101
|
Suh HJ, Sook Kim C, Lee JY, Jung J. Photodynamic Effect of Iron Excess on Photosystem II Function in Pea Plants¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0750513peoieo2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
102
|
Mahler H, Wuennenberg P, Linder M, Przybyla D, Zoerb C, Landgraf F, Forreiter C. Singlet oxygen affects the activity of the thylakoid ATP synthase and has a strong impact on its gamma subunit. PLANTA 2007; 225:1073-83. [PMID: 17103225 DOI: 10.1007/s00425-006-0416-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2006] [Accepted: 09/19/2006] [Indexed: 05/08/2023]
Abstract
Singlet oxygen is reported to have the most potent damaging effect upon the photosynthetic machinery. Usually this reactive oxygen molecule acts in concert with other ROS types under stressful conditions. To understand the specific role of singlet oxygen we took advantage of the conditional flu mutant of Arabidopsis thaliana. In flu, the negative feedback loop is abolished, which blocks chlorophyll biosynthesis in the dark. Therefore high amounts of free protochlorophyllide accumulate during darkness. If flu gets subsequently illuminated, free protochlorophyllide acts as a photosensitiser leading almost exclusively to high amounts of (1)O2. Analysing the thylakoid protein pattern by using 2D PAGE and subsequent MALDI-TOF analysis, we could show, in addition to previous described effects on photosystem II, that singlet oxygen has a massive impact on the thylakoid ATP synthase, especially on its gamma subunit. Additionally, it could be shown that the activity of the ATP synthase is reduced upon singlet oxygen exposure and that the rate of non-photochemical quenching is affected in flu mutants exposed to (1)O2.
Collapse
Affiliation(s)
- Hanno Mahler
- Department of Plant Physiology, Justus-Liebig Universität, Senckenbergstr. 3, Giessen 35390, Germany
| | | | | | | | | | | | | |
Collapse
|
103
|
Santabarbara S. Limited sensitivity of pigment photo-oxidation in isolated thylakoids to singlet excited state quenching in photosystem II antenna. Arch Biochem Biophys 2006; 455:77-88. [PMID: 17005156 DOI: 10.1016/j.abb.2006.08.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 08/09/2006] [Accepted: 08/12/2006] [Indexed: 11/25/2022]
Abstract
Light-induced pigment oxidation and its relation to excited state quenching in photosystems antennae have been investigated in isolated thylakoids. The results indicate that (i) chlorophyll oxidation takes place in two sequential steps. A slow initial phase is followed by a steep increase in the bleaching rate when more than one quarter of the chromophores are oxidised. (ii) During the initial slow phase, the carotenoid pool is bleached with an apparent rate which is about three times faster than that found for chlorophyll a and more than six times faster than that of chlorophyll b. (iii) Pigment bleaching has been observed both in photosystem I and photosystem II, and it has been possible to estimate a similar carotenoid bleaching rate in the two photosystems. (iv) The protection conferred by singlet state quenchers in the initial slow phase of pigment oxidation is modest. Taking into consideration that both the photosystems are subjected to the oxidative treatment, a somewhat larger protective effect than those estimated for photo-inhibition in thylakoids [S. Santabarbara, F.M. Garlaschi, G. Zucchelli, R.C. Jennings, Biochim. Biophys. Acta 1409 (1999) 165-170] can be computed, although it is less than 50% of the expected level on the basis of the observed reciprocity to the number of incident photons. (v) Pigment oxidation is associated with the loss of membrane ultra-structure, which is interpreted as originating from a decrease in grana stacking. The dynamics of loss of membrane ultra-structure parallel the phases observed for chlorophyll photo-bleaching.
Collapse
Affiliation(s)
- Stefano Santabarbara
- Centre for Fundamental Research in Photosynthesis, Hendon, 67 The Burroughs, London NW4 4AX, UK.
| |
Collapse
|
104
|
Zhang Y, He J, Wang PN, Chen JY, Lu ZJ, Lu DR, Guo J, Wang CC, Yang WL. Time-Dependent Photoluminescence Blue Shift of the Quantum Dots in Living Cells: Effect of Oxidation by Singlet Oxygen. J Am Chem Soc 2006; 128:13396-401. [PMID: 17031951 DOI: 10.1021/ja061225y] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Time-dependent photoluminescence (PL) enhancement, blue shift, and photobleach were observed from the thiol-capped CdTe quantum dots (QDs) ingested in mouse myoblast cells and human primary liver cancer cells. It was revealed that the PL blue shift resulted from the photooxidation of the QD core by singlet oxygen molecules formed on the QD core surface.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Lab for Advanced Photonic Materials and Devices, Department of Optical Science and Engineering, Key Laboratory of Molecular Engineering of Polymers, and Institute of Genetics, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. PLANT PHYSIOLOGY 2006; 141:391-6. [PMID: 16760493 PMCID: PMC1475469 DOI: 10.1104/pp.106.082040] [Citation(s) in RCA: 1284] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Kozi Asada
- Faculty of Life Science and Biotechnology, Fukuyama University, Fukuyama 729-0292, Japan.
| |
Collapse
|
106
|
Nishiyama Y, Allakhverdiev SI, Murata N. A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:742-9. [PMID: 16784721 DOI: 10.1016/j.bbabio.2006.05.013] [Citation(s) in RCA: 402] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 05/02/2006] [Accepted: 05/04/2006] [Indexed: 11/16/2022]
Abstract
Inhibition of the activity of photosystem II (PSII) under strong light is referred to as photoinhibition. This phenomenon is due to the imbalance between the rate of photodamage to PSII and the rate of the repair of damaged PSII. Photodamage is initiated by the direct effects of light on the oxygen-evolving complex and, thus, photodamage to PSII is unavoidable. Studies of the effects of oxidative stress on photodamage and subsequent repair have revealed that reactive oxygen species (ROS) act primarily by inhibiting the repair of photodamaged PSII and not by damaging PSII directly. Thus, strong light has two distinct effects on PSII; it damages PSII directly and it inhibits the repair of PSII via production of ROS. Investigations of the ROS-induced inhibition of repair have demonstrated that ROS suppress the synthesis de novo of proteins and, in particular, of the D1 protein, that are required for the repair of PSII. Moreover, a primary target for inhibition by ROS appears to be the elongation step of translation. Inhibition of the repair of PSII by ROS is accelerated by the deceleration of the Calvin cycle that occurs when the availability of CO(2) is limited. In this review, we present a new paradigm for the action of ROS in photoinhibition.
Collapse
Affiliation(s)
- Yoshitaka Nishiyama
- Cell-Free Science and Technology Research Center and Satellite Venture Business Laboratory, Ehime University, Bunkyo-cho, Matsuyama, Japan.
| | | | | |
Collapse
|
107
|
Fischer BB, Eggen RIL, Trebst A, Krieger-Liszkay A. The glutathione peroxidase homologous gene Gpxh in Chlamydomonas reinhardtii is upregulated by singlet oxygen produced in photosystem II. PLANTA 2006; 223:583-90. [PMID: 16160847 DOI: 10.1007/s00425-005-0108-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Accepted: 07/15/2005] [Indexed: 05/04/2023]
Abstract
The expression of the glutathione peroxidase homologous gene Gpxh, known to be specifically induced by the formation of singlet oxygen (1O2), was analyzed in cells of Chlamydomonas reinhardtii exposed to environmental conditions causing photoinhibition. Illumination with high light intensities, leading to an increased formation of 1O2 in photosystem II, continuously induced the expression of Gpxh in cell for at least 2 h. Phenolic herbicides like dinoterb, raise the rate of 1O2 formation by increasing the probability of charge recombination in photosystem II via the formation of the primary radical pair and thereby 3P680 formation (Fufezan C et al. 2002, FEBS Letters 532, 407-410). In the presence of dinoterb the light-induced loss of the D1 protein in C. reinhardtii was increased and the high light-induced Gpxh expression was further stimulated. DCMU, a urea-type herbicide, causing reduced 1O2 generation in photosystem II, protected the D1 protein slightly against degradation and downregulated the expression of the Gpxh gene compared to untreated cells exposed to high light intensities. This indicates that the Gpxh expression is induced by 1O2 under environment conditions causing photoinhibition.
Collapse
Affiliation(s)
- Beat B Fischer
- Department of Environmental Toxicology, Swiss Federal Institute for Environmental Science and Technology (EAWAG), Uberlandstr. 133, Dubendorf 8600, Switzerland
| | | | | | | |
Collapse
|
108
|
Hideg E, Kálai T, Kós PB, Asada K, Hideg K. Singlet Oxygen in Plants—Its Significance and Possible Detection with Double (Fluorescent and Spin) Indicator Reagents. Photochem Photobiol 2006; 82:1211-8. [PMID: 16608386 DOI: 10.1562/2006-02-06-ra-797] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Direct detection of reactive oxygen species (ROS), especially singlet oxygen, in plants under stress conditions is of special importance, not only to identify primary events of oxidative damage, but also in studies exploring the potential role of ROS as signal molecules. Due to short life-times and diffusion distances of ROS, these tasks require highly reactive and selective indicator reagents, localized at the presumed site of production. In the present study, we compared four double sensors: ROS indicator reagents in which partial fluorescence quenching of a dansyl moiety occurs as a result of nitroxide radical formation from a sterically hindered amine constituent. Our experiments support the idea that shorter donor-acceptor distances within these molecules result in higher reactivity to ROS. The presence of a diethylaminoethyl side chain resulted in better selectivity to singlet oxygen: reagents lacking such substituent had an additional reactivity to superoxide anions, probably as a result of the formation of zwitterionic structures. Fluorescence localization studies of the indicator reagents in tobacco leaves and in Chlamydomonas cells show promising perspectives of their applications to plant stress studies.
Collapse
Affiliation(s)
- Eva Hideg
- Institute of Plant Biology, Biological Research Center, H-6701 Szeged, PO Box 521, Hungary.
| | | | | | | | | |
Collapse
|
109
|
Telfer A. Too much light? How beta-carotene protects the photosystem II reaction centre. Photochem Photobiol Sci 2005; 4:950-6. [PMID: 16307107 DOI: 10.1039/b507888c] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photosystem II reaction centre of all oxygenic organisms is subject to photodamage by high light i.e. photoinhibition. In this review I discuss the reasons for the inevitable and unpreventable oxidative damage that occurs in photosystem II and the way in which beta-carotene bound to the reaction centre significantly mitigates this damage. Recent X-ray structures of the photosystem II core complex (reaction centre plus the inner antenna complexes) have revealed the binding sites of some of the carotenoids known to be bound to the complex. In the light of these X-ray structures and their known biophysical properties it is thus possible to identify the two beta-carotenes present in the photosystem II reaction centre. The two carotenes are both bound to the D2 protein and this positioning is discussed in relation to their ability to act as quenchers of singlet oxygen, generated via the triplet state of the primary electron donor. It is proposed that their location on the D2 polypeptide means there is more oxidative damage to the D1 protein and that this underlies the fact that this latter protein is continuously re-synthesised, at a far greater rate than any other protein involved in photosynthesis. The relevance of a cycle of electrons around photosystem II, via cytochrome b(559), in order to re-reduce the beta-carotenes when they are oxidised and hence restore their ability to quench singlet oxygen, is also discussed.
Collapse
Affiliation(s)
- Alison Telfer
- Division of Molecular Biosciences, Imperial College London, South Kensington Campus, London, UK SW7 2AZ.
| |
Collapse
|
110
|
Backasch N, Schulz-Friedrich R, Appel J. Influences on tocopherol biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. JOURNAL OF PLANT PHYSIOLOGY 2005; 162:758-66. [PMID: 16008100 DOI: 10.1016/j.jplph.2005.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To elucidate influences on the tocopherol biosynthesis in cyanobacteria, wild type and mutant cells of a putative methyltransferase in tocopherol and plastoquinone biosynthesis of Synechocystis sp. PCC 6803 were grown under different conditions. The vitamin E content of cells grown under different light regimes, photomixotrophic or photoautotrophic conditions and varying carbon dioxide supplies were compared by HPLC measurements. The tocopherol levels in wild type cells increased under higher light conditions and low carbon dioxide supply. Photomixotrophic growth led to lower vitamin E amounts in the cells compared to those grown photoautotrophically. We were able to segregate a homozygous deltasll0418 mutant under photoautotrophic conditions. In contrast to former suggestions in the literature the deletion of this gene is not lethal under photomixotrophic conditions and the influence on tocopherol and plastoquinone amounts is diminutive. The methyltransferase encoded by the gene sll0418 is not essential either for tocopherol or plastoquinone synthesis.
Collapse
Affiliation(s)
- Ninja Backasch
- Institute of Botany, Christian-Albrechts-University of Kiel, Olshausenstr, 40, 24098 Kiel, Germany
| | | | | |
Collapse
|
111
|
Kruk J, Holländer-Czytko H, Oettmeier W, Trebst A. Tocopherol as singlet oxygen scavenger in photosystem II. JOURNAL OF PLANT PHYSIOLOGY 2005; 162:749-57. [PMID: 16008099 DOI: 10.1016/j.jplph.2005.04.020] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Singlet oxygen is formed in the photosystem II reaction center in the quench of P680 triplets, and the yield is dependent on light intensity and the reduction level of plastoquinone. Singlet oxygen in PS II triggers the degradation of the D1 protein. We investigated the participation of tocopherol as a singlet oxygen scavenger in this system. For this purpose, we inhibited tocopherol biosynthesis at the level of the HPP-dioxygenase in the alga Chlamydomonas reinhardtii under conditions in which plastoquinone did not limit the photosynthesis rate. In the presence of the inhibitor and in high light for 2 h, photosynthesis in vivo and photosystem II was inactivated, the D1 protein was degraded, and the tocopherol pool was depleted and fell below its turnover rate/h. The inhibited system could be fully resuscitated upon the addition of a chemical singlet oxygen quencher (diphenylamine), and partly by synthetic cell wall permeable short chain alpha- and gamma-tocopherol derivatives. We conclude that under conditions of photoinhibition and extensive D1 protein turnover tocopherol has a protective function as a singlet oxygen scavenger.
Collapse
Affiliation(s)
- Jerzy Kruk
- Plant Physiology and Biochemistry, Faculty of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | | | | | | |
Collapse
|
112
|
Fufezan C, Drepper F, Juhnke HD, Lancaster CRD, Un S, Rutherford AW, Krieger-Liszkay A. Herbicide-induced changes in charge recombination and redox potential of Q(A) in the T4 mutant of Blastochloris viridis. Biochemistry 2005; 44:5931-9. [PMID: 15823053 DOI: 10.1021/bi050055j] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To gain new insights into the function of photosystem II (PSII) herbicides DCMU (a urea herbicide) and bromoxynil (a phenolic herbicide), we have studied their effects in a better understood system, the bacterial photosynthetic reaction center of the terbutryn-resistant mutant T4 of Blastochloris (Bl.) viridis. This mutant is uniquely sensitive to these herbicides. We have used redox potentiometry and time-resolved absorption spectroscopy in the nanosecond and microsecond time scale. At room temperature the P(+)(*)Q(A)(-)(*) charge recombination in the presence of bromoxynil was faster than in the presence of DCMU. Two phases of P(+)(*)Q(A)(-)(*) recombination were observed. In accordance with the literature, the two phases were attributed to two different populations of reaction centers. Although the herbicides did induce small differences in the activation barriers of the charge recombination reactions, these did not explain the large herbicide-induced differences in the kinetics at ambient temperature. Instead, these were attributed to a change in the relative amplitude of the phases, with the fast:slow ratio being approximately 3:1 with bromoxynil and approximately 1:2 with DCMU at 300 K. Redox titrations of Q(A) were performed with and without herbicides at pH 6.5. The E(m) was shifted by approximately -75 mV by bromoxynil and by approximately +55 mV by DCMU. As the titrations were done over a time range that is assumed to be much longer than that for the transition between the two different populations, the potentials measured are considered to be a weighted average of two potentials for Q(A). The influence of the herbicides can thus be considered to be on the equilibrium of the two reaction center forms. This may also be the case in photosystem II.
Collapse
Affiliation(s)
- C Fufezan
- Institut für Biologie II, Biochemie der Pflanzen, Universität Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
113
|
Szilárd A, Sass L, Hideg E, Vass I. Photoinactivation of photosystem II by flashing light. PHOTOSYNTHESIS RESEARCH 2005; 84:15-20. [PMID: 16049749 DOI: 10.1007/s11120-004-7161-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 12/03/2004] [Indexed: 05/03/2023]
Abstract
Inhibition of Photosystem II (PS II) activity by single turnover visible light flashes was studied in thylakoid membranes isolated form spinach. Flash illumination results in decreased oxygen evolving activity of PS II, which effect is most pronounced when the water-oxidizing complex is in the S2 and S3 states, and increases with increasing time delay between the subsequent flashes. By applying the fluorescent spin-trap DanePy, we detected the production of singlet oxygen, whose amount was increasing with increasing flash spacing. These findings were explained in the framework of a model, which assumes that recombination of the S2QB - and S3QB - states generate the triplet state of the reaction center chlorophyll and lead to the production of singlet oxygen.
Collapse
Affiliation(s)
- András Szilárd
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| | | | | | | |
Collapse
|
114
|
Fischer BB, Krieger-Liszkay A, Eggen RL. Photosensitizers neutral red (type I) and rose bengal (type II) cause light-dependent toxicity in Chlamydomonas reinhardtii and induce the Gpxh gene via increased singlet oxygen formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2004; 38:6307-13. [PMID: 15597886 DOI: 10.1021/es049673y] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The connection between the mode of toxic action and the genetic response caused by the type I photosensitizer and photosynthesis inhibitor neutral red (NR) and the type II photosensitizer rose bengal (RB) was investigated in the green alga Chlamydomonas reinhardtii. For both photosensitizers, a light intensity-dependent increase in toxicity and expression of the glutathione peroxidase homologous gene (Gpxh) was found. The toxicity of RB was reduced by the singlet oxygen (1O2) quenchers 1,4-diazabicyclo[2.2.2]octane and L-histidine, and the RB-induced Gpxh expression was stimulated in deuterium oxide-supplemented growth medium. These observations clearly indicate the involvement of 1O2 in both toxicity and the genetic response caused by RB. NR up-regulated the expression of typical oxidative and general stress response genes, probably by a type I mechanism, and also strongly induced the Gpxh expression. The stimulating effect of deuterium oxide in the growth medium suggested the involvement of 1O2 also in the NR-induced response. Indeed, an increased 1O2 formation was detected with EPR-spin trapping in NR-treated spinach thylakoids. However, none of the 102 quenchers could reduce the light-dependent toxicity of NR in C. reinhardtii, indicating that NR has a different mode of toxic action than RB.
Collapse
Affiliation(s)
- Beat B Fischer
- Department of Environmental Microbiology and Molecular Ecotoxicology, Swiss Federal Institute for Environmental Science and Technology (EAWAG), Ueberlandstrasse 133, 8600 Dübendorf, Switzerland
| | | | | |
Collapse
|
115
|
Allakhverdiev SI, Murata N. Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of Photosystem II in Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1657:23-32. [PMID: 15238209 DOI: 10.1016/j.bbabio.2004.03.003] [Citation(s) in RCA: 316] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Revised: 01/13/2004] [Accepted: 03/09/2004] [Indexed: 11/26/2022]
Abstract
The Photosystem II complex (PSII) is susceptible to inactivation by strong light, and the inactivation caused by strong light is referred to as photoinactivation or photoinhibition. In photosynthetic organisms, photoinactivated PSII is rapidly repaired and the extent of photoinactivation reflects the balance between the light-induced damage (photodamage) to PSII and the repair of PSII. In this study, we examined these two processes separately and quantitatively under stress conditions in the cyanobacterium Synechocystis sp. PCC 6803. The rate of photodamage was proportional to light intensity over a range of light intensities from 0 to 2000 microE m(-2) s(-1), and this relationship was not affected by environmental factors, such as salt stress, oxidative stress due to H2O2, and low temperature. The rate of repair also depended on light intensity. It was high under weak light and reached a maximum of 0.1 min(-1) at 300 microE m(-2) s(-1). By contrast to the rate of photodamage, the rate of repair was significantly reduced by the above-mentioned environmental factors. Pulse-labeling experiments with radiolabeled methionine revealed that these environmental factors inhibited the synthesis de novo of proteins. Such proteins included the D1 protein which plays an important role in the photodamage-repair cycle. These observations suggest that the repair of PSII under environmental stress might be the critical step that determines the outcome of the photodamage-repair cycle.
Collapse
|
116
|
Nishiyama Y, Allakhverdiev SI, Yamamoto H, Hayashi H, Murata N. Singlet Oxygen Inhibits the Repair of Photosystem II by Suppressing the Translation Elongation of the D1 Protein in Synechocystis sp. PCC 6803. Biochemistry 2004; 43:11321-30. [PMID: 15366942 DOI: 10.1021/bi036178q] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Singlet oxygen, generated during photosynthesis, is a strong oxidant that can, potentially, damage various molecules of biological importance. We investigated the effects in vivo of singlet oxygen on the photodamage to photosystem II (PSII) in the cyanobacterium Synechocystis sp. PCC 6803. Increases in intracellular concentrations of singlet oxygen, caused by the presence of photosensitizers, such as rose bengal and ethyl eosin, stimulated the apparent photodamage to PSII. However, actual photodamage to PSII, as assessed in the presence of chloramphenicol, was unaffected by the production of singlet oxygen. These observations suggest that singlet oxygen produced by added photosensitizers acts by inhibiting the repair of photodamaged PSII. Labeling of proteins in vivo revealed that singlet oxygen inhibited the synthesis of proteins de novo and, in particular, the synthesis of the D1 protein. Northern blotting analysis indicated that the accumulation of psbA mRNAs, which encode the D1 protein, was unaffected by the production of singlet oxygen. Subcellular localization of polysomes with bound psbA mRNAs suggested that the primary target of singlet oxygen might be the elongation step of translation.
Collapse
Affiliation(s)
- Yoshitaka Nishiyama
- Cell-Free Science and Technology Research Center and Satellite Venture Business Laboratory, Ehime University, Bunkyo-cho, Matsuyama 790-8577, Japan.
| | | | | | | | | |
Collapse
|
117
|
Baroli I, Gutman BL, Ledford HK, Shin JW, Chin BL, Havaux M, Niyogi KK. Photo-oxidative stress in a xanthophyll-deficient mutant of Chlamydomonas. J Biol Chem 2003; 279:6337-44. [PMID: 14665619 DOI: 10.1074/jbc.m312919200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When there is an imbalance between the light energy absorbed by a photosynthetic organism and that which can be utilized in photosynthesis, photo-oxidative stress can damage pigments, proteins, lipids, and nucleic acids. In this work we compared the wild type and a xanthophyll-deficient mutant of Chlamydomonas reinhardtii in their response to high amounts of light. Wild-type Chlamydomonas cells were able to acclimate to high amounts of light following transfer from low light conditions. In contrast, the npq1 lor1 double mutant, which lacks protective xanthophylls (zeaxanthin and lutein) in the chloroplast, progressively lost viability and photosynthetic capacity along with destruction of thylakoid membrane protein-pigment complexes and accumulation of reactive oxygen species and membrane lipid peroxides. Loss of viability was partially rescued by lowered oxygen tension, suggesting that the high sensitivity of the mutant to light stress is caused by the production of reactive oxygen species in the chloroplast. Cell death was not prevented by the addition of an organic carbon source to the growth medium, demonstrating that the photo-oxidative damage can target other essential chloroplast processes besides photosynthesis. From the differential sensitivity of the mutant to exogenously added pro-oxidants, we infer that the reactive oxygen species produced during light stress in npq1 lor1 may be singlet oxygen and/or superoxide but not hydrogen peroxide. The bleaching phenotype of npq1 lor1 was not due to enhanced photodamage to photosystem II but rather to a less localized phenomenon of accumulation of photo-oxidation products in chloroplast membranes.
Collapse
Affiliation(s)
- Irene Baroli
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, USA
| | | | | | | | | | | | | |
Collapse
|
118
|
Mizusawa N, Tomo T, Satoh K, Miyao M. Degradation of the D1 protein of photosystem II under illumination in vivo: two different pathways involving cleavage or intermolecular cross-linking. Biochemistry 2003; 42:10034-44. [PMID: 12924952 DOI: 10.1021/bi0300534] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The D1 protein of the photosystem II reaction center turns over the most rapidly of all the proteins of the thylakoid membrane under illumination in vivo. In vitro, the D1 protein sustained cleavage in a surface-exposed loop (DE loop) or cross-linking with another reaction center protein, the D2 protein or cytochrome b(559), under illumination. We found that the D1 protein was damaged in essentially the same way in vivo, although the resultant fragments and cross-linked adducts barely accumulated due to digestion by proteases. In vitro studies detected a novel stromal protease(s) that digested the adducts but not the monomeric D1 protein. These observations suggest that, in addition to cleavage, the cross-linking reactions themselves are processes involved in complete degradation of the D1 protein in vivo. Peptide mapping experiments located the cross-linking sites with the D2 protein among residues 226-244, which includes the cross-linking site with cytochrome b(559) [Barbato, R., et al. (1995) J. Biol. Chem. 270, 24032-24037], in the N-terminal part of the DE loop, while N-terminal amino acid sequencing of the fragment located the cleavage site around residue 260 in the C-terminal part of the loop. We propose a model explaining the occurrence of simultaneous cleavage and cross-linking and discuss the mechanisms of complete degradation of the D1 protein in vivo.
Collapse
Affiliation(s)
- Naoki Mizusawa
- Photosynthesis Laboratory, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | | | | | | |
Collapse
|
119
|
Schmidt K, Fufezan C, Krieger-Liszkay A, Satoh H, Paulsen H. Recombinant water-soluble chlorophyll protein from Brassica oleracea var. Botrys binds various chlorophyll derivatives. Biochemistry 2003; 42:7427-33. [PMID: 12809498 DOI: 10.1021/bi034207r] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A gene coding for water-soluble chlorophyll-binding protein (WSCP) from Brassica oleracea var. Botrys has been used to express the protein, extended by a hexahistidyl tag, in Escherichia coli. The protein has been refolded in vitro to study its pigment binding behavior. Recombinant WSCP was found to bind two chlorophylls (Chls) per tetrameric protein complex but no carotenoids in accordance with previous observations with the native protein [Satoh, H., Nakayama, K., Okada, M. (1998) J. Biol. Chem. 273, 30568-30575]. WSCP binds Chl a, Chl b, bacteriochlorophyll a, and the Zn derivative of Chl a but not pheophytin a, indicating that the central metal ion in Chl is essential for binding. WSCP also binds chlorophyllides a and b and even the more distant Chl precursor Mg-protoporphyrin IX; however, these pigments fail to induce oligomerization of the protein. We conclude that the phytol group in bound Chl plays a role in the formation of tetrameric WSCP complexes. If WSCP in fact binds Chl or its derivative(s) in vivo, the lack of carotenoids in pigmented WSCP raises the question of how photooxidation, mediated by triplet-excited Chl and singlet oxygen, is prohibited. We show by spin-trap electron-paramagnetic resonance that the light-induced singlet-oxygen formation of WSCP-bound Chl is lower by a factor of about 4 than that of unbound Chl. This as-yet-unknown mechanism of WSCP to protect its bound Chl against photooxidation supports the notion that WSCP may function as a transient carrier of Chl or its derivatives.
Collapse
Affiliation(s)
- Kristin Schmidt
- Institut für Allgemeine Botanik der Johannes-Gutenberg-Universität, Müllerweg 6, D-55099 Mainz, Germany
| | | | | | | | | |
Collapse
|
120
|
Fufezan C, Rutherford AW, Krieger-Liszkay A. Singlet oxygen production in herbicide-treated photosystem II. FEBS Lett 2002; 532:407-10. [PMID: 12482601 DOI: 10.1016/s0014-5793(02)03724-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Photo-generated reactive oxygen species in herbicide-treated photosystem II were investigated by spin-trapping. While the production of .OH and O2-* was herbicide-independent, 1O2 with a phenolic was twice that with a urea herbicide. This correlates with the reported influence of these herbicides on the redox properties of the semiquinone QA-* and fits with the hypothesis that 1O2 is produced by charge recombination reactions that are stimulated by herbicide binding and modulated by the nature of the herbicide. When phenolic herbicides are bound, charge recombination at the level of P+*Pheo-* is thermodynamically favoured forming a chlorophyll triplet and hence 1O2. With urea herbicides this pathway is less favourable.
Collapse
Affiliation(s)
- Christian Fufezan
- Institut für Biologie II, Biochemie der Pflanzen, Universität Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| | | | | |
Collapse
|
121
|
Telfer A. What is beta-carotene doing in the photosystem II reaction centre? Philos Trans R Soc Lond B Biol Sci 2002; 357:1431-39; discussion 1439-40, 1469-70. [PMID: 12437882 PMCID: PMC1693050 DOI: 10.1098/rstb.2002.1139] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During photosynthesis carotenoids normally serve as antenna pigments, transferring singlet excitation energy to chlorophyll, and preventing singlet oxygen production from chlorophyll triplet states, by rapid spin exchange and decay of the carotenoid triplet to the ground state. The presence of two beta-carotene molecules in the photosystem II reaction centre (RC) now seems well established, but they do not quench the triplet state of the primary electron-donor chlorophylls, which are known as P(680). The beta-carotenes cannot be close enough to P(680) for triplet quenching because that would also allow extremely fast electron transfer from beta-carotene to P(+)(680), preventing the oxidation of water. Their transfer of excitation energy to chlorophyll, though not very efficient, indicates close proximity to the chlorophylls ligated by histidine 118 towards the periphery of the two main RC polypeptides. The primary function of the beta-carotenes is probably the quenching of singlet oxygen produced after charge recombination to the triplet state of P(680). Only when electron donation from water is disturbed does beta-carotene become oxidized. One beta-carotene can mediate cyclic electron transfer via cytochrome b559. The other is probably destroyed upon oxidation, which might trigger a breakdown of the polypeptide that binds the cofactors that carry out charge separation.
Collapse
Affiliation(s)
- Alison Telfer
- Wolfson Laboratories, Department of Biological Sciences, Imperial College of Science, Technology and Medicine, London SW7 2AY, UK.
| |
Collapse
|
122
|
Nayak L, Raval MK, Biswal B, Biswal UC. Topology and photoprotective role of carotenoids in photosystem II of chloroplast: a hypothesis. Photochem Photobiol Sci 2002; 1:629-31. [PMID: 12665297 DOI: 10.1039/b200176b] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
On the basis of existing evidence, a model is proposed for the topology of carotenoids in photosystem II (PS II) of chloroplasts. suggesting their possible roles in the photoprotection and stability of PS II complex. The presence of one cis and one trans beta-carotene at reaction centre II (RC II), with different photoprotective functions, is suggested. The core antennae (CP43, CP47) are presumed to contain beta-carotene molecules in clusters. The possible molecular mechanism for formation of a quenching complex in the minor LHC II, involving zeaxanthin, chlorophyll a and the glutamic acid side chain of the light harvesting protein, is worked out. This complex is proposed to be an efficient triplet quencher, in addition to its role as a quencher of singlet chlorophyll energy. The migration of triplet energy from RC II to the quenching complex is surmised. It is suggested that the carotenoids in RC II and in different LHCs form an integrated photoprotective unit.
Collapse
Affiliation(s)
- Lalitendu Nayak
- School of Life Sciences, Sambalpur University, Jyoti Vihar 768019, Orissa, India
| | | | | | | |
Collapse
|
123
|
Abstract
An earlier mechanistic phase of iron toxicity in photosynthetic cells was interpreted in terms of enhanced photodynamic action by the cytochrome b6/f complex (Cyt b6/f) via singlet oxygen (1O2) on the photosystem II complex (PS II). Iron excess was induced in hydroponically cultured pea (Pisum sativum L.) plants, and its effect on the function of PS II in vivo as well as in vitro was studied under high-irradiance conditions. Iron excess in plants gave rise to a significant increase in Cyt b6/f content of thylakoids. It appeared that the larger the content of Cyt b6/f, the more susceptible PS II was to photoinhibition, and the higher the rate of 1O2 photoproduction in thylakoids was. The action spectrum for degradation of the D1 protein in thylakoids revealed that photosensitization by nonporphyrin chromophore(s) was apparently associated with near UV to blue light-induced deterioration of PS II. The results are pertinent to the concept that photooxidative damage to PS 11, exacerbated by iron accumulation in thylakoid membranes in the form of Cyt b6/f, is involved in the mechanism of iron toxicity in leaf cells.
Collapse
Affiliation(s)
- Hwa-Jin Suh
- School of Agricultural Biotechnology, Seoul National University, Suwon, Korea
| | | | | | | |
Collapse
|
124
|
Trebst A, Depka B, Holländer-Czytko H. A specific role for tocopherol and of chemical singlet oxygen quenchers in the maintenance of photosystem II structure and function in Chlamydomonas reinhardtii. FEBS Lett 2002; 516:156-60. [PMID: 11959123 DOI: 10.1016/s0014-5793(02)02526-7] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
alpha-Tocopherol concentrations were determined at low and high light intensities and compared with the rate of photosynthesis, photosystem II (PS II) and its reaction center D1 protein. Blocking of tocopherol biosynthesis at the 4-hydroxyphenylpyruvate dioxygenase by the herbicide pyrazolynate led to a quick disappearance of alpha-tocopherol in high light, as well as of PS II activity and the D1 protein. Homogentisic acid rescued all activities. It is concluded that alpha-tocopherol has a continuous turnover as a scavenger of the singlet oxygen that arises from the quenching by oxygen of the triplet of the PS II reaction center and triggers the degradation of the D1 protein. Thus tocopherols are essential to keep photosynthesis active. We suggest that this is why plants make and need tocopherols. Chemical quenchers of singlet oxygen, notably diphenylamines, completely protect PS II, prevent D1 protein degradation and keep tocopherol levels even at very high light intensities. This supports the notion that 1O2 is the intermediate in light triggered D1 protein turnover.
Collapse
Affiliation(s)
- Achim Trebst
- Plant Biochemistry, Ruhr-University Bochum, D-44780, Bochum, Germany.
| | | | | |
Collapse
|
125
|
Ferruzzi MG, Failla ML, Schwartz SJ. Sodium copper chlorophyllin: in vitro digestive stability and accumulation by Caco-2 human intestinal cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2002; 50:2173-2179. [PMID: 11902975 DOI: 10.1021/jf010869g] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Sodium copper chlorophyllin (SCC), a mixture of water-soluble chlorophyll derivatives, is used as both a food colorant and a common dietary supplement. Although the potential antimutagenic and antioxidant properties of this commercial preparation have been demonstrated, limited information is available on its digestion and absorption by humans. Stability of SCC was examined during simulated gastric and small intestinal digestion. Three preparations were subjected to in vitro digestion: SCC in water, SCC in water + 10% corn oil, and SCC in applesauce. SCC components from raw material preparations and in digested samples were analyzed by C(18) HPLC with photodiode array detection. Cu(II)chlorin e(4), the major chlorin component of SCC, was relatively stable during simulated digestion. In contrast, greater than 90% of Cu(II)chlorin e(6) was degraded to undetermined products during digestion. Recovery of Cu(II)chlorin e(6) after digestion was increased by incorporation of SCC into applesauce, suggesting a protective role of the inclusion matrix for stabilization of labile SCC components. Accumulation of SCC derivatives was investigated by using differentiated cultures of the TC7 clone of the Caco-2 human intestinal cell line. Cellular accumulation from media containing 0.5 to 60 ppm SCC was linear with intracellular content ranging between 0.2 and 29.6 microg of total SCC per mg of cellular protein. Uptake of SCC by Caco-2 cells was significantly (p < 0.01) lower in cultures incubated at 4 degrees C than in those incubated at 37 degrees C. Although intracellular SCC was transported into both apical and basolateral compartments when Caco-2 cells were grown on inserts, apical efflux was significantly greater (p < 0.01) than basolateral efflux. Stability of Cu(II)chlorin e(4) during in vitro digestion and effective uptake by Caco-2 enterocyte-like cells support the likelihood that a portion of this SCC component or its metabolites is absorbed from the human intestine.
Collapse
Affiliation(s)
- Mario G Ferruzzi
- Department of Food Science and Technology, The Ohio State University, 110 Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, Ohio 43210-1007, USA
| | | | | |
Collapse
|
126
|
Abstract
Some herbicides act by binding to the exchangeable quinone site in the photosystem II (PSII) reaction centre, thus blocking electron transfer. In this article, it is hypothesized that the plant is killed by light-induced oxidative stress initiated by damage caused by formation of singlet oxygen in the reaction centre itself. This occurs when light-induced charge pairs in herbicide-inhibited PSII decay by a charge recombination route involving the formation of a chlorophyll triplet state that is able to activate oxygen. The binding of phenolic herbicides favours this pathway, thus increasing the efficiency of photodamage in this class of herbicides.
Collapse
Affiliation(s)
- A W Rutherford
- Section de Bioénergétique, DBCM, CEA CNRS URA 2096, CE Saclay, 91191, Gif-sur-Yvette, France.
| | | |
Collapse
|
127
|
Hideg É É, Ogawa K, Kálai T, Hideg K. Singlet oxygen imaging in Arabidopsis thaliana leaves under photoinhibition by excess photosynthetically active radiation. PHYSIOLOGIA PLANTARUM 2001; 112:10-14. [PMID: 11319009 DOI: 10.1034/j.1399-3054.2001.1120102.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Arabidopsis thaliana leaves were infiltrated with DanePy (3-(N-diethylaminoethyl)-N-dansyl)aminomethyl-2,5-dihydro-2,2,5,5-tetramethyl-1H-pyrrole), a double, fluorescent and spin sensor of singlet oxygen. DanePy fluorescence was imaged by laser scanning microscopy. We found that DanePy penetrated into chloroplasts but did not alter the functioning of the photosynthetic electron transport as assessed by chlorophyll fluorescence induction. In imaging, DanePy fluorescence was well distinct from chlorophyll fluorescence. Photoinhibition by excess photosynthetically active radiation caused quenching of DanePy fluorescence in the chloroplasts but not in other cell compartments. When leaves were infiltrated with dansyl, the fluorescent group in DanePy, there was no fluorescence quenching during photoinhibition. This shows that the fluorescence quenching of DanePy is caused by the conversion of its pyrrol group into nitroxide, i.e. it was caused by the reaction of singlet oxygen with the double sensor and not by artifacts. These data provide direct experimental evidence for the localization of singlet oxygen production to chloroplasts in vivo.
Collapse
Affiliation(s)
- Éva Hideg É
- Institute of Plant Biology, Biological Research Center, H-6701 Szeged, PO Box 521, Hungary; Research Institute for Biological Sciences Okayama (RIBS), 7549-1 Yoshikawa, Kayou-cho, 716-1241 Okayama, Japan; Department of Organic and Medicinal Chemistry, University of Pécs, H-7643 Pécs, PO Box 99, Hungary
| | | | | | | |
Collapse
|
128
|
Abstract
Photosystem II is particularly vulnerable to excess light. When illuminated with strong visible light, the reaction center D1 protein is damaged by reactive oxygen molecules or by endogenous cationic radicals generated by photochemical reactions, which is followed by proteolytic degradation of the damaged D1 protein. Homologs of prokaryotic proteases, such as ClpP, FtsH and DegP, have been identified in chloroplasts, and participation of the thylakoid-bound FtsH in the secondary degradation steps of the photodamaged D1 protein has been suggested. We found that cross-linking of the D1 protein with the D2 protein, the alpha-subunit of cytochrome b(559), and the antenna chlorophyll-binding protein CP43, occurs in parallel with the degradation of the D1 protein during the illumination of intact chloroplasts, thylakoids and photosystem II-enriched membranes. The cross-linked products are then digested by a stromal protease(s). These results indicate that the degradation of the photodamaged D1 protein proceeds through membrane-bound proteases and stromal proteases. Moreover, a 33-kDa subunit of oxygen-evolving complex (OEC), bound to the lumen side of photosystem II, regulates the formation of the cross-linked products of the D1 protein in donor-side photoinhibition of photosystem II. Thus, various proteases and protein components in different compartments in chloroplasts are implicated in the efficient turnover of the D1 protein, thus contributing to the control of the quality of photosystem II under light stress conditions.
Collapse
Affiliation(s)
- Y Yamamoto
- Department of Biology, Faculty of Science, Okayama University, Okayama, 700-8530 Japan.
| |
Collapse
|
129
|
Ferjani A, Abe S, Ishikawa Y, Henmi T, Nishi Y, Tamura N, Yamamoto Y. Characterization of the stromal protease(s) degrading the cross-linked products of the D1 protein generated by photoinhibition of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1503:385-95. [PMID: 11115650 DOI: 10.1016/s0005-2728(00)00233-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When photosystem (PS) II-enriched membranes are exposed to strong light, cross-linking of the intrinsic D1 protein with the surrounding polypeptides and degradation of the D1 protein take place. The cross-linking of the D1 protein with the alpha-subunit of cytochrome b(559) is suggested to be an early event of photoinduced damage to the D1 protein (Barbato et al., FEBS Lett. 309 (1992) 165-169). The relationship between the cross-linking and the degradation of the D1 protein, however, is not yet clear. In the present study, we show that the addition of stromal extract from chloroplasts degrades the 41 kDa cross-linked product of D1/cytochrome b(559) alpha-subunit and enhances the degradation of the D1 protein. Incubation of the preilluminated PS II-enriched membranes with the stromal extract at 25 degrees C causes the degradation of the cross-linked product by more than 70%. The activity of the stromal extract showed a pH optimum at 8.0, and was enhanced by the addition of ATP or GTP. Consistent with the nucleotide effect, this stromal activity was eliminated by the preincubation of the stromal extract with apyrase, which hydrolyzes nucleotides. Also, the stromal activity was nearly fully inhibited by a serine-type protease inhibitor, 3,4-dichloroisocoumarin, which suggests participation of a serine-type protease(s).
Collapse
Affiliation(s)
- A Ferjani
- Department of Biology, Faculty of Science, Okayama University, Japan
| | | | | | | | | | | | | |
Collapse
|
130
|
Hideg E, Kálai T, Hideg K, Vass I. Do oxidative stress conditions impairing photosynthesis in the light manifest as photoinhibition? Philos Trans R Soc Lond B Biol Sci 2000; 355:1511-6. [PMID: 11128004 PMCID: PMC1692868 DOI: 10.1098/rstb.2000.0711] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We compared the effect of photoinhibition by excess photosynthetically active radiation (PAR), UV-B irradiation combined with PAR, low temperature stress and paraquat treatment on photosystem (PS) II. Although the experimental conditions ensured that the four studied stress conditions resulted in approximately the same extent of PS II inactivation, they clearly followed different molecular mechanisms. Our results show that singlet oxygen production in inactivated PS II reaction centres is a unique characteristic of photoinhibition by excess PAR. Neither the accumulation of inactive PS II reaction centres (as in UV-B or chilling stress), nor photo-oxidative damage of PS II (as in paraquat stress) is able to produce the special oxidizing conditions characteristic of acceptor-side-induced photoinhibition.
Collapse
Affiliation(s)
- E Hideg
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | | | | | | |
Collapse
|
131
|
Nield J, Funk C, Barber J. Supermolecular structure of photosystem II and location of the PsbS protein. Philos Trans R Soc Lond B Biol Sci 2000; 355:1337-44. [PMID: 11127988 PMCID: PMC1692865 DOI: 10.1098/rstb.2000.0695] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This paper addresses the question of whether the PsbS protein of photosystem two (PS II) is located within the LHC II PS II supercomplex for which a three-dimensional structure has been obtained by cryoelectron microscopy and single particle analysis. The PsbS protein has recently been implicated as the site for non-photochemical quenching. Based both on immunoblotting analyses and structural considerations of an improved model of the spinach LHC II PS II supercomplex, we conclude that the PsbS protein is not located within the supercomplex. Analyses of other fractions resulting from the solubilization of PS Il-enriched membranes derived from spinach suggest that the PsbS protein is located in the LHC II-rich regions that interconnect the supercomplex within the membrane.
Collapse
Affiliation(s)
- J Nield
- Department of Biochemistry, Laboratories, Imperial College of Science, Technology and Medicine, London, UK
| | | | | |
Collapse
|
132
|
Caspi V, Malkin S, Marder JB. Oxygen uptake photosensitized by disorganized chlorophyll in model systems and thylakoids of greening barley. Photochem Photobiol 2000; 71:441-6. [PMID: 10824595 DOI: 10.1562/0031-8655(2000)071<0441:oupbdc>2.0.co;2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Light-dependent oxygen uptake was observed and studied in thylakoids from early greening barley in comparison to oxygen uptake in chlorophyll solutions and in thylakoids from fully green leaves. Substantial oxygen uptake was observed in chlorophyll solutions supplemented with tryptophan, histidine, ascorbic acid or linoleic acid. This uptake was diminished by adding azide, beta-carotene and alpha-tocopherol, which are specific singlet-oxygen quenchers. Illuminated thylakoids from greening barley also exhibited marked oxygen uptake that, likewise, was strongly quenched by azide. In comparison, azide was found not to affect oxygen uptake that is associated with the methyl viologen-catalyzed Mehler reaction. It is reasoned that in the first two cases the oxygen uptake arises from chlorophyll-photosensitized activation of oxygen to the singlet state and its consumption by exogenous or endogenous substrates. In greening, we propose that disorganized chlorophyll photo-sensitizes the oxygen uptake.
Collapse
Affiliation(s)
- V Caspi
- Department of Agricultural Botany, Hebrew University of Jerusalem, Rehovot, Israel.
| | | | | |
Collapse
|
133
|
Redmond RW, Gamlin JN. A Compilation of Singlet Oxygen Yields from Biologically Relevant Molecules. Photochem Photobiol 1999. [DOI: 10.1111/j.1751-1097.1999.tb08240.x] [Citation(s) in RCA: 573] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
134
|
Spetea C, Hundal T, Lohmann F, Andersson B. GTP bound to chloroplast thylakoid membranes is required for light-induced, multienzyme degradation of the photosystem II D1 protein. Proc Natl Acad Sci U S A 1999; 96:6547-52. [PMID: 10339625 PMCID: PMC26919 DOI: 10.1073/pnas.96.11.6547] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/1999] [Accepted: 03/29/1999] [Indexed: 11/18/2022] Open
Abstract
Even though light is the driving force in photosynthesis, it also can be harmful to plants. The water-splitting photosystem II is the main target for this light stress, leading to inactivation of photosynthetic electron transport and photooxidative damage to its reaction center. The plant survives through an intricate repair mechanism involving proteolytic degradation and replacement of the photodamaged reaction center D1 protein. Based on experiments with isolated chloroplast thylakoid membranes and photosystem II core complexes, we report several aspects concerning the rapid turnover of the D1 protein. (i) The primary cleavage step is a GTP-dependent process, leading to accumulation of a 23-kDa N-terminal fragment. (ii) Proteolysis of the D1 protein is inhibited below basal levels by nonhydrolyzable GTP analogues and apyrase treatment, indicating the existence of endogenous GTP tightly bound to the thylakoid membrane. This possibility was corroborated by binding studies. (iii) The proteolysis of the 23-kDa primary degradation fragment (but not of the D1 protein) is an ATP- and zinc-dependent process. (iv) D1 protein degradation is a multienzyme event involving a strategic (primary) protease and a cleaning-up (secondary) protease. (v) The chloroplast FtsH protease is likely to be involved in the secondary degradation steps. Apart from its significance for understanding the repair of photoinhibition, the discovery of tightly bound GTP should have general implications for other regulatory reactions and signal transduction pathways associated with the photosynthetic membrane.
Collapse
Affiliation(s)
- C Spetea
- Department of Biochemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
135
|
Toneva V, Denev I, Jahoubjan G, Minkov I. Photooxidative Stress in Higher Plants. BOOKS IN SOILS, PLANTS, AND THE ENVIRONMENT 1999. [DOI: 10.1201/9780824746728.ch22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
136
|
Singlet oxygen formation detected by near-infrared emission from isolated photosystem II reaction centres: Direct correlation between P680 triplet decay and luminescence rise kinetics and its consequences for photoinhibition. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 1999. [DOI: 10.1016/s1011-1344(99)00028-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
137
|
Krieger-Liszkay A, Rutherford AW. Influence of herbicide binding on the redox potential of the quinone acceptor in photosystem II: relevance to photodamage and phytotoxicity. Biochemistry 1998; 37:17339-44. [PMID: 9860848 DOI: 10.1021/bi9822628] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we show that herbicide binding influences the redox potential (Em) of the plastoquinone QA/QA- redox couple in Photosystem II (PSII). Phenolic herbicides lower the Em by approximately 45 mV, while DCMU raises the Em by 50 mV. These shifts are reflected in changes in the peak temperature of thermoluminescence bands arising from the recombination of charge pairs involving QA-. The herbicide-induced changes in the Em of QA/QA- correlate with earlier work showing that phenolic herbicides increase the sensitivity of PSII to light, while DCMU protects against photodamage. This correlation is explained in terms of the following hypothesis which is based on reactions occurring in the bacterial reaction center. The back-reaction pathway for P680+QA- is assumed to be modulated by the free-energy gap between the P680+QA- and the P680+Ph- radical pairs. When this gap is small (i.e., when the Em of QA/QA- is lowered), a true back-reaction is favored in which P680+Ph- is formed, a state which decays forming a significant yield of P680 triplet. This triplet state of chlorophyll reacts with oxygen, forming singlet oxygen, a species likely to be responsible for photodamage. When the free-energy gap is increased (i.e., when the Em of QA/QA- is raised), the yield of the P680+Ph- is diminished and a greater proportion of the P680+QA- radical pair decays by an alternative, less damaging, route. We propose that at least some of the phytotoxic properties of phenolic herbicides may be explained by the fact that they render PSII ultrasensitive to light due to this mechanism.
Collapse
Affiliation(s)
- A Krieger-Liszkay
- Département de Biologie Cellulaire et Moléculaire, CNRS URA 2096, CEA Saclay, Gif-sur-Yvette, France, burg.de
| | | |
Collapse
|
138
|
Krieger A, Rutherford AW, Vass I, Hideg E. Relationship between activity, D1 loss, and Mn binding in photoinhibition of photosystem II. Biochemistry 1998; 37:16262-9. [PMID: 9819218 DOI: 10.1021/bi981243v] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photoinhibition of photosystem II (PSII) activity and loss of the D1 reaction center protein were studied in PSII-enriched membrane fragments in which the water-splitting complex was inhibited by depletion of either calcium or chloride or by removing manganese. The Ca2+-depleted PSII was found to be the least susceptible to inhibition by light as reported previously (Krieger, A., and Rutherford, A. W. (1997) Biochim. Biophys. Acta 1319, 91-98). This different susceptibility to light was not reflected in the extent of D1 protein loss. In Mn-depleted PSII the loss of activity and the loss of the D1 protein were correlated, while in Cl-- and Ca2+-depleted PSII, there was very little loss of the D1 protein. The production of free radicals and singlet oxygen was measured by EPR spin-trapping techniques in the different samples. 1O2 and carbon-centered radicals could be detected after photoinhibition of active PSII, while hydroxyl radical formation dominated in all of the other samples. In addition, photoinhibition of PSII was investigated in which the functional Mn cluster was reconstituted (i. e., photoactivated). As expected this led to a protection against photoinhibition. When the photoactivation procedure was done in the absence of Ca2+ no activity was obtained although a nonfunctional Mn cluster was formed. Despite the lack of activity the binding of Mn partially protected against the loss of D1. These data demonstrate that, during photoinhibition, the extent of D1 loss is neither affected by the water-splitting activity of the sample nor correlated to the kinetics of PSII activity loss. D1 loss seems to be independent of the chemical nature of the reactive oxygen species formed during photoinhibition and seems to occur only in the absence of Mn. It is proposed that Mn binding protects against D1 loss by maintaining a protein structure which is not accessible to cleavage.
Collapse
Affiliation(s)
- A Krieger
- Section de Bioénergétique (CNRS URA 2096), CEA Saclay, Gif-sur-Yvette, France.
| | | | | | | |
Collapse
|
139
|
Abstract
Photosystem two (PSII) is unique among hte various types of photosynthetic systems in that it produces a very high redox potential so as to oxidise water. As a consequence it is unable to protect itself completely against singlet oxygen production generated by chlorophyll triplets. Mass spectrometry has shown that this leads to successive light induced oxidations of the D1, and to a lesser extent, the D2 proteins which constitute the PSII reaction centre. It seems likely that it is these detrimental side reactions that underlie the requirement to degrade and replace the D1 protein at a relatively high rate. Recent structural studies of various forms of isolated PSII using electron micrographical techniques have revealed the relative positioning of the major proteins and emphasise that D1/CP43 and D2/CP47 are related through a pseudo-twofold symmetry axis which is consistent with our current understanding of the disassembly/reassembly processes involved in D1 protein turnover and with the proposed structural relationship between PSII and photosystem one.
Collapse
Affiliation(s)
- J Barber
- Wolfson Laboratories, Biochemistry Department, Imperial College of Science, Technology and Medicine, London, UK.
| |
Collapse
|
140
|
Linetsky M, Ranson N, Ortwerth BJ. The aggregation in human lens proteins blocks the scavenging of UVA-generated singlet oxygen by ascorbic acid and glutathione. Arch Biochem Biophys 1998; 351:180-8. [PMID: 9515055 DOI: 10.1006/abbi.1997.0548] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One hour of UVA irradiation of air-saturated solutions of 2 mg/mL solubilized lens protein aggregates from aged human lens is able to produce on accumulated concentration of more than 2mM 1O2, along with oxidation of 120 nmol/mL of both Trp and His amino acid residues. Increasing concentrations of either sodium azide or ascorbic acid (up to 10 mM) during the irradiation decreased th His destruction by no more than 50-60% with the intact aggregates, but completely prevented the His loss with proteolyzed aggregates. Glutathione (up to 10 mM) was able to protect less than 10% of the aggregate His residues from oxidative damage, whereas His loss was almost completely prevented in the proteolyzed aggregates. Similar data were obtained for teh UVA photolysis of the Trp residues. This finding led us to study the role a protein conformation of these aggregates plays in the diminishing of antioxidant ability to prevent UVA-mediated photolysis of 1O2-sensitive amino acid residues. We found that Trp, His, and Cys are buried in the aggregates and cannot be oxidized by a relatively high concentration of 1O2 generated externally to the protein. Increasing urea denaturation of the aggregates caused exposure of the buried Trp residues as determined by the red shift of the fluorescence maximum and by a marked increase in the acrylamide and iodide fluorescence quenching. The ability of glutathione to prevent Trp oxidation by UVA light correlated directly with the extent of Trp exposure. These data suggest that the aggregation of the lens crystallins during aging produces a barrier, which prevents the access of water-soluble antioxidants to the sites of UVA-dependent singlet oxygen generation. In this case UVA proteolysis of the lens proteins can proceed even in the presence of physiological levels of antioxidants.
Collapse
Affiliation(s)
- M Linetsky
- Mason Eye Institute, University of Missouri, Columbia, Missouri 65212, USA
| | | | | |
Collapse
|
141
|
Sharma J, Panico M, Shipton CA, Nilsson F, Morris HR, Barber J. Primary structure characterization of the photosystem II D1 and D2 subunits. J Biol Chem 1997; 272:33158-66. [PMID: 9407103 DOI: 10.1074/jbc.272.52.33158] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mass spectrometry techniques have been applied in a protein mapping strategy to elucidate the majority of the primary structures of the D1 and D2 proteins present in the photosystem II reaction center. Evidence verifying the post-translational processing of the initiating methionine residue and acetylation of the free amino group, similar to those reported for other higher plant species, are presented for the two subunits from pea plants (Pisum sativum L.). Further covalent modifications observed on the D1 protein include the COOH-terminal processing with a loss of nine amino acids and phosphorylation of Thr2. In addition, the studies reported in this paper provide the first definitive characterization of oxidations on specific amino acids of the D1 and D2 proteins. We believe that these oxidations, and to a much lesser extent the phosphorylations, are major contributors to the heterogeneity observed during the electrospray analysis of the intact subunits reported in the accompanying paper (Sharma, J., Panico, M., Barber, J., and Morris, H. R. (1997) J. Biol. Chem. 272, 33153-33157). Significantly, all of the regions that have been identified as those particularly susceptible to oxidation are anticipated (from current models) to be in close proximity to the redox active components of the photosystem II complex.
Collapse
Affiliation(s)
- J Sharma
- Wolfson Laboratories, Department of Biochemistry, Imperial College, London, SW7 2AY, United Kingdom
| | | | | | | | | | | |
Collapse
|
142
|
Linetsky M, Ortwerth BJ. Quantitation of the singlet oxygen produced by UVA irradiation of human lens proteins. Photochem Photobiol 1997; 65:522-9. [PMID: 9077138 DOI: 10.1111/j.1751-1097.1997.tb08598.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ultraviolet irradiation of aged human lens proteins in vitro causes extensive photolytic damage of His and Trp residues. Protection by sodium azide argues for a process mediated by singlet oxygen (1O2). In the work described here, the synthesis of 1O2 was measured by the bleaching of N,N-dimethyl-4-nitrosoaniline (RNO), the oxidation of added histidine and the oxidation of furfuryl alcohol. To obtain a more accurate value for 1O2 generation, a known quantity of 1O2 was generated by the thermal dissociation of 3-(4-methyl-naphthyl)propionic acid endoperoxide, and the efficiency of each assay method to report on the 1O2 generated was determined. The values obtained were 0.003 mol of RNO bleached/mol of 1O2 generated, 0.55 mol of furfuryl alcohol oxidized/mol 1O2 and 0.5 mol of His oxidized/mol 1O2 generated. Irradiation of the human lens proteins with UVA light produced from 2.1 to 2.4 mM of 1O2 by RNO bleaching, 2.6-2.8 mM 1O2 by furfuryl alcohol oxidation and up to 1.9 mM of 1O2 by histidine oxidation during a 1 h irradiation period. The average value (2.2 mM of 1O2) corresponds to the theoretical production of 30 nmol of singlet oxygen at UVA light intensities equivalent to a 1 h exposure to sunlight at noon in the northern hemisphere.
Collapse
Affiliation(s)
- M Linetsky
- Mason Eye Institute, University of Missouri, Columbia 65212, USA
| | | |
Collapse
|
143
|
Sharma J, Panico M, Barber J, Morris HR. Characterization of the low molecular weight photosystem II reaction center subunits and their light-induced modifications by mass spectrometry. J Biol Chem 1997; 272:3935-43. [PMID: 9020097 DOI: 10.1074/jbc.272.7.3935] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A sensitive and simple reverse phase HPLC purification scheme was developed for the rapid separation of the small protein subunits from photosystem II reaction center preparations. The precise molecular masses of the alpha- and beta-subunits of cytochrome b559 and the psbI gene product from pea plants, found to be 4394.6 +/- 0. 6, 9283.6 +/- 0.7, and 4209.5 +/- 0.5 Da, respectively, were then successfully determined for the first time by electrospray- and fast atom bombardment-mass spectrometry. Discrepancies between the molecular weights assigned and those calculated from the respective DNA sequences were observed for alpha- and beta-subunits of cytochrome b559. Currently, the nucleotide sequence of the psbI gene product from pea plants is not available. Application of novel mapping and sequencing strategies has assured the elucidation of full primary structures of all of the purified subunits. The modifications identified here include the post-translational processing of the initiating methionine on both subunits of cytochrome b559, NH2-terminal acetylation and an mRNA editing site at residue 26 (Ser --> Phe) on the beta-subunit, and retention of the NH2-terminal formyl-Met on the psbI gene product. In addition, specific oxidation of a single amino acid residue was identified on the psbI gene product and the beta-subunit purified from light-treated reaction center preparations. Overall, these studies provide the first detailed primary structural characterization of the small subunits of the reaction center complex and their associated light-induced modifications.
Collapse
Affiliation(s)
- J Sharma
- Wolfson Laboratories, Department of Biochemistry, Imperial College, London SW7 2AY, United Kingdom
| | | | | | | |
Collapse
|
144
|
Fernandez JM, Bilgin MD, Grossweiner LI. Singlet oxygen generation by photodynamic agents. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 1997. [DOI: 10.1016/s1011-1344(96)07349-6] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
145
|
Giacometti GM, Barbato R, Chiaramonte S, Friso G, Rigoni F. Effects of ultraviolet-B radiation on photosystem II of the cyanobacterium Synechocystis sp. PCC 6083. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:799-806. [PMID: 9022712 DOI: 10.1111/j.1432-1033.1996.0799r.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects of ultraviolet-B radiation (280-320 nm) on photosystem II of Synechocystis sp. PCC 6303 were investigated at the functional and structural levels. Loss of oxygen-evolving and electron-transport activity, measured by various techniques including Clark electrode polarography, fluorescence induction and fluorescence relaxation after a single turnover flash, are discussed in terms of two types of damage caused by ultraviolet-B radiation: (a) depletion of the plastoquinone pool; (b) perturbation and degradation of the D1 protein, with cleavage in the second transmembrane segment. These findings are in full agreement with those obtained, both in vivo and in vitro for higher plants for which a donor-side mechanism involving the water-splitting Mn cluster has been proposed for the main cleavage of the D1 protein. At the structural level, complete disruption of the photosystem II core is documented as a consequence of (or in parallel with) degradation of the D1 protein. From this point of view, ultraviolet-B-induced photoinhibition is unlike the visible-induced type and less susceptible to repair by synthesis and reinsertion of new D1 protein.
Collapse
|
146
|
Nakajima Y, Yoshida S, Inoue Y, Ono T. Occupation of the QB-binding pocket by a photosystem II inhibitor triggers dark cleavage of the D1 protein subjected to brief preillumination. J Biol Chem 1996; 271:17383-9. [PMID: 8663245 DOI: 10.1074/jbc.271.29.17383] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The D1 protein of the photosystem (PS) II reaction center turns over very rapidly in a light-dependent manner initiated by its selective and specific cleavage. The cleavage of D1 was studied by using a PS II inhibitor, N-octyl-3-nitro-2,4,6-trihydroxybenzamide (PNO8), as a molecular probe. The following results were obtained. (i) D1 was selectively cleaved into 23-kDa N-terminal and 9-kDa C-terminal fragments in complete darkness by PNO8 at a single site in a D-E loop connecting membrane-spanning helices D and E. (ii) The cleavage was markedly enhanced when PS II was illuminated for a brief period before the addition of PNO8 in darkness. (iii) The effect of preillumination was slowly lost during incubation in the dark, with a decay half-time of approximately 1 h at 25 degrees C. (iv) The light intensity of preillumination required for the cleavage was much lower than that required for O2 evolution. (v) The light-triggered cleavage of D1 was observed in thylakoids, PS II membranes, and PS II core particles, but not in purified PS II reaction centers. More than 60% of D1 was cleaved into the two fragments with no other by-products. (vi) The cleavage reaction revealed a marked pH dependence that was considerably different from that for inhibition of PS II activity. The results are interpreted as indicating that the binding of PNO8 to the QB-binding pocket triggers proteolytic cleavage of D1 that has been previously modified during illumination.
Collapse
Affiliation(s)
- Y Nakajima
- Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-01, Japan
| | | | | | | |
Collapse
|
147
|
Okada K, Ikeuchi M, Yamamoto N, Ono TA, Miyao M. Selective and specific cleavage of the D1 and D2 proteins of Photosystem II by exposure to singlet oxygen: factors responsible for the susceptibility to cleavage of the proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1996. [DOI: 10.1016/0005-2728(96)00015-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
148
|
Jennings RC, Garlaschi FM, Finzi L, Zucchelli G. Slow exciton trapping in Photosystem II: A possible physiological role. PHOTOSYNTHESIS RESEARCH 1996; 47:167-173. [PMID: 24301824 DOI: 10.1007/bf00016179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/1995] [Accepted: 12/06/1995] [Indexed: 06/02/2023]
Abstract
Photosystem II, which has a primary photochemical charge separation time of about 300 ps, is the slowest trapping of all photosystems. On the basis of an analysis of data from the literature this is shown to be due to a number of partly independent factors: a shallow energy funnel in the antenna, an energetically shallow trap, exciton dynamics which are partly 'trap limited' and a large antenna. It is argued that the first three of these properties of Photosystem II can be understood in terms of protective mechanisms against photoinhibition. These protective mechanisms, based on the generation of non photochemical quenching states mostly in the peripheral antenna, are able to decrease pheophytin reduction under conditions in which the primary quinone, QA, is already reduced, due to the slow trapping properties. The shallow antenna funnel is important in allowing quenching state-protective mechanisms in the peripheral antenna.
Collapse
Affiliation(s)
- R C Jennings
- Centro CNR sulla Biologia Cellulare e Molecolare delle Piante, Dipartimento di Biologia, Università di Milano, via Celoria 26, 20133, Milano, Italy
| | | | | | | |
Collapse
|
149
|
Roudyk SN, Moxhet A, Matagne RF, Aghion J. Evidence of singlet oxygen evolution by whole living cells of Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 1996; 47:99-102. [PMID: 24301711 DOI: 10.1007/bf00017757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/1995] [Accepted: 11/20/1995] [Indexed: 06/02/2023]
Abstract
The oxygen evolved by Chlamydomonas reinhardtii in the light is measured simultaneously with a Clark electrode and with the nitrosodimethylaniline-imidazole colorimetric method which is specific for singlet oxygen. Experiments with wild-type and FuD7 mutant cells (unable to synthesize the D1 protein of Photosystem II), with dichlorophenyldimethylurea (which blocks electron transfer from Photosystem II to Photosystem I) and with dibromothymoquinone (which diverts electrons from their normal path between the two photosystems), as well as with hydroxylamine (an inactivator of the water-splitting part of Photosystem II and a competitor of water for electron donation to it), all point to the dependence of detected singlet oxygen on photolysis of water by Photosystem II.
Collapse
Affiliation(s)
- S N Roudyk
- Laboratory of Biochemistry, Département de Botanique (B22), University of Liège, B-4000, Liège, Belgium
| | | | | | | |
Collapse
|
150
|
De Las Rivas J, Klein J, Barber J. pH sensitivity of the redox state of cytochrome b559 may regulate its function as a protectant against donor and acceptor side photoinhibition. PHOTOSYNTHESIS RESEARCH 1995; 46:193-202. [PMID: 24301582 DOI: 10.1007/bf00020430] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/1995] [Accepted: 07/10/1995] [Indexed: 06/02/2023]
Abstract
A series of experiments have been conducted with isolated reaction centers of photosystem two (PS II) with the aim to elucidate the functional role of cytochrome (Cyt b 559). At pH 6.5 it was found that Cyt b 559 was reversibly photoreduced by red actinic light when Mn(2+) was present as an electron donor while at pH 8.5 a photo-oxidation was observed under the same lighting conditions, which was dark reversible in the presence of hydroquinone. These pH dependent light induced changes were measured under anaerobic conditions and correlated with changes in the relative levels of high (HP) and low (LP) potential forms of the cytochrome. At pH 6.5 the cytochrome was mainly in its LP form while at pH 8.5 a significant proportion was converted to the HP form as detected by dark titrations with hydroquinone. This pH dependent difference in the levels of HP and LP Cyt b 559 was also detected when bright white light was used to monitor the level of the LP form using a novel reaction involving direct electron donation from the flavin of glucose oxidase (present in the medium and used together with glucose and catalase as an oxygen trap). The results suggest that PS II directly oxidises and reduces the HP and LP forms, respectively and that the extent of these photo-reactions is dependent on the relative levels of the two forms, which are in turn governed by the pH. This conclusion is interpreted in terms of the model presented previously (Barber J and De Las Rivas J (1993) Proc Natl Acad Sci USA 90: 10942-10946) whereby the pH induced effect is considered as a possible mechanism by which interconversion of LP and HP forms of Cyt b 559 is achieved. In agreement with this was the finding that as the extent of photo-oxidisable HPCyt b 559 increases, with increasing pH, the rate of irreversible photo-oxidation of β-carotene decreases, a result expected if the HP form protects against donor side photoinhibition.
Collapse
Affiliation(s)
- J De Las Rivas
- Photosynthesis Research Group, Wolfson Laboratories, Department of Biochemistry, Imperial College of Science, Technology & Medicine, London, SW7 2AY, UK
| | | | | |
Collapse
|