range of possibilities, among which antibodies play an important role. Nanoparticles find applications in encapsulated drug delivery systems containing immunosuppressants and other drugs, in imaging, gene therapies and many other branches of medicine. They have the potential to revolutionize kidney transplantation by reducing and preventing ischemia-reperfusion injury, more efficiently delivering drugs to the graft site while avoiding systemic effects, accurately localizing and visualising the diseased site and enabling continuous monitoring of graft function. So far, there are known nanoparticles with no toxic effects on human tissue, although further studies are still needed to confirm their safety.
Collapse
Affiliation(s)
- Patrycja Paluszkiewicz
- Department of Emergency Medical Service, Wroclaw Medical University, Bartla 5, 50-367 Wroclaw, Poland;
| | - Adrian Martuszewski
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368 Wroclaw, Poland;
| | - Natalia Zaręba
- Department of Pharmaceutical Biochemistry, Division of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wrocław, Poland;
| | - Kamila Wala
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland;
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
- Correspondence: (M.B.); (M.K.); Tel.: +48-71-733-2500 (M.B.); +48-71-784-0171 (M.K.)
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Division of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wrocław, Poland;
- Correspondence: (M.B.); (M.K.); Tel.: +48-71-733-2500 (M.B.); +48-71-784-0171 (M.K.)
| |
Collapse
|
121
|
Antibacterial Therapy by Ag+ Ions Complexed with Titan Yellow/Congo Red and Albumin during Anticancer Therapy of Urinary Bladder Cancer. Int J Mol Sci 2021; 23:ijms23010026. [PMID: 35008445 PMCID: PMC8744882 DOI: 10.3390/ijms23010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 11/20/2022] Open
Abstract
According to the World Health Organization report, the increasing antibiotic resistance of microorganisms is one of the biggest global health problems. The percentage of bacterial strains showing multidrug resistance (MDR) to commonly used antibiotics is growing rapidly. Therefore, the search for alternative solutions to antibiotic therapy has become critical to combat this phenomenon. It is especially important as frequent and recurring infections can cause cancer. One example of this phenomenon is urinary tract infections that can contribute to the development of human urinary bladder carcinoma. This tumor is one of the most common malignant neoplasms in humans. It occurs almost three times more often in men than in women, and in terms of the number of cases, it is the fifth malignant neoplasm after prostate, lung, colon, and stomach cancer. The risk of developing the disease increases with age. Despite the improvement of its treatment methods, the current outcome in the advanced stages of this tumor is not satisfactory. Hence, there is an urgent need to introduce innovative solutions that will prove effective even in the advanced stage of the disease. In our study, a nanosystem based on ionic silver (Ag+) bound to a carrier—Titan yellow (TY) was analyzed. The possibility of binding the thus formed TY-Ag system to Congo red (CR) and albumin (BSA) was determined. TY-Ag binding to CR provides for better nanosystem solubility and enables its targeted intracellular transport and binding to immune complexes. The binding of TY-Ag or CR-TY-Ag to albumin also protects the system against the uncontrolled release of silver ions. It will also allow the delivery of silver in a targeted manner directly to the desired site in the case of intravenous administration of such a system. In this study, the MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) values of the TY-Ag or BSA-TY-Ag systems were determined in two reference strains (Escherichia coli and Staphylococcus aureus). The paper presents nanosystems with a size of about 40–50 nm, with an intense antibacterial effect obtained at concentrations of 0.019 mM. We have also discovered that TY-Ag free or complexed with BSA (with a minimal Ag+ dose of 15–20 μM) inhibited cancer cells proliferation. TY-Ag complex diminished migration and effectively inhibited the T24 cell viability and induced apoptosis. On the basis of the obtained results, it has been shown that the presented systems may have anti-inflammatory and antitumor properties at the same time. TY-Ag or BSA-TY-Ag are new potential drugs and may become in future important therapeutic compounds in human urinary bladder carcinoma treatment and/or potent antimicrobial factors as an alternative to antibiotics.
Collapse
|
122
|
Jogaiah S, Paidi MK, Venugopal K, Geetha N, Mujtaba M, Udikeri SS, Govarthanan M. Phytotoxicological effects of engineered nanoparticles: An emerging nanotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149809. [PMID: 34467935 DOI: 10.1016/j.scitotenv.2021.149809] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Recent innovations in the field of nanoscience and technology and its proficiency as a part of inter-disciplinary science has set an eclectic display in innumerable branches of science, a majority in aliened health science of human and agriculture. Modern agricultural practices have been shifting towards the implementation of nanotechnology-based solutions to combat various emerging problems ranging from safe delivery of nutrients to sustainable approaches for plant protection. In these processes, engineered nanoparticles (ENPs) are widely used as nanocarriers (to deliver nutrients and pesticides) due to their high permeability, efficacy, biocompatibility, and biodegradability properties. Even though the constructive nature of nanoparticles (NPs), nanomaterials (NMs), and other modified or ENPs towards sustainable development in agriculture is referenced, the darker side i.e., eco-toxicological effects is still not covered to a larger extent. The overwhelming usage of these trending NMs has led to continuous persistence in the ecosystem, and their interface with the biotic and abiotic community, degradation lanes and intervention, which might lead to certain beneficial or malefic effects. Metal oxide NPs and polymeric NPs (Alginate, chitosan, and polyethylene glycol) are the most used ENPs, which are posing the nature of beneficial as well as environmentally concerning hazardous materials depending upon their fate and persistence in the ecosystem. The cautious usage of NMs in a scientific way is most essential to harness beneficial aspects of NMs in the field of agriculture whilst minimizing the eco-toxicological effects. The current review is focused on the toxicological effects of various NMs on plant physiology and health. It details interactions of plant intracellular components between applied/persistent NMs, which have brought out drastic changes in seed germination, crop productivity, direct and indirect interaction at the enzymatic as well as nuclear levels. In conclusion, ENPs can pose as genotoxicants that may alter the plant phenotype if not administered appropriately.
Collapse
Affiliation(s)
- Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka 580003, India.
| | - Murali Krishna Paidi
- AcSIR, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Krishnan Venugopal
- Department of Biochemistry, Vivekanandha College of Arts & Sciences for Women, Elayampalayam, Tiruchengode 637 205, Namakkal Dist., Tamilnadu, India
| | - Nagaraja Geetha
- Nanobiotechnology Laboratory, Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Muhammad Mujtaba
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo FI-00076, Finland; Institute of Biotechnology, Ankara University, Ankara 06110, Turkey
| | - Shashikant Shiddappa Udikeri
- Agricultural Research Station, Dharwad Farm, University of Agricultural Sciences, Dharwad 580005, Karnataka, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, South Korea.
| |
Collapse
|
123
|
Babalska ZŁ, Korbecka-Paczkowska M, Karpiński TM. Wound Antiseptics and European Guidelines for Antiseptic Application in Wound Treatment. Pharmaceuticals (Basel) 2021; 14:1253. [PMID: 34959654 PMCID: PMC8708894 DOI: 10.3390/ph14121253] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 01/21/2023] Open
Abstract
Issues arising in wound healing are very common, and chronic wound infections affect approximately 1.5% of the population. The main substances used in wound washing, cleansing and treatment are antiseptics. Today, there are many compounds with a known antiseptic activity. Older antiseptics (e.g., boric acid, ethacridine lactate, potassium permanganate, hydrogen peroxide, iodoform, iodine and dyes) are not recommended for wound treatment due to a number of disadvantages. According to the newest guidelines of the Polish Society for Wound Treatment and the German Consensus on Wound Antisepsis, only the following antiseptics should be taken into account for wound treatment: octenidine (OCT), polihexanide (PHMB), povidone-iodine (PVP-I), sodium hypochlorite (NaOCl) and nanosilver. This article provides an overview of the five antiseptics mentioned above, their chemical properties, wound applications, side effects and safety.
Collapse
Affiliation(s)
- Zuzanna Łucja Babalska
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland;
| | | | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland;
| |
Collapse
|
124
|
Impact of Synthesized AuNPs from Crocin Against Aggregation and Conformational Change in α-Lactalbumin. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10252-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
125
|
Green preparation of copper nanoparticle-loaded chitosan/alginate bio-composite: Investigation of its cytotoxicity, antioxidant and anti-human breast cancer properties. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
126
|
Ahmad T, Mahbood F, Sarwar R, Iqbal A, Khan M, Muhammad S, Al-Riyami K, Hussain N, Uddin J, Khan A, Al-Harrasi A. Synthesis of gemifloxacin conjugated silver nanoparticles, their amplified bacterial efficacy against human pathogen and their morphological study via TEM analysis. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:661-671. [PMID: 34818127 DOI: 10.1080/21691401.2021.2003805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/21/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Drug-loaded nanoparticles (NPs) allow specific accumulation and controlled release of drugs to infected tissues with minimal cytotoxicity. In this study, gemifloxacin conjugated silver nanoparticles (Gemi-AgNPs) were synthesized, and the amplification of their antibacterial potential against the human pathogen as well as their stability was monitored under physiological conditions. Fourier transform infrared spectroscopy (FTIR) analysis demonstrated the interaction between -NH2 and -OH functional moiety and the metal surface. The morphological analyses via transmission electron microscopy revealed that Gemi-AgNPs has a round oval shape and average particle size of 22.23 ± 2 nm. The antibacterial and antibiofilm activities of these NPS showed that Gemi-AgNPs exhibit excellent antimicrobial and biofilm inhibition activity against human pathogens, namely, Proteus mirabilis (P. mirabilis) and methicillin-resistant Staphylococcus aureus (MRSA). A significant increase in the antibiofilm activity of Gemi-AgNPs was confirmed by crystal violet, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining, and microscopic analysis. Gemi-AgNPs exhibited the ability to inhibit urease with an IC50 value of 57.4 ± 0.72 µg/mL. The changes in the bacterial cell morphology were analyzed via TEM, which revealed that cell membranes disrupted and completely destroyed the cell morphology by the treatment of Gemi-AgNPs.
Collapse
Affiliation(s)
- Touqeer Ahmad
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Fazal Mahbood
- Institute of Chemical Sciences, University of Swat, KP, Pakistan
| | - Rizwana Sarwar
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus, Abbottabad, Pakistan
| | - Ayesha Iqbal
- Division of Pharmacy Practice and Policy, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Majid Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Sayyar Muhammad
- Department of Chemistry, Islamia College, Peshawar, Pakistan
| | - Khamis Al-Riyami
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Nusrat Hussain
- Department of Chemistry, University of Baltistan Skardu, Skardu, Pakistan
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
127
|
Ratan ZA, Mashrur FR, Chhoan AP, Shahriar SM, Haidere MF, Runa NJ, Kim S, Kweon DH, Hosseinzadeh H, Cho JY. Silver Nanoparticles as Potential Antiviral Agents. Pharmaceutics 2021; 13:2034. [PMID: 34959320 PMCID: PMC8705988 DOI: 10.3390/pharmaceutics13122034] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/31/2022] Open
Abstract
Since the early 1990s, nanotechnology has led to new horizons in nanomedicine, which encompasses all spheres of science including chemistry, material science, biology, and biotechnology. Emerging viral infections are creating severe hazards to public health worldwide, recently, COVID-19 has caused mass human casualties with significant economic impacts. Interestingly, silver nanoparticles (AgNPs) exhibited the potential to destroy viruses, bacteria, and fungi using various methods. However, developing safe and effective antiviral drugs is challenging, as viruses use host cells for replication. Designing drugs that do not harm host cells while targeting viruses is complicated. In recent years, the impact of AgNPs on viruses has been evaluated. Here, we discuss the potential role of silver nanoparticles as antiviral agents. In this review, we focus on the properties of AgNPs such as their characterization methods, antiviral activity, mechanisms, applications, and toxicity.
Collapse
Affiliation(s)
- Zubair Ahmed Ratan
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; (Z.A.R.); (F.R.M.); (A.P.C.)
- School of Health and Society, University of Wollongong, Wollongong, NSW 2500, Australia;
| | - Fazla Rabbi Mashrur
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; (Z.A.R.); (F.R.M.); (A.P.C.)
| | - Anisha Parsub Chhoan
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; (Z.A.R.); (F.R.M.); (A.P.C.)
| | - Sadi Md. Shahriar
- Department of Materials Science and Engineering, University of California-Davis, Davis, California, CA 95616, USA;
- Department of Materials Science and Engineering, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh
| | | | | | - Sunggyu Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (S.K.); (D.-H.K.)
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (S.K.); (D.-H.K.)
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Suwon 16419, Korea
| | - Hassan Hosseinzadeh
- School of Health and Society, University of Wollongong, Wollongong, NSW 2500, Australia;
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (S.K.); (D.-H.K.)
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Suwon 16419, Korea
| |
Collapse
|
128
|
Khina AG, Krutyakov YA. Similarities and Differences in the Mechanism of Antibacterial Action of Silver Ions and Nanoparticles. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821060053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
129
|
Gul A, Gallus I, Tegginamath A, Maryska J, Yalcinkaya F. Electrospun Antibacterial Nanomaterials for Wound Dressings Applications. MEMBRANES 2021; 11:908. [PMID: 34940410 PMCID: PMC8707140 DOI: 10.3390/membranes11120908] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/31/2022]
Abstract
Chronic wounds are caused by bacterial infections and create major healthcare discomforts; to overcome this issue, wound dressings with antibacterial properties are to be utilized. The requirements of antibacterial wound dressings cannot be fulfilled by traditional wound dressing materials. Hence, to improve and accelerate the process of wound healing, an antibacterial wound dressing is to be designed. Electrospun nanofibers offer a promising solution to the management of wound healing, and numerous options are available to load antibacterial compounds onto the nanofiber webs. This review gives us an overview of some recent advances of electrospun antibacterial nanomaterials used in wound dressings. First, we provide a brief overview of the electrospinning process of nanofibers in wound healing and later discuss electrospun fibers that have incorporated various antimicrobial agents to be used in wound dressings. In addition, we highlight the latest research and patents related to electrospun nanofibers in wound dressing. This review also aims to concentrate on the importance of nanofibers for wound dressing applications and discuss functionalized antibacterial nanofibers in wound dressing.
Collapse
Affiliation(s)
- Aysegul Gul
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic;
| | - Izabela Gallus
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic; (I.G.); (J.M.)
| | - Akshat Tegginamath
- Faculty of Mechanical Engineering, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic;
| | - Jiri Maryska
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic; (I.G.); (J.M.)
| | - Fatma Yalcinkaya
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic; (I.G.); (J.M.)
| |
Collapse
|
130
|
Synthesis of Chitosan-Silver Nanoparticle Composite Spheres and Their Antimicrobial Activities. Polymers (Basel) 2021; 13:polym13223990. [PMID: 34833288 PMCID: PMC8620293 DOI: 10.3390/polym13223990] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Synthesis of silver nanoparticles–chitosan composite particles sphere (AgNPs-chi-spheres) has been completed and its characterization was fulfilled by UV–vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and zetasizer nano. UV–vis spectroscopy characterization showed that AgNPs-chi-spheres gave optimum absorption at a wavelength of 410 nm. The XRD spectra showed that the structure of AgNPs-chi-spheres were crystalline and spherical. Characterization by SEM showed that AgNPs-chi-spheres, with the addition of 20% of NaOH, resulted in the lowest average particle sizes of 46.91 nm. EDX analysis also showed that AgNPs-chi-spheres, with the addition of a 20% NaOH concentration, produced particles with regular spheres, a smooth and relatively nonporous structure. The analysis using zetasizer nano showed that the zeta potential value and the polydispersity index value of the AgNPs-chi-sphere tended to increase with an increased NaOH concentration. The results of the microbial activity screening showed that the AgNP-chi-Spheres with highest concentration of NaOH, produced the highest inhibition zone diameters against S. aureus, E. coli, and C. albicans, with inhibition zone diameters of 19.5, 18.56, and 12.25 nm, respectively.
Collapse
|
131
|
Mujaddidi N, Nisa S, Al Ayoubi S, Bibi Y, Khan S, Sabir M, Zia M, Ahmad S, Qayyum A. Pharmacological properties of biogenically synthesized silver nanoparticles using endophyte Bacillus cereus extract of Berberis lyceum against oxidative stress and pathogenic multidrug-resistant bacteria. Saudi J Biol Sci 2021; 28:6432-6440. [PMID: 34764760 PMCID: PMC8568839 DOI: 10.1016/j.sjbs.2021.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/19/2021] [Accepted: 07/04/2021] [Indexed: 11/26/2022] Open
Abstract
The emergence of multidrug resistance in pathogenic bacteria limits the utilization of available antibiotics. The development of alternate options to treat infectious diseases is the need of the day.The present study was aimed to synthesize, characterize and evaluate the bioactive properties of silver nanoparticles. Endophytic bacterium Bacillus cereus (MT193718) isolated from Berberis lycium was used to synthesize biocompatible silver nanoparticles. Antibacterial properties of AgNPs were evaluated against clinically isolated multidrug-resistant strains of Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae. AgNPs indicated significant antibacterial activity against S. aureus and K. pneumoniae fwith a zone of inhibition of 17 and 18 mm at a concentration of 1000 µg/ mL with minimum inhibitory concentration of 15.6 and 62.5 µg/mL respectively. Significant antioxidant activity with an IC50 value of 9.5 µg/mL was recorded. Biosynthesized AgNPs were found compatible with red blood cells at a concentration of 31.5 µg/ml with no clumping of erythrocytes. The study suggested that AgNPs synthesized by the endophytic bacterium Bacillus cereus are biologically active and can be used as antioxidant and antibacterial agents against drug-resistant bacteria.
Collapse
Affiliation(s)
- Neelam Mujaddidi
- Department of Microbiology, The University of Haripur, Haripur 22620, Pakistan
| | - Sobia Nisa
- Department of Microbiology, The University of Haripur, Haripur 22620, Pakistan
| | - Samha Al Ayoubi
- Department of General Sciences, Prince Sultan University, Rafha Street, Riyadh, Kingdom of Saudi Arabia
| | - Yamin Bibi
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Salman Khan
- Department of Environmental Sciences, The University of Haripur, Haripur 22620, Pakistan
| | - Maimoona Sabir
- Department of Microbiology, The University of Haripur, Haripur 22620, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shakil Ahmad
- Central Library, Prince Sultan University, Rafha Street, Riyadh, Kingdom of Saudi Arabia
| | - Abdul Qayyum
- Department of Agronomy, The University of Haripur, Haripur 22620, Pakistan
| |
Collapse
|
132
|
Kabeerdass N, Al Otaibi A, Rajendran M, Manikandan A, Kashmery HA, Rahman MM, Madhu P, Khan A, Asiri AM, Mathanmohun M. Bacillus-Mediated Silver Nanoparticle Synthesis and Its Antagonistic Activity against Bacterial and Fungal Pathogens. Antibiotics (Basel) 2021; 10:1334. [PMID: 34827271 PMCID: PMC8614847 DOI: 10.3390/antibiotics10111334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022] Open
Abstract
In this article, the supernatant of the soil-borne pathogen Bacillus mn14 was used as the catalyst for the synthesis of AgNPs. The antibacterial and antifungal activity of Bs-AgNPs was evaluated, in which S. viridans and R. solani showed susceptibility at 70 µL and 100 µL concentrations. Enzyme properties of the isolates, according to minimal inhibitory action and a growth-enhancing hormone-indole acetic acid (IAA) study of the isolates, were expressed in TLC as a purple color with an Rf value of 0.7. UV/Vis spectroscopy revealed the presence of small-sized AgNPs, with a surface plasmon resonance (SPR) peak at 450 nm. The particle size analyzer identified the average diameter of the particles as 40.2 nm. The X-ray diffraction study confirmed the crystalline nature and face-centered cubic type of the silver nanoparticle. Scanning electron microscopy characterized the globular, small, round shape of the silver nanoparticle. AFM revealed the two-dimensional topology of the silver nanoparticle with a characteristic size ranging around 50 nm. Confocal microscopy showed the cell-wall disruption of S. viridans treated with Bs-AgNPs. High-content screening and compound microscopy revealed the destruction of mycelia of R. solani after exposure to Bs-AgNPs. Furthermore, the Bs-AgNPs cured sheath blight disease by reducing lesion length and enhancing root and shoot length in Oryza sativa seeds. This soil-borne pathogen Bacillus-mediated synthesis approach of AgNPs appears to be cost-efficient, ecofriendly, and farmer-friendly, representing an easy way of providing valuable nutritious edibles in the future.
Collapse
Affiliation(s)
- Nivedhitha Kabeerdass
- Department of Microbiology, Muthayammal College of Arts & Science, Rasipuram, Namakkal DT 637408, Tamil Nadu, India;
| | - Ahmed Al Otaibi
- Chemistry Department, Faculty of Science, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia;
| | - Manikandan Rajendran
- Department of Biotechnology, Padmavani Arts and Science College for Women, Salem 636011, Tamil Nadu, India;
| | - Ayyar Manikandan
- Department of Chemistry, Bharath Institute of Higher Education and Research (BIHER), Bharath University, Chennai 600073, Tamil Nadu, India;
- Centre for Catalysis and Renewable Energy, Bharath Institute of Higher Education and Research (BIHER), Bharath University, Chennai 600073, Tamil Nadu, India
| | - Heba A. Kashmery
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.K.); (M.M.R.); (A.M.A.)
| | - Mohammed M. Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.K.); (M.M.R.); (A.M.A.)
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - P. Madhu
- Department of Mechanical Engineering, Malnad College of Engineering, Hassan, Visvesvaraya Technological University, Belagavi 590018, Karnataka, India;
| | - Anish Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.K.); (M.M.R.); (A.M.A.)
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.K.); (M.M.R.); (A.M.A.)
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maghimaa Mathanmohun
- Department of Microbiology, Muthayammal College of Arts & Science, Rasipuram, Namakkal DT 637408, Tamil Nadu, India;
| |
Collapse
|
133
|
Bathi JR, Moazeni F, Upadhyayula VKK, Chowdhury I, Palchoudhury S, Potts GE, Gadhamshetty V. Behavior of engineered nanoparticles in aquatic environmental samples: Current status and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148560. [PMID: 34328971 DOI: 10.1016/j.scitotenv.2021.148560] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
The increasing use of engineered nanoparticles (ENPs) in consumer products has led to their increased presence in natural water systems. Here, we present a critical overview of the studies that analyzed the fate and transport behavior of ENPs using real environmental samples. We focused on cerium dioxide, titanium dioxide, silver, carbon nanotubes, and zinc oxide, the widely used ENPs in consumer products. Under field scale settings, the transformation rates of ENPs and subsequently their physicochemical properties (e.g., toxicity and bioavailability) are primarily influenced by the modes of interactions among ENPs and natural organic matter. Other typical parameters include factors related to water chemistry, hydrodynamics, and surface and electronic properties of ENPs. Overall, future nanomanufacturing processes should fully consider the health, safety, and environmental impacts without compromising the functionality of consumer products.
Collapse
Affiliation(s)
- Jejal Reddy Bathi
- 615 McCallie Ave, Civil and Chemical Engineering, University of Tennessee at Chattanooga, TN 37403, United States.
| | - Faegheh Moazeni
- W256K Olmsted Building, School of Science Engineering and Technology, Penn State Harrisburg University, PA 17057, United States
| | | | - Indranil Chowdhury
- PACCAR 346, Civil and Environmental Engineering, Washington State University, Pullman, WA, United States
| | - Soubantika Palchoudhury
- 615 McCallie Ave, Civil and Chemical Engineering, University of Tennessee at Chattanooga, TN 37403, United States
| | - Gretchen E Potts
- 615 McCallie Ave, Department of Chemistry and Physics, University of Tennessee at Chattanooga, TN 37403, United States
| | - Venkataramana Gadhamshetty
- 501 E. St Joseph Street, Civil and Environmental Engineering, South Dakota School of Mines and Technology, SD 57701, United States; 2-Dimensional Materials for Biofilm Engineering Science and Technology (2DBEST) Center, South Dakota School of Mines and Technology, 501 E. St. Joseph Street, Rapid City, SD 57701, United States
| |
Collapse
|
134
|
Gao D, Zhao P, Liu J, Zhou Y, Lyu B, Ma J, Shao L. Polyaniline/silver nanowire cotton fiber: A flexible electrode material for supercapacitor. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
135
|
Chakraborty K, Dhara S. Polygalacto-fucopyranose biopolymer structured nanoparticle conjugate attenuates glucocorticoid-induced osteoporosis: An in vivo study. Int J Biol Macromol 2021; 190:739-753. [PMID: 34509519 DOI: 10.1016/j.ijbiomac.2021.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Naturally occurring polysaccharide-structured nanoparticles have developed as promising materials for treatment of bone health disorders. Silver nanoparticle (ST-AgNP) structured from sulfated polygalacto-fucopyranose comprising of recurring structural entities of 2-SO3-α-(1 → 3)-fucopyranose and 6-O-acetyl-β-(1 → 4)-galactopyranose isolated from marine macroalga Sargassum tenerrimum demonstrated potential activities associated with osteogenesis. Subsequent treatment with ST-AgNP, activity of alkaline phosphatase (63 mU/mg) was raised in osteoblast stem cells (human mesenchymal, hMSC) than that in control (30 mU/mg). Intense growth of mineralized nodule on the surface of hMSC was apparent following treatment with ST-AgNP. Increased population of bone morphogenic protein-2 (23%) and osteocalcin+ cells (50%) on M2 macrophages were apparent following treatment with ST-AgNP (0.25 mg/mL). Glucocorticoid-induced in vivo animal model studies of ST-AgNP exhibited significant recovery of serum biochemical parameters along with serum estradiol and parathyroid hormone compared to disease control. Disease-induced groups treated with ST-AgNP showed the disappearance of osteoporotic cavities in the trabecular bone. Following treatment with ST-AgNP, serum calcium and phosphorus contents were significantly recovered.
Collapse
Affiliation(s)
- Kajal Chakraborty
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North P.O., P.B. No. 1603, Cochin 682018, Kerala State, India.
| | - Shubhajit Dhara
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North P.O., P.B. No. 1603, Cochin 682018, Kerala State, India; Department of Chemistry, Mangalore University, Mangalagangothri 574199, Karnataka State, India
| |
Collapse
|
136
|
Hu L, Yang X, Yin J, Rong X, Huang X, Yu P, He Z, Liu Y. Combination of AgNPs and Domiphen is Antimicrobial Against Biofilms of Common Pathogens. Int J Nanomedicine 2021; 16:7181-7194. [PMID: 34712048 PMCID: PMC8547768 DOI: 10.2147/ijn.s334133] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/08/2021] [Indexed: 12/05/2022] Open
Abstract
Purpose The aim was to evaluate the antimicrobial potential of AgNPs synthesized with Artemisia argyi leaf extract and investigate the antimicrobial synergistic effects of AgNPs combined with domiphen and provide an efficient and broad-spectrum combination drug strategy. Methods AgNPs synthesized with Artemisia argyi leaf extract were studied using UV–vis spectroscopy, FTIR spectroscopy and particle size analysis. Then, Artemisia argyi leaf extract-synthesized AgNPs and domiphen were tested against Acinetobacter baumannii (ATCC 19606), Staphylococcus aureus (ATCC 6538), Escherichia coli (8099) and Candida albicans (ATCC 10231), respectively. Then, we explore synergistic antimicrobial effect and synergistic anti-biofilm effect through combined drug susceptibility test and combined drug minimum biofilm eradication concentration (MBEC50) test. Results Characteristic absorption bands of AgNPs were found near 430 nm in the UV–vis spectrum. Particle size analysis results revealed that the average particle size of Artemisia argyi leaf extract-synthesized AgNPs was 77.6 nm. Artemisia argyi leaf extract-synthesized AgNPs showed high antimicrobial activity against the above four strains. Minimum inhibitory concentration (MIC) of Artemisia argyi leaf extract-synthesized AgNPs against strains was 1 μg/mL for Acinetobacter baumannii, 2 μg/mL for Staphylococcus aureus, Escherichia coli and Candida albicans. MBEC50 of Artemisia argyi leaf extract-synthesized AgNPs against strains was 2 μg/mL for Acinetobacter baumannii, 4 μg/mL for Staphylococcus aureus, 1/2 μg/mL for Escherichia coli and 2 μg/mL for Candida albicans. The combination of Artemisia argyi leaf extract-synthesized AgNPs and domiphen has synergistic antimicrobial effect and synergistic anti-biofilm effect. Fractional inhibitory concentration (FIC) was ≤0.5. Conclusion Artemisia argyi leaf extract-synthesized AgNPs had antimicrobial activity against the above four strains. The combination of Artemisia argyi leaf extract-synthesized AgNPs and domiphen has synergistic antimicrobial effects to reduce the dosage of each antimicrobial drugs. Artemisia argyi leaf extract-synthesized AgNPs and domiphen have synergistic anti-biofilm effects.
Collapse
Affiliation(s)
- Longhao Hu
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Xi Yang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Jing Yin
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Xuan Rong
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Xinlei Huang
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Peiquan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Zhiqiang He
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Yi Liu
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China.,School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| |
Collapse
|
137
|
Bhatia D, Mittal A, Malik DK. Antimicrobial potential and in vitro cytotoxicity study of polyvinyl pyrollidone-stabilised silver nanoparticles synthesised from Lysinibacillus boronitolerans. IET Nanobiotechnol 2021; 15:427-440. [PMID: 34694715 PMCID: PMC8675779 DOI: 10.1049/nbt2.12054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/12/2021] [Accepted: 04/11/2021] [Indexed: 11/20/2022] Open
Abstract
The main emphasis herein is on the eco‐friendly synthesis and assessment of the antimicrobial potential of silver nanoparticles (AgNPs) and a cytotoxicity study. Silver nanoparticles were synthesised by an extracellular method using bacterial supernatant. Biosynthesised silver nanoparticles were characterised by UV‐vis spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, dynamic light scattering, and zeta potential analysis. The synthesised silver nanoparticles exhibited a characteristic peak at 420 nm. TEM analysis depicted the spherical shape and approximately 20 nm size of nanoparticles. Silver nanoparticles carry a charge of −33.75 mV, which confirms their stability. Biogenic polyvinyl pyrrolidone‐coated AgNPs exhibited significant antimicrobial effects against all opportunistic pathogens (Gram‐positive and Gram‐negative bacteria, and fungi). Silver nanoparticles equally affect the growth of both Gram‐positive and Gram‐negative bacteria, with a maximum inhibition zone observed at 22 mm and a minimum at 13 mm against Pseudomonas aeruginosa and Fusarium graminearum, respectively. The minimum inhibitory concentration (MIC) of AgNPs against P. aeruginosa and Staphylococcus aureus was recorded at between 15 and 20 μg/ml. Synthesised nanoparticles exhibited a significant synergistic effect in combination with conventional antibiotics. Cytotoxicity estimates using C2C12 skeletal muscle cell line via 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) test and lactate dehydrogenase assay were directly related to the concentration of AgNPs and length of exposure. On the basis of the MTT test, the IC50 of AgNPs for the C2C12 cell line was approximately 5.45 μg/ml concentration after 4 h exposure.
Collapse
Affiliation(s)
- Divya Bhatia
- University Institute of Engineering and Technology, Kurukshetra University, Kurukshetra, India
| | - Ashwani Mittal
- Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra, India
| | - Deepak Kumar Malik
- University Institute of Engineering and Technology, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
138
|
Balkrishna A, Kumar A, Arya V, Rohela A, Verma R, Nepovimova E, Krejcar O, Kumar D, Thakur N, Kuca K. Phytoantioxidant Functionalized Nanoparticles: A Green Approach to Combat Nanoparticle-Induced Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3155962. [PMID: 34737844 PMCID: PMC8563134 DOI: 10.1155/2021/3155962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/19/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022]
Abstract
Nanotechnology is gaining significant attention, with numerous biomedical applications. Silver in wound dressings, copper oxide and silver in antibacterial preparations, and zinc oxide nanoparticles as a food and cosmetic ingredient are common examples. However, adverse effects of nanoparticles in humans and the environment from extended exposure at varied concentrations have yet to be established. One of the drawbacks of employing nanoparticles is their tendency to cause oxidative stress, a significant public health concern with life-threatening consequences. Cardiovascular, renal, and respiratory problems and diabetes are among the oxidative stress-related disorders. In this context, phytoantioxidant functionalized nanoparticles could be a novel and effective alternative. In addition to performing their intended function, they can protect against oxidative damage. This review was designed by searching through various websites, books, and articles found in PubMed, Science Direct, and Google Scholar. To begin with, oxidative stress, its related diseases, and the mechanistic basis of oxidative damage caused by nanoparticles are discussed. One of the main mechanisms of action of nanoparticles was unearthed to be oxidative stress, which limits their use in humans. Secondly, the role of phytoantioxidant functionalized nanoparticles in oxidative damage prevention is critically discussed. The parameters for the characterization of nanoparticles were also discussed. The majority of silver, gold, iron, zinc oxide, and copper nanoparticles produced utilizing various plant extracts were active free radical scavengers. This potential is linked to several surface fabricated phytoconstituents, such as flavonoids and phenols. These phytoantioxidant functionalized nanoparticles could be a better alternative to nanoparticles prepared by other existing approaches.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249405, India
- Department of Allied Sciences, University of Patanjali, Haridwar 249405, India
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249405, India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249405, India
- Department of Allied Sciences, University of Patanjali, Haridwar 249405, India
| | - Akansha Rohela
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249405, India
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | - Ondrej Krejcar
- Center for Basic and Applied Science, Faculty of Informatics and Management, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
- Malaysia Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Naveen Thakur
- Department of Physics, Career Point University, Hamirpur 177001, India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
- Biomedical Research Center, University Hospital in Hradec Kralove, Sokolska 581, Hradec Kralove 50005, Czech Republic
| |
Collapse
|
139
|
Nqakala ZB, Sibuyi NRS, Fadaka AO, Meyer M, Onani MO, Madiehe AM. Advances in Nanotechnology towards Development of Silver Nanoparticle-Based Wound-Healing Agents. Int J Mol Sci 2021; 22:ijms222011272. [PMID: 34681930 PMCID: PMC8539597 DOI: 10.3390/ijms222011272] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Since antiquity, silver-based therapies have been used in wound healing, wound care and management of infections to provide adequate healing. These therapies are associated with certain limitations, such as toxicity, skin discolouration and bacterial resistance, which have limited their use. As a result, new and innovative wound therapies, or strategies to improve the existing therapies, are sought after. Silver nanoparticles (AgNPs) have shown the potential to circumvent the limitations associated with conventional silver-based therapies as described above. AgNPs are effective against a broad spectrum of microorganisms and are less toxic, effective at lower concentrations and produce no skin discolouration. Furthermore, AgNPs can be decorated or coupled with other healing-promoting materials to provide optimum healing. This review details the history and impact of silver-based therapies leading up to AgNPs and AgNP-based nanoformulations in wound healing. It also highlights the properties of AgNPs that aid in wound healing and that make them superior to conventional silver-based wound treatment therapies.
Collapse
Affiliation(s)
- Zimkhitha B. Nqakala
- Organometallics and Nanomaterials, Department of Chemical Sciences, University of the Western Cape, Bellville 7535, South Africa;
| | - Nicole R. S. Sibuyi
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC)-Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (N.R.S.S.); (A.O.F.)
| | - Adewale O. Fadaka
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC)-Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (N.R.S.S.); (A.O.F.)
| | - Mervin Meyer
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC)-Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (N.R.S.S.); (A.O.F.)
- Correspondence: (M.M.); (M.O.O.); (A.M.M.); Tel.: +27-219592032 (M.M.); +27-219593050 (M.O.O.); +27-219592468 (A.M.M.)
| | - Martin O. Onani
- Organometallics and Nanomaterials, Department of Chemical Sciences, University of the Western Cape, Bellville 7535, South Africa;
- Correspondence: (M.M.); (M.O.O.); (A.M.M.); Tel.: +27-219592032 (M.M.); +27-219593050 (M.O.O.); +27-219592468 (A.M.M.)
| | - Abram M. Madiehe
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC)-Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (N.R.S.S.); (A.O.F.)
- Correspondence: (M.M.); (M.O.O.); (A.M.M.); Tel.: +27-219592032 (M.M.); +27-219593050 (M.O.O.); +27-219592468 (A.M.M.)
| |
Collapse
|
140
|
Shevchenko LV, Dovbnia YY, Zheltonozhskaya TB, Permyakova NМ, Shulyak SV. Influence of preparation of silver nanoparticles in carriers based on polymer/inorganic hybrids on the mineral composition of chicken eggs. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The solution to the problem of reducing the use of antibiotics in the production of edible eggs is possible through the development and use of alternative bactericidal preparations, including those based on nanosilver. Obtaining biocompatible and biodegradable polymer/inorganic carriers of nanosilver provides for the study of its cumulative qualities which determine the safety of edible chicken eggs. The study investigated the mineral composition of edible eggs when feeding Hy-Line W36 laying hens solutions of the nanosilver preparation in carriers based on polymer/inorganic hybrids (AgNPs/SPH) given in the concentrations of 0, 1.0, and 2.0 mg/L of water (0, 0.2 and 0.4 mg/hen per day) three times at 10 day intervals. Oral administration to laying hens of an aqueous solution of silver nanoparticles in carriers based on polymer/inorganic hybrids at doses of 0.2 and 0.4 mg per hen per day in a dose-dependent manner increased the silver content and did not significantly affect the content of copper, zinc, iron, and lead in the eggshell. The preparation of silver nanoparticles did not affect the content of silver, copper, zinc, iron and lead in the albumen and yolk of chicken eggs after the first and second application, and after the third treatment of laying hens contributed to an increase in the silver content in the egg albumen and yolk but did not affect the content in them of copper, zinc, iron and lead. A single feeding of a solution of a preparation of nanosilver in carriers based on polymer/inorganic hybrids to hens at doses of 0.2 and 0.4 mg per hen per day after 10 days, contributed to a significant increase in the yolks of chicken eggs due to a decrease in the albumen and eggshell. The second and third application of nanosilver to poultry in the indicated doses contributed to a decrease in its proportion in the albumen and in the yolk due to a significant increase in its proportion in the shell. Selective accumulation of in-shell silver can be a promising means of improving the safety and security of chicken eggs when they are microbially contaminated. The results of using nanosilver based on polymer/inorganic hybrids in laying hens can be the basis for the development of methods for increasing the bactericidal properties of the shell and the safety of edible eggs.
Collapse
|
141
|
Lin H, BoLatai A, Wu N. Application Progress of Nano Silver Dressing in the Treatment of Diabetic Foot. Diabetes Metab Syndr Obes 2021; 14:4145-4154. [PMID: 34621128 PMCID: PMC8491782 DOI: 10.2147/dmso.s330322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/16/2021] [Indexed: 12/28/2022] Open
Abstract
Diabetic foot is a serious infection of the lower limbs. It is caused by diabetic neuropathy and vascular disease. It is also the primary cause of disability and death in patients with severe diabetes, so prompt treatment is essential for positive outcomes. The clinical use of nano-silver dressings can be considered to further optimize the treatment process and improve the treatment efficacy in diabetic foot patients. Nano-silver dressings have a larger contact surface and a stronger bactericidal effect when compared to ordinary silver dressings. Besides, it can be disinfected repeatedly to better wound infection control and promote wound healing. The current article discusses the pathogenesis of diabetic foot, diabetic foot dressing treatment, the application of nanotechnology in diabetic foot treatment, the efficacy evaluation of different dressings, and the practical prospects of adopting nanotechnology in the treatment of diabetic foot.
Collapse
Affiliation(s)
- Huijing Lin
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’ s Republic of China
| | - Alayi BoLatai
- Student Affairs Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’ s Republic of China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’ s Republic of China
- Clinical Skills Practice Teaching Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’ s Republic of China
| |
Collapse
|
142
|
Acetylcholine esterase inhibitory activity of green synthesized nanosilver by naphthopyrones isolated from marine-derived Aspergillus niger. PLoS One 2021; 16:e0257071. [PMID: 34506550 PMCID: PMC8432876 DOI: 10.1371/journal.pone.0257071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022] Open
Abstract
Aspergillus niger metabolites exhibited a wide range of biological properties including antioxidant and neuro-protective effects and some physical properties as green synthesis of silver nanoparticles AgNP. The present study presents a novel evidence for the various biological activities of green synthesized AgNPs. For the first time, some isolated naphtho-γ-pyrones from marine-derived Aspergillus niger, flavasperone (1), rubrofusarin B (2), aurasperone A (3), fonsecinone A (4) in addition to one alkaloid aspernigrin A (7) were invistigated for their inhibitory activity of acetylcholine esterase AChE, a hallmark of Alzheimer’s disease (AD). The ability to synthesize AgNPs by compounds 3, 4 and 7 has been also tested for the first time. Green synthesized AgNPs were well-dispersed, and their size was ranging from 8–30 nm in diameter, their morphology was obviously spherical capped with the organic compounds. Further biological evaluation of their AChE inhibitory activity was compared to the parent compounds. AgNps dramatically increased the inhibitory activity of Compounds 4, 3 and 7 by 84, 16 and 13 fold, respectively to be more potent than galanthamine as a positive control with IC50 value of 1.43 compared to 0.089, 0.311 and 1.53 of AgNPs of Compounds 4, 3 and 7, respectively. Also compound 2 showed moderate inhibitory activity. This is could be probably explained by closer fitting to the active sites or the synergistic effect of the stabilized AgNPs by the organic compouds. These results, in addition to other intrinsic chemical and biological properties of naphtho-γ-pyrones, suggest that the latter could be further explored with a view towards other neuroprotective studies for alleviating AD.
Collapse
|
143
|
Bouafia A, Laouini SE, Ahmed ASA, Soldatov AV, Algarni H, Feng Chong K, Ali GAM. The Recent Progress on Silver Nanoparticles: Synthesis and Electronic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2318. [PMID: 34578634 PMCID: PMC8467496 DOI: 10.3390/nano11092318] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
Nanoscience enables researchers to develop new and cost-effective nanomaterials for energy, healthcare, and medical applications. Silver nanoparticles (Ag NPs) are currently increasingly synthesized for their superior physicochemical and electronic properties. Good knowledge of these characteristics allows the development of applications in all sensitive and essential fields in the service of humans and the environment. This review aims to summarize the Ag NPs synthesis methods, properties, applications, and future challenges. Generally, Ag NPs can be synthesized using physical, chemical, and biological routes. Due to the great and increasing demand for metal and metal oxide nanoparticles, researchers have invented a new, environmentally friendly, inexpensive synthetic method that replaces other methods with many defects. Studies of Ag NPs have increased after clear and substantial support from governments to develop nanotechnology. Ag NPs are the most widely due to their various potent properties. Thus, this comprehensive review discusses the different synthesis procedures and electronic applications of Ag NPs.
Collapse
Affiliation(s)
- Abderrhmane Bouafia
- Department of Process Engineering and Petrochemistry, Faculty of Technology, University of Echahid Hamma Lakhdar El Oued, El-Oued 39000, Algeria;
| | - Salah Eddine Laouini
- Department of Process Engineering and Petrochemistry, Faculty of Technology, University of Echahid Hamma Lakhdar El Oued, El-Oued 39000, Algeria;
| | - Abdelaal S. A. Ahmed
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt;
| | - Alexander V. Soldatov
- The Smart Materials Research Institute, Southern Federal University, Sladkova Str. 178/24, 344090 Rostov-on-Don, Russia;
| | - Hamed Algarni
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Department of Physics, Faculty of Sciences, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Kwok Feng Chong
- Faculty of Industrial Sciences & Technology, University Malaysia Pahang, Gambang, Kuantan 26300, Malaysia;
| | - Gomaa A. M. Ali
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt;
| |
Collapse
|
144
|
Salesa B, Assis M, Andrés J, Serrano-Aroca Á. Carbon Nanofibers versus Silver Nanoparticles: Time-Dependent Cytotoxicity, Proliferation, and Gene Expression. Biomedicines 2021; 9:1155. [PMID: 34572341 PMCID: PMC8467915 DOI: 10.3390/biomedicines9091155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022] Open
Abstract
Carbon nanofibers (CNFs) are one-dimensional nanomaterials with excellent physical and broad-spectrum antimicrobial properties characterized by a low risk of antimicrobial resistance. Silver nanoparticles (AgNPs) are antimicrobial metallic nanomaterials already used in a broad range of industrial applications. In the present study these two nanomaterials were characterized by Raman spectroscopy, transmission electron microscopy, zeta potential, and dynamic light scattering, and their biological properties were compared in terms of cytotoxicity, proliferation, and gene expression in human keratinocyte HaCaT cells. The results showed that both AgNPs and CNFs present similar time-dependent cytotoxicity (EC50 of 608.1 µg/mL for CNFs and 581.9 µg/mL for AgNPs at 24 h) and similar proliferative HaCaT cell activity. However, both nanomaterials showed very different results in the expression of thirteen genes (superoxide dismutase 1 (SOD1), catalase (CAT), matrix metallopeptidase 1 (MMP1), transforming growth factor beta 1 (TGFB1), glutathione peroxidase 1 (GPX1), fibronectin 1 (FN1), hyaluronan synthase 2 (HAS2), laminin subunit beta 1 (LAMB1), lumican (LUM), cadherin 1 CDH1, collagen type IV alpha (COL4A1), fibrillin (FBN), and versican (VCAN)) treated with the lowest non-cytotoxic concentrations in the HaCaT cells after 24 h. The AgNPs were capable of up-regulating only two genes (SOD1 and MMP1) while the CNFs were very effective in up-regulating eight genes (FN1, MMP1, CAT, CDH1, COL4A1, FBN, GPX1, and TGFB1) involved in the defense mechanisms against oxidative stress and maintaining and repairing tissues by regulating cell adhesion, migration, proliferation, differentiation, growth, morphogenesis, and tissue development. These results demonstrate CNF nanomaterials' unique great potential in biomedical applications such as tissue engineering and wound healing.
Collapse
Affiliation(s)
- Beatriz Salesa
- Biomaterials and Bioengineering Lab., Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| | - Marcelo Assis
- Department of Physical and Analytical Chemistry, University Jaume I (UJI), 12071 Castellon, Spain; (M.A.); (J.A.)
| | - Juan Andrés
- Department of Physical and Analytical Chemistry, University Jaume I (UJI), 12071 Castellon, Spain; (M.A.); (J.A.)
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab., Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| |
Collapse
|
145
|
Vargas-Ortíz JR, Böhnel HN, Gonzalez C, Esquivel K. Magnetic nanoparticle behavior evaluation on cardiac tissue contractility through Langendorff rat heart technique as a nanotoxicology parameter. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02031-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
146
|
Nie X, Wu S, Liao S, Chen J, Huang F, Li W, Wang Q, Wei Q. Light-driven self-disinfecting textiles functionalized by PCN-224 and Ag nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125786. [PMID: 33873032 DOI: 10.1016/j.jhazmat.2021.125786] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/13/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Toward the goal of preventing microbial infections in hospitals or other healthcare institutions, here we developed a self-disinfecting textile with synergistic photodynamic/photothermal antibacterial property. Porphyrinic Metal-organic frameworks (PCN-224) and Ag nanoparticles (NPs) were in situ grown on knitted cotton textile (KCT) successively to achieve rapid photodynamic antibacterial and durable bacteriostatic effect. Light-driven singlet oxygen (1O2) generated from PCN-224 and heat generated from Ag could function synergistically to realize rapid bacterial inactivation. Interestingly, 1O2 could promote Ag NPs to be degraded to release more Ag+ ions, achieving durable bacteriostatic effect. Antibacterial assay demonstrated 6 and 4.49 log unit inactivation toward two typical bacterial strains (E. coli and S. aureus) under Xe arc lamp in 30 min, respectively. Even after ten washes, the textile still maintained 6 log unit bacterial inactivation. Mechanism study proved light-driven 1O2 and heat are main factors causing bacterial inactivation, they could work synergistically to enhance bacterial inactivation efficiency. Photothermal study revealed that the textile could reach to 69 ℃ under visible light and 79.1 ℃ under 780-nm light-laser, which showed much potential in photothermal material applications. Taken together, our findings demonstrated a synergistic self-disinfecting cotton textile that exhibited constructive significance for preventing microbial infections and transmissions.
Collapse
Affiliation(s)
- Xiaolin Nie
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shuanglin Wu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shiqin Liao
- Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, China
| | - Juanfen Chen
- Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, China
| | - Fenglin Huang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Li
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qingqing Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
147
|
Morsink M, Parente L, Silva F, Abrantes A, Ramos A, Primo I, Willemen N, Sanchez-Lopez E, Severino P, Souto EB. Nanotherapeutics and nanotheragnostics for cancers: properties, pharmacokinetics, biopharmaceutics, and biosafety. Curr Pharm Des 2021; 28:104-115. [PMID: 34348617 DOI: 10.2174/1381612827666210804102645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/24/2021] [Indexed: 11/22/2022]
Abstract
With the worldwide increasing rate of chronic diseases, such as cancer, the development of novel techniques to improve the efficacy of therapeutic agents is highly demanded. Nanoparticles are especially well suited to encapsulate drugs and other therapeutic agents, bringing additional advantages, such as less frequent dosage requirements, reduced side effects due to specific targeting, and therefore increased patient compliance. However, with the increasing use of nanoparticles and their recent launch on the pharmaceutical market it is important to achieve high quality control of these advanced systems. In this review, we discuss the properties of different nanoparticles, the pharmacokinetics, the biosafety issues of concern, and conclude with novel nanotherapeutics and nanotheragnostics for cancer drug delivery.
Collapse
Affiliation(s)
- Margreet Morsink
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139. United States
| | - Lucia Parente
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra. Portugal
| | - Fernanda Silva
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra. Portugal
| | - Alexandra Abrantes
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra. Portugal
| | - Ana Ramos
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra. Portugal
| | - Inês Primo
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra. Portugal
| | - Niels Willemen
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139. United States
| | - Elena Sanchez-Lopez
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra. Portugal
| | - Patricia Severino
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139. United States
| | - Eliana B Souto
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra. Portugal
| |
Collapse
|
148
|
Abstract
LEARNING OBJECTIVES After studying this article, the participant should be able to: 1. Understand the basics of biofilm infection and be able to distinguish between planktonic and biofilm modes of growth. 2. Have a working knowledge of conventional and emerging antibiofilm therapies and their modes of action as they pertain to wound care. 3. Understand the challenges associated with testing and marketing antibiofilm strategies and the context within which these strategies may have effective value. SUMMARY The Centers for Disease Control and Prevention estimate for human infectious diseases caused by bacteria with a biofilm phenotype is 65 percent and the National Institutes of Health estimate is closer to 80 percent. Biofilms are hostile microbial aggregates because, within their polymeric matrix cocoons, they are protected from antimicrobial therapy and attack from host defenses. Biofilm-infected wounds, even when closed, show functional deficits such as deficient extracellular matrix and impaired barrier function, which are likely to cause wound recidivism. The management of invasive wound infection often includes systemic antimicrobial therapy in combination with débridement of wounds to a healthy tissue bed as determined by the surgeon who has no way of visualizing the biofilm. The exceedingly high incidence of false-negative cultures for bacteria in a biofilm state leads to missed diagnoses of wound infection. The use of topical and parenteral antimicrobial therapy without wound débridement have had limited impact on decreasing biofilm infection, which remains a major problem in wound care. Current claims to manage wound biofilm infection rest on limited early-stage data. In most cases, such data originate from limited experimental systems that lack host immune defense. In making decisions on the choice of commercial products to manage wound biofilm infection, it is important to critically appreciate the mechanism of action and significance of the relevant experimental system. In this work, the authors critically review different categories of antibiofilm products, with emphasis on their strengths and limitations as evident from the published literature.
Collapse
Affiliation(s)
- Chandan K Sen
- From the Indiana University Health Comprehensive Wound Center, the Indiana Center for Regenerative Medicine & Engineering, and the Indiana University School of Medicine
| | - Sashwati Roy
- From the Indiana University Health Comprehensive Wound Center, the Indiana Center for Regenerative Medicine & Engineering, and the Indiana University School of Medicine
| | - Shomita S Mathew-Steiner
- From the Indiana University Health Comprehensive Wound Center, the Indiana Center for Regenerative Medicine & Engineering, and the Indiana University School of Medicine
| | - Gayle M Gordillo
- From the Indiana University Health Comprehensive Wound Center, the Indiana Center for Regenerative Medicine & Engineering, and the Indiana University School of Medicine
| |
Collapse
|
149
|
Neurotoxicity of silver nanoparticles in the animal brain: a systematic review and meta-analysis. Forensic Toxicol 2021; 40:49-63. [DOI: 10.1007/s11419-021-00589-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
|
150
|
Biodirected Synthesis of Silver Nanoparticles Using Aqueous Honey Solutions and Evaluation of Their Antifungal Activity against Pathogenic Candida Spp. Int J Mol Sci 2021; 22:ijms22147715. [PMID: 34299335 PMCID: PMC8305289 DOI: 10.3390/ijms22147715] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/03/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Silver nanoparticles (AgNPs) were synthesized using aqueous honey solutions with a concentration of 2%, 10%, and 20%-AgNPs-H2, AgNPs-H10, and AgNPs-H20. The reaction was conducted at 35 °C and 70 °C. Additionally, nanoparticles obtained with the citrate method (AgNPs-C), while amphotericin B (AmB) and fluconazole were used as controls. The presence and physicochemical properties of AgNPs was affirmed by analyzing the sample with ultraviolet-visible (UV-Vis) and fluorescence spectroscopy, scanning electron microscopy (SEM), and dynamic light scattering (DLS). The 20% honey solution caused an inhibition of the synthesis of nanoparticles at 35 °C. The antifungal activity of the AgNPs was evaluated using opportunistic human fungal pathogens Candida albicans and Candida parapsilosis. The antifungal effect was determined by the minimum inhibitory concentration (MIC) and disc diffusion assay. The highest activity in the MIC tests was observed in the AgNPs-H2 variant. AgNPs-H10 and AgNPs-H20 showed no activity or even stimulated fungal growth. The results of the Kirby-Bauer disc diffusion susceptibility test for C. parapsilosis strains indicated stronger antifungal activity of AgNPs-H than fluconazole. The study demonstrated that the antifungal activity of AgNPs is closely related to the concentration of honey used for the synthesis thereof.
Collapse
|