101
|
Armbruster PA. Photoperiodic Diapause and the Establishment of Aedes albopictus (Diptera: Culicidae) in North America. JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:1013-23. [PMID: 27354438 PMCID: PMC5013814 DOI: 10.1093/jme/tjw037] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 03/11/2016] [Indexed: 05/21/2023]
Abstract
The invasion and range expansion of Aedes albopictus (Skuse) in North America represents an outstanding opportunity to study processes of invasion, range expansion, and climatic adaptation. Furthermore, knowledge obtained from such research is relevant to developing novel strategies to control this important vector species. Substantial evidence indicates that the photoperiodic diapause response is an important adaptation to climatic variation across the range of Ae. albopictus in North America. Photoperiodic diapause is a key determinant of abundance in both space and time, and the timing of entry into and exit out of diapause strongly affects seasonal population dynamics and thus the potential for arbovirus transmission. Emerging genomic technologies are making it possible to develop high-resolution, genome-wide genetic markers that can be used for genetic mapping of traits relevant to disease transmission and phylogeographic studies to elucidate invasion history. Recent work using next-generation sequencing technologies (e.g., RNA-seq), combined with physiological experiments, has provided extensive insight into the transcriptional basis of the diapause response in Ae. albopictus Applying this knowledge to identify novel targets for vector control represents an important future challenge. Finally, recent studies have begun to identify traits other than diapause that are affected by photoperiodism. Extending this work to identify additional traits influenced by photoperiod should produce important insights into the seasonal biology of Ae. albopictus.
Collapse
Affiliation(s)
- Peter A Armbruster
- Department of Biology, Reis 406, Georgetown University, 37th and O sts. NW, Washington, DC 20057-1229
| |
Collapse
|
102
|
Wang J, Xiong KC, Liu YH. De novo Transcriptome Analysis of Chinese Citrus Fly, Bactrocera minax (Diptera: Tephritidae), by High-Throughput Illumina Sequencing. PLoS One 2016; 11:e0157656. [PMID: 27331903 PMCID: PMC4917245 DOI: 10.1371/journal.pone.0157656] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/02/2016] [Indexed: 12/30/2022] Open
Abstract
The Chinese citrus fly, Bactrocera minax (Enderlein), is one of the most devastating pests of citrus in the temperate areas of Asia. So far, studies involving molecular biology and physiology of B. minax are still scarce, partly because of the lack of genomic information and inability to rear this insect in laboratory. In this study, de novo assembly of a transcriptome was performed using Illumina sequencing technology. A total of 20,928,907 clean reads were obtained and assembled into 33,324 unigenes, with an average length of 908.44 bp. Unigenes were annotated by alignment against NCBI non-redundant protein (Nr), Swiss-Prot, Clusters of Orthologous Groups (COG), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG) database. Genes potentially involved in stress tolerance, including 20 heat shock protein (Hsps) genes, 26 glutathione S-transferases (GSTs) genes, and 2 ferritin subunit genes, were identified. These genes may play roles in stress tolerance in B. minax diapause stage. It has previously been found that 20E application on B. minax pupae could avert diapause, but the underlying mechanisms remain unknown. Thus, genes encoding enzymes in 20E biosynthesis pathway, including Neverland, Spook, Phantom, Disembodied, Shadow, Shade, and Cyp18a1, and genes encoding 20E receptor proteins, ecdysone receptor (EcR) and ultraspiracle (USP), were identified. The expression patterns of 20E-related genes among developmental stages and between 20E-treated and untreated pupae demonstrated their roles in diapause program. In addition, 1,909 simple sequence repeats (SSRs) were detected, which will contribute to molecular marker development. The findings in this study greatly improve our genetic understanding of B. minax, and lay the foundation for future studies on this species.
Collapse
Affiliation(s)
- Jia Wang
- Institute of Entomology, College of Plant Protection, Southwest University, Chongqing, P. R. China
- * E-mail:
| | - Ke-Cai Xiong
- Institute of Entomology, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Ying-Hong Liu
- Institute of Entomology, College of Plant Protection, Southwest University, Chongqing, P. R. China
| |
Collapse
|
103
|
Chiang YN, Tan KJ, Chung H, Lavrynenko O, Shevchenko A, Yew JY. Steroid Hormone Signaling Is Essential for Pheromone Production and Oenocyte Survival. PLoS Genet 2016; 12:e1006126. [PMID: 27333054 PMCID: PMC4917198 DOI: 10.1371/journal.pgen.1006126] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 05/25/2016] [Indexed: 01/04/2023] Open
Abstract
Many of the lipids found on the cuticles of insects function as pheromones and communicate information about age, sex, and reproductive status. In Drosophila, the composition of the information-rich lipid profile is dynamic and changes over the lifetime of an individual. However, the molecular basis of this change is not well understood. To identify genes that control cuticular lipid production in Drosophila, we performed a RNA interference screen and used Direct Analysis in Real Time and gas chromatography mass spectrometry to quantify changes in the chemical profiles. Twelve putative genes were identified whereby transcriptional silencing led to significant differences in cuticular lipid production. Amongst them, we characterized a gene which we name spidey, and which encodes a putative steroid dehydrogenase that has sex- and age-dependent effects on viability, pheromone production, and oenocyte survival. Transcriptional silencing or overexpression of spidey during embryonic development results in pupal lethality and significant changes in levels of the ecdysone metabolite 20-hydroxyecdysonic acid and 20-hydroxyecdysone. In contrast, inhibiting gene expression only during adulthood resulted in a striking loss of oenocyte cells and a concomitant reduction of cuticular hydrocarbons, desiccation resistance, and lifespan. Oenocyte loss and cuticular lipid levels were partially rescued by 20-hydroxyecdysone supplementation. Taken together, these results identify a novel regulator of pheromone synthesis and reveal that ecdysteroid signaling is essential for the maintenance of cuticular lipids and oenocytes throughout adulthood. Pheromones are used by many animals to control social behaviors such as mate choice and kin recognition. The pheromone profile of insects is dynamic and can change depending on environmental, physiological, and social conditions. While many genes responsible for the biosynthesis of insect pheromones have been identified, much less is known about how pheromone production is systemically regulated over the lifetime of an animal. In this work, we identify 12 genes in Drosophila melanogaster that play a role in pheromone production. We characterized the function of one gene, which we name spidey, and which encodes a steroid dehydrogenase. Silencing spidey expression during the larval stage results in the rapid inactivation of an essential insect steroid, 20-hydroxyecdysone, and developmental arrest. In adults, spidey is needed for maintaining the viability of oenocytes, specialized cells that produce pheromones and also regulate energy homeostasis. Our work reveals a novel role for ecdysteroids in the adult animal and uncovers a regulatory mechanism for oenocyte activity. Potentially, ecdysteroid signaling serves as a mechanism by which environmental or social conditions shape pheromone production. Exploitation of this conserved pathway could be useful for interfering with the mating behavior and lifespan of disease-bearing insects or agricultural pests.
Collapse
Affiliation(s)
- Yin Ning Chiang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Kah Junn Tan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Henry Chung
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Oksana Lavrynenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Joanne Y. Yew
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|
104
|
Aquilino M, Sánchez-Argüello P, Martínez-Guitarte JL. Vinclozolin alters the expression of hormonal and stress genes in the midge Chironomus riparius. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 174:179-187. [PMID: 26966872 DOI: 10.1016/j.aquatox.2016.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 06/05/2023]
Abstract
Vinclozolin is a fungicide used in agriculture that can reach aquatic ecosystems and affect the organisms living there. Its effects have been intensively studied in vertebrates, where it acts as an antiandrogen, but there is a lack of information about its mechanistic effects on invertebrates. In this work, we analyzed the response of genes related to the endocrine system, the stress response, and the detoxification mechanisms of Chironomus riparius fourth instar larvae after 24h and 48h exposures to 20 (69.9nM), 200 (699nM), and 2000μg/L (6.99μM) of Vinclozolin. Survival analysis showed that this compound has low toxicity, as it was not lethal for this organism at the concentrations used. However, this fungicide was shown to modify the transcriptional activity of the ecdysone response pathway genes EcR, E74, and Kr-h1 by increasing their mRNA levels. While no changes were observed in disembodied, a gene related with the ecdysone synthesis metabolic pathway, Cyp18A1, which is involved in the inactivation of the active form of ecdysone, was upregulated. Additionally, the expression of two genes related to other hormones, FOXO and MAPR, did not show any changes when Vinclozolin was present. The analysis of stress response genes showed significant changes in the mRNA levels of Hsp70, Hsp24, and Gp93, indicating that Vinclozolin activates the cellular stress mechanisms. Finally, the expressions of the genes Cyp4G and GstD3, which encode enzymes involved in phase I and phase II detoxification, respectively, were analyzed. It was found that their mRNA levels were altered by Vinclozolin, suggesting their involvement in the degradation of this compound. For the first time, these results show evidence that Vinclozolin can modulate gene expression, leading to possible significant endocrine alterations of the insect endocrine system. These results also offer new clues about the mode of action of this compound in invertebrates.
Collapse
Affiliation(s)
- Mónica Aquilino
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain
| | - Paloma Sánchez-Argüello
- Laboratorio de Ecotoxicología, Departamento de Medioambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. La Coruña km 7, 28040 Madrid, Spain
| | - José-Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain.
| |
Collapse
|
105
|
Li Z, You L, Zeng B, Ling L, Xu J, Chen X, Zhang Z, Palli SR, Huang Y, Tan A. Ectopic expression of ecdysone oxidase impairs tissue degeneration in Bombyx mori. Proc Biol Sci 2016; 282:20150513. [PMID: 26041352 DOI: 10.1098/rspb.2015.0513] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Metamorphosis in insects includes a series of programmed tissue histolysis and remolding processes that are controlled by two major classes of hormones, juvenile hormones and ecdysteroids. Precise pulses of ecdysteroids (the most active ecdysteroid is 20-hydroxyecdysone, 20E), are regulated by both biosynthesis and metabolism. In this study, we show that ecdysone oxidase (EO), a 20E inactivation enzyme, expresses predominantly in the midgut during the early pupal stage in the lepidopteran model insect, Bombyx mori. Depletion of BmEO using the transgenic CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/RNA-guided Cas9 nucleases) system extended the duration of the final instar larval stage. Ubiquitous transgenic overexpression of BmEO using the Gal4/UAS system induced lethality during the larval-pupal transition. When BmEO was specifically overexpressed in the middle silk gland (MSG), degeneration of MSG at the onset of metamorphosis was blocked. Transmission electron microscope and LysoTracker analyses showed that the autophagy pathway in MSG is inhibited by BmEO ectopic expression. Furthermore, RNA-seq analysis revealed that the genes involved in autophagic cell death and the mTOR signal pathway are affected by overexpression of BmEO. Taken together, BmEO functional studies reported here provide insights into ecdysone regulation of tissue degeneration during metamorphosis.
Collapse
Affiliation(s)
- Zhiqian Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Lang You
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Baosheng Zeng
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Lin Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Jun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Xu Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Zhongjie Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, University of Kentucky, S-225 Agriculture Science Center North, Lexington, KY 40546, USA
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Anjiang Tan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
106
|
Sumiya E, Ogino Y, Toyota K, Miyakawa H, Miyagawa S, Iguchi T. Neverlandregulates embryonic moltings through the regulation of ecdysteroid synthesis in the water fleaDaphnia magna, and may thus act as a target for chemical disruption of molting. J Appl Toxicol 2016; 36:1476-85. [DOI: 10.1002/jat.3306] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Eri Sumiya
- Department of Basic Biology, Faculty of Life Science, SOKENDAI; (Graduate University for Advanced Studies; 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology; National Institutes of Natural Sciences; 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
| | - Yukiko Ogino
- Department of Basic Biology, Faculty of Life Science, SOKENDAI; (Graduate University for Advanced Studies; 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology; National Institutes of Natural Sciences; 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
| | - Kenji Toyota
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology; National Institutes of Natural Sciences; 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
| | - Hitoshi Miyakawa
- Center for Bioscience Research and Education; Utsunomiya University; 350 Mine-machi Utsunomiya Tochigi 321-8505 Japan
| | - Shinichi Miyagawa
- Department of Basic Biology, Faculty of Life Science, SOKENDAI; (Graduate University for Advanced Studies; 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology; National Institutes of Natural Sciences; 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
| | - Taisen Iguchi
- Department of Basic Biology, Faculty of Life Science, SOKENDAI; (Graduate University for Advanced Studies; 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology; National Institutes of Natural Sciences; 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
| |
Collapse
|
107
|
Jia S, Wan PJ, Li GQ. Molecular cloning and characterization of the putative Halloween gene Phantom from the small brown planthopper Laodelphax striatellus. INSECT SCIENCE 2015; 22:707-718. [PMID: 24954278 DOI: 10.1111/1744-7917.12147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/27/2014] [Indexed: 06/03/2023]
Abstract
Ecdysteroid hormone 20-hydroxyecdysone plays fundamental roles in insect postembryonic development and reproduction. Several cytochrome P450 mono-oxygenases (CYPs), encoded by the Halloween genes, have been documented to be involved in ecdysteroidogenesis in representative insects in Diptera, Lepidoptera and Orthoptera. Here the putative Halloween gene Phantom (Phm, cyp306a1) from a hemipteran insect species, the small brown planthopper Laodelphax striatellus, was cloned. LsPHM shows five insect conserved P450 motifs, that is, Helix-C, Helix-I, Helix-K, PERF and heme-binding motifs. Temporal and spatial expression patterns of LsPhm were evaluated by quantitative polymerase chain reaction. Through the fourth-instar and the early fifth-instar stages, LsPhm showed two expression peaks in day 2 and days 4-5 fourth-instar nymphs, and three troughs in day 1 and 3 fourth instars and day 1 fifth instars. On day 5 of the fourth-instar nymphs, LsPhm clearly had a high transcript level in the thorax where the prothoracic glands were located. Dietary introduction of double-stranded RNA (dsRNA) of LsPhm at the nymph stage successfully knocked down the target gene, decreased expression level of ecdysone receptor (LsEcR) gene and caused a higher nymphal mortality rate and delayed development. Ingestion of 20-hydroxyecdysone on LsPhm-dsRNA-exposed nymphs did not increase LsPhm expression level, but almost completely rescued the LsEcR mRNA level, and relieved the negative effects on survival and development. Thus, our data suggest that the putative LsPhm encodes a functional 25-hydroxylase that catalyzes the biosynthesis of ecdysteroids in L. striatellus.
Collapse
Affiliation(s)
- Shuang Jia
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pin-Jun Wan
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
108
|
Scott JG, Warren WC, Beukeboom LW, Bopp D, Clark AG, Giers SD, Hediger M, Jones AK, Kasai S, Leichter CA, Li M, Meisel RP, Minx P, Murphy TD, Nelson DR, Reid WR, Rinkevich FD, Robertson HM, Sackton TB, Sattelle DB, Thibaud-Nissen F, Tomlinson C, van de Zande L, Walden KKO, Wilson RK, Liu N. Genome of the house fly, Musca domestica L., a global vector of diseases with adaptations to a septic environment. Genome Biol 2015; 15:466. [PMID: 25315136 PMCID: PMC4195910 DOI: 10.1186/s13059-014-0466-3] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/10/2014] [Indexed: 12/31/2022] Open
Abstract
Background Adult house flies, Musca domestica L., are mechanical vectors of more than 100 devastating diseases that have severe consequences for human and animal health. House fly larvae play a vital role as decomposers of animal wastes, and thus live in intimate association with many animal pathogens. Results We have sequenced and analyzed the genome of the house fly using DNA from female flies. The sequenced genome is 691 Mb. Compared with Drosophila melanogaster, the genome contains a rich resource of shared and novel protein coding genes, a significantly higher amount of repetitive elements, and substantial increases in copy number and diversity of both the recognition and effector components of the immune system, consistent with life in a pathogen-rich environment. There are 146 P450 genes, plus 11 pseudogenes, in M. domestica, representing a significant increase relative to D. melanogaster and suggesting the presence of enhanced detoxification in house flies. Relative to D. melanogaster, M. domestica has also evolved an expanded repertoire of chemoreceptors and odorant binding proteins, many associated with gustation. Conclusions This represents the first genome sequence of an insect that lives in intimate association with abundant animal pathogens. The house fly genome provides a rich resource for enabling work on innovative methods of insect control, for understanding the mechanisms of insecticide resistance, genetic adaptation to high pathogen loads, and for exploring the basic biology of this important pest. The genome of this species will also serve as a close out-group to Drosophila in comparative genomic studies. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0466-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeffrey G Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Lavrynenko O, Rodenfels J, Carvalho M, Dye NA, Lafont R, Eaton S, Shevchenko A. The ecdysteroidome of Drosophila: influence of diet and development. Development 2015; 142:3758-68. [PMID: 26395481 DOI: 10.1242/dev.124982] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/03/2015] [Indexed: 01/06/2023]
Abstract
Ecdysteroids are the hormones regulating development, physiology and fertility in arthropods, which synthesize them exclusively from dietary sterols. But how dietary sterol diversity influences the ecdysteroid profile, how animals ensure the production of desired hormones and whether there are functional differences between different ecdysteroids produced in vivo remains unknown. This is because currently there is no analytical technology for unbiased, comprehensive and quantitative assessment of the full complement of endogenous ecdysteroids. We developed a new LC-MS/MS method to screen the entire chemical space of ecdysteroid-related structures and to quantify known and newly discovered hormones and their catabolites. We quantified the ecdysteroidome in Drosophila melanogaster and investigated how the ecdysteroid profile varies with diet and development. We show that Drosophila can produce four different classes of ecdysteroids, which are obligatorily derived from four types of dietary sterol precursors. Drosophila makes makisterone A from plant sterols and epi-makisterone A from ergosterol, the major yeast sterol. However, they prefer to selectively utilize scarce ergosterol precursors to make a novel hormone 24,28-dehydromakisterone A and trace cholesterol to synthesize 20-hydroxyecdysone. Interestingly, epi-makisterone A supports only larval development, whereas all other ecdysteroids allow full adult development. We suggest that evolutionary pressure against producing epi-C-24 ecdysteroids might explain selective utilization of ergosterol precursors and the puzzling preference for cholesterol.
Collapse
Affiliation(s)
- Oksana Lavrynenko
- Max Planck Institute for Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany
| | - Jonathan Rodenfels
- Max Planck Institute for Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany
| | - Maria Carvalho
- Max Planck Institute for Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany
| | - Natalie A Dye
- Max Planck Institute for Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany
| | - Rene Lafont
- Sorbonne Universités, University Pierre and Marie Curie, Paris 06, IBPS-BIOSIPE, 7 Quai Saint Bernard, Case Courrier 29, Paris Cedex 05 75252, France
| | - Suzanne Eaton
- Max Planck Institute for Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany
| | - Andrej Shevchenko
- Max Planck Institute for Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany
| |
Collapse
|
110
|
Hoffmann JM, Partridge L. Nuclear hormone receptors: Roles of xenobiotic detoxification and sterol homeostasis in healthy aging. Crit Rev Biochem Mol Biol 2015; 50:380-92. [PMID: 26383043 DOI: 10.3109/10409238.2015.1067186] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Health during aging can be improved by genetic, dietary and pharmacological interventions. Many of these increase resistance to various stressors, including xenobiotics. Up-regulation of xenobiotic detoxification genes is a transcriptomic signature shared by long-lived nematodes, flies and mice, suggesting that protection of cells from toxicity of xenobiotics may contribute to longevity. Expression of genes involved in xenobiotic detoxification is controlled by evolutionarily conserved transcriptional regulators. Three closely related subgroups of nuclear hormone receptors (NHRs) have a major role, and these include DAF-12 and NHR-8 in C. elegans, DHR96 in Drosophila and FXR, LXRs, PXR, CAR and VDR in mammals. In the invertebrates, these NHRs have been experimentally demonstrated to play a role in extension of lifespan by genetic and environmental interventions. NHRs represent critical hubs in that they regulate detoxification enzymes with broad substrate specificities, metabolizing both endo- and xeno-biotics. They also modulate homeostasis of steroid hormones and other endogenous cholesterol derivatives and lipid metabolism, and these roles, as well as xenobiotic detoxification, may contribute to the effects of NHRs on lifespan and health during aging, an issue that is being increasingly addressed in C. elegans and Drosophila. Disentangling the contribution of these processes to longevity will require more precise understanding of the molecular mechanisms by which each is effected, including identification of ligands and co-regulators of NHRs, patterns of tissue-specificity and mechanisms of interaction between tissues. The roles of vertebrate NHRs in determination of health during aging and lifespan have yet to be investigated.
Collapse
Affiliation(s)
| | - Linda Partridge
- a Max Planck Institute for Biology of Ageing , Cologne , Germany and.,b Institute of Healthy Ageing, and GEE (Genetics, Evolution and Environment), University College , London , UK
| |
Collapse
|
111
|
Boulan L, Milán M, Léopold P. The Systemic Control of Growth. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a019117. [PMID: 26261282 DOI: 10.1101/cshperspect.a019117] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Growth is a complex process that is intimately linked to the developmental program to form adults with proper size and proportions. Genetics is an important determinant of growth, as exemplified by the role of local diffusible molecules setting up organ proportions. In addition, organisms use adaptive responses allowing modulating the size of individuals according to environmental cues, for example, nutrition. Here, we describe some of the physiological principles participating in the determination of final individual size.
Collapse
Affiliation(s)
- Laura Boulan
- University of Nice-Sophia Antipolis, 06108 Nice, France CNRS, University of Nice-Sophia Antipolis, 06108 Nice, France INSERM, University of Nice-Sophia Antipolis, 06108 Nice, France
| | - Marco Milán
- 5ICREA, Parc Cientific de Barcelona, 08028 Barcelona, Spain
| | - Pierre Léopold
- University of Nice-Sophia Antipolis, 06108 Nice, France CNRS, University of Nice-Sophia Antipolis, 06108 Nice, France INSERM, University of Nice-Sophia Antipolis, 06108 Nice, France
| |
Collapse
|
112
|
Qu Z, Kenny NJ, Lam HM, Chan TF, Chu KH, Bendena WG, Tobe SS, Hui JHL. How Did Arthropod Sesquiterpenoids and Ecdysteroids Arise? Comparison of Hormonal Pathway Genes in Noninsect Arthropod Genomes. Genome Biol Evol 2015; 7:1951-9. [PMID: 26112967 PMCID: PMC4524487 DOI: 10.1093/gbe/evv120] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The phylum Arthropoda contains the largest number of described living animal species, with insects and crustaceans dominating the terrestrial and aquatic environments, respectively. Their successful radiations have long been linked to their rigid exoskeleton in conjunction with their specialized endocrine systems. In order to understand how hormones can contribute to the evolution of these animals, here, we have categorized the sesquiterpenoid and ecdysteroid pathway genes in the noninsect arthropod genomes, which are known to play important roles in the regulation of molting and metamorphosis in insects. In our analyses, the majority of gene homologs involved in the biosynthetic, degradative, and signaling pathways of sesquiterpenoids and ecdysteroids can be identified, implying these two hormonal systems were present in the last common ancestor of arthropods. Moreover, we found that the “Broad-Complex” was specifically gained in the Pancrustacea, and the innovation of juvenile hormone (JH) in the insect linage correlates with the gain of the JH epoxidase (CYP15A1/C1) and the key residue changes in the binding domain of JH receptor (“Methoprene-tolerant”). Furthermore, the gain of “Phantom” differentiates chelicerates from the other arthropods in using ponasterone A rather than 20-hydroxyecdysone as molting hormone. This study establishes a comprehensive framework for interpreting the evolution of these vital hormonal pathways in these most successful animals, the arthropods, for the first time.
Collapse
Affiliation(s)
- Zhe Qu
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences and Center for Soybean Research of Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Nathan James Kenny
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences and Center for Soybean Research of Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hon Ming Lam
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences and Center for Soybean Research of Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ting Fung Chan
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences and Center for Soybean Research of Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ka Hou Chu
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Jerome Ho Lam Hui
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences and Center for Soybean Research of Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
113
|
Abolaji AO, Kamdem JP, Lugokenski TH, Farombi EO, Souza DO, da Silva Loreto ÉL, Rocha JBT. Ovotoxicants 4-vinylcyclohexene 1,2-monoepoxide and 4-vinylcyclohexene diepoxide disrupt redox status and modify different electrophile sensitive target enzymes and genes in Drosophila melanogaster. Redox Biol 2015; 5:328-339. [PMID: 26117601 PMCID: PMC4491645 DOI: 10.1016/j.redox.2015.06.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 02/06/2023] Open
Abstract
The compounds 4-vinylcyclohexene 1,2-monoepoxide (VCM) and 4-Vinylcyclohexene diepoxide (VCD) are the two downstream metabolites of 4-vinylcyclohexene (VCH), an ovotoxic agent in mammals. In addition, VCM and VCD may be found as by-products of VCH oxidation in the environment. Recently, we reported the involvement of oxidative stress in the toxicity of VCH in Drosophila melanogaster. However, it was not possible to determine the individual contributions of VCM and VCD in VCH toxicity. Hence, we investigated the toxicity of VCM and VCD (10–1000 µM) in flies after 5 days of exposure via the diet. Our results indicated impairments in climbing behaviour and disruptions in antioxidant balance and redox status evidenced by an increase in DCFH oxidation, decreases in total thiol content and glutathione-S-transferase (GST) activity in the flies exposed to VCM and VCD (p<0.05). These effects were accompanied by disruptions in the transcription of the genes encoding the proteins superoxide dismutase (SOD1), kelch-like erythroid-derived cap-n-collar (CNC) homology (ECH)-associated protein 1 (Keap-1), mitogen activated protein kinase 2 (MAPK-2), catalase, Cyp18a1, JAFRAC 1 (thioredoxin peroxidase 1) and thioredoxin reductase 1 (TrxR-1) (p<0.05). VCM and VCD inhibited acetylcholinesterase (AChE) and delta aminolevulinic acid dehydratase (δ-ALA D) activities in the flies (p<0.05). Indeed, here, we demonstrated that different target enzymes and genes were modified by the electrophiles VCM and VCD in the flies. Thus, D. melanogaster has provided further lessons on the toxicity of VCM and VCD which suggest that the reported toxicity of VCH may be mediated by its transformation to VCM and VCD.
Collapse
Affiliation(s)
- Amos O Abolaji
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria; Departamento de Bioquimica e Biologia Molecular, Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil.
| | - Jean P Kamdem
- Departamento de Bioquimica e Biologia Molecular, Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil; Departamento de Bioquímica, Instituto de Ciências Básica da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP 90035-003, Brazil
| | | | - Ebenezer O Farombi
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Diogo O Souza
- Departamento de Bioquímica, Instituto de Ciências Básica da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP 90035-003, Brazil
| | - Élgion L da Silva Loreto
- Laboratório de Biologia Molecular-LabDros, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - João B T Rocha
- Departamento de Bioquimica e Biologia Molecular, Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
114
|
Herrero Ó, Planelló R, Morcillo G. The plasticizer benzyl butyl phthalate (BBP) alters the ecdysone hormone pathway, the cellular response to stress, the energy metabolism, and several detoxication mechanisms in Chironomus riparius larvae. CHEMOSPHERE 2015; 128:266-277. [PMID: 25725395 DOI: 10.1016/j.chemosphere.2015.01.059] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/25/2015] [Accepted: 01/27/2015] [Indexed: 06/04/2023]
Abstract
Butyl benzyl phthalate (BBP) has been extensively used worldwide as a plasticizer in the polyvinyl chloride (PVC) industry and the manufacturing of many other products, and its presence in the aquatic environment is expected for decades. In the present study, the toxicity of BBP was investigated in Chironomus riparius aquatic larvae. The effects of acute 24-h and 48-h exposures to a wide range of BBP doses were evaluated at the molecular level by analysing changes in genes related to the stress response, the endocrine system, the energy metabolism, and detoxication pathways, as well as in the enzyme activity of glutathione S-transferase. BBP caused a dose and time-dependent toxicity in most of the selected biomarkers. 24-h exposures to high doses affected larval survival and lead to a significant response of several heat-shock genes (hsp70, hsp40, and hsp27), and to a clear endocrine disrupting effect by upregulating the ecdysone receptor gene (EcR). Longer treatments with low doses triggered a general repression of transcription and GST activity. Furthermore, delayed toxicity studies were specially relevant, since they allowed us to detect unpredictable toxic effects, not immediately manifested after contact with the phthalate. This study provides novel and interesting results on the toxic effects of BBP in C. riparius and highlights the suitability of this organism for ecotoxicological risk assessment, especially in aquatic ecosystems.
Collapse
Affiliation(s)
- Óscar Herrero
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040 Madrid, Spain.
| | - Rosario Planelló
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040 Madrid, Spain.
| | - Gloria Morcillo
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040 Madrid, Spain.
| |
Collapse
|
115
|
Promoter analysis and RNA interference of CYP6ab4 in the silkworm Bombyx mori. Mol Genet Genomics 2015; 290:1943-53. [DOI: 10.1007/s00438-015-1050-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/16/2015] [Indexed: 10/23/2022]
|
116
|
Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA, Allen JE, Amon J, Arcà B, Arensburger P, Artemov G, Assour LA, Basseri H, Berlin A, Birren BW, Blandin SA, Brockman AI, Burkot TR, Burt A, Chan CS, Chauve C, Chiu JC, Christensen M, Costantini C, Davidson VLM, Deligianni E, Dottorini T, Dritsou V, Gabriel SB, Guelbeogo WM, Hall AB, Han MV, Hlaing T, Hughes DST, Jenkins AM, Jiang X, Jungreis I, Kakani EG, Kamali M, Kemppainen P, Kennedy RC, Kirmitzoglou IK, Koekemoer LL, Laban N, Langridge N, Lawniczak MKN, Lirakis M, Lobo NF, Lowy E, MacCallum RM, Mao C, Maslen G, Mbogo C, McCarthy J, Michel K, Mitchell SN, Moore W, Murphy KA, Naumenko AN, Nolan T, Novoa EM, O'Loughlin S, Oringanje C, Oshaghi MA, Pakpour N, Papathanos PA, Peery AN, Povelones M, Prakash A, Price DP, Rajaraman A, Reimer LJ, Rinker DC, Rokas A, Russell TL, Sagnon N, Sharakhova MV, Shea T, Simão FA, Simard F, Slotman MA, Somboon P, Stegniy V, Struchiner CJ, Thomas GWC, Tojo M, Topalis P, Tubio JMC, Unger MF, Vontas J, Walton C, Wilding CS, Willis JH, Wu YC, Yan G, Zdobnov EM, Zhou X, Catteruccia F, Christophides GK, Collins FH, Cornman RS, Crisanti A, Donnelly MJ, Emrich SJ, Fontaine MC, Gelbart W, Hahn MW, Hansen IA, Howell PI, Kafatos FC, Kellis M, Lawson D, Louis C, Luckhart S, Muskavitch MAT, Ribeiro JM, Riehle MA, Sharakhov IV, Tu Z, Zwiebel LJ, Besansky NJ. Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science 2014; 347:1258522. [PMID: 25554792 DOI: 10.1126/science.1258522] [Citation(s) in RCA: 380] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts.
Collapse
Affiliation(s)
- Daniel E Neafsey
- Genome Sequencing and Analysis Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA.
| | - Robert M Waterhouse
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. The Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA. Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel-Servet 1, 1211 Geneva, Switzerland. Swiss Institute of Bioinformatics, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Mohammad R Abai
- Department of Medical Entomology and Vector Control, School of Public Health and Institute of Health Researches, Tehran University of Medical Sciences, Tehran, Iran
| | - Sergey S Aganezov
- George Washington University, Department of Mathematics and Computational Biology Institute, 45085 University Drive, Ashburn, VA 20147, USA
| | - Max A Alekseyev
- George Washington University, Department of Mathematics and Computational Biology Institute, 45085 University Drive, Ashburn, VA 20147, USA
| | - James E Allen
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - James Amon
- National Vector Borne Disease Control Programme, Ministry of Health, Tafea Province, Vanuatu
| | - Bruno Arcà
- Department of Public Health and Infectious Diseases, Division of Parasitology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Peter Arensburger
- Department of Biological Sciences, California State Polytechnic-Pomona, 3801 West Temple Avenue, Pomona, CA 91768, USA
| | - Gleb Artemov
- Tomsk State University, 36 Lenina Avenue, Tomsk, Russia
| | - Lauren A Assour
- Department of Computer Science and Engineering, Eck Institute for Global Health, 211B Cushing Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hamidreza Basseri
- Department of Medical Entomology and Vector Control, School of Public Health and Institute of Health Researches, Tehran University of Medical Sciences, Tehran, Iran
| | - Aaron Berlin
- Genome Sequencing and Analysis Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Bruce W Birren
- Genome Sequencing and Analysis Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Stephanie A Blandin
- Inserm, U963, F-67084 Strasbourg, France. CNRS, UPR9022, IBMC, F-67084 Strasbourg, France
| | - Andrew I Brockman
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Thomas R Burkot
- Faculty of Medicine, Health and Molecular Science, Australian Institute of Tropical Health Medicine, James Cook University, Cairns 4870, Australia
| | - Austin Burt
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Clara S Chan
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. The Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Cedric Chauve
- Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Joanna C Chiu
- Department of Entomology and Nematology, One Shields Avenue, University of California-Davis, Davis, CA 95616, USA
| | - Mikkel Christensen
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Carlo Costantini
- Institut de Recherche pour le Développement, Unités Mixtes de Recherche Maladies Infectieuses et Vecteurs Écologie, Génétique, Évolution et Contrôle, 911, Avenue Agropolis, BP 64501 Montpellier, France
| | - Victoria L M Davidson
- Division of Biology, Kansas State University, 271 Chalmers Hall, Manhattan, KS 66506, USA
| | - Elena Deligianni
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece
| | - Tania Dottorini
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Vicky Dritsou
- Centre of Functional Genomics, University of Perugia, Perugia, Italy
| | - Stacey B Gabriel
- Genomics Platform, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Wamdaogo M Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou 01 BP 2208, Burkina Faso
| | - Andrew B Hall
- Program of Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Mira V Han
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Thaung Hlaing
- Department of Medical Research, No. 5 Ziwaka Road, Dagon Township, Yangon 11191, Myanmar
| | - Daniel S T Hughes
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Adam M Jenkins
- Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Xiaofang Jiang
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. Program of Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Irwin Jungreis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. The Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Evdoxia G Kakani
- Harvard School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02115, USA. Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università degli Studi di Perugia, Perugia, Italy
| | - Maryam Kamali
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Petri Kemppainen
- Computational Evolutionary Biology Group, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Ryan C Kennedy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143, USA
| | - Ioannis K Kirmitzoglou
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Bioinformatics Research Laboratory, Department of Biological Sciences, New Campus, University of Cyprus, CY 1678 Nicosia, Cyprus
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, Faculty of Health Sciences, and Vector Control Reference Unit, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, Johannesburg, South Africa
| | - Njoroge Laban
- National Museums of Kenya, P.O. Box 40658-00100, Nairobi, Kenya
| | - Nicholas Langridge
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Mara K N Lawniczak
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Manolis Lirakis
- Department of Biology, University of Crete, 700 13 Heraklion, Greece
| | - Neil F Lobo
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, 317 Galvin Life Sciences Building, Notre Dame, IN 46556, USA
| | - Ernesto Lowy
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Robert M MacCallum
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Chunhong Mao
- Virginia Bioinformatics Institute, 1015 Life Science Circle, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Gareth Maslen
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Charles Mbogo
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Centre for Geographic Medicine Research - Coast, P.O. Box 230-80108, Kilifi, Kenya
| | - Jenny McCarthy
- Department of Biological Sciences, California State Polytechnic-Pomona, 3801 West Temple Avenue, Pomona, CA 91768, USA
| | - Kristin Michel
- Division of Biology, Kansas State University, 271 Chalmers Hall, Manhattan, KS 66506, USA
| | - Sara N Mitchell
- Harvard School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02115, USA
| | - Wendy Moore
- Department of Entomology, 1140 East South Campus Drive, Forbes 410, University of Arizona, Tucson, AZ 85721, USA
| | - Katherine A Murphy
- Department of Entomology and Nematology, One Shields Avenue, University of California-Davis, Davis, CA 95616, USA
| | - Anastasia N Naumenko
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Tony Nolan
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Eva M Novoa
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. The Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Samantha O'Loughlin
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Chioma Oringanje
- Department of Entomology, 1140 East South Campus Drive, Forbes 410, University of Arizona, Tucson, AZ 85721, USA
| | - Mohammad A Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health and Institute of Health Researches, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazzy Pakpour
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Philippos A Papathanos
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Centre of Functional Genomics, University of Perugia, Perugia, Italy
| | - Ashley N Peery
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Michael Povelones
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Anil Prakash
- Regional Medical Research Centre NE, Indian Council of Medical Research, P.O. Box 105, Dibrugarh-786 001, Assam, India
| | - David P Price
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA. Molecular Biology Program, New Mexico State University, Las Cruces, NM 88003, USA
| | - Ashok Rajaraman
- Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Lisa J Reimer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - David C Rinker
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Antonis Rokas
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37235, USA. Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Tanya L Russell
- Faculty of Medicine, Health and Molecular Science, Australian Institute of Tropical Health Medicine, James Cook University, Cairns 4870, Australia
| | - N'Fale Sagnon
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou 01 BP 2208, Burkina Faso
| | - Maria V Sharakhova
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Terrance Shea
- Genome Sequencing and Analysis Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Felipe A Simão
- Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel-Servet 1, 1211 Geneva, Switzerland. Swiss Institute of Bioinformatics, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Frederic Simard
- Institut de Recherche pour le Développement, Unités Mixtes de Recherche Maladies Infectieuses et Vecteurs Écologie, Génétique, Évolution et Contrôle, 911, Avenue Agropolis, BP 64501 Montpellier, France
| | - Michel A Slotman
- Department of Entomology, Texas A&M University, College Station, TX 77807, USA
| | - Pradya Somboon
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Claudio J Struchiner
- Fundação Oswaldo Cruz, Avenida Brasil 4365, RJ Brazil. Instituto de Medicina Social, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gregg W C Thomas
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Marta Tojo
- Department of Physiology, School of Medicine, Center for Research in Molecular Medicine and Chronic Diseases, Instituto de Investigaciones Sanitarias, University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - Pantelis Topalis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece
| | - José M C Tubio
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Maria F Unger
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, 317 Galvin Life Sciences Building, Notre Dame, IN 46556, USA
| | - John Vontas
- Department of Biology, University of Crete, 700 13 Heraklion, Greece
| | - Catherine Walton
- Computational Evolutionary Biology Group, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Craig S Wilding
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Judith H Willis
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Yi-Chieh Wu
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. The Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA. Department of Computer Science, Harvey Mudd College, Claremont, CA 91711, USA
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, Hewitt Hall, Irvine, CA 92697, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel-Servet 1, 1211 Geneva, Switzerland. Swiss Institute of Bioinformatics, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Flaminia Catteruccia
- Harvard School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02115, USA. Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università degli Studi di Perugia, Perugia, Italy
| | - George K Christophides
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Frank H Collins
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, 317 Galvin Life Sciences Building, Notre Dame, IN 46556, USA
| | - Robert S Cornman
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Andrea Crisanti
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Centre of Functional Genomics, University of Perugia, Perugia, Italy
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK. Malaria Programme, Wellcome Trust Sanger Institute, Cambridge CB10 1SJ, UK
| | - Scott J Emrich
- Department of Computer Science and Engineering, Eck Institute for Global Health, 211B Cushing Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Michael C Fontaine
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, 317 Galvin Life Sciences Building, Notre Dame, IN 46556, USA. Centre of Evolutionary and Ecological Studies (Marine Evolution and Conservation group), University of Groningen, Nijenborgh 7, NL-9747 AG Groningen, Netherlands
| | - William Gelbart
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN 47405, USA. School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Immo A Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA. Molecular Biology Program, New Mexico State University, Las Cruces, NM 88003, USA
| | - Paul I Howell
- Centers for Disease Control and Prevention, 1600 Clifton Road NE MSG49, Atlanta, GA 30329, USA
| | - Fotis C Kafatos
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. The Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Daniel Lawson
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Christos Louis
- Department of Biology, University of Crete, 700 13 Heraklion, Greece. Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece. Centre of Functional Genomics, University of Perugia, Perugia, Italy
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Marc A T Muskavitch
- Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA. Biogen Idec, 14 Cambridge Center, Cambridge, MA 02142, USA
| | - José M Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Michael A Riehle
- Department of Entomology, 1140 East South Campus Drive, Forbes 410, University of Arizona, Tucson, AZ 85721, USA
| | - Igor V Sharakhov
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. Program of Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Zhijian Tu
- Program of Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Laurence J Zwiebel
- Departments of Biological Sciences and Pharmacology, Institutes for Chemical Biology, Genetics and Global Health, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Nora J Besansky
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, 317 Galvin Life Sciences Building, Notre Dame, IN 46556, USA.
| |
Collapse
|
117
|
Li Z, Ge X, Ling L, Zeng B, Xu J, Aslam AFM, You L, Palli SR, Huang Y, Tan A. CYP18A1 regulates tissue-specific steroid hormone inactivation in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 54:33-41. [PMID: 25173591 PMCID: PMC4692384 DOI: 10.1016/j.ibmb.2014.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 05/22/2023]
Abstract
Insect development and metamorphosis are regulated by two major hormones, juvenile hormone and ecdysteroids. Despite being the key regulator of insect developmental transitions, the metabolic pathway of the primary steroid hormone, 20-hydroxyecdysone (20E), especially its inactivation pathway, is still not completely elucidated. A cytochrome P450 enzyme, CYP18A1, has been shown to play key roles in insect steroid hormone inactivation through 26-hydroxylation. Here, we identified two CYP18 (BmCYP18A1 and BmCYP18B1) orthologs in the lepidopteran model insect, Bombyx mori. Interestingly, BmCYP18A1 gene is predominantly expressed in the middle silk gland (MSG) while BmCYP18B1 expresses ubiquitously in B. mori. BmCYP18A1 is induced by 20E in vitro, suggesting its role in 20E metabolism. Using the binary Gal4/UAS transgenic system, we ectopically overexpressed BmCYP18A1 in a MSG-specific manner with a Sericin1-Gal4 (Ser-Gal4) driver or in a ubiquitous manner with an Actin3-Gal4 (A3-Gal4) driver. Ectopic overexpression of BmCYP18A1 in MSG or in all tissues resulted in developmental arrestment of transgenic animals during the final instar larval stage. The 20E titers in the transgenic animals expressing BmCYP18A1 were lower compared to the levels in the control animals. Although the biological significance of MSG-specific expression of BmCYP18A1 is unclear, our results provide the first evidence that BmCYP18A1, which is conserved in most arthropods, is involved in a tissue-specific steroid hormone inactivation in B. mori.
Collapse
Affiliation(s)
- Zhiqian Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xie Ge
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Baosheng Zeng
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Abu F M Aslam
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lang You
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, S-225 Agriculture Science Center North, University of Kentucky, Lexington, KY 40546, USA
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Anjiang Tan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
118
|
Kong Y, Liu XP, Wan PJ, Shi XQ, Guo WC, Li GQ. The P450 enzyme Shade mediates the hydroxylation of ecdysone to 20-hydroxyecdysone in the Colorado potato beetle, Leptinotarsa decemlineata. INSECT MOLECULAR BIOLOGY 2014; 23:632-43. [PMID: 24989229 DOI: 10.1111/imb.12115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ecdysone 20-monooxygenase (E20MO), a cytochrome P450 monooxygenase (CYP314A1), catalyses the conversion of ecdysone (E) to 20-hydroxyecdysone (20E). We report here the cloning and characterization of the Halloween gene Shade (Shd) encoding E20MO in the Colorado potato beetle, Leptinotarsa decemlineata. LdSHD has five conserved motifs typical of insect P450s, ie the Helix-C, Helix-I, Helix-K, PxxFxPE/DRF (PERF) and heme-binding motifs. LdShd was expressed in developing eggs, the first to fourth instars, wandering larvae, pupae and adults, with statistically significant fluctuations. Its mRNA was ubiquitously distributed in the head, thorax and abdomen. The recombinant LdSHD protein expressed in Spodoptera frugiperda 9 (Sf9) cells catalysed the conversion of E to 20E. Dietary introduction of double-stranded RNA (dsRNA) of LdShd into the second instar larvae successfully knocked down the LdShd expression level, decreased the mRNA level of the ecdysone receptor (LdEcR) gene, caused larval lethality, delayed development and affected pupation. Moreover, ingestion of LdShd-dsRNA by the fourth instars also down-regulated LdShd and LdEcR expression, reduced the 20E titre, and negatively influenced pupation. Introduction of 20E and a nonsteroidal ecdysteroid agonist halofenozide into the LdShd-dsRNA-ingested second instars, and of halofenozide into the LdShd-dsRNA-ingested fourth instars almost completely relieved the negative effects on larval performance. Thus, LdSHD functions to regulate metamorphotic processes by converting E to 20E in a coleopteran insect species Le. decemlineata.
Collapse
Affiliation(s)
- Y Kong
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
119
|
Parvy JP, Wang P, Garrido D, Maria A, Blais C, Poidevin M, Montagne J. Forward and feedback regulation of cyclic steroid production in Drosophila melanogaster. Development 2014; 141:3955-65. [PMID: 25252945 DOI: 10.1242/dev.102020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In most animals, steroid hormones are crucial regulators of physiology and developmental life transitions. Steroid synthesis depends on extrinsic parameters and autoregulatory processes to fine-tune the dynamics of hormone production. In Drosophila, transient increases of the steroid prohormone ecdysone, produced at each larval stage, are necessary to trigger moulting and metamorphosis. Binding of the active ecdysone (20-hydroxyecdysone) to its receptor (EcR) is followed by the sequential expression of the nuclear receptors E75, DHR3 and βFtz-f1, representing a model for steroid hormone signalling. Here, we have combined genetic and imaging approaches to investigate the precise role of this signalling cascade within theprothoracic gland (PG), where ecdysone synthesis takes place. We show that these receptors operate through an apparent unconventional hierarchy in the PG to control ecdysone biosynthesis. At metamorphosis onset, DHR3 emerges as the downstream component that represses steroidogenic enzymes and requires an early effect of EcR for this repression. To avoid premature repression of steroidogenesis, E75 counteracts DHR3 activity, whereas EcR and βFtz-f1 act early in development through a forward process to moderate DHR3 levels. Our findings suggest that within the steroidogenic tissue, a given 20-hydroxyecdysone peak induces autoregulatory processes to sharpen ecdysone production and to confer competence for ecdysteroid biosynthesis at the next developmental phase, providing novel insights into steroid hormone kinetics.
Collapse
Affiliation(s)
- Jean-Philippe Parvy
- CGM, UPR 3404, CNRS, Gif sur Yvette 91190, France Université Pierre et Marie Curie, Paris 75005, France
| | - Peng Wang
- CGM, UPR 3404, CNRS, Gif sur Yvette 91190, France Université Paris-Sud 11, Orsay 91400, France
| | - Damien Garrido
- CGM, UPR 3404, CNRS, Gif sur Yvette 91190, France Université Paris-Sud 11, Orsay 91400, France
| | | | | | - Mickael Poidevin
- CGM, UPR 3404, CNRS, Gif sur Yvette 91190, France Université Paris-Sud 11, Orsay 91400, France
| | - Jacques Montagne
- CGM, UPR 3404, CNRS, Gif sur Yvette 91190, France Université Paris-Sud 11, Orsay 91400, France
| |
Collapse
|
120
|
Li F, Gu Z, Wang B, Xie Y, Ma L, Xu K, Ni M, Zhang H, Shen W, Li B. Effects of the Biosynthesis and Signaling Pathway of Ecdysterone on Silkworm (Bombyx mori) Following Exposure to Titanium Dioxide Nanoparticles. J Chem Ecol 2014; 40:913-22. [DOI: 10.1007/s10886-014-0487-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 06/16/2014] [Accepted: 06/23/2014] [Indexed: 10/24/2022]
|
121
|
Sumiya E, Ogino Y, Miyakawa H, Hiruta C, Toyota K, Miyagawa S, Iguchi T. Roles of ecdysteroids for progression of reproductive cycle in the fresh water crustacean Daphnia magna. Front Zool 2014. [DOI: 10.1186/s12983-014-0060-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
122
|
Gonçalves AT, Farlora R, Gallardo-Escárate C. Transcriptome survey of the lipid metabolic pathways involved in energy production and ecdysteroid synthesis in the salmon louse Caligus rogercresseyi (Crustacea: Copepoda). Comp Biochem Physiol B Biochem Mol Biol 2014; 176:9-17. [PMID: 25062945 DOI: 10.1016/j.cbpb.2014.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 07/15/2014] [Accepted: 07/15/2014] [Indexed: 11/19/2022]
Abstract
The goal of this study was to identify and analyze the lipid metabolic pathways involved in energy production and ecdysteroid synthesis in the ectoparasite copepod Caligus rogercresseyi. Massive transcriptome sequencing analysis was performed during the infectious copepodid larval stage, during the attached chalimus larval stage, and also in female and male adults. Thirty genes were selected for describing the pathways, and these were annotated for proteins or enzymes involved in lipid digestion, absorption, and transport; fatty acid degradation; the synthesis and degradation of ketone bodies; and steroid and ecdysteroid syntheses. Differential expression of these genes was analyzed by ontogenic stage and discussed considering each stage's feeding habits and energetic needs. Copepodids showed a low expression of fatty acid digestion genes, reflected by a non-feeding behavior, and the upregulation of genes involved in steroid biosynthesis, which was consistent with a pathway for cholesterol synthesis during ecdysis. The chalimus stage showed an upregulation of genes related to fatty acid digestion, absorption, and transport, as well as to fatty acid degradation and the synthesis of ketone bodies, therefore suggesting that lipids ingested from the mucus and skin of the host fish are metabolized as important sources of energy. Adult females also showed a pattern of high lipid metabolism for energy supply and mobilization in relation to reproduction and vitellogenesis. Adult females and males revealed different lipid metabolism patterns that reflected different energetic needs. This study reports for the first time the probable lipid metabolic pathways involved in the energy production and ecdysteroid synthesis of C. rogercresseyi.
Collapse
Affiliation(s)
- Ana Teresa Gonçalves
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P.O. Box 160-C, Chile.
| | - Rodolfo Farlora
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P.O. Box 160-C, Chile.
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P.O. Box 160-C, Chile.
| |
Collapse
|
123
|
Good RT, Gramzow L, Battlay P, Sztal T, Batterham P, Robin C. The molecular evolution of cytochrome P450 genes within and between drosophila species. Genome Biol Evol 2014; 6:1118-34. [PMID: 24751979 PMCID: PMC4040991 DOI: 10.1093/gbe/evu083] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We map 114 gene gains and 74 gene losses in the P450 gene family across the phylogeny of 12 Drosophila species by examining the congruence of gene trees and species trees. Although the number of P450 genes varies from 74 to 94 in the species examined, we infer that there were at least 77 P450 genes in the ancestral Drosophila genome. One of the most striking observations in the data set is the elevated loss of P450 genes in the Drosophila sechellia lineage. The gain and loss events are not evenly distributed among the P450 genes-with 30 genes showing no gene gains or losses whereas others show as many as 20 copy number changes among the species examined. The P450 gene clades showing the fewest number of gene gain and loss events tend to be those evolving with the most purifying selection acting on the protein sequences, although there are exceptions, such as the rapid rate of amino acid replacement observed in the single copy phantom (Cyp306a1) gene. Within D. melanogaster, we observe gene copy number polymorphism in ten P450 genes including multiple cases of interparalog chimeras. Nonallelic homologous recombination (NAHR) has been associated with deleterious mutations in humans, but here we provide a second possible example of an NAHR event in insect P450s being adaptive. Specifically, we find that a polymorphic Cyp12a4/Cyp12a5 chimera correlates with resistance to an insecticide. Although we observe such interparalog exchange in our within-species data sets, we have little evidence of it between species, raising the possibility that such events may occur more frequently than appreciated but are masked by subsequent sequence change.
Collapse
Affiliation(s)
- Robert T Good
- Department of Genetics, University of Melbourne, AustraliaPresent address: Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, Jena, GermanyPresent address: School of Biological Sciences, Monash University, Australia
| | - Lydia Gramzow
- Present address: Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, Jena, Germany
| | - Paul Battlay
- Department of Genetics, University of Melbourne, AustraliaPresent address: Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, Jena, GermanyPresent address: School of Biological Sciences, Monash University, Australia
| | - Tamar Sztal
- Present address: School of Biological Sciences, Monash University, Australia
| | - Philip Batterham
- Department of Genetics, University of Melbourne, AustraliaPresent address: Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, Jena, GermanyPresent address: School of Biological Sciences, Monash University, Australia
| | - Charles Robin
- Department of Genetics, University of Melbourne, AustraliaPresent address: Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, Jena, GermanyPresent address: School of Biological Sciences, Monash University, Australia
| |
Collapse
|
124
|
Tom M, Manfrin C, Giulianini PG, Pallavicini A. Crustacean oxi-reductases protein sequences derived from a functional genomic project potentially involved in ecdysteroid hormones metabolism - a starting point for function examination. Gen Comp Endocrinol 2013; 194:71-80. [PMID: 24055302 DOI: 10.1016/j.ygcen.2013.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 09/02/2013] [Indexed: 01/07/2023]
Abstract
A transcriptomic assembly originated from hypodermis and Y organ of the crustacean Pontastacus leptodactylus is used here for in silico characterization of oxi-reductase enzymes potentially involved in the metabolism of ecdysteroid molting hormones. RNA samples were extracted from male Y organ and its neighboring hypodermis in all stages of the molt cycle. An equimolar RNA mix from all stages was sequenced using next generation sequencing technologies and de novo assembled, resulting with 74,877 unique contigs. These transcript sequences were annotated by examining their resemblance to all GenBank translated transcripts, determining their Gene Ontology terms and their characterizing domains. Based on the present knowledge of arthropod ecdysteroid metabolism and more generally on steroid metabolism in other taxa, transcripts potentially related to ecdysteroid metabolism were identified and their longest possible conceptual protein sequences were constructed in two stages, correct reading frame was deduced from BLASTX resemblances, followed by elongation of the protein sequence by identifying the correct translation frame of the original transcript. The analyzed genes belonged to several oxi-reductase superfamilies including the Rieske non heme iron oxygenases, cytochrome P450s, short-chained hydroxysteroid oxi-reductases, aldo/keto oxireductases, lamin B receptor/sterol reductases and glucose-methanol-cholin oxi-reductatses. A total of 68 proteins were characterized and the most probable participants in the ecdysteroid metabolism where indicated. The study provides transcript and protein structural information, a starting point for further functional studies, using a variety of gene-specific methods to demonstrate or disprove the roles of these proteins in relation to ecdysteroid metabolism in P. leptodactylus.
Collapse
Affiliation(s)
- Moshe Tom
- Israel Oceanographic and Limnological Research, P.O.B 8030, Haifa 31080, Israel.
| | | | | | | |
Collapse
|
125
|
Wan PJ, Shi XQ, Kong Y, Zhou LT, Guo WC, Ahmat T, Li GQ. Identification of cytochrome P450 monooxygenase genes and their expression profiles in cyhalothrin-treated Colorado potato beetle, Leptinotarsa decemlineata. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2013; 107:360-368. [PMID: 24267698 DOI: 10.1016/j.pestbp.2013.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/27/2013] [Accepted: 10/01/2013] [Indexed: 06/02/2023]
Abstract
Based on a Leptinotarsa decemlineata transcriptome dataset and the GenBank sequences, a total of 74 cytochrome P450 monooxygenase genes (Cyps) were identified. These genes fell into CYP2 clan, mitochondrial clan, CYP3 clan and CYP4 clan, and were classified into 19 families and 35 subfamilies according to standard nomenclature. Two new families were discovered in CYP4 clan, and were named CYP412 and CYP413 respectively. Four new families that were recently discovered in Tribolium castaneum, including mitochondrial family CYP353, CYP3 clan families CYP345 and CYP347, and CYP4 clan family CYP350, were also found in L. decemlineata. The phylogenetic trees of CYPs from L. decemlineata and other representative insect species were constructed, and these trees provided evolutionary insight for the genetic distance. Our results facilitate further researches to understand the functions and evolution of L. decemlineata Cyp genes. In order to find cyhalothrin-inducible Cyp genes, the expression levels of Cyps belonging to CYP12, CYP6, CYP9 and CYP4 families were determined by quantitative reverse transcriptase-PCR in cyhalothrin-treated and control fourth-instar larvae. Nine Cyp genes, i.e., Cyp12H2, Cyp6BH2, Cyp6BJ1, Cyp6BQ17, Cyp6EG1, Cyp6EH1, Cyp6EJ1 Cyp4BN13v1 and Cyp4BN15, were highly expressed in cyhalothrin-treated larvae. These CYPs are the candidates that are involved in cyhalothrin detoxification.
Collapse
Affiliation(s)
- Pin-Jun Wan
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | | | | | | | | | | | | |
Collapse
|
126
|
Poelchau MF, Reynolds JA, Elsik CG, Denlinger DL, Armbruster PA. RNA-Seq reveals early distinctions and late convergence of gene expression between diapause and quiescence in the Asian tiger mosquito, Aedes albopictus. ACTA ACUST UNITED AC 2013; 216:4082-90. [PMID: 23913949 DOI: 10.1242/jeb.089508] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dormancy is a crucial adaptation allowing insects to withstand harsh environmental conditions. The pre-programmed developmental arrest of diapause is a form of dormancy that is distinct from quiescence, in which development arrests in immediate response to hardship. Much progress has been made in understanding the environmental and hormonal controls of diapause. However, studies identifying transcriptional changes unique to diapause, rather than quiescence, are lacking, making it difficult to disentangle the transcriptional profiles of diapause from dormancy in general. The Asian tiger mosquito, Aedes albopictus, presents an ideal model for such a study, as diapausing and quiescent eggs can be staged and collected for global gene expression profiling using a newly developed transcriptome. Here, we use RNA-Seq to contrast gene expression during diapause with quiescence to identify transcriptional changes specific to the diapause response. We identify global trends in gene expression that show gradual convergence of diapause gene expression upon gene expression during quiescence. Functionally, early diapause A. albopictus show strong expression differences of genes involved in metabolism, which diminish over time. Of these, only expression of lipid metabolism genes remained distinct in late diapause. We identify several genes putatively related to hormonal control of development that are persistently differentially expressed throughout diapause, suggesting these might be involved in the maintenance of diapause. Our results identify key biological differences between diapausing and quiescent pharate larvae, and suggest candidate pathways for studying metabolism and the hormonal control of development during diapause in other species.
Collapse
Affiliation(s)
- Monica F Poelchau
- Department of Biology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
127
|
Luan JB, Ghanim M, Liu SS, Czosnek H. Silencing the ecdysone synthesis and signaling pathway genes disrupts nymphal development in the whitefly. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:740-6. [PMID: 23748027 DOI: 10.1016/j.ibmb.2013.05.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 05/13/2023]
Abstract
Sap-sucking insects are important pests in agriculture and good models to study insect biology. The role of ecdysone pathway genes in the life history of this group of insects is largely unknown likely due to a lack of efficient gene silencing methods allowing functional genetic analyses. Here, we developed a new and high throughput method to silence whitefly genes using a leaf-mediated dsRNA feeding method. We have applied this method to explore the roles of genes within the molting hormone-ecdysone synthesis and signaling pathway for the survival, reproduction and development of whiteflies. Silencing of genes in the ecdysone pathway had a limited effect on the survival and fecundity of adult whiteflies. However, gene silencing reduced survival and delayed development of the whitefly during nymphal stages. These data suggest that the silencing method developed here provides a useful tool for functional gene discovery studies of sap-sucking insects, and further indicate the potential of regulating the ecdysone pathway in whitefly control.
Collapse
Affiliation(s)
- Jun-Bo Luan
- Ministry of Agriculture, Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | | | | | | |
Collapse
|
128
|
Carmichael SN, Bron JE, Taggart JB, Ireland JH, Bekaert M, Burgess ST, Skuce PJ, Nisbet AJ, Gharbi K, Sturm A. Salmon lice (Lepeophtheirus salmonis) showing varying emamectin benzoate susceptibilities differ in neuronal acetylcholine receptor and GABA-gated chloride channel mRNA expression. BMC Genomics 2013; 14:408. [PMID: 23773482 PMCID: PMC3691771 DOI: 10.1186/1471-2164-14-408] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/13/2013] [Indexed: 01/01/2023] Open
Abstract
Background Caligid copepods, also called sea lice, are fish ectoparasites, some species of which cause significant problems in the mariculture of salmon, where the annual cost of infection is in excess of €300 million globally. At present, caligid control on farms is mainly achieved using medicinal treatments. However, the continued use of a restricted number of medicine actives potentially favours the development of drug resistance. Here, we report transcriptional changes in a laboratory strain of the caligid Lepeophtheirus salmonis (Krøyer, 1837) that is moderately (~7-fold) resistant to the avermectin compound emamectin benzoate (EMB), a component of the anti-salmon louse agent SLICE® (Merck Animal Health). Results Suppression subtractive hybridisation (SSH) was used to enrich transcripts differentially expressed between EMB-resistant (PT) and drug-susceptible (S) laboratory strains of L. salmonis. SSH libraries were subjected to 454 sequencing. Further L. salmonis transcript sequences were available as expressed sequence tags (EST) from GenBank. Contiguous sequences were generated from both SSH and EST sequences and annotated. Transcriptional responses in PT and S salmon lice were investigated using custom 15 K oligonucleotide microarrays designed using the above sequence resources. In the absence of EMB exposure, 359 targets differed in transcript abundance between the two strains, these genes being enriched for functions such as calcium ion binding, chitin metabolism and muscle structure. γ-aminobutyric acid (GABA)-gated chloride channel (GABA-Cl) and neuronal acetylcholine receptor (nAChR) subunits showed significantly lower transcript levels in PT lice compared to S lice. Using RT-qPCR, the decrease in mRNA levels was estimated at ~1.4-fold for GABA-Cl and ~2.8-fold for nAChR. Salmon lice from the PT strain showed few transcriptional responses following acute exposure (1 or 3 h) to 200 μg L-1 of EMB, a drug concentration tolerated by PT lice, but toxic for S lice. Conclusions Avermectins are believed to exert their toxicity to invertebrates through interaction with glutamate-gated and GABA-gated chloride channels. Further potential drug targets include other Cys-loop ion channels such as nAChR. The present study demonstrates decreased transcript abundances of GABA-Cl and nAChR subunits in EMB-resistant salmon lice, suggesting their involvement in avermectin toxicity in caligids.
Collapse
|
129
|
Following the 'tracks': Tramtrack69 regulates epithelial tube expansion in the Drosophila ovary through Paxillin, Dynamin, and the homeobox protein Mirror. Dev Biol 2013; 378:154-69. [PMID: 23545328 DOI: 10.1016/j.ydbio.2013.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/05/2013] [Accepted: 03/16/2013] [Indexed: 11/21/2022]
Abstract
Epithelial tubes are the infrastructure for organs and tissues, and tube morphogenesis requires precise orchestration of cell signaling, shape, migration, and adhesion. Follicle cells in the Drosophila ovary form a pair of epithelial tubes whose lumens act as molds for the eggshell respiratory filaments, or dorsal appendages (DAs). DA formation is a robust and accessible model for studying the patterning, formation, and expansion of epithelial tubes. Tramtrack69 (TTK69), a transcription factor that exhibits a variable embryonic DNA-binding preference, controls DA lumen volume and shape by promoting tube expansion; the tramtrack mutation twin peaks (ttk(twk)) reduces TTK69 levels late in oogenesis, inhibiting this expansion. Microarray analysis of wild-type and ttk(twk) ovaries, followed by in situ hybridization and RNAi of candidate genes, identified the Phospholipase B-like protein Lamina ancestor (LAMA), the scaffold protein Paxillin, the endocytotic regulator Shibire (Dynamin), and the homeodomain transcription factor Mirror, as TTK69 effectors of DA-tube expansion. These genes displayed enriched expression in DA-tube cells, except lama, which was expressed in all follicle cells. All four genes showed reduced expression in ttk(twk) mutants and exhibited RNAi phenotypes that were enhanced in a ttk(twk)/+ background, indicating ttk(twk) genetic interactions. Although previous studies show that Mirror patterns the follicular epithelium prior to DA tubulogenesis, we show that Mirror has an independent, novel role in tube expansion, involving positive regulation of Paxillin. Thus, characterization of ttk(twk)-differentially expressed genes expands the network of TTK69 effectors, identifies novel epithelial tube-expansion regulators, and significantly advances our understanding of this vital developmental process.
Collapse
|
130
|
Zhu F, Moural TW, Shah K, Palli SR. Integrated analysis of cytochrome P450 gene superfamily in the red flour beetle, Tribolium castaneum. BMC Genomics 2013; 14:174. [PMID: 23497158 PMCID: PMC3682917 DOI: 10.1186/1471-2164-14-174] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/27/2013] [Indexed: 01/22/2023] Open
Abstract
Background The functional and evolutionary diversification of insect cytochrome P450s (CYPs) shaped the success of insects. CYPs constitute one of the largest and oldest gene superfamilies that are found in virtually all aerobic organisms. Because of the availability of whole genome sequence and well functioning RNA interference (RNAi), the red flour beetle, Tribolium castaneum serves as an ideal insect model for conducting functional genomics studies. Although several T. castaneum CYPs had been functionally investigated in our previous studies, the roles of the majority of CYPs remain largely unknown. Here, we comprehensively analyzed the phylogenetic relationship of all T. castaneum CYPs with genes in other insect species, investigated the CYP6BQ gene cluster organization, function and evolution, as well as examined the mitochondrial CYPs gene expression patterns and intron-exon organization. Results A total 143 CYPs were identified and classified into 26 families and 59 subfamilies. The phylogenetic trees of CYPs among insects across taxa provided evolutionary insight for the genetic distance and function. The percentage of singleton (33.3%) in T. castaneum CYPs is much less than those in Drosophila melanogaster (52.5%) and Bombyx mori (51.2%). Most members in the largest CYP6BQ gene cluster may make contribution to deltamethrin resistance in QTC279 strain. T. castaneum genome encodes nine mitochondrial CYPs, among them CYP12H1 is only expressed in the final instar larval stage. The intron-exon organizations of these mitochondrial CYPs are highly diverse. Conclusion Our studies provide a platform to understand the evolution and functions of T. castaneum CYP gene superfamily which will help reveal the strategies employed by insects to cope with their environment.
Collapse
Affiliation(s)
- Fang Zhu
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | |
Collapse
|
131
|
Lavrynenko O, Nedielkov R, Möller HM, Shevchenko A. Girard derivatization for LC-MS/MS profiling of endogenous ecdysteroids in Drosophila. J Lipid Res 2013; 54:2265-2272. [PMID: 23843360 DOI: 10.1194/jlr.d035949] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ecdysteroids are potent developmental regulators that control molting, reproduction, and stress response in arthropods. In developing larvae, picogram quantities of individual ecdysteroids and their conjugated forms are present along with milligrams of structural and energy storage lipids. To enhance the specificity and sensitivity of ecdysteroid detection, we targeted the 6-ketone group, which is common to all ecdysteroids, with Girard reagents. Unlike other ketosteroids, during the reaction, Girard hydrazones of ecdysteroids eliminated the C14-hydroxyl group, creating an additional C14-C15 double bond. Dehydrated hydrazones of endogenous ecdysteroids were detected by LC-MS/MS in the multiple reaction monitoring (MRM) mode using two mass transitions: one relied upon neutral loss of a quaternary amine from the Girard T moiety; another complementary transition followed neutral loss of the hydrocarbon chain upon C20-C27 cleavage. We further demonstrated that a combination of Girard derivatization and LC-MS/MS enabled unequivocal detection of three major endogenous hormones at the picogram level in an extract from a single Drosophila pupa.
Collapse
Affiliation(s)
- Oksana Lavrynenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; and
| | - Ruslan Nedielkov
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Heiko M Möller
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; and.
| |
Collapse
|
132
|
Yamanaka N, Rewitz KF, O’Connor MB. Ecdysone control of developmental transitions: lessons from Drosophila research. ANNUAL REVIEW OF ENTOMOLOGY 2013; 58:497-516. [PMID: 23072462 PMCID: PMC4060523 DOI: 10.1146/annurev-ento-120811-153608] [Citation(s) in RCA: 414] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The steroid hormone ecdysone is the central regulator of insect developmental transitions. Recent new advances in our understanding of ecdysone action have relied heavily on the application of Drosophila melanogaster molecular genetic tools to study insect metamorphosis. In this review, we focus on three major aspects of Drosophila ecdysone biology: (a) factors that regulate the timing of ecdysone release, (b) molecular basis of stage- and tissue-specific responses to ecdysone, and (c) feedback regulation and coordination of ecdysone signaling.
Collapse
Affiliation(s)
- Naoki Yamanaka
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Kim F. Rewitz
- Department of Science, Systems and Models, Roskilde University, 4000 Roskilde, Denmark
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
133
|
Rewitz KF, Yamanaka N, O'Connor MB. Developmental checkpoints and feedback circuits time insect maturation. Curr Top Dev Biol 2013; 103:1-33. [PMID: 23347514 DOI: 10.1016/b978-0-12-385979-2.00001-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The transition from juvenile to adult is a fundamental process that allows animals to allocate resource toward reproduction after completing a certain amount of growth. In insects, growth to a species-specific target size induces pulses of the steroid hormone ecdysone that triggers metamorphosis and reproductive maturation. The past few years have seen significant progress in understanding the interplay of mechanisms that coordinate timing of ecdysone production and release. These studies show that the neuroendocrine system monitors complex size-related and nutritional signals, as well as external cues, to time production and release of ecdysone. Based on results discussed here, we suggest that developmental progression to adulthood is controlled by checkpoints that regulate the genetic timing program enabling it to adapt to different environmental conditions. These checkpoints utilize a number of signaling pathways to modulate ecdysone production in the prothoracic gland. Release of ecdysone activates an autonomous cascade of both feedforward and feedback signals that determine the duration of the ecdysone pulse at each developmental transitions. Conservation of the genetic mechanisms that coordinate the juvenile-adult transition suggests that insights from the fruit fly Drosophila will provide a framework for future investigation of developmental timing in metazoans.
Collapse
Affiliation(s)
- Kim F Rewitz
- Department of Biology, Cell and Neurobiology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
134
|
Pottier MA, Bozzolan F, Chertemps T, Jacquin-Joly E, Lalouette L, Siaussat D, Maïbèche-Coisne M. Cytochrome P450s and cytochrome P450 reductase in the olfactory organ of the cotton leafworm Spodoptera littoralis. INSECT MOLECULAR BIOLOGY 2012; 21:568-80. [PMID: 22984814 DOI: 10.1111/j.1365-2583.2012.01160.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cytochrome P450 enzymes (P450s) are involved in many physiological functions in insects, such as the metabolism of signal molecules, adaptation to host plants and insecticide resistance. Several P450s have been reported in the olfactory organs of insects, the antennae, and have been proposed to play a role in odorant processing and/or xenobiotic metabolism. Despite recent transcriptomic analyses in several species, the diversity of antennal P450s in insects has not yet been investigated. Here, we report the identification of 37 putative P450s expressed in the antennae of the pest moth Spodoptera littoralis, as well as the characterization of a redox partner, cytochrome P450 reductase (CPR). Phylogenetic analysis revealed that S. littoralis P450s belong to four clades defined by their conservation with vertebrate P450s and their cellular localization. Interestingly, the CYP3 and CYP4 clans, which have been described to be mainly involved in the metabolism of plant compounds and xenobiotics, were largely predominant. More surprisingly, two P450s related to ecdysteroid metabolism were also identified. Expression patterns in adult and larval tissues were studied. Eight P450s appeared to be specific to the chemosensory organs, ie the antennae and proboscis, suggesting a specific role in odorant and tastant processing. Moreover, exposure of males to a plant odorant down-regulated the transcript level of CPR, revealing for the first time the regulation of this gene by odorants within insect antennae. This work suggests that the antennae of insects are a key site for P450-mediated metabolism of a large range of exogenous and endogenous molecules.
Collapse
Affiliation(s)
- M-A Pottier
- UMR, Physiologie de l'Insecte, Signalisation et Communication, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | | | |
Collapse
|
135
|
Rand MD, Lowe JA, Mahapatra CT. Drosophila CYP6g1 and its human homolog CYP3A4 confer tolerance to methylmercury during development. Toxicology 2012; 300:75-82. [PMID: 22699155 PMCID: PMC3408872 DOI: 10.1016/j.tox.2012.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/21/2012] [Accepted: 06/02/2012] [Indexed: 11/16/2022]
Abstract
Methylmercury (MeHg) is a persistent environmental toxicant that is commonly encountered through dietary fish and seafood. While the fetal nervous system is a well-known primary target for MeHg toxicity, the risks of MeHg exposures that are commonly experienced today through diet and environmental exposure remain uncertain. Despite knowledge of numerous cellular processes that are affected by MeHg, the mechanisms that ultimately influence tolerance or susceptibility to MeHg in the developing fetus are not well understood. Using transcriptomic analyses of developing brains of MeHg tolerant and susceptible strains of Drosophila, we previously identified members of the cytochrome p450 (CYP) family of monooxygenases/oxidoreductases as candidate MeHg tolerance genes. While CYP genes encode Phase I enzymes best known for xenobiotic metabolism in the liver, several classes of CYPs are required for synthesis or degradation of essential endobiotics, such as hormones and fatty acids, that are critical to normal development. We now demonstrate that variation in expression CYP genes can strongly influence MeHg tolerance in the developing fly. Importantly, modulating expression of a single CYP, CYP6g1, specifically in neurons or the fat body (liver equivalent) is sufficient to rescue development in the presence of MeHg. We also demonstrate a conserved function for CYP3A4, a human homolog of CYP6g1, in conferring MeHg tolerance to flies. Finally, we show that pharmacological induction of CYPs with caffeine parallels an increase in tolerance to MeHg in developing flies. These findings establish a previously unidentified role for CYPs in MeHg toxicity and point to a potentially conserved role of CYP genes to influence susceptibility to MeHg toxicity across species.
Collapse
Affiliation(s)
- Matthew D Rand
- Department of Anatomy and Neurobiology, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | | | | |
Collapse
|
136
|
Kamimura M, Saito H, Niwa R, Niimi T, Toyoda K, Ueno C, Kanamori Y, Shimura S, Kiuchi M. Fungal ecdysteroid-22-oxidase, a new tool for manipulating ecdysteroid signaling and insect development. J Biol Chem 2012; 287:16488-98. [PMID: 22427652 PMCID: PMC3351327 DOI: 10.1074/jbc.m112.341180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/13/2012] [Indexed: 11/06/2022] Open
Abstract
Steroid hormones ecdysteroids regulate varieties of developmental processes in insects. Although the ecdysteroid titer can be increased experimentally with ease, its artificial reduction, although desirable, is very difficult to achieve. Here we characterized the ecdysteroid-inactivating enzyme ecdysteroid-22-oxidase (E22O) from the entomopathogenic fungus Nomuraea rileyi and used it to develop methods for reducing ecdysteroid titer and thereby controlling insect development. K(m) and K(cat) values of the purified E22O for oxidizing ecdysone were 4.4 μM and 8.4/s, respectively, indicating that E22O can inactivate ecdysone more efficiently than other ecdysteroid inactivating enzymes characterized so far. The cloned E22O cDNA encoded a FAD-dependent oxidoreductase. Injection of recombinant E22O into the silkworm Bombyx mori interfered with larval molting and metamorphosis. In the hemolymph of E22O-injected pupae, the titer of hormonally active 20-hydroxyecdysone decreased and concomitantly large amounts of inactive 22-dehydroecdysteroids accumulated. E22O injection also prevented molting of various other insects. In the larvae of the crambid moth Haritalodes basipunctalis, E22O injection induced a diapause-like developmental arrest, which, as in normal diapause, was broken by chilling. Transient expression of the E22O gene by in vivo lipofection effectively decreased the 20-hydroxyecdysone titer and blocked molting in B. mori. Transgenic expression of E22O in Drosophila melanogaster caused embryonic morphological defects, phenotypes of which were very similar to those of the ecdysteroid synthesis deficient mutants. Thus, as the first available simple but versatile tool for reducing the internal ecdysteroid titer, E22O could find use in controlling a broad range of ecdysteroid-associated developmental and physiological phenomena.
Collapse
Affiliation(s)
- Manabu Kamimura
- National Institute of Agrobiological Sciences, Owashi, Tsukuba, Ibaraki 305-8634, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Sztal T, Chung H, Berger S, Currie PD, Batterham P, Daborn PJ. A cytochrome p450 conserved in insects is involved in cuticle formation. PLoS One 2012; 7:e36544. [PMID: 22574182 PMCID: PMC3344891 DOI: 10.1371/journal.pone.0036544] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/09/2012] [Indexed: 01/20/2023] Open
Abstract
The sequencing of numerous insect genomes has revealed dynamic changes in the number and identity of cytochrome P450 genes in different insects. In the evolutionary sense, the rapid birth and death of many P450 genes is observed, with only a small number of P450 genes showing orthology between insects with sequenced genomes. It is likely that these conserved P450s function in conserved pathways. In this study, we demonstrate the P450 gene, Cyp301a1, present in all insect genomes sequenced to date, affects the formation of the adult cuticle in Drosophila melanogaster. A Cyp301a1 piggyBac insertion mutant and RNAi of Cyp301a1 both show a similar cuticle malformation phenotype, which can be reduced by 20-hydroxyecdysone, suggesting that Cyp301a1 is an important gene involved in the formation of the adult cuticle and may be involved in ecdysone regulation in this tissue.
Collapse
Affiliation(s)
- Tamar Sztal
- Department of Genetics, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
138
|
Martínez-Paz P, Morales M, Martínez-Guitarte JL, Morcillo G. Characterization of a cytochrome P450 gene (CYP4G) and modulation under different exposures to xenobiotics (tributyltin, nonylphenol, bisphenol A) in Chironomus riparius aquatic larvae. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:333-43. [PMID: 22019333 DOI: 10.1016/j.cbpc.2011.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/27/2011] [Accepted: 10/03/2011] [Indexed: 10/16/2022]
Abstract
Cytochrome P450 family members participate in xenobiotic transformation as a detoxification mechanism. We have characterized a CYP gene, assigned to the 4G family, in Chironomus riparius, a reference organism in aquatic toxicology. Due to the potential interest of CYP genes and P450 proteins for monitoring pollution effects at the molecular level, the alterations in the pattern of expression of this gene, induced by different xenobiotics, were analyzed. Different compounds, such as the biocide tributyltin (TBTO) and two other well-known endocrine disruptors, nonylphenol (NP) and bisphenol A (BPA), were tested at different concentrations and acute exposures. Upregulation of the CrCYP4G gene was found after exposures to TBTO (1 ng/L 24h-0.1 ng/L 96 h) and, as measured by RT-PCR mRNA quantification, its level was up to twofold that of controls. However, in contrast, NP (1, 10, 100 μg/L, 24h) and BPA (0.5mg/L 24h-3mg/L 96 h) downregulated the gene (by around a half of the control level) suggesting that this gene responds specifically to particular chemicals in the environment. Glutathione-S-transferase (GST) enzymatic activity was also evaluated for each condition. A fairly good correlation was found with CYP4G gene behavior, as it was activated by TBTO (96 h), but inhibited by NP and BPA (24h). Only the higher concentration of BPA tested activated GST, whereas it inhibited CYP4G activity. The results show that different xenobiotics can induce distinct responses in the detoxification pathway, suggesting multiple xenobiotic transduction mechanisms. This work confirms that specific P450 codifying genes, as well as GST enzyme activities, could be suitable biomarkers for ecotoxicological studies.
Collapse
Affiliation(s)
- Pedro Martínez-Paz
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
139
|
Iga M, Kataoka H. Recent Studies on Insect Hormone Metabolic Pathways Mediated by Cytochrome P450 Enzymes. Biol Pharm Bull 2012; 35:838-43. [DOI: 10.1248/bpb.35.838] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masatoshi Iga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
| | - Hiroshi Kataoka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
| |
Collapse
|
140
|
Sun W, Shen YH, Qi DW, Xiang ZH, Zhang Z. Molecular cloning and characterization of Ecdysone oxidase and 3-dehydroecdysone-3α-reductase involved in the ecdysone inactivation pathway of silkworm, Bombyx mori. Int J Biol Sci 2011; 8:125-38. [PMID: 22215981 PMCID: PMC3248655 DOI: 10.7150/ijbs.8.125] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 11/30/2011] [Indexed: 11/24/2022] Open
Abstract
Molting hormone (ecdysteroid) is one of the most important hormones in insects. The synthesis and inactivation of the ecdysteroid regulate the developmental process of insects. A major pathway of ecdysone inactivation is that ecdysone is converted to 3-dehydroecdysone, and then further to 3-epiecdysone in insects. Two enzymes (ecdysone oxidase: EO and 3DE-3α-reductase) participate in this pathway. In this study, based on the previously characterized cDNAs in Spodoptera littoralis, we cloned and characterized EO and 3DE-3α-reductase genes in the silkworm, Bombyx mori. The heterologously expressed proteins of the two genes in yeast showed the ecdysone oxidase and 3DE-3α-reductase activities, respectively. Expression of BmEO was only detected in the midgut at transcriptional and translational levels. We also localized EO within the midgut goblet cell cavities. For Bm3DE-3α-reductase gene, RT-PCR and western blot showed that it was expressed in the midgut and the Malpighian tubules. Moreover, we localized 3DE-3α-reductase within the midgut goblet cell cavities and the cytosol of principal cells of the Malpighian tubules. These two genes have similar expression profiles during different developmental stages. Both genes were highly expressed at the beginning of the 5th instar, and remained a relative low level during the feeding stage, and then were highly expressed at the wandering stage. All these results showed that the profiles of the two genes were well correlated with the ecdysteroid titer. The functional characterization of the enzymes participating in ecdysone inactivation in the silkworm provides hints for the artificial regulation of the silkworm development and biological control of pests.
Collapse
Affiliation(s)
- Wei Sun
- The Key Sericultural Laboratory of Agricultural Ministry, Southwest University, Chongqing, 400715, China
| | | | | | | | | |
Collapse
|
141
|
Kayser H, Eilinger P, Piechon P, Wagner T. C-26 vs. C-27 hydroxylation of insect steroid hormones: regioselectivity of a microsomal cytochrome P450 from a hormone-resistant cell line. Arch Biochem Biophys 2011; 513:27-35. [PMID: 21763268 DOI: 10.1016/j.abb.2011.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 06/27/2011] [Accepted: 06/28/2011] [Indexed: 10/18/2022]
Abstract
Hydroxylation of steroids at one of the side chain terminal methyl groups, commonly linked to C-26, represents an important regulatory step established in many phyla. Discrimination between the two sites, C-26 and C-27, requires knowing the stereochemistry of the products. 26-Hydroxylation of the insect steroid hormone 20-hydroxyecdysone by a microsomal cytochrome P450 was previously found to be responsible for hormonal resistance in a Chironomus cell line mainly producing the (25S)-epimer of 20,26-dihydroxyecdysone. Here, we studied the 25-desoxy analog of 20-hydroxyecdysone, ponasterone A, to elucidate the stereochemistry of the expected 26-hydroxy product, inokosterone, which occurs as C-25 epimers in nature. We identified the predominant metabolite as the C-25 R epimer of inokosterone on comparison by RP-HPLC with the (25R)- and (25S)-epimers the stereochemistry of which was confirmed by X-ray crystallography. (25R)-inokosterone was further oxidized to the 26-aldehyde identified by mass spectroscopy, borohydride reduction and metabolic transformation to 26-carboxylic acid. The (25S)-epimers of inokosterone and its aldehyde were minor products. With 20-hydroxyecdysone as substrate, we newly identified the (25R)-epimer of 20,26-dihydroxyecdysone as a minor product. In conclusion, the present stereochemical studies revealed high regioselectivity of the Chironomus enzyme to hydroxylate both steroids at the same methyl group, denoted C-27.
Collapse
Affiliation(s)
- Hartmut Kayser
- Institute of General Zoology and Endocrinology, University of Ulm, Germany.
| | | | | | | |
Collapse
|
142
|
Ai J, Zhu Y, Duan J, Yu Q, Zhang G, Wan F, Xiang ZH. Genome-wide analysis of cytochrome P450 monooxygenase genes in the silkworm, Bombyx mori. Gene 2011; 480:42-50. [DOI: 10.1016/j.gene.2011.03.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 01/29/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
|
143
|
Tootle TL, Williams D, Hubb A, Frederick R, Spradling A. Drosophila eggshell production: identification of new genes and coordination by Pxt. PLoS One 2011; 6:e19943. [PMID: 21637834 PMCID: PMC3102670 DOI: 10.1371/journal.pone.0019943] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/06/2011] [Indexed: 12/03/2022] Open
Abstract
Drosophila ovarian follicles complete development using a spatially and temporally controlled maturation process in which they resume meiosis and secrete a multi-layered, protective eggshell before undergoing arrest and/or ovulation. Microarray analysis revealed more than 150 genes that are expressed in a stage-specific manner during the last 24 hours of follicle development. These include all 30 previously known eggshell genes, as well as 19 new candidate chorion genes and 100 other genes likely to participate in maturation. Mutations in pxt, encoding a putative Drosophila cyclooxygenase, cause many transcripts to begin expression prematurely, and are associated with eggshell defects. Somatic activity of Pxt is required, as RNAi knockdown of pxt in the follicle cells recapitulates both the temporal expression and eggshell defects. One of the temporally regulated genes, cyp18a1, which encodes a cytochromome P450 protein mediating ecdysone turnover, is downregulated in pxt mutant follicles, and cyp18a1 mutation itself alters eggshell gene expression. These studies further define the molecular program of Drosophila follicle maturation and support the idea that it is coordinated by lipid and steroid hormonal signals.
Collapse
Affiliation(s)
- Tina L Tootle
- Department of Anatomy and Cell Biology, Roy J. and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America.
| | | | | | | | | |
Collapse
|
144
|
Rewitz KF, Yamanaka N, O'Connor MB. Steroid hormone inactivation is required during the juvenile-adult transition in Drosophila. Dev Cell 2011; 19:895-902. [PMID: 21145504 DOI: 10.1016/j.devcel.2010.10.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 10/17/2010] [Accepted: 10/18/2010] [Indexed: 11/17/2022]
Abstract
Steroid hormones are systemic signaling molecules that regulate juvenile-adult transitions in both insects and mammals. In insects, pulses of the steroid hormone 20-hydroxyecdysone (20E) are generated by increased biosynthesis followed by inactivation/clearance. Although mechanisms that control 20E synthesis have received considerable recent attention, the physiological significance of 20E inactivation remains largely unknown. We show that the cytochrome P450 Cyp18a1 lowers 20E titer during the Drosophila prepupal to pupal transition. Furthermore, this reduction of 20E levels is a prerequisite to induce βFTZ-F1, a key factor in the genetic hierarchy that controls early metamorphosis. Resupplying βFTZ-F1 rescues Cyp18a1-deficient prepupae. Because Cyp18a1 is 20E-inducible, it appears that the increased production of steroid is responsible for its eventual decline, thereby generating the regulatory pulse required for proper temporal progression of metamorphosis. The coupling of hormone clearance to βFTZ-F1 expression suggests a general mechanism by which transient signaling drives unidirectional progression through a multistep process.
Collapse
Affiliation(s)
- Kim F Rewitz
- Department of Science, Roskilde University, Denmark
| | | | | |
Collapse
|