101
|
Marchetti A, Colletti M, Cozzolino AM, Steindler C, Lunadei M, Mancone C, Tripodi M. ERK5/MAPK is activated by TGFbeta in hepatocytes and required for the GSK-3beta-mediated Snail protein stabilization. Cell Signal 2008; 20:2113-8. [PMID: 18760348 DOI: 10.1016/j.cellsig.2008.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 08/04/2008] [Indexed: 02/06/2023]
Abstract
Extracellular signal-regulated protein kinase 5 (ERK5) is a mitogen-activated protein kinase, specifically activated by MEK5, and involved in the regulation of many cellular functions including proliferation, survival, differentiation and apoptosis. MEK5/ERK5 module is an important element of different signal transduction pathways. The aim of this study was to investigate whether ERK5 participates to the signalling of the multifunctional cytokine TGFbeta, known to play an important role in the regulation of hepatic growth. Here, we reported that ERK5 is phosphorylated and activated by TGFbeta in hepatocytes, with a rapid and sustained kinetic, through a Src-dependent pathway. Moreover, we demonstrated that ERK5 participates to the TGFbeta-induced Snail protein regulation being required for its stabilization. We also found that the functional inactivation of ERK5 impedes the TGFbeta-mediated glycogen synthase kinase-3beta inactivation suggesting this as mechanism responsible for ERK5-mediated Snail stabilization. Thus, results presented in this study uncovered for the first time a role for ERK5 in the TGFbeta-induced cellular responses.
Collapse
Affiliation(s)
- Alessandra Marchetti
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, University La Sapienza, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
102
|
Schroeder JP, Spanos M, Stevenson JR, Besheer J, Salling M, Hodge CW. Cue-induced reinstatement of alcohol-seeking behavior is associated with increased ERK1/2 phosphorylation in specific limbic brain regions: blockade by the mGluR5 antagonist MPEP. Neuropharmacology 2008; 55:546-54. [PMID: 18619984 DOI: 10.1016/j.neuropharm.2008.06.057] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 06/24/2008] [Accepted: 06/25/2008] [Indexed: 01/15/2023]
Abstract
Relapse to alcohol use after periods of abstinence is a hallmark behavioral pathology of alcoholism and a major clinical problem. Emerging evidence indicates that metabotropic glutamate receptor 5 (mGluR5) antagonists attenuate relapse to alcohol-seeking behavior but the molecular mechanisms of this potential therapeutic effect remain unexplored. The extracellular signal-regulated kinase (ERK1/2) pathway is downstream of mGluR5 and has been implicated in addiction. We sought to determine if cue-induced reinstatement of alcohol-seeking behavior, and its reduction by an mGluR5 antagonist, is associated with changes in ERK1/2 activation in reward-related limbic brain regions. Selectively-bred alcohol-preferring (P) rats were trained to lever press on a concurrent schedule of alcohol (15% v/v) vs. water reinforcement. Following 9 days of extinction, rats were given an additional extinction trial or injected with the mGluR5 antagonist MPEP (0, 1, 3, or 10mg/kg) and tested for cue-induced reinstatement. Brains were removed 90-min later from the rats in the extinction and MPEP (0 or 10mg/kg) conditions for analysis of p-ERK1/2, total ERK1/2, and p-ERK5 immunoreactivity (IR). Cue-induced reinstatement of alcohol-seeking behavior was associated with a three to five-fold increase in p-ERK1/2 IR in the basolateral amygdala and nucleus accumbens shell. MPEP administration blocked both the relapse-like behavior and increase in p-ERK1/2 IR. p-ERK1/2 IR in the central amygdala and NAcb core was dissociated with the relapse-like behavior and the pharmacological effect of mGluR5 blockade. No changes in total ERK or p-ERK5 were observed. These results suggest that exposure to cues previously associated with alcohol self-administration is sufficient to produce concomitant increases in relapse-like behavior and ERK1/2 activation in specific limbic brain regions. Pharmacological compounds, such as mGluR5 antagonists, that reduce cue-induced ERK1/2 activation may be useful for treatment of relapse in alcoholics that is triggered by exposure to environmental events.
Collapse
Affiliation(s)
- Jason P Schroeder
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Thurston-Bowles Building; CB #7178, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
103
|
TGF-beta activates ERK5 in human renal epithelial cells. Biochem Biophys Res Commun 2008; 373:440-4. [PMID: 18588859 DOI: 10.1016/j.bbrc.2008.06.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 06/16/2008] [Indexed: 11/23/2022]
Abstract
The role of the MAP kinase, extracellular signal-regulated kinase 5 (ERK5) remains unknown, however it is involved in cell differentiation and survival as highlighted by the embryonic lethality of the ERK5 knockout. ERK5 can be activated by growth factors and other extracellular signals. TGF-beta, a powerful controller of epithelial cell phenotype, is known to activate the MAP kinase, ERK1/2 however its effect on ERK5 remains unknown. This study demonstrates, fort the first time, ERK5 activation by TGF-beta, observed in both transformed and primary adult human PTEC; activation required ALK-5 receptor activity. In addition this work demonstrates expression of myocyte enhancer factor-2 (MEF2C) by PTEC and that TGF-beta increased the association of MEK5 with phospho-ERK5 and MEF2C. ERK5 activation by either TGF-beta or epidermal growth factor (EGF) was also inhibited by the p38 MAP kinase inhibitor, SB-202190.
Collapse
|
104
|
Non-redundant function of the MEK5-ERK5 pathway in thymocyte apoptosis. EMBO J 2008; 27:1896-906. [PMID: 18548009 DOI: 10.1038/emboj.2008.114] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 05/23/2008] [Indexed: 11/09/2022] Open
Abstract
The mitogen-activated protein kinases (MAPKs) ERK1/2, p38, and JNK are thought to determine survival-versus-death fate in developing thymocytes. However, this view was challenged by studies using 'MEK1-ERK1/2-specific' pharmacological inhibitors, which block both positive and negative selection. Recently, these inhibitors were also shown to affect MEK5, an upstream activator of ERK5, another class of MAPK with homology to ERK1/2. To define the contribution of the MEK5-ERK5 pathway in T-cell development, we retrovirally expressed dominant-negative or constitutively activated form of MEK5 to inhibit or activate the MEK5-ERK5 pathway. We demonstrate that MEK5 regulates apoptosis of developing thymocytes but has no function in positive selection. ERK5 activity correlates with the levels of Nur77 family members but not that of Bim, two effector pathways of thymocyte apoptosis. These results illustrate the critical involvement of the MEK5-ERK5 pathway in thymocyte development distinct from that of ERK1/2 and highlight the importance of the MAPK network in mediating differential effects pertaining to T-cell differentiation and apoptosis.
Collapse
|
105
|
Rovida E, Spinelli E, Sdelci S, Barbetti V, Morandi A, Giuntoli S, Dello Sbarba P. ERK5/BMK1 is indispensable for optimal colony-stimulating factor 1 (CSF-1)-induced proliferation in macrophages in a Src-dependent fashion. THE JOURNAL OF IMMUNOLOGY 2008; 180:4166-72. [PMID: 18322228 DOI: 10.4049/jimmunol.180.6.4166] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CSF-1, by binding to its high-affinity receptor CSF-1R, sustains the survival and proliferation of monocyte/macrophages, which are central cells of innate immunity and inflammation. The MAPK ERK5 (also known as big MAPK-1, BMK1, or MAPK7) is a 98-kDa molecule sharing high homology with ERK1/2. ERK5 is activated by oxidative stress or growth factor stimulation. This study was undertaken to characterize ERK5 involvement in macrophage signaling that is elicited by CSF-1. Exposure to the CSF-1 of primary human macrophages or murine macrophage cell lines, as well as murine fibroblasts expressing ectopic CSF-1R, resulted in a rapid and sustained increase of ERK5 phosphorylation on activation-specific residues. In the BAC1.2F5 macrophage cell line, ERK5 was also activated by another mitogen, GM-CSF, while macrophage activators such as LPS or IFN-gamma and a number of nonproliferative cytokines failed. Src family kinases were found to link the activation of CSF-1R to that of ERK5, whereas protein kinase C or the serine phosphatases PP1 and PP2A seem not to be involved in the process. Treatment of macrophages with ERK5-specific small interfering RNA markedly reduced CSF-1-induced DNA synthesis and total c-Jun phosphorylation and expression, while increasing the expression of the cyclin-dependent kinase inhibitor p27. Following CSF-1 treatment, the active form of ERK5 rapidly translocated from cytosol to nucleus. Taken together, the results reported in this study show that ERK5 is indispensable for optimal CSF-1-induced proliferation and indicate a novel target for its control.
Collapse
Affiliation(s)
- Elisabetta Rovida
- Dipartimento di Patologia e Oncologia Sperimentali, Università degli Studi di Firenze, Florence, Italy.
| | | | | | | | | | | | | |
Collapse
|
106
|
Rousseau S, Papoutsopoulou M, Symons A, Cook D, Lucocq JM, Prescott AR, O'Garra A, Ley SC, Cohen P. TPL2-mediated activation of ERK1 and ERK2 regulates the processing of pre-TNF alpha in LPS-stimulated macrophages. J Cell Sci 2008; 121:149-54. [PMID: 18187448 DOI: 10.1242/jcs.018671] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Activation of the TPL2-MKK1/2-ERK1/2 signalling pathway is essential for lipopolysaccharide (LPS)-stimulated production of TNF alpha in macrophages. Here, we demonstrate that, unexpectedly, TPL2-deficient or MKK1-inhibited macrophages produce near normal levels of pre-TNF alpha when TLR2, TLR4 and TLR6 are activated by their respective agonists, but fail to secrete TNFalpha. We show that LPS stimulates the appearance of pre-TNFalpha at the cell surface and that this is prevented by inhibition of MAPK kinases 1 and 2 (MKK1/2) or in TPL2-deficient macrophages. However, the transport of pre-TNF alpha from the Golgi to the plasma membrane is unaffected by inhibition of the TPL2-MKK1/2-ERK1/2 pathway. Finally, we show that TACE, the protease that cleaves pre-TNF alpha to secreted TNFalpha, is phosphorylated by ERK1 and ERK2 (ERK1/2) at Thr735 in LPS-stimulated macrophages. Therefore, although TACE activity per se is not required for the LPS-stimulated cell surface expression of pre-TNF alpha, the phosphorylation of this protease might contribute to, or be required for, the cell surface expression of the pre-TNF alpha-TACE complex.
Collapse
Affiliation(s)
- Simon Rousseau
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Mitogen-activated protein kinase assays. Methods Mol Biol 2008. [PMID: 18453108 DOI: 10.1007/978-1-59745-467-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Polymorphonuclear neutrophils (PMN) play an essential role in host defense against bacteria and fungi through coordinated responses such as adhesion, migration, phagocytosis, secretion, and activation of the NADPH oxidase. The mitogen-activated protein kinases (MAPKs) and their activation kinase cascades, which transduce signals from the plasma membrane to the cytosol and nucleus, are an integral part of signaling pathways involved in many cellular responses. PMN express several members of the MAPK family that have been shown, mainly through the use of pharmacological inhibitors, to mediate the cellular activities triggered by a variety of extracellular agonists. Methods to determine MAPK activation have been greatly simplified with the availability of antibodies raised to active MAPKs. The recent development of novel inhibitors for the MAPK pathways may further our understanding of their role in neutrophil function.
Collapse
|
108
|
Thompson J, Winoto A. During negative selection, Nur77 family proteins translocate to mitochondria where they associate with Bcl-2 and expose its proapoptotic BH3 domain. ACTA ACUST UNITED AC 2008; 205:1029-36. [PMID: 18443228 PMCID: PMC2373836 DOI: 10.1084/jem.20080101] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apoptosis accompanying negative selection is a central but poorly understood event in T cell development. The Nur77 nuclear steroid receptor and Bim, a proapoptotic BH3-only member of the Bcl-2 family, are two molecules implicated in this process. However, how they relate to each other and how Nur77 induces apoptosis remain unclear. In thymocytes, Nur77 has been shown to induce cell death through a transcriptional-dependent pathway, but in cancer cell lines, Nur77 was reported to induce apoptosis through conversion of Bcl-2 into a killer protein at the mitochondria. Whether this Nur77 transcriptional-independent pathway actually occurs in vivo remains controversial. Using an optimized fractionation protocol for thymocytes, here we report that stimulation of CD4+CD8+ thymocytes results in translocation of Nur77 and its family member Nor-1 to the mitochondria, leading to their association with Bcl-2 and exposure of the Bcl-2 proapoptotic BH3 domain. In two T cell receptor transgenic models of negative selection, F5 and HY, a conformational change of the Bcl-2 molecule in the negatively selected T cell population was similarly observed. Thus, the Nur77 family and Bim pathways converge at mitochondria to mediate negative selection.
Collapse
Affiliation(s)
- Jennifer Thompson
- Cancer Research Laboratory and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
109
|
Xiao C, Zhang L, Cheng QP, Zhang LC. The activation of extracellular signal-regulated protein kinase 5 in spinal cord and dorsal root ganglia contributes to inflammatory pain. Brain Res 2008; 1215:76-86. [PMID: 18486117 DOI: 10.1016/j.brainres.2008.03.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 03/11/2008] [Accepted: 03/27/2008] [Indexed: 12/19/2022]
Abstract
Activation of mitogen-activated protein kinases (MAPKs) in dorsal root ganglia (DRG) and the spinal dorsal horn contributes to inflammatory pain by transcription-dependent and -independent means. In this study, we investigated extracellular signal-regulated protein kinase 5 (ERK5) activation by peripheral inflammation in the spinal cord and DRG of rats and whether this activation contributes to a heat and mechanical hyperalgesia response. Injection of complete Freund's adjuvant (CFA) into a hindpaw produced persistent inflammation and sustained ERK5 activation in DRG and the spinal dorsal horn. Knockdown of the ERK5 by antisense oligonucleotides suppressed the heat and mechanical hyperalgesia. In addition, the antisense knockdown of ERK5 reduced CFA-induced phosphorylation of cAMP response-element binding protein (CREB), a downstream substrate of the ERK5 pathway, and expression of Fos, a marker for neuronal activation in the central nervous system. Our study suggests that activation of the ERK5 signaling pathway contributes to persistent hyperalgesia induced by peripheral inflammation.
Collapse
Affiliation(s)
- Chun Xiao
- Research Institute of Anesthesiology, Affiliated Hospital of Xuzhou Medical College, 99 Huaihai West Road, Xuzhou 221002, PR China
| | | | | | | |
Collapse
|
110
|
Cullingford TE, Butler MJ, Marshall AK, Tham EL, Sugden PH, Clerk A. Differential regulation of Krüppel-like factor family transcription factor expression in neonatal rat cardiac myocytes: effects of endothelin-1, oxidative stress and cytokines. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1229-36. [PMID: 18406357 PMCID: PMC2396231 DOI: 10.1016/j.bbamcr.2008.03.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 02/03/2023]
Abstract
Krüppel-like transcription factors (Klfs) modulate fundamental cell processes. Cardiac myocytes are terminally-differentiated, but hypertrophy in response to stimuli such as endothelin-1. H2O2 or cytokines promote myocyte apoptosis. Microarray studies of neonatal rat myocytes identified several Klfs as endothelin-1-responsive genes. We used quantitative PCR for further analysis of Klf expression in neonatal rat myocytes. In response to endothelin-1, Klf2 mRNA expression was rapidly increased (∼ 9-fold; 15–30 min) with later increases in expression of Klf4 and Klf6 (∼ 5-fold; 30–60 min). All were regulated as immediate early genes (cycloheximide did not inhibit the increases in expression). Klf5 expression was increased at 1–2 h (∼ 13-fold) as a second phase response (cycloheximide inhibited the increase). These increases were transient and attenuated by U0126. H2O2 increased expression of Klf2, Klf4 and Klf6, but interleukin-1β or tumor necrosis factor α downregulated Klf2 expression with no effect on Klf4 or Klf6. Of the Klfs which repress transcription, endothelin-1 rapidly downregulated expression of Klf3, Klf11 and Klf15. The dynamic regulation of expression of multiple Klf family members in cardiac myocytes suggests that, as a family, they are actively involved in regulating phenotypic responses (hypertrophy and apoptosis) to extracellular stimuli.
Collapse
Affiliation(s)
- Timothy E Cullingford
- National Heart and Lung Institute (NHLI) Division, Faculty of Medicine, Imperial College London, Flowers Building (4th Floor), Armstrong Road, London SW7 2AZ, UK
| | | | | | | | | | | |
Collapse
|
111
|
Li L, Tatake RJ, Natarajan K, Taba Y, Garin G, Tai C, Leung E, Surapisitchat J, Yoshizumi M, Yan C, Abe JI, Berk BC. Fluid shear stress inhibits TNF-mediated JNK activation via MEK5-BMK1 in endothelial cells. Biochem Biophys Res Commun 2008; 370:159-63. [PMID: 18358237 DOI: 10.1016/j.bbrc.2008.03.051] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 03/12/2008] [Indexed: 02/01/2023]
Abstract
Steady laminar blood flow protects vessels from atherosclerosis. We showed that flow decreased tumor necrosis factor-alpha (TNF)-mediated VCAM1 expression in endothelial cells (EC) by inhibiting JNK. Here, we determined the relative roles of MEK1, MEK5 and their downstream kinases ERK1/2 and BMK1 (ERK5) in flow-mediated inhibition of JNK activation. Steady laminar flow (shear stress=12dyn/cm(2)) increased BMK1 and ERK1/2 activity in EC. Pre-exposing EC for 10min to flow inhibited TNF activation of JNK by 58%. A key role for BMK1, but not ERK1/2 was shown. (1) Incubation of EC with PD184352, at concentrations that blocked ERK1/2, but not BMK1, had no effect on flow inhibition of TNF-mediated JNK activation. (2) BIX02188, a MEK5-selective inhibitor, completely reversed the inhibitory effects of flow. These findings indicate that flow inhibits TNF-mediated signaling events in EC by a mechanism dependent on activation of MEK5-BMK1, but not MEK1-ERK1/2. These results support a key role for the MEK5-BMK1 signaling pathway in the atheroprotective effects of blood flow.
Collapse
Affiliation(s)
- Lingli Li
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Box 706, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Integration of protein kinases mTOR and extracellular signal-regulated kinase 5 in regulating nucleocytoplasmic localization of NFATc4. Mol Cell Biol 2008; 28:3489-501. [PMID: 18347059 DOI: 10.1128/mcb.01847-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The target of rapamycin (TOR) signaling regulates the nucleocytoplasmic shuttling of transcription factors in yeast. Whether the mammalian counterpart of TOR (mTOR) also regulates nucleocytoplasmic shuttling is not known. Using a phospho-specific monoclonal antibody, we demonstrate that mTOR phosphorylates Ser(168,170) of endogenous NFATc4, which are conserved gate-keeping Ser residues that control NFAT subcellular distribution. The mTOR acts as a basal kinase during the resting state to maintain NFATc4 in the cytosol. Inactivation and nuclear export of NFATc4 are mediated by rephosphorylation of Ser(168,170), which can be a nuclear event. Kinetic analyses demonstrate that rephosphorylation of Ser(168,170) of endogenous NFATc4 is mediated by mTOR and, surprisingly, by extracellular signal-regulated kinase 5 (ERK5) mitogen-activated protein kinase as well. Ablation of ERK5 in the Erk5(-/-) cells ascertains defects in NFATc4 rephosphorylation and nucleocytoplasmic shuttling. In addition, phosphorylation of NFATc4 by ERK5 primes subsequent phosphorylation mediated by CK1alpha. These results demonstrate that distinct protein kinases are integrated to phosphorylate the gate-keeping residues Ser(168,170) of NFATc4, to regulate subcellular distribution. These data also expand the repertoire of physiological substrates of mTOR and ERK5.
Collapse
|
113
|
Bain J, Plater L, Elliott M, Shpiro N, Hastie C, Mclauchlan H, Klevernic I, Arthur J, Alessi D, Cohen P. The selectivity of protein kinase inhibitors: a further update. Biochem J 2008; 408:297-315. [PMID: 17850214 PMCID: PMC2267365 DOI: 10.1042/bj20070797] [Citation(s) in RCA: 2093] [Impact Index Per Article: 130.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The specificities of 65 compounds reported to be relatively specific inhibitors of protein kinases have been profiled against a panel of 70-80 protein kinases. On the basis of this information, the effects of compounds that we have studied in cells and other data in the literature, we recommend the use of the following small-molecule inhibitors: SB 203580/SB202190 and BIRB 0796 to be used in parallel to assess the physiological roles of p38 MAPK (mitogen-activated protein kinase) isoforms, PI-103 and wortmannin to be used in parallel to inhibit phosphatidylinositol (phosphoinositide) 3-kinases, PP1 or PP2 to be used in parallel with Src-I1 (Src inhibitor-1) to inhibit Src family members; PD 184352 or PD 0325901 to inhibit MKK1 (MAPK kinase-1) or MKK1 plus MKK5, Akt-I-1/2 to inhibit the activation of PKB (protein kinase B/Akt), rapamycin to inhibit TORC1 [mTOR (mammalian target of rapamycin)-raptor (regulatory associated protein of mTOR) complex], CT 99021 to inhibit GSK3 (glycogen synthase kinase 3), BI-D1870 and SL0101 or FMK (fluoromethylketone) to be used in parallel to inhibit RSK (ribosomal S6 kinase), D4476 to inhibit CK1 (casein kinase 1), VX680 to inhibit Aurora kinases, and roscovitine as a pan-CDK (cyclin-dependent kinase) inhibitor. We have also identified harmine as a potent and specific inhibitor of DYRK1A (dual-specificity tyrosine-phosphorylated and -regulated kinase 1A) in vitro. The results have further emphasized the need for considerable caution in using small-molecule inhibitors of protein kinases to assess the physiological roles of these enzymes. Despite being used widely, many of the compounds that we analysed were too non-specific for useful conclusions to be made, other than to exclude the involvement of particular protein kinases in cellular processes.
Collapse
Affiliation(s)
- Jenny Bain
- *Division of Signal Transduction Therapy, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Lorna Plater
- *Division of Signal Transduction Therapy, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Matt Elliott
- *Division of Signal Transduction Therapy, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Natalia Shpiro
- †MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - C. James Hastie
- *Division of Signal Transduction Therapy, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Hilary Mclauchlan
- *Division of Signal Transduction Therapy, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Iva Klevernic
- †MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - J. Simon C. Arthur
- †MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Dario R. Alessi
- †MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Philip Cohen
- *Division of Signal Transduction Therapy, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
- †MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
114
|
Depeille P, Young JJ, Boguslawski EA, Berghuis BD, Kort EJ, Resau JH, Frankel AE, Duesbery NS. Anthrax lethal toxin inhibits growth of and vascular endothelial growth factor release from endothelial cells expressing the human herpes virus 8 viral G protein coupled receptor. Clin Cancer Res 2007; 13:5926-34. [PMID: 17908989 DOI: 10.1158/1078-0432.ccr-07-0732] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE In this study, we tested the hypothesis that inhibition of mitogen-activated protein kinase kinases (MKK) inhibits tumor growth by acting on angiogenic signaling and by extension may form the basis of an effective strategy for treatment of Kaposi's sarcoma. EXPERIMENTAL DESIGN Murine endothelial cells expressing the human herpes virus 8 G protein-coupled receptor (vGPCR-SVEC) were treated with anthrax lethal toxin (LeTx). LeTx is a binary toxin ordinarily secreted by Bacillus anthracis and is composed of two proteins: protective antigen (the binding moiety) and lethal factor (the active moiety). Lethal factor is a protease that cleaves and inactivates MKKs. RESULTS In vitro, treatment of vGPCR-SVEC with LeTx inhibited MKK signaling, moderately inhibited cell proliferation, and blocked the ability of these cells to form colonies in soft agar. Treatment with LeTx also blocked the ability of these cells to release several angioproliferative cytokines, notably vascular endothelial growth factor (VEGF). In contrast, inhibition of mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 with U0126 caused a substantial inhibition of proliferation but only modestly inhibited VEGF release. In xenograft models, i.v. injection of LeTx caused reduced tumor growth characterized immunohistochemically by inhibition of MKK signaling, decreased rates of proliferation, and reduced levels of VEGF and VEGF receptor 2, with a corresponding decrease in vascular density. CONCLUSIONS These data support a role for MKK signaling in tumor growth and vascularization and are consistent with the hypothesis that inhibition of MKK signaling by LeTx or a similar agent may be an effective strategy for the treatment of Kaposi's sarcoma as well as other vascular tumors.
Collapse
Affiliation(s)
- Philippe Depeille
- Laboratory of Cancer and Developmental Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan , USA
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Martin MC, Allan LA, Mancini EJ, Clarke PR. The docking interaction of caspase-9 with ERK2 provides a mechanism for the selective inhibitory phosphorylation of caspase-9 at threonine 125. J Biol Chem 2007; 283:3854-65. [PMID: 18083711 DOI: 10.1074/jbc.m705647200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caspase-9 plays a critical role in the initiation of apoptosis by the mitochondrial pathway. Activation of caspase-9 is inhibited by phosphorylation at Thr(125) by ERK1/2 MAPKs in response to growth factors. Here, we show that phosphorylation of this site is specific for these classical MAPKs and is not strongly induced when JNK and p38alpha/beta MAPKs are activated by anisomycin. By deletion and mutagenic analysis, we identify domains in caspase-9 and ERK2 that mediate their interaction. Binding of ERK2 to caspase-9 and subsequent phosphorylation of caspase-9 requires a basic docking domain (D domain) in the N-terminal prodomain of the caspase. Mutational analysis of ERK2 reveals a (157)TTCD(160) motif required for recognition of caspase-9 that acts independently of the putative common docking domain. Molecular modeling supports the conclusion that Arg(10) in the D domain of caspase-9 interacts with Asp(160) in the TTCD motif of ERK2. Differences in the TTCD motif in other MAPK family members could account for the selective recognition of caspase-9 by ERK1/2. This selectivity may be important for the antiapoptotic role of classical MAPKs in contrast to the proapoptotic roles of stress-activated MAPKs.
Collapse
Affiliation(s)
- Morag C Martin
- Biomedical Research Centre, Ninewells Hospital and Medical School, Level 5, University of Dundee, Dundee DD1 9SY, United Kingdom
| | | | | | | |
Collapse
|
116
|
Diwakar R, Pearson AL, Colville-Nash P, Baines DL, Dockrell MEC. Role played by disabled-2 in albumin induced MAP Kinase signalling. Biochem Biophys Res Commun 2007; 366:675-80. [PMID: 18070591 DOI: 10.1016/j.bbrc.2007.11.171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
Abstract
Albumin has been shown to activate the mitogen activated protein kinase (MAPK) pathway in proximal tubular cells (PTECs) of the kidney. Megalin, the putative receptor for albumin has potential signalling properties. However, the mechanisms by which megalin signals are unclear. The adaptor phosphoprotein Disabled-2 (Dab2) is known to interact with the cytoplasmic tail of megalin and may be involved in albumin-mediated MAPK signalling. In this study, we investigated the role of Dab2 in albumin-mediated MAPK signalling and further studied the role of Dab2 in albumin-induced TGFbeta-1 secretion, a MAPK dependent event. We used RNA interference to knockdown Dab2 protein abundance in HKC-8 cells a model of human PTECs. Albumin activated ERK1,2 and Elk-1 in a MEK-1 dependent manner and resulted in secretion of TGFbeta-1. In the absence of albumin, knockdown of Dab2 resulted in a trend towards increase in pERK1,2 consistent with its putative role as an inhibitor of cell proliferation. However albumin-induced ERK1,2 activation was completely abolished by Dab2 knockdown. Dab2 knockdown did not however result in inhibition of albumin-induced TGFbeta-1 secretion. These results suggest that Dab2 is a ligand dependent bi-directional regulator of ERK1,2 activity by demonstrating that in addition to its more traditional role as an inhibitor of ERK1,2 it may also activate ERK1,2.
Collapse
Affiliation(s)
- Ramaswamy Diwakar
- South West Thames Institute for Renal Research, St. Helier Hospital, Wrythe Lane, Carshalton, Surrey SM5 1AA, UK
| | | | | | | | | |
Collapse
|
117
|
McCracken SRC, Ramsay A, Heer R, Mathers ME, Jenkins BL, Edwards J, Robson CN, Marquez R, Cohen P, Leung HY. Aberrant expression of extracellular signal-regulated kinase 5 in human prostate cancer. Oncogene 2007; 27:2978-88. [PMID: 18071319 DOI: 10.1038/sj.onc.1210963] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abnormal intracellular signaling contributes to carcinogenesis and may represent novel therapeutic targets. mitogen/extracellular signal-regulated kinase kinase-5 (MEK5) overexpression is associated with aggressive prostate cancer. In this study, we examined the role of extracellular signal-regulated kinase (ERK5, an MAPK and specific substrate for MEK5) in prostate cancer. ERK5 immunoreactivity was significantly upregulated in high-grade prostate cancer when compared to benign prostatic hyperplasia (P<0.0001). Increased ERK5 cytoplasmic signals correlated closely with Gleason sum score (P<0.0001), bony metastases (P=0.0044) and locally advanced disease at diagnosis (P=0.0023), with a weak association with shorter disease-specific survival (P=0.036). A subgroup of patients showed strong nuclear ERK5 localization, which correlated with poor disease-specific survival and, on multivariant analysis, was an independent prognostic factor (P<0.0001). Analysis of ERK5 expression in matched tumor pairs (before and after hormone relapse, n=26) revealed ERK5 nuclear expression was significantly associated with hormone-insensitive disease (P=0.0078). Similarly, ERK5 protein expression was increased in an androgen-independent LNCaP subline. We obtained the following in vitro and in vivo evidence to support the above expression data: (1) cotransfection of ERK5wt and MEK5D constructs in PC3 cells results in predominant ERK5 nuclear localization, similar to that observed in aggressive clinical disease; (2) ERK5-overexpressing PC3 cells have enhanced proliferative, migrative and invasive capabilities in vitro (P<0.0001), and were dramatically more efficient in forming tumors, with a shorter mean time for tumors to reach a critical volume of 1000 mm(3), in vivo (P<0.0001); (3) the MEK1 inhibitor, PD184352, blocking ERK1/2 activation at low dose, did not suppress proliferation but did significantly decrease proliferation at a higher dose required to inhibit ERK5 activation. Taken together, our results establish the potential importance of ERK5 in aggressive prostate cancer.
Collapse
Affiliation(s)
- S R C McCracken
- Urology Research Group, Northern Institute for Cancer Research, University of Newcastle, Tyne and Wear, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Epidermal growth factor- and stress-induced loss of gap junctional communication is mediated by ERK-1/ERK-2 but not ERK-5 in rat liver epithelial cells. Biochem Biophys Res Commun 2007; 364:313-7. [DOI: 10.1016/j.bbrc.2007.09.132] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 09/28/2007] [Indexed: 11/17/2022]
|
119
|
Villa-Moruzzi E. Targeting of FAK Ser910 by ERK5 and PP1delta in non-stimulated and phorbol ester-stimulated cells. Biochem J 2007; 408:7-18. [PMID: 17692050 PMCID: PMC2049076 DOI: 10.1042/bj20070058] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ser910 of FAK (focal adhesion kinase) was phosphorylated in fibroblasts treated with the phorbol ester PMA and dephosphorylated by PP1d (protein phosphatase 1d), as indicated by shRNA (small-hairpin RNA) gene silencing. Ser910 of FAK was reported previously to be an ERK (extracellular-signal-regulated kinase) 1/2 target in cells treated with phorbol esters. In contrast, various approaches, including the use of the MEK (mitogen-activated protein kinase/ERK kinase) inhibitors UO126 and CI-1040 to inhibit ERK1/2 pointed to the involvement of ERK5. This hypothesis was confirmed by: (i) shRNA ERK5 gene silencing, which resulted in complete pSer910 loss in non-stimulated and PMA-stimulated cells; (ii) direct phosphorylation of recombinant FAK by ERK5; and (iii) ERK5 activation by PMA. PMA stimulation and ERK5 silencing in MDA-MB 231 and MDA-MB 361 breast cancer cells indicated Ser910 targeting by ERK5 also in these cells. Given the proximity of Ser910 to the FAT (focal adhesion targeting) regulatory domain of FAK, cell proliferation and morphology were investigated in FAK-/- cells expressing S910A mutant FAK. The cell growth rate decreased and exposure to PMA induced peculiar morphological changes in cells expressing S910A, with respect to wild-type FAK, suggesting a role for Ser910 in these processes. The present study indicates, for the first time, the phosphorylation of Ser910 of FAK by ERK5 and its dephosphorylation by PP1d, and suggested a role for Ser910 in the control of cell shape and proliferation.
Collapse
Affiliation(s)
- Emma Villa-Moruzzi
- Dipartimento di Patologia Sperimentale, Sezione Patologia Generale, via Roma 55, 56126 Pisa, Italy.
| |
Collapse
|
120
|
Yang HT, Cohen P, Rousseau S. IL-1beta-stimulated activation of ERK1/2 and p38alpha MAPK mediates the transcriptional up-regulation of IL-6, IL-8 and GRO-alpha in HeLa cells. Cell Signal 2007; 20:375-80. [PMID: 18065201 DOI: 10.1016/j.cellsig.2007.10.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2007] [Accepted: 10/30/2007] [Indexed: 10/22/2022]
Abstract
Epithelial cells represent the first line of defense against infection. Here we have studied the production of inflammatory mediators induced by IL-1beta in the HeLa epithelial cell line. We found that GRO-alpha, IL-6 and IL-8 were the only three inflammatory mediators elevated out of 36 tested. Specific inhibition of p38alpha MAP kinase or preventing the activation of ERK1/ERK2 partially reduced the production of these substances, while the combined blockade of both pathways almost abolished secretion. The suppression of these signaling pathways mainly reduced transcription of the genes encoding GRO-alpha, IL-6 and IL-8, rather than affecting mRNA stability, translation or secretion. The production of these three inflammatory mediators was shown to account for the ability of the HeLa cell culture medium to stimulate the migration of monocytes/macrophages, suggesting a key role for p38 MAPK and ERK1/ERK2 in orchestrating the epithelial cell response to infection.
Collapse
Affiliation(s)
- Huei-Ting Yang
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Sir James Black Centre, Dow Street, Dundee, DD1 5EH, United Kingdom
| | | | | |
Collapse
|
121
|
Ubieta R, Uribe RM, González JA, García-Vázquez A, Pérez-Monter C, Pérez-Martínez L, Joseph-Bravo P, Charli JL. BDNF up-regulates pre-pro-TRH mRNA expression in the fetal/neonatal paraventricular nucleus of the hypothalamus. Properties of the transduction pathway. Brain Res 2007; 1174:28-38. [PMID: 17854778 DOI: 10.1016/j.brainres.2007.08.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 08/02/2007] [Accepted: 08/12/2007] [Indexed: 01/19/2023]
Abstract
Brain derived neurotrophic factor (BDNF) increases the levels of pre-pro-thyrotropin releasing hormone (TRH) mRNA in fetal rodent hypothalamic neurons that express TrkB receptors. The present studies aimed at better understanding the role of BDNF in establishing and maintaining the TRH phenotype in hypothalamic neurons during early development. To determine where BDNF regulates the expression of pre-pro-TRH mRNA in vivo, we compared the hypothalamic distribution of pre-pro-TRH mRNA to that of TrkB mRNA. Full-length TrkB (FL-TrkB) mRNA was detected earlier in development than pre-pro-TRH mRNA in the region that gives rise to the paraventricular nucleus of the hypothalamus (PVN). We also evaluated the effects of BDNF on the expression of pre-pro-TRH mRNA in vitro. BDNF up-regulated the levels of pre-pro-TRH mRNA in primary cell cultures obtained from the hypothalamus or the PVN of 17 days old fetuses or newborn rats. This effect was abolished by PD98059, an inhibitor of the mitogen-activated protein kinase kinase (MEK) 1/2 or 5. The effect of BDNF on pre-pro-TRH mRNA levels was reversible. The continuous application of BDNF led to a desensitization of the response at day 10 in vitro, an effect that correlated with a drop in the levels of FL-TrkB protein. In conclusion, BDNF enhances the expression of pre-pro-TRH mRNA in PVN neurons. This effect is reversible, decreases with time, and requires an active MEK. BDNF may contribute to the enhancement of pre-pro-TRH mRNA expression in the hypothalamic PVN during development.
Collapse
Affiliation(s)
- Raimundo Ubieta
- Centro de Ingeniería Genética y Biotecnología, La Habana, Cuba
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Gírio A, Montero JC, Pandiella A, Chatterjee S. Erk5 is activated and acts as a survival factor in mitosis. Cell Signal 2007; 19:1964-72. [PMID: 17624732 DOI: 10.1016/j.cellsig.2007.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 04/24/2007] [Accepted: 05/18/2007] [Indexed: 01/19/2023]
Abstract
Erk5 is a recently discovered MAPK claimed to be responsible for some of the roles attributed to Erk1/2; here we report that it is activated in mitosis in comparison to G1/S. When Erk5 is inactivated pharmacologically or largely ablated by RNAi, cell survival in mitosis is diminished. We have previously shown Bim, a BH3-only protein of the Bcl-2 family, to be phosphorylated in mitosis, in a MEK-dependent manner (M. Grãos, A. D. Almeida, S. Chatterjee, Biochem. J. 388 (2005) 185). Inactivation of Erk5 in mitosis causes dephosphorylation of Bim. Bim is in the mitochondria in mitosis and when dephosphorylated interacts with Bax, inducing caspase activation. We also show that in mitosis Bim co-immunoprecipitates with Erk5 and Erk5 phosphorylates GST-Bim in in vitro kinase reaction. Taken together, our results identify a new target of the still largely mysterious Erk5 and suggest that Erk5 in mitosis may be a decisive step for the survival of proliferating cells.
Collapse
Affiliation(s)
- Ana Gírio
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | | | | | | |
Collapse
|
123
|
Chambard JC, Lefloch R, Pouysségur J, Lenormand P. ERK implication in cell cycle regulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1299-310. [PMID: 17188374 DOI: 10.1016/j.bbamcr.2006.11.010] [Citation(s) in RCA: 556] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 11/07/2006] [Accepted: 11/10/2006] [Indexed: 11/28/2022]
Abstract
The Ras/Raf/MEK/ERK signaling cascade that integrates an extreme variety of extracellular stimuli into key biological responses controlling cell proliferation, differentiation or death is one of the most studied intracellular pathways. Here we present some evidences that have been accumulated over the last 15 years proving the requirement of ERK in the control of cell proliferation. In this review we focus (i) on the spatio-temporal control of ERK signaling, (ii) on the key cellular components linking extracellular signals to the induction and activation of cell cycle events controlling G1 to S-phase transition and (iii) on the role of ERK in the growth factor-independent G2/M phase of the cell cycle. As ERK pathway is often co-activated with the PI3 kinase signaling, we highlight some of the key points of convergence leading to a full activation of mTOR via ERK and AKT synergies. Finally, ERK and AKT targets being constitutively activated in so many human cancers, we briefly touched the cure issue of using more specific drugs in rationally selected cancer patients.
Collapse
Affiliation(s)
- Jean-Claude Chambard
- Institute of Signaling Developmental Biology and Cancer, CNRS UMR 6543, Universite de Nice-Sofia Antipolis, Centre A. Lacassagne, 33 Avenue de Valombrose, 06189 Nice, France
| | | | | | | |
Collapse
|
124
|
Malone P, Miao H, Parker A, Juarez S, Hernandez MR. Pressure induces loss of gap junction communication and redistribution of connexin 43 in astrocytes. Glia 2007; 55:1085-98. [PMID: 17551925 DOI: 10.1002/glia.20527] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Astrocytes, the major glia in the nonmyelinated optic nerve head (ONH), connect via gap junctions built of connexin-43 (Cx43) to form a functional syncytium allowing communication and control of ionic and metabolic homeostasis of retinal ganglion cells (RGCs) axon. We examined gap junction intercellular communication (GJIC) by scrape loading assays in human ONH astrocytes exposed to hydrostatic (HP) or ambient pressure (CP) in vitro. Immunostaining, immunoprecipitation, and immunoblots were used to detect Cx43 distribution and phosphorylation in astrocytes exposed to HP with/without EGF receptor (EGFR) tyrosine kinase inhibitors AG1478 and AG82 and MAPK inhibitors U0126, PD98059, and SB203580. The data indicates that upon exposure to HP, astrocytes decrease GJIC and exhibit altered cellular localization and phosphorylation of Cx43. Inhibition of EGFR blocked the effects of HP on GJIC and HP-induced Cx43 tyrosine phosphorylation. Inhibitors of MAPK- ERK1/2 and -p38 caused partial closure of GJIC under CP and HP, which was maintained for 6 h. Inhibition of Big Mitogen-Activated Kinase 1/ERK5 (BMK1/ERK5) caused partial closure under CP and HP followed by full recovery after 6 h. Inhibition of MAPK did not affect the HP-induced increase in Cx43 serine 279/282 phosphorylation. We conclude that activation of the EGFR pathway in response to HP leads to decrease of GJIC via tyrosine phosphorylation of Cx43 in ONH astrocytes. In glaucoma under conditions of elevated intraocular pressure (IOP), astrocytes may lose GJIC altering the homeostasis of RGC axons, adopting the reactive phenotype, contributing to glaucomatous neuropathy.
Collapse
Affiliation(s)
- Paula Malone
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | |
Collapse
|
125
|
Maekawa M, Yamamoto T, Kohno M, Takeichi M, Nishida E. Requirement for ERK MAP kinase in mouse preimplantation development. Development 2007; 134:2751-9. [PMID: 17611221 DOI: 10.1242/dev.003756] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Preimplantation development is a crucial step for successful implantation and pregnancy. Although both compaction and blastocyst formation have been extensively studied, mechanisms regulating the early cell division stages before compaction have remained unclear. Here, we show that extracellular signal regulated kinase (ERK) mitogen-activated protein (MAP) kinase function is required for early embryonic cell division before compaction. Our analysis demonstrates that inhibition of ERK activation in late two-cell-stage embryos leads to a reversible arrest in the G2 phase at the four-cell stage. The G2-arrested four-cell-stage embryos showed weakened cell-cell adhesion as compared with control embryos. Remarkably, microarray analyses showed that most of the programmed changes of upregulated and downregulated gene expression during the four- to eight-cell stages proceeded normally in four-cell-stage-arrested embryos that were subsequently released to resume development; however, the expression profiles of a proportion of genes in these embryos closely paralleled the stages of embryonic rather than normal development. These parallel genes included the genes encoding intercellular adhesion molecules, whose expression appeared to be positively regulated by the ERK pathway. We also show that, whereas ERK inactivation in eight-cell-stage embryos did not lead to cell division arrest, it did cause this arrest when cadherin-mediated cell-cell adhesion was disrupted. These results demonstrate an essential role of ERK function in two-cell to eight-cell-stage embryos, and suggest a loose parallelism between the gene expression programs and the developmental stages before compaction.
Collapse
Affiliation(s)
- Momoko Maekawa
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
126
|
Katsura H, Obata K, Mizushima T, Sakurai J, Kobayashi K, Yamanaka H, Dai Y, Fukuoka T, Sakagami M, Noguchi K. Activation of extracellular signal-regulated protein kinases 5 in primary afferent neurons contributes to heat and cold hyperalgesia after inflammation. J Neurochem 2007; 102:1614-1624. [PMID: 17573825 DOI: 10.1111/j.1471-4159.2007.04698.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Heat and cold hyperalgesia is a common feature of inflammatory pain. To investigate whether activation of extracellular signal-regulated protein kinase 5 (ERK5), also known as big mitogen-activated protein kinase 1, in primary sensory neurons participates in inflammatory pain, we examined the phosphorylation of ERK5 in the dorsal root ganglion (DRG) after peripheral inflammation. Inflammation induced by complete Freund's adjuvant produced heat and cold hyperalgesia on the ipsilateral hind paw and induced an increase in the phosphorylation of ERK5, mainly in tyrosine kinase A-expressing small- and medium-size neurons. In contrast, there was no change in ERK5 phosphorylation in the spinal dorsal horn. ERK5 antisense, but not mismatch, oligodeoxynucleotide decreased the activation of ERK5 and suppressed inflammation-induced heat and cold hyperalgesia. Furthermore, the inhibition of ERK5 blocked the induction of transient receptor potential channel TRPV1 and TRPA1 expression in DRG neurons after peripheral inflammation. Our results show that ERK5 activated in DRG neurons contribute to the development of inflammatory pain. Thus, blocking ERK5 signaling in sensory neurons that has the potential for preventing pain after inflammation.
Collapse
Affiliation(s)
- Hirokazu Katsura
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, JapanDepartment of Otorhinolaryngology, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, Japan
| | - Koichi Obata
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, JapanDepartment of Otorhinolaryngology, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, Japan
| | - Toshiyuki Mizushima
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, JapanDepartment of Otorhinolaryngology, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, Japan
| | - Jun Sakurai
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, JapanDepartment of Otorhinolaryngology, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, Japan
| | - Kimiko Kobayashi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, JapanDepartment of Otorhinolaryngology, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, Japan
| | - Hiroki Yamanaka
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, JapanDepartment of Otorhinolaryngology, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, Japan
| | - Yi Dai
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, JapanDepartment of Otorhinolaryngology, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, Japan
| | - Tetsuo Fukuoka
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, JapanDepartment of Otorhinolaryngology, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, Japan
| | - Masafumi Sakagami
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, JapanDepartment of Otorhinolaryngology, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, Japan
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, JapanDepartment of Otorhinolaryngology, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, Japan
| |
Collapse
|
127
|
Obata K, Katsura H, Mizushima T, Sakurai J, Kobayashi K, Yamanaka H, Dai Y, Fukuoka T, Noguchi K. Roles of extracellular signal-regulated protein kinases 5 in spinal microglia and primary sensory neurons for neuropathic pain. J Neurochem 2007; 102:1569-1584. [PMID: 17509087 DOI: 10.1111/j.1471-4159.2007.04656.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuropathic pain that occurs after peripheral nerve injury is poorly controlled by current therapies. Increasing evidence shows that mitogen-activated protein kinase (MAPK) play an important role in the induction and maintenance of neuropathic pain. Here we show that activation of extracellular signal-regulated protein kinases 5 (ERK5), also known as big MAPK1, participates in pain hypersensitivity caused by nerve injury. Nerve injury increased ERK5 phosphorylation in spinal microglia and in both damaged and undamaged dorsal root ganglion (DRG) neurons. Antisense knockdown of ERK5 suppressed nerve injury-induced neuropathic pain and decreased microglial activation. Furthermore, inhibition of ERK5 blocked the induction of transient receptor potential channels and brain-derived neurotrophic factor expression in DRG neurons. Our results show that ERK5 activated in spinal microglia and DRG neurons contributes to the development of neuropathic pain. Thus, blocking ERK5 signaling in the spinal cord and primary afferents has potential for preventing pain after nerve damage.
Collapse
Affiliation(s)
- Koichi Obata
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, Japan
| | - Hirokazu Katsura
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, Japan
| | - Toshiyuki Mizushima
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, Japan
| | - Jun Sakurai
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, Japan
| | - Kimiko Kobayashi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, Japan
| | - Hiroki Yamanaka
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, Japan
| | - Yi Dai
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, Japan
| | - Tetsuo Fukuoka
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, Japan
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, Japan
| |
Collapse
|
128
|
Dudderidge TJ, McCracken SR, Loddo M, Fanshawe TR, Kelly JD, Neal DE, Leung HY, Williams GH, Stoeber K. Mitogenic growth signalling, DNA replication licensing, and survival are linked in prostate cancer. Br J Cancer 2007; 96:1384-93. [PMID: 17406359 PMCID: PMC2360172 DOI: 10.1038/sj.bjc.6603718] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Activation of mitogen/extracellular-signal-regulated kinase kinase 5/extracellular signal-regulated kinase-5 (MEK5/ERK5) growth signalling is coupled to increased cell proliferation in prostate cancer (PCa). Dysregulation of the DNA replication licensing pathway, a critical step in growth control downstream of transduction signalling pathways, is associated with development of PCa. In this study we have investigated linkages between the MEK5/ERK5 pathway and DNA replication licensing during prostate carcinogenesis. The effects of increased MEK5/ERK5 signalling on the expression of replication licensing factors Mcm2 and geminin and the proliferation marker Ki67 were studied in an ecdysone-inducible system expressing a constitutively activated mutant of MEK5 in EcR293 cells and in stable ERK5 over-expressing PC3 clones. In parallel, expression of these biomarkers in PCa biopsy specimens (n=58) was studied and compared to clinicopathological parameters. In both in vitro systems induction of MEK5 expression resulted in increased levels of phosphorylated ERK5 and Mcm2, geminin and Ki67 proteins. In PCa specimens average Mcm2 expression was greater than Ki67 and geminin expression (median labelling index (LI) 36.7, 18.1, and 3.4% respectively), consistent with their differential expression according to growth status (P<0.0001). Mcm2, geminin and Ki67 expression were significantly associated with Gleason grade (P=0.0002, P=0.0003, P=0.004); however there was no link with T or M stage. There was a significant relationship between increasing ERK5 expression and increasing Mcm2 (P=0.003) and Ki67 (P=0.009) expression, with non-significant trends seen with increasing MEK5 expression. There were significant associations between Gleason grade and the number of cells traversing G1 phase (Ki67LI-gemininLI; (P=0.001)), with high ERK5 levels associated with both an increase in replication licensed but non-cycling cells (Mcm2LI-Ki67LI; (P=0.01)) and accelerated cell cycle progression (gemininLI/Ki67LI; (P= 0.005)), all indicative of a shift towards increasing proliferative potential. While Mcm2 and Ki67 were both prognostic factors on univariate analysis, only Mcm2 remained an independent prognostic marker on multivariate analysis. Taken together, our data show that induction of MEK5/ERK5 signalling is linked to activation of the DNA replication licensing pathway in PCa, and that the strong prognostic value of MCM proteins may result from their function as relay stations coupling growth regulatory pathways to genome duplication.
Collapse
Affiliation(s)
- T J Dudderidge
- Department of Pathology and Royal Free and University College Medical School, University College London, Rockefeller Building, University Street, London, WC1E 6JJ, UK
| | - S R McCracken
- Northern Institute for Cancer Research, University of Newcastle, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - M Loddo
- Department of Pathology and Royal Free and University College Medical School, University College London, Rockefeller Building, University Street, London, WC1E 6JJ, UK
| | - T R Fanshawe
- Department of Public Health and Primary Care, Centre for Applied Medical Statistics, Institute of Public Health,University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 2SR, UK
| | - J D Kelly
- Department of Oncology and Hutchison MRC Research Centre, University of Cambridge, Hills Road, Cambridge, CB2 2XZ, UK
| | - D E Neal
- Department of Oncology and Hutchison MRC Research Centre, University of Cambridge, Hills Road, Cambridge, CB2 2XZ, UK
| | - H Y Leung
- Northern Institute for Cancer Research, University of Newcastle, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - G H Williams
- Department of Pathology and Royal Free and University College Medical School, University College London, Rockefeller Building, University Street, London, WC1E 6JJ, UK
- Wolfson Institute for Biomedical Research, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
- E-mail:
| | - K Stoeber
- Department of Pathology and Royal Free and University College Medical School, University College London, Rockefeller Building, University Street, London, WC1E 6JJ, UK
- Wolfson Institute for Biomedical Research, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
129
|
Villanueva J, Yung Y, Walker JL, Assoian RK. ERK activity and G1 phase progression: identifying dispensable versus essential activities and primary versus secondary targets. Mol Biol Cell 2007; 18:1457-63. [PMID: 17314399 PMCID: PMC1838994 DOI: 10.1091/mbc.e06-10-0908] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ERK subfamily of MAP kinases is a critical regulator of S phase entry. ERK activity regulates the induction of cyclin D1, and a sustained ERK signal is thought to be required for this effect, at least in fibroblasts. We now show that early G1 phase ERK activity is dispensable for the induction of cyclin D1 and that the critical ERK signaling period is restricted to 3-6 h after mitogenic stimulation of quiescent fibroblasts. Similarly, early G1 phase ERK activity is dispensable for entry into S phase. Moreover, if cyclin D1 is expressed ectopically, ERK activity becomes dispensable throughout the G1 phase. In addition to its effect on cyclin D1, ERK activity is thought to contribute to the down-regulation of p27kip1. We found that this effect is restricted to late G1/S phase. Mechanistic analysis showed that the ERK effect on p27kip1 is mediated by Skp2 and is secondary to its effect on cyclin D1. Our results emphasize the importance of mid-G1 phase ERK activity and resolve primary versus secondary ERK targets within the G1 phase cyclin-dependent kinases.
Collapse
Affiliation(s)
- Jessie Villanueva
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6084
| | - Yuval Yung
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6084
| | - Janice L. Walker
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6084
| | - Richard K. Assoian
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6084
| |
Collapse
|
130
|
Mizushima T, Obata K, Katsura H, Sakurai J, Kobayashi K, Yamanaka H, Dai Y, Fukuoka T, Mashimo T, Noguchi K. Intensity-dependent activation of extracellular signal-regulated protein kinase 5 in sensory neurons contributes to pain hypersensitivity. J Pharmacol Exp Ther 2007; 321:28-34. [PMID: 17237256 DOI: 10.1124/jpet.106.116749] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alterations in the intracellular signal transduction pathway in primary afferents may contribute to pain hypersensitivity. Recently, we have reported that the phosphorylation of extracellular signal-regulated protein kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) occurs in primary afferent neurons in response to noxious stimulation of the peripheral tissue, i.e., activity-dependent activation of ERK1/2 and p38 MAPK in dorsal root ganglion (DRG) neurons. In the present study, we investigated the phosphorylation of ERK5, also known as big MAPK1, in the DRG by noxious stimulation using immunohistochemistry. Capsaicin injection induced phosphorylated ERK5 (p-ERK5) in small-to-medium diameter sensory neurons with a peak at 2 min after capsaicin injection. Furthermore, we examined the p-ERK5 labeling in the DRG after noxious heat and cold stimuli and found a stimulus intensity-dependent increase in the number of activated neurons. Most of these p-ERK5-immunoreactive neurons were small- and medium-sized neurons, which coexpressed transient receptor potential (TRP) ion channel TRPV1 and TRPA1 after noxious heat and cold stimuli, respectively. In contrast, there was no change in ERK5 phosphorylation in the spinal dorsal horn. The i.t. administration of ERK5 antisense oligodeoxynucleotide reversed heat hyperalgesia, but not mechanical allodynia, produced by capsaicin injection. Taken together, these findings suggest that the in vivo activation of the ERK5 signaling pathway in sensory neurons by noxious stimulation may be, at least in part, correlated with functional activity and, further, involved in the development of pain hypersensitivity.
Collapse
Affiliation(s)
- Toshiyuki Mizushima
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Sutton KM, Hayat S, Chau NM, Cook S, Pouyssegur J, Ahmed A, Perusinghe N, Le Floch R, Yang J, Ashcroft M. Selective inhibition of MEK1/2 reveals a differential requirement for ERK1/2 signalling in the regulation of HIF-1 in response to hypoxia and IGF-1. Oncogene 2007; 26:3920-9. [PMID: 17213817 DOI: 10.1038/sj.onc.1210168] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The transcription factor hypoxia-inducible factor 1 (HIF-1) plays a pivotal role in tumour growth and progression, and HIF-1 is regulated through a number of signalling pathways. Here, we investigated the involvement of the mitogen-activated protein kinase (MAPK) signalling pathway in HIF-1 regulation. We found that overexpression of wild-type (WT) extracellular signal regulated protein kinase 1 (ERK1) greatly potentiated HIF-1 activation in hypoxia and HIF-1alpha induced in response to insulin growth-like factor 1 (IGF-1). Conversely, treatment of tumour cells with the MEK1/2 inhibitors PD98059 or U0216, or expression of a dominant-negative form of ERK1 blocked HIF-1 activation in hypoxia without affecting HIF-1alpha induction, localization or binding of HIF-1beta. Interestingly however, the highly selective MEK1/2 inhibitor PD184352 did not inhibit HIF-1 activity or vascular endothelial growth factor (VEGF) induced in response to hypoxia but blocked HIF-1alpha protein and HIF-1 activity induced by IGF-1 stimulation without affecting HIF-1alpha mRNA levels. Finally, we found that ERK5 phosphorylation status was not significantly affected by hypoxia in the presence or absence of PD184352. Taken together, our data suggest that although ERK1/2 signalling is important for HIF-1alpha induction and HIF-1 activity in response to IGF-1, it is dispensable for the induction of HIF-1alpha and activation of HIF-1 in response to hypoxia.
Collapse
Affiliation(s)
- K M Sutton
- Cell Growth Regulation and Angiogenesis Team, Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Cavanaugh JE, Jaumotte JD, Lakoski JM, Zigmond MJ. Neuroprotective role of ERK1/2 and ERK5 in a dopaminergic cell line under basal conditions and in response to oxidative stress. J Neurosci Res 2007; 84:1367-75. [PMID: 16941494 DOI: 10.1002/jnr.21024] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Loss of motor function in Parkinson's disease is due in part to degeneration of dopamine (DA) neurons. Pharmacological evidence suggests that the mitogen-activated protein kinase signaling pathways involving extracellular signal-regulated kinases (ERKs) play important roles in neuroprotection of DA neurons. However, the relative roles of the several ERK isoforms in the viability of DA neurons have not yet been determined. In the present study, we investigated the contributions of ERK5, as well as ERK1/2, to MN9D cell survival under basal conditions and in response to 6-hydroxydopamine (6-OHDA). We observed that U0126, an inhibitor of ERK activation, decreased basal survival of these cells. To differentiate between ERK1/2 and ERK5, cells were transfected with a dominant negative form of either ERK5 or MEK1, the upstream activator of ERK1/2. Transfection of MN9D cells with either dominant negative construct mimicked U0126, reducing cell survival. Moreover, transfection of the cells in such a way as to increase ERK5 or ERK1/2 activity inhibited 6-OHDA-induced cell death, although this effect was significant only in the case of ERK1/2 activation. These studies suggest that activations of ERK5 and ERK1/2 both promote basal DA cell survival and that ERK1/2 also protects DA cells from oxidative stress. These are the first studies to demonstrate a role for ERK5 in DA neuronal survival and to investigate the relative roles of ERK1/2 and ERK5 in basal DA survival and neuroprotection from oxidative stress.
Collapse
Affiliation(s)
- Jane E Cavanaugh
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15221, USA.
| | | | | | | |
Collapse
|
133
|
Sarközi R, Miller B, Pollack V, Feifel E, Mayer G, Sorokin A, Schramek H. ERK1/2-driven and MKP-mediated inhibition of EGF-induced ERK5 signaling in human proximal tubular cells. J Cell Physiol 2007; 211:88-100. [PMID: 17131384 DOI: 10.1002/jcp.20909] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The MEK1-ERK1/2 signaling pathway has been implicated in the regulation of renal epithelial cell proliferation, epithelial-to-mesenchymal transition and the induction of an invasive cell phenotype. Much less information is available about the MEK5-ERK5 module and its role in renal epithelial cell proliferation and differentiation. In the present study we have investigated the regulation of these two families of extracellular signal-regulated kinases in epidermal growth factor (EGF)-stimulated human kidney-2 (HK-2) cells and a possible interaction between ERK1/2 and ERK5. Here we report that 5 ng/ml EGF led to a strong stimulation of HK-2 cell proliferation, which was largely U0126-sensitive. Both synthetic MEK1/2 inhibitors U0126 and Cl-1040, when used at 10 and 1 microM, respectively, inhibited basal and EGF-induced ERK1/2 phosphorylation but not ERK5 phosphorylation. Long-term inhibition of MEK1/2-ERK1/2 signaling and/or vanadate-sensitive protein phosphatases enhanced and prolonged EGF-induced ERK5 phosphorylation, while transient expression of an adenoviral constitutively active MEK1 (Ad-caMEK1) construct completely blocked EGF-induced ERK5 phosphorylation. Expression of Ad-caMEK1 in HK-2 cells resulted in the upregulation of the dual-specificity phosphatases MKP-3/DUSP6, MKP-1/DUSP1, and DUSP5. The EGF-mediated time-dependent induction of MKP-3, MKP-1 and DUSP5 mRNA levels was U0126-sensitive at a concentration, which blocked EGF-mediated ERK1/2 phosphorylation but not ERK5 phosphorylation. Furthermore, U0126 inhibited EGF-induced MKP-3 and MKP-1 protein expression. Both MKP-3 and MKP-1 co-immunoprecipitated with ERK5 in unstimulated as well as in EGF-stimulated HK-2 cells. These results suggest the existence of an ERK1/2-driven negative feed-back regulation of ERK5 signaling in EGF-stimulated HK-2 cells, which is mediated by MKP-3, DUSP5 and/or MKP-1.
Collapse
Affiliation(s)
- Rita Sarközi
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
134
|
Clerk A, Giraldo A, Sugden PH. Chemotherapeutic agents and gene expression in cardiac myocytes. ACTA ACUST UNITED AC 2007; 47:140-53. [PMID: 17343902 DOI: 10.1016/j.advenzreg.2006.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Angela Clerk
- NHLI Division (Cardiac Medicine Section), Faculty of Medicine, Imperial College London, Flowers Building, Armstrong Road, London SW7 2AZ, UK.
| | | | | |
Collapse
|
135
|
Shinohara M, Mikhailov AV, Aguirre-Ghiso JA, Rieder CL. Extracellular signal-regulated kinase 1/2 activity is not required in mammalian cells during late G2 for timely entry into or exit from mitosis. Mol Biol Cell 2006; 17:5227-40. [PMID: 17035635 PMCID: PMC1679686 DOI: 10.1091/mbc.e06-04-0284] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Extracellular signal-regulated kinase (ERK)1/2 activity is reported to be required in mammalian cells for timely entry into and exit from mitosis (i.e., the G2-mitosis [G2/M] and metaphase-anaphase [M/A] transitions). However, it is unclear whether this involvement reflects a direct requirement for ERK1/2 activity during these transitions or for activating gene transcription programs at earlier stages of the cell cycle. To examine these possibilities, we followed live cells in which ERK1/2 activity was inhibited through late G2 and mitosis. We find that acute inhibition of ERK1/2 during late G2 and through mitosis does not affect the timing of the G2/M or M/A transitions in normal or transformed human cells, nor does it impede spindle assembly, inactivate the p38 stress-activated checkpoint during late G2 or the spindle assembly checkpoint during mitosis. Using CENP-F as a marker for progress through G2, we also show that sustained inhibition of ERK1/2 transiently delays the cell cycle in early/mid-G2 via a p53-dependent mechanism. Together, our data reveal that ERK1/2 activity is required in early G2 for a timely entry into mitosis but that it does not directly regulate cell cycle progression from late G2 through mitosis in normal or transformed mammalian cells.
Collapse
Affiliation(s)
- Mio Shinohara
- *Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201
- Department of Biomedical Sciences, School of Public Health, and
| | - Alexei V. Mikhailov
- *Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201
- Department of Biomedical Sciences, School of Public Health, and
| | - Julio A. Aguirre-Ghiso
- Department of Biomedical Sciences, School of Public Health, and
- Gen*NY*Sis Center for Excellence in Cancer Genomics, State University of New York, Albany, NY 12144; and
| | - Conly L. Rieder
- *Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201
- Department of Biomedical Sciences, School of Public Health, and
- Marine Biology Laboratory, Woods Hole, MA 02543
| |
Collapse
|
136
|
Nishimoto S, Nishida E. MAPK signalling: ERK5 versus ERK1/2. EMBO Rep 2006; 7:782-6. [PMID: 16880823 PMCID: PMC1525153 DOI: 10.1038/sj.embor.7400755] [Citation(s) in RCA: 317] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 06/19/2006] [Indexed: 12/16/2022] Open
Abstract
Extracellular-signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and, similar to ERK1/2, has the Thr-Glu-Tyr (TEY) activation motif. Both ERK5 and ERK1/2 are activated by growth factors and have an important role in the regulation of cell proliferation and cell differentiation. Moreover, both the ERK5 and the ERK1/2 pathways are sensitive to PD98059 and U0126, which are two well-known inhibitors of the ERK pathway. Despite these similarities, recent studies have revealed distinctive features of the ERK5 pathway: ERK5 has a key role in cardiovascular development and neural differentiation; ERK5 nuclear translocation is controlled by its own nuclear localizing and nuclear export activities; and the carboxy-terminal half of ERK5, which follows its kinase catalytic domain, has a unique function.
Collapse
Affiliation(s)
- Satoko Nishimoto
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | |
Collapse
|
137
|
Abdulnour REE, Peng X, Finigan JH, Han EJ, Hasan EJ, Birukov KG, Reddy SP, Watkins JE, Kayyali US, Garcia JGN, Tuder RM, Hassoun PM. Mechanical stress activates xanthine oxidoreductase through MAP kinase-dependent pathways. Am J Physiol Lung Cell Mol Physiol 2006; 291:L345-53. [PMID: 16632522 DOI: 10.1152/ajplung.00453.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Xanthine oxidoreductase (XOR) plays a prominent role in acute lung injury because of its ability to generate reactive oxygen species. We investigated the role of XOR in ventilator-induced lung injury (VILI). Male C57BL/6J mice were assigned to spontaneous ventilation (sham) or mechanical ventilation (MV) with low (7 ml/kg) and high tidal volume (20 ml/kg) for 2 h after which lung XOR activity and expression were measured and the effect of the specific XOR inhibitor allopurinol on pulmonary vascular leakage was examined. In separate experiments, rat pulmonary microvascular endothelial cells (RPMECs) were exposed to cyclic stretch (5% and 18% elongation, 20 cycles/min) for 2 h before intracellular XOR activity measurement. Lung XOR activity was significantly increased at 2 h of MV without changes in XOR expression. There was evidence of p38 MAP kinase, ERK1/2, and ERK5 phosphorylation, but no change in JNK phosphorylation. Evans blue dye extravasation and bronchoalveolar lavage protein concentration were significantly increased in response to MV, changes that were significantly attenuated by pretreatment with allopurinol. Cyclic stretch of RPMECs also caused MAP kinase phosphorylation and a 1.7-fold increase in XOR activity, which was completely abrogated by pretreatment of the cells with specific MAP kinase inhibitors. We conclude that XOR enzymatic activity is significantly increased by mechanical stress via activation of p38 MAP kinase and ERK and plays a critical role in the pathogenesis of pulmonary edema associated with VILI.
Collapse
Affiliation(s)
- Raja-Elie E Abdulnour
- Division of Pulmonary and Critical Care Medicine, Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Winn RA, Van Scoyk M, Hammond M, Rodriguez K, Crossno JT, Heasley LE, Nemenoff RA. Antitumorigenic effect of Wnt 7a and Fzd 9 in non-small cell lung cancer cells is mediated through ERK-5-dependent activation of peroxisome proliferator-activated receptor gamma. J Biol Chem 2006; 281:26943-50. [PMID: 16835228 DOI: 10.1074/jbc.m604145200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Wnt pathway is critical for normal development, and mutation of specific components is seen in carcinomas of diverse origins. The role of this pathway in lung tumorigenesis has not been clearly established. Recent studies from our laboratory indicate that combined expression of the combination of Wnt 7a and Frizzled 9 (Fzd 9) in Non-small Cell Lung Cancer (NSCLC) cell lines inhibits transformed growth. We have also shown that increased expression of peroxisome proliferator-activated receptor gamma (PPARgamma) inhibits transformed growth of NSCLC and promotes epithelial differentiation of these cells. The goal of this study was to determine whether the effects of Wnt 7a/Fzd 9 were mediated through PPARgamma. We found that Wnt 7a and Fzd 9 expression led to increased PPARgamma activity. This effect was not mediated by altered expression of the protein. Wnt 7a and Fzd 9 expression resulted in activation of ERK5, which was required for PPARgamma activation in NSCLC. SR 202, a known PPARgamma inhibitor, blocked the increase in PPARgamma activity and restored anchorage-independent growth in NSCLC expressing Wnt 7a and Fzd 9. SR 202 also reversed the increase in E-cadherin expression mediated by Wnt 7a and Fzd 9. These data suggest that ERK5-dependent activation of PPARgamma represents a major effector pathway mediating the anti-tumorigenic effects of Wnt 7a and Fzd 9 in NSCLC.
Collapse
Affiliation(s)
- Robert A Winn
- Veterans Administration Medical Center, Denver, and Department of Medicine, University of Colorado Health Sciences Center, 80220, USA.
| | | | | | | | | | | | | |
Collapse
|
139
|
Wang RM, Yang F, Zhang YX. Preconditioning-induced activation of ERK5 is dependent on moderate Ca2+ influx via NMDA receptors and contributes to ischemic tolerance in the hippocampal CA1 region of rats. Life Sci 2006; 79:1839-46. [PMID: 16859717 DOI: 10.1016/j.lfs.2006.06.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 05/23/2006] [Accepted: 06/13/2006] [Indexed: 11/15/2022]
Abstract
Accumulating evidence implicates activation (phosphorylation) of mitogen-activated protein kinases (MAPK) during nonlethal ischemic preconditioning in the protection of hippocampal CA1 neuron against subsequent ischemic events. In this paper, we undertook to identify the role of extracellular signal regulated kinase (ERK) 5 in cerebral ischemic preconditioning (CIP). Three minutes of ischemia was induced as preconditioning stimulus. Three days later, 6 min of ischemia was induced. The levels of ERK5 protein expression and its activation were detected with or without the CIP in hippocampal CA1 and the dentate gyrus (DG) regions. Our results showed that ERK5 was activated selectively in hippocampal CA1 region with, but not without, the ischemic preconditioning. Notably, during the later phase of reperfusion, the rise in ERK5 activation was strong and persistent with a peak occurring at the third day. The activation peak was effectively prevented and ERK5 protein expression was significantly decreased by intracerebroventricular infusion of ERK5 antisense oligonucleotide (every 24 h for 3 days before the preconditioning), but not by sense oligonucleotide or vehicle. Subsequently, the CA1 neuronal loss was largely elevated. Moreover, both MK801 (10 microM), an antagonist of NMDA receptor, and EGTA (100 mM, but neither 50 nor 150 mM), an extracellular Ca2+ chelator, not only effectively inhibited the ERK5 activation but also markedly abolished CIP-induced survival of the CA1 neurons. These results suggested that activation of the ERK5 pathway by CIP was at least partly dependent on moderate Ca2+ influx via NMDA receptor, which might contribute to ischemic tolerance in hippocampal CA1 region of rats.
Collapse
Affiliation(s)
- Rui-Min Wang
- Research Center for Molecular Biology, North China Coal Medical College, Tangshan, Hebei, PR China.
| | | | | |
Collapse
|
140
|
Chen LW, Huang HL, Lee IT, Hsu CM, Lu PJ. THERMAL INJURY-INDUCED PRIMING EFFECT OF NEUTROPHIL IS TNF-α AND P38 DEPENDENT. Shock 2006; 26:69-76. [PMID: 16783201 DOI: 10.1097/01.shk0000209531.38188.18] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Priming response of neutrophil in clinical-related conditions and its mechanism has not been clarified. This study is to determine if thermal injury-induced priming effect of neutrophil is TNF-alpha and p38 dependent. In Experiment 1, bone marrow neutrophil of wild-type (WT) mice and TNF receptor superfamily, member 1A (Tnfrsf1a-/-) mice were harvested and treated with TNF-alpha, platelet activating factor (PAF) first, then with or without N-formyl-Met-Leu-Phe (fMLP). Reactive oxygen species (ROS) production and p38 phosphorylation were evaluated. In Experiment 2, ROS of neutrophil from WT and Tnfrsf1a-/- mice at 3 or 15 h after thermal injury with or without fMLP treatment were assayed. In Experiment 3, p38 and p44/42 phosphorylation, CXCR2 and macrophage inflammatory protein-2 expression, apoptotic ratio, and activating protein-1 (AP-1) and nuclear factor-kappa B (NF-kappaB) activation of neutrophil from WT and Tnfrsf1a-/- mice at 3 h after thermal injury were tested. FMLP treatment after TNF-alpha or PAF incubation of neutrophil increased ROS of PAF-treated but not TNF-alpha-treated neutrophil. PAF treatment increased ROS of neutrophil in WT and Tnfrsf1a-/- mice. FMLP increased ROS of neutrophil of WT mice at 3 h after thermal but not that of Tnfrsf1a-/- mice. TNF-alpha and PAF increased p38 phosphorylation of neutrophil in WT but not that in Tnfrsf1a-/- mice. Thermal injury increased p38 phosphorylation, NF-kappaB activation, and decreased apoptosis of neutrophil at 3 h after thermal injury in WT but not in Tnfrsf1a-/- mice. Thermal injury also induced AP-1 activation and ROS production on neutrophil at 3 and 15 h after thermal injury, respectively, in WT and Tnfrsf1a-/- mice. Collectively, fMLP stimulates ROS of neutrophil through TNF-alpha signaling; PAF stimulates that of neutrophil through both TNF-alpha-dependent and TNF-alpha-independent pathway. Thermal injury induces a TNF-alpha-dependent priming effect and a TNF-alpha-independent activation effect on neutrophil at 3 and 15 h after thermal injury, respectively. NF-kappaB signaling pathway plays an important role in neutrophil activation. Thermal injury also induces TNF-alpha-dependent delay apoptosis and TNF-alpha-independent AP-1 activation of neutrophil at 3 h after thermal injury. Taken together with the TNF-alpha-dependent p38 and NF-kappaB activation in primed neutrophil, we conclude that thermal injury-induced priming effect of polymorphonuclear neutrophil is TNF-alpha and p38 dependent.
Collapse
Affiliation(s)
- Lee-Wei Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, National Yang-Ming Medical University, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
141
|
Kennedy RA, Kemp TJ, Sugden PH, Clerk A. Using U0126 to dissect the role of the extracellular signal-regulated kinase 1/2 (ERK1/2) cascade in the regulation of gene expression by endothelin-1 in cardiac myocytes. J Mol Cell Cardiol 2006; 41:236-47. [PMID: 16756989 DOI: 10.1016/j.yjmcc.2006.04.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 03/19/2006] [Accepted: 04/05/2006] [Indexed: 10/24/2022]
Abstract
The hypertrophic agonist endothelin-1 rapidly but transiently activates the extracellular signal-regulated kinase 1/2 (ERK1/2) cascade (and other signalling pathways) in cardiac myocytes, but the events linking this to hypertrophy are not understood. Using Affymetrix rat U34A microarrays, we identified the short-term (2-4 h) changes in gene expression induced in neonatal myocytes by endothelin-1 alone or in combination with the ERK1/2 cascade inhibitor, U0126. Expression of 15 genes was significantly changed by U0126 alone, and expression of an additional 78 genes was significantly changed by endothelin-1. Of the genes upregulated by U0126, four are classically induced through the aryl hydrocarbon receptor (AhR) by dioxins suggesting that U0126 activates the xenobiotic response element in cardiac myocytes potentially independently of effects on ERK1/2 signalling. The 78 genes showing altered expression with endothelin-1 formed five clusters: (i) three clusters showing upregulation by endothelin-1 according to time course (4 h > 2 h; 2 h > 4 h; 2 h approximately 4 h) with at least partial inhibition by U0126; (ii) a cluster of 11 genes upregulated by endothelin-1 but unaffected by U0126 suggesting regulation through signalling pathways other than ERK1/2; (iii) a cluster of six genes downregulated by endothelin-1 with attenuation by U0126. Thus, U0126 apparently activates the AhR in cardiac myocytes (which must be taken into account in protracted studies), but careful analysis allows identification of genes potentially regulated acutely via the ERK1/2 cascade. Our data suggest that the majority of changes in gene expression induced by endothelin-1 are mediated by the ERK1/2 cascade.
Collapse
Affiliation(s)
- Robert A Kennedy
- National Heart and Lung Institute (NHLI) Division, Faculty of Medicine, Imperial College London, Flowers Building (Floor 4), UK
| | | | | | | |
Collapse
|
142
|
Schweppe RE, Cheung TH, Ahn NG. Global gene expression analysis of ERK5 and ERK1/2 signaling reveals a role for HIF-1 in ERK5-mediated responses. J Biol Chem 2006; 281:20993-21003. [PMID: 16735500 DOI: 10.1074/jbc.m604208200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
ERK5 is a recently characterized MAPK, which is most similar to the well studied ERK1/2 subfamily but uses distinct mechanisms to elicit responses. To understand the specificity of signaling through ERK5 versus ERK1/2, we examined global gene expression changes in response to each pathway. Microarray measurements in retinal pigment epithelial cells revealed 36 genes regulated by ERK5, all which were novel targets for this pathway. 39 genes were regulated by ERK1/2, which included 11 known genes. Of these genes, 19 were regulated by both pathways. Inspection of the 17 genes uniquely regulated by ERK5 revealed that 14 genes (82%) were previously associated with hypoxia via regulation by HIF-1. In contrast, 16 genes (84%) regulated by either ERK5 or ERK1/2 were implicated in hypoxia, most through mechanisms independent of HIF-1. Of the 20 genes regulated by ERK1/2, only 9 were implicated in hypoxia and were not well characterized hypoxia targets. Thus, unlike ERK5, a mechanistic link between ERK1/2 and HIF-1/HRE could not be established on the basis of gene regulation. Activation of both pathways enhanced transcription from a hypoxia-response element and increased HIF-1alpha protein expression. In contrast, ERK5 but not ERK1/2 elevated transcription through GAL4-HIF-1. Most interestingly, ERK5 is not significantly activated by hypoxia in retinal pigment epithelial cells, indicating that ERK5 regulation of these genes is relevant in normoxia rather than hypoxia. Thus, ERK5 and ERK1/2 differ in their mechanisms of gene regulation, and indicate that ERK5 may control hypoxia-responsive genes by a mechanism independent of HIF-1alpha expression control.
Collapse
Affiliation(s)
- Rebecca E Schweppe
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309
| | - Tom Hiu Cheung
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309
| | - Natalie G Ahn
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309; Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309.
| |
Collapse
|
143
|
Ranganathan A, Pearson GW, Chrestensen CA, Sturgill TW, Cobb MH. The MAP kinase ERK5 binds to and phosphorylates p90 RSK. Arch Biochem Biophys 2006; 449:8-16. [PMID: 16626623 DOI: 10.1016/j.abb.2006.02.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 02/24/2006] [Accepted: 02/24/2006] [Indexed: 11/15/2022]
Abstract
We showed previously that p90 RSK was activated in cells expressing an activated mutant of MEK5, the activator of the MAP kinase ERK5. Based on the following evidence, we suggest that ERK5 can directly activate RSK in cells. ERK5 binds to RSK in vitro and co-immunoprecipitates from cell extracts; activation of ERK5 weakens its binding to RSK, suggesting that RSK is released upon activation. Phosphorylation of RSK by ERK5 in vitro causes its activation, indicating that RSK is a substrate of ERK5. In cells activation of ERK5 but not p38 or the c-Jun N-terminal kinase is associated with RSK activation. The large C-terminal domain of ERK5 is not required for binding or activation of RSK by ERK5; however, the common docking or CD domain of ERK5 and the docking or D domain of RSK are important for their association.
Collapse
Affiliation(s)
- Aarati Ranganathan
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9041, USA
| | | | | | | | | |
Collapse
|
144
|
Kundu JK, Shin YK, Kim SH, Surh YJ. Resveratrol inhibits phorbol ester-induced expression of COX-2 and activation of NF-kappaB in mouse skin by blocking IkappaB kinase activity. Carcinogenesis 2006; 27:1465-74. [PMID: 16474181 DOI: 10.1093/carcin/bgi349] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aberrant expression of cyclooxygenase-2 (COX-2) has been implicated in tumor promotion. Resveratrol, a phytoalexin present in grapes, was reported to inhibit multistage mouse skin carcinogenesis. In the present study, we found that topically applied resveratrol significantly inhibited COX-2 expression induced by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Resveratrol-suppressed phosphorylation and subsequent degradation of IkappaBalpha, thereby inhibiting activation of nuclear factor-kappaB (NF-kappaB) in TPA-stimulated mouse skin. Pretreatment with resveratrol also suppressed TPA-induced phosphorylation of extracellular signal-regulated protein kinase (ERK) and p38 mitogen-activated protein (MAP) kinase. Resveratrol blunted TPA-induced phosphorylation of p65 and its interaction with CBP/p300, rendering NF-kappaB transcriptionally inactive. To get further insights into the molecular basis of NF-kappaB inactivation by resveratrol, we examined the role of IkappaB kinase (IKK) in mediating TPA-induced activation of NF-kappaB and COX-2 expression. TPA treatment led to rapid induction of IKK activity in mouse skin, which was abolished either by resveratrol or an IKK inhibitor Bay 11-7082. Topical application of Bay 11-7082 also abrogated TPA-induced NF-kappaB activation and COX-2 expression, supporting the involvement of IKK in TPA-induced COX-2 expression. Taken together, the above findings suggest that resveratrol targets IKK in blocking TPA-induced NF-kappaB activation and COX-2 expression in mouse skin in vivo.
Collapse
Affiliation(s)
- Joydeb Kumar Kundu
- National Research Laboratory of Molecular Carcinogenesis and Chemoprevention, College of Pharmacy, Seoul National University, Seoul 151-742
| | | | | | | |
Collapse
|
145
|
Michel JJC, Townley IK, Dodge-Kafka KL, Zhang F, Kapiloff MS, Scott JD. Spatial restriction of PDK1 activation cascades by anchoring to mAKAPalpha. Mol Cell 2006; 20:661-72. [PMID: 16337591 DOI: 10.1016/j.molcel.2005.10.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 09/19/2005] [Accepted: 10/12/2005] [Indexed: 02/06/2023]
Abstract
The muscle A-kinase anchoring protein (mAKAP) tethers cAMP-dependent enzymes to perinuclear membranes of cardiomyocytes. We now demonstrate that two alternatively spliced forms of mAKAP are expressed: mAKAPalpha and mAKAPbeta. The longer form, mAKAPalpha, is preferentially expressed in the brain. mAKAPbeta is a shorter form of the anchoring protein that lacks the first 244 amino acids and is preferentially expressed in the heart. The unique amino terminus of mAKAPalpha can spatially restrict the activity of 3-phosphoinositide-dependent kinase-1 (PDK1). Biochemical and genetic analyses demonstrate that simultaneous recruitment of PDK1 and ERK onto mAKAPalpha facilitates activation and release of the downstream target p90RSK. The assembly of tissue-specific signaling complexes provides an efficient mechanism to integrate and relay lipid-mediated and mitogenic activated signals to the nucleus.
Collapse
Affiliation(s)
- Jennifer J Carlisle Michel
- Howard Hughes Medical Institute and Vollum Institute, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
146
|
Mavria G, Vercoulen Y, Yeo M, Paterson H, Karasarides M, Marais R, Bird D, Marshall CJ. ERK-MAPK signaling opposes Rho-kinase to promote endothelial cell survival and sprouting during angiogenesis. Cancer Cell 2006; 9:33-44. [PMID: 16413470 DOI: 10.1016/j.ccr.2005.12.021] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 09/21/2005] [Accepted: 12/19/2005] [Indexed: 12/30/2022]
Abstract
Inhibition of ERK-MAPK signaling by expression of dominant-negative MEK1 in the tumor vasculature suppresses angiogenesis and tumor growth. In an organotypic tissue culture angiogenesis assay, ERK-MAPK inhibition during the migratory phase results in loss of bipolarity, detachment, and cell death of isolated endothelial cells and retraction of sprouting tubules. These effects are the consequence of upregulated Rho-kinase signaling. Transient inhibition of Rho-kinase rescues the effects of ERK-MAPK inhibition in vitro and in vivo, promotes sprouting, and increases vessel length in tumors. We propose a regulatory role of Rho-kinase by ERK-MAPK during angiogenesis that acts through the control of actomyosin contractility. Our data delineate a mechanism by which ERK-MAPK promotes endothelial cell survival and sprouting by downregulating Rho-kinase signaling.
Collapse
Affiliation(s)
- Georgia Mavria
- Institute of Cancer Research, Cancer Research UK Centre for Cell and Molecular Biology, 237 Fulham Road, London SW3 6JB, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A, Ye Q, Lobo JM, She Y, Osman I, Golub TR, Sebolt-Leopold J, Sellers WR, Rosen N. BRAF mutation predicts sensitivity to MEK inhibition. Nature 2005; 439:358-62. [PMID: 16273091 PMCID: PMC3306236 DOI: 10.1038/nature04304] [Citation(s) in RCA: 1042] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 10/04/2005] [Indexed: 12/15/2022]
Abstract
The kinase pathway comprising RAS, RAF, mitogen-activated protein kinase kinase (MEK) and extracellular signal regulated kinase (ERK) is activated in most human tumours, often through gain-of-function mutations of RAS and RAF family members. Using small-molecule inhibitors of MEK and an integrated genetic and pharmacologic analysis, we find that mutation of BRAF is associated with enhanced and selective sensitivity to MEK inhibition when compared to either 'wild-type' cells or cells harbouring a RAS mutation. This MEK dependency was observed in BRAF mutant cells regardless of tissue lineage, and correlated with both downregulation of cyclin D1 protein expression and the induction of G1 arrest. Pharmacological MEK inhibition completely abrogated tumour growth in BRAF mutant xenografts, whereas RAS mutant tumours were only partially inhibited. These data suggest an exquisite dependency on MEK activity in BRAF mutant tumours, and offer a rational therapeutic strategy for this genetically defined tumour subtype.
Collapse
Affiliation(s)
- David B Solit
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Ricciardi MR, McQueen T, Chism D, Milella M, Estey E, Kaldjian E, Sebolt-Leopold J, Konopleva M, Andreeff M. Quantitative single cell determination of ERK phosphorylation and regulation in relapsed and refractory primary acute myeloid leukemia. Leukemia 2005; 19:1543-9. [PMID: 16001087 DOI: 10.1038/sj.leu.2403859] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We investigated the constitutive activation of the MEK/ERK pathway in acute myelogenous leukemia (AML) via a flow cytometric technique to quantitate expression of phosphorylated ERK (p-ERK). A total of 42 AML samples (16 newly diagnosed, 26 relapsed/refractory) were analyzed. Normal bone marrow CD34+ cells (n = 10) had little or no expression of p-ERK, while G-CSF-mobilized CD34+ cells exhibited enhanced p-ERK levels. Markedly elevated p-ERK levels were found in 83.3% of the AML samples, with no differences observed between the newly diagnosed and relapsed/refractory samples. Treatment with a MEK inhibitor resulted in significantly decreased p-ERK levels in both the newly diagnosed and relapsed/refractory samples, which was associated with growth arrest, but not apoptosis induction. In summary, we defined conditions for the analysis of MAPK signaling in primary AML samples. Normal CD34+ cells expressed very low levels of p-ERK, and increased p-ERK levels were found in normal G-CSF-stimulated circulating CD34+ cells. Constitutively high p-ERK levels observed in the majority of AML samples suggest deregulation of this pathway that appears to be independent of disease status. The ability of ERK inhibition to promote growth arrest rather than apoptosis suggests that clinical trials of MEK/ERK inhibitors may be more effective when combined with chemotherapy.
Collapse
Affiliation(s)
- M R Ricciardi
- Department of Blood Transplantation, Section of Molecular Hematology and Therapy, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Mattingly RR, Kraniak JM, Dilworth JT, Mathieu P, Bealmear B, Nowak JE, Benjamins JA, Tainsky MA, Reiners JJ. The Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Kinase Inhibitor PD184352 (CI-1040) Selectively Induces Apoptosis in Malignant Schwannoma Cell Lines. J Pharmacol Exp Ther 2005; 316:456-65. [PMID: 16239399 DOI: 10.1124/jpet.105.091454] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Type 1 neurofibromatosis (NF1) is a common autosomal dominant disorder that results in neuroectodermal tumors. The NF1 tumor-suppressor gene encodes neurofibromin, which includes a GTPase-activating domain for Ras inactivation. Affinity purification showed N-Ras to be the predominant activated isoform of Ras in two independent neurofibrosarcoma cell lines from NF1 patients (lines ST88-14 and NF90-8). These NF1 cells also demonstrated increased constitutive activity of the extracellular signal-regulated kinases 1 and 2 (ERK1,2) mitogen-activated protein (MAP) kinases compared with a sporadic malignant schwannoma cell line that maintains neurofibromin expression (STS-26T). Thus, MAP kinase kinase (MEK) inhibitors may be a rational approach to NF1 therapy. The MEK inhibitors PD98059 [2'-amino-3'-methoxyflavone], PD184352 (also called CI-1040) [2-(2-chloro-4-iodo-phenylamino)-N-cyclopropylmethoxy-3,4-difluoro-benzamide], and U0126 [1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene] all produced concentration-dependent suppression of the proliferation of the three cell lines. Individual MEK inhibitors had similar effects in all three cell lines. However, only the antiproliferative effects of PD184352 correlated closely with the elimination of ERK1,2 MAP kinase activities. PD98059 was primarily cytostatic, whereas U0126 and PD184352 were cytotoxic. Only PD184352 induced apoptosis in all three lines, as indicated by morphology, activation of DEVDase, procaspase-3 cleavage, and the appearance of populations having sub-G(0)/G(1) DNA contents. The differential effects of the MEK inhibitors on cell survival were not dependent on p53 status or effects on the ERK5 pathway. PD184352 was also proapoptotic to primary rat Schwann cells. Hence, although PD184352 effectively killed neurofibrosarcoma cells, its effects on normal Schwann cells may limit its usefulness in the clinic.
Collapse
Affiliation(s)
- Raymond R Mattingly
- Department of Pharmacology, Wayne State University, 540 East Canfield Ave., Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Chen LW, Lin MW, Hsu CM. Different pathways leading to activation of extracellular signal-regulated kinase and p38 MAP kinase by formyl-methionyl-leucyl-phenylalanine or platelet activating factor in human neutrophils. J Biomed Sci 2005; 12:311-9. [PMID: 15917990 DOI: 10.1007/s11373-005-1704-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Accepted: 12/21/2004] [Indexed: 12/17/2022] Open
Abstract
The signaling pathways leading to extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) activation by N-formyl-Met-Leu-Phe (fMLP) or platelet activating factor (PAF) in human neutrophils were examined. Previously, we found that changes of intracellular Ca2+ ([Ca2+]i) stimulated by PAF and fMLP were due to Ca2+ influx and internal Ca2+ release, respectively. To further determine the mechanism of MAPK activation and its relation with Ca2+ influx, blood from healthy human volunteers was taken by venous puncture. Human polymorphonuclear cells (PMNs) were isolated and incubated with protein kinase C (PKC) inhibitor Calphostin C, PKC-gamma isoform inhibitor GF109203X, phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and LY294002, phospholipase C (PLC) inhibitor U73122, phospholipase A2 (PLA2) inhibitor Aristolochic acid, store-operated calcium (SOC) channel inhibitor SKF96365, or extracellular calcium chelator EGTA followed by fMLP or PAF treatment. Phosphorylation of ERK p38 was determined by immunoblotting analysis. Our data indicate that neutrophil MAPK signaling pathways mediated by fMLP and PAF are different. PAF-induced ERK phosphorylation is mediated by PI3K, PKC, PLA2, PLC, and extracellular calcium, whereas fMLP-induced ERK phosphorylation does not involve the PKC-gamma isoform and extracellular calcium. PAF-induced p38 phosphorylation involves PLA2, whereas fMLP-induced p38 activation is PLC dependent.
Collapse
Affiliation(s)
- Lee-Wei Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, National Yang-Ming Medical University, Taipei, Taiwan
| | | | | |
Collapse
|