101
|
Jaaks P, D’Alessandro V, Grob N, Büel S, Hajdin K, Schäfer BW, Bernasconi M. The Proprotein Convertase Furin Contributes to Rhabdomyosarcoma Malignancy by Promoting Vascularization, Migration and Invasion. PLoS One 2016; 11:e0161396. [PMID: 27548722 PMCID: PMC4993484 DOI: 10.1371/journal.pone.0161396] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/04/2016] [Indexed: 12/12/2022] Open
Abstract
The proprotein convertase (PC) furin cleaves precursor proteins, an important step in the activation of many cancer-associated proteins. Substrates of furin and furin-like PCs play a role in proliferation, metastasis and invasion. Some of them are involved in the progression of the pediatric soft tissue sarcoma rhabdomyosarcoma (RMS). In this study, we show that PCs, and in particular furin, are expressed in RMS cell lines. To investigate the functional role of furin, we generated RMS cell lines with modulated furin activity. Silencing or stable inhibition of furin delayed tumor growth in Rh30 and RD xenografts in vivo, and was correlated with lower microvessel density. Reduced furin activity also decreased migration and invasion abilities in vitro, and inhibition of furin in RMS cells diminished processing of IGF1R, VEGF-C, PDGF-B and MT1-MMP, leading to lower levels of mature proteins. Furthermore, we found that furin activity is required for proper IGF signaling in RMS cells, as furin silencing resulted in reduced phosphorylation of Akt upon IGF1 stimulation. Taken together, our results suggest that furin plays an important role in the malignant phenotype of RMS cells by activating proteins involved in tumor growth and vascularization, metastasis and invasion.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Movement
- Furin/antagonists & inhibitors
- Furin/genetics
- Furin/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Insulin-Like Growth Factor I/genetics
- Insulin-Like Growth Factor I/metabolism
- Matrix Metalloproteinase 14/genetics
- Matrix Metalloproteinase 14/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Invasiveness
- Neoplasm Transplantation
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Phosphorylation
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-sis/genetics
- Proto-Oncogene Proteins c-sis/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptor, IGF Type 1
- Receptors, Somatomedin/genetics
- Receptors, Somatomedin/metabolism
- Rhabdomyosarcoma/genetics
- Rhabdomyosarcoma/metabolism
- Rhabdomyosarcoma/pathology
- Signal Transduction
- Soft Tissue Neoplasms/genetics
- Soft Tissue Neoplasms/metabolism
- Soft Tissue Neoplasms/pathology
- Transplantation, Heterologous
- Vascular Endothelial Growth Factor C/genetics
- Vascular Endothelial Growth Factor C/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Patricia Jaaks
- Department of Oncology, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Valentina D’Alessandro
- Department of Oncology, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Nicole Grob
- Department of Oncology, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Sina Büel
- Department of Oncology, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Katarina Hajdin
- Department of Oncology, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Beat W. Schäfer
- Department of Oncology, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Michele Bernasconi
- Department of Oncology, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
102
|
Mamedov T, Chichester JA, Jones RM, Ghosh A, Coffin MV, Herschbach K, Prokhnevsky AI, Streatfield SJ, Yusibov V. Production of Functionally Active and Immunogenic Non-Glycosylated Protective Antigen from Bacillus anthracis in Nicotiana benthamiana by Co-Expression with Peptide-N-Glycosidase F (PNGase F) of Flavobacterium meningosepticum. PLoS One 2016; 11:e0153956. [PMID: 27101370 PMCID: PMC4839623 DOI: 10.1371/journal.pone.0153956] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 04/06/2016] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis has long been considered a potential biological warfare agent, and therefore, there is a need for a safe, low-cost and highly efficient anthrax vaccine with demonstrated long-term stability for mass vaccination in case of an emergency. Many efforts have been made towards developing an anthrax vaccine based on recombinant protective antigen (rPA) of B. anthracis, a key component of the anthrax toxin, produced using different expression systems. Plants represent a promising recombinant protein production platform due to their relatively low cost, rapid scalability and favorable safety profile. Previous studies have shown that full-length rPA produced in Nicotiana benthamiana (pp-PA83) is immunogenic and can provide full protection against lethal spore challenge; however, further improvement in the potency and stability of the vaccine candidate is necessary. PA of B. anthracis is not a glycoprotein in its native host; however, this protein contains potential N-linked glycosylation sites, which can be aberrantly glycosylated during expression in eukaryotic systems including plants. This glycosylation could affect the availability of certain key epitopes either due to masking or misfolding of the protein. Therefore, a non-glycosylated form of pp-PA83 was engineered and produced in N. benthamiana using an in vivo deglycosylation approach based on co-expression of peptide-N-glycosidase F (PNGase F) from Flavobacterium meningosepticum. For comparison, versions of pp-PA83 containing point mutations in six potential N-glycosylation sites were also engineered and expressed in N. benthamiana. The in vivo deglycosylated pp-PA83 (pp-dPA83) was shown to have in vitro activity, in contrast to glycosylated pp-PA83, and to induce significantly higher levels of toxin-neutralizing antibody responses in mice compared with glycosylated pp-PA83, in vitro deglycosylated pp-PA83 or the mutated versions of pp-PA83. These results suggest that pp-dPA83 may offer advantages in terms of dose sparing and enhanced immunogenicity as a promising candidate for a safe, effective and low-cost subunit vaccine against anthrax.
Collapse
Affiliation(s)
- Tarlan Mamedov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Jessica A. Chichester
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - R. Mark Jones
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Ananya Ghosh
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Megan V. Coffin
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Kristina Herschbach
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Alexey I. Prokhnevsky
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Stephen J. Streatfield
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| |
Collapse
|
103
|
Friebe S, van der Goot FG, Bürgi J. The Ins and Outs of Anthrax Toxin. Toxins (Basel) 2016; 8:toxins8030069. [PMID: 26978402 PMCID: PMC4810214 DOI: 10.3390/toxins8030069] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/28/2016] [Accepted: 03/01/2016] [Indexed: 12/21/2022] Open
Abstract
Anthrax is a severe, although rather rare, infectious disease that is caused by the Gram-positive, spore-forming bacterium Bacillus anthracis. The infectious form is the spore and the major virulence factors of the bacterium are its poly-γ-D-glutamic acid capsule and the tripartite anthrax toxin. The discovery of the anthrax toxin receptors in the early 2000s has allowed in-depth studies on the mechanisms of anthrax toxin cellular entry and translocation from the endocytic compartment to the cytoplasm. The toxin generally hijacks the endocytic pathway of CMG2 and TEM8, the two anthrax toxin receptors, in order to reach the endosomes. From there, the pore-forming subunit of the toxin inserts into endosomal membranes and enables translocation of the two catalytic subunits. Insertion of the pore-forming unit preferentially occurs in intraluminal vesicles rather than the limiting membrane of the endosome, leading to the translocation of the enzymatic subunits in the lumen of these vesicles. This has important consequences that will be discussed. Ultimately, the toxins reach the cytosol where they act on their respective targets. Target modification has severe consequences on cell behavior, in particular on cells of the immune system, allowing the spread of the bacterium, in severe cases leading to host death. Here we will review the literature on anthrax disease with a focus on the structure of the toxin, how it enters cells and its immunological effects.
Collapse
Affiliation(s)
- Sarah Friebe
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| | - F Gisou van der Goot
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| | - Jérôme Bürgi
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| |
Collapse
|
104
|
Spiesschaert B, Stephanowitz H, Krause E, Osterrieder N, Azab W. Glycoprotein B of equine herpesvirus type 1 has two recognition sites for subtilisin-like proteases that are cleaved by furin. J Gen Virol 2016; 97:1218-1228. [PMID: 26843465 DOI: 10.1099/jgv.0.000418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Glycoprotein B (gB) of equine herpesvirus type 1 (EHV-1) is predicted to be cleaved by furin in a fashion similar to that of related herpesviruses. To investigate the contribution of furin-mediated gB cleavage to EHV-1 growth, canonical furin cleavage sites were mutated. Western blot analysis of mutated EHV-1 gB showed that it was cleaved at two positions, 518RRRR521 and 544RLHK547, and that the 28 aa between the two sites were removed after cleavage. Treating infected cells with either convertase or furin inhibitors reduced gB cleavage efficiency. Further, removal of the first furin recognition motif did not affect in vitro growth of EHV-1, while mutation of the second motif greatly affected virus growth. In addition, a second possible signal peptide cleavage site was identified for EHV-1 gB between residues 98 and 99, which was 13 aa downstream of that previously identified.
Collapse
Affiliation(s)
- Bart Spiesschaert
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin,Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin,Germany
| | - Heike Stephanowitz
- Leibniz-Institut für Molekulare Pharmakologie,Robert-Rössle-Strasse 10, D-13125 Berlin,Germany
| | - Eberhard Krause
- Leibniz-Institut für Molekulare Pharmakologie,Robert-Rössle-Strasse 10, D-13125 Berlin,Germany
| | - Nikolaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin,Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin,Germany
| | - Walid Azab
- Department of Virology, Faculty of Veterinary Medicine,Zagazig University,Egypt.,Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin,Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin,Germany
| |
Collapse
|
105
|
Molecular assembly of lethal factor enzyme and pre-pore heptameric protective antigen in early stage of translocation. J Mol Model 2015; 22:7. [PMID: 26659402 DOI: 10.1007/s00894-015-2878-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Abstract
During intoxication, the anthrax toxin lethal (LF) and edema (EF) factors initially assemble with the protective antigen (PA) on the plasma membrane of cells expressing the membrane-bound surface-exposed anthrax toxin receptor (ATR). This takes place at the physiological pH prior to entering the acidic environment of the endosome. We elucidated the molecular dynamics (MD) behaviors of the three-dimensional structure of the (PA63)7LF3 complex in various conformations and analyzed the dynamical properties of the fully loaded pre-pore complex on the plasma membrane at the physiological pH. The analysis points to the interaction networks of amino acids conserved between PA63 octamer and heptamer, which are not affected during the initial stage of the LFs binding. The simulations show an asymmetrical movement of the complex domains that directly affect LFs conformations. The conformational and structural alterations of the 2β2-2β3 loops of PA subunits are associated with pore formation. The early conformational changes of the loops appear as they peel off from the domain 2 toward domain 4 of each PA subunit. The LFs unfold in 1α1 segments of their N-terminal initiating the early stage of the pre-pore formation. The results indicate instable regions within the complex and provide important clues concerning the detail of fluctuating residues of the LF-PA interface regions at the early steps of toxins translocation.
Collapse
|
106
|
Zheng H, Liu X, Sharma NM, Li Y, Pliquett RU, Patel KP. Urinary Proteolytic Activation of Renal Epithelial Na+ Channels in Chronic Heart Failure. Hypertension 2015; 67:197-205. [PMID: 26628676 DOI: 10.1161/hypertensionaha.115.05838] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/30/2015] [Indexed: 12/31/2022]
Abstract
One of the key mechanisms involved in renal Na(+) retention in chronic heart failure (CHF) is activation of epithelial Na(+) channels (ENaC) in collecting tubules. Proteolytic cleavage has an important role in activating ENaC. We hypothesized that enhanced levels of proteases in renal tubular fluid activate ENaC, resulting in renal Na(+) retention in rats with CHF. CHF was produced by left coronary artery ligation in rats. By immunoblotting, we found that several urinary serine proteases were significantly increased in CHF rats compared with sham rats (fold increases: furin 6.7, prostasin 23.6, plasminogen 2.06, and plasmin 3.57 versus sham). Similar increases were observed in urinary samples from patients with CHF. Whole-cell patch clamp was conducted in cultured renal collecting duct M-1 cells to record Na(+) currents. Protease-rich urine (from rats and patients with CHF) significantly increased the Na(+) inward current in M-1 cells. Two weeks of protease inhibitor treatment significantly abrogated the enhanced diuretic and natriuretic responses to ENaC inhibitor benzamil in rats with CHF. Increased podocyte lesions were observed in the kidneys of rats with CHF by transmission electron microscopy. Consistent with these results, podocyte damage markers desmin and podocin expressions were also increased in rats with CHF (increased ≈2-folds). These findings suggest that podocyte damage may lead to increased proteases in the tubular fluid, which in turn contributes to the enhanced renal ENaC activity, providing a novel mechanistic insight for Na(+) retention commonly observed in CHF.
Collapse
Affiliation(s)
- Hong Zheng
- From the Department of Cellular and Integrative Physiology (H.Z., X.L., N.M.S., K.P.P.) and Department of Emergency Medicine (Y.L.), University of Nebraska Medical Center, Omaha; and Department of Internal Medicine II, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany (R.U.P.)
| | - Xuefei Liu
- From the Department of Cellular and Integrative Physiology (H.Z., X.L., N.M.S., K.P.P.) and Department of Emergency Medicine (Y.L.), University of Nebraska Medical Center, Omaha; and Department of Internal Medicine II, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany (R.U.P.)
| | - Neeru M Sharma
- From the Department of Cellular and Integrative Physiology (H.Z., X.L., N.M.S., K.P.P.) and Department of Emergency Medicine (Y.L.), University of Nebraska Medical Center, Omaha; and Department of Internal Medicine II, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany (R.U.P.)
| | - Yulong Li
- From the Department of Cellular and Integrative Physiology (H.Z., X.L., N.M.S., K.P.P.) and Department of Emergency Medicine (Y.L.), University of Nebraska Medical Center, Omaha; and Department of Internal Medicine II, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany (R.U.P.)
| | - Rainer U Pliquett
- From the Department of Cellular and Integrative Physiology (H.Z., X.L., N.M.S., K.P.P.) and Department of Emergency Medicine (Y.L.), University of Nebraska Medical Center, Omaha; and Department of Internal Medicine II, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany (R.U.P.)
| | - Kaushik P Patel
- From the Department of Cellular and Integrative Physiology (H.Z., X.L., N.M.S., K.P.P.) and Department of Emergency Medicine (Y.L.), University of Nebraska Medical Center, Omaha; and Department of Internal Medicine II, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany (R.U.P.).
| |
Collapse
|
107
|
Fittler H, Depp A, Avrutina O, Dahms SO, Than ME, Empting M, Kolmar H. Engineering a Constrained Peptidic Scaffold towards Potent and Selective Furin Inhibitors. Chembiochem 2015; 16:2441-4. [DOI: 10.1002/cbic.201500447] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Heiko Fittler
- Clemens-Schöpf-Institut für organische und Biochemie; Technische Universität Darmstadt; Alarich-Weiss Strasse 4 64287 Darmstadt Germany
| | - Alexander Depp
- Clemens-Schöpf-Institut für organische und Biochemie; Technische Universität Darmstadt; Alarich-Weiss Strasse 4 64287 Darmstadt Germany
| | - Olga Avrutina
- Clemens-Schöpf-Institut für organische und Biochemie; Technische Universität Darmstadt; Alarich-Weiss Strasse 4 64287 Darmstadt Germany
| | - Sven O. Dahms
- Leibniz Institute for Age Research-Fritz Lipmann Institute (FLI); Beutenbergstrasse 11 07745 Jena Germany
| | - Manuel E. Than
- Leibniz Institute for Age Research-Fritz Lipmann Institute (FLI); Beutenbergstrasse 11 07745 Jena Germany
| | - Martin Empting
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS); Campus C2.3 66123 Saarbrücken Germany
| | - Harald Kolmar
- Clemens-Schöpf-Institut für organische und Biochemie; Technische Universität Darmstadt; Alarich-Weiss Strasse 4 64287 Darmstadt Germany
| |
Collapse
|
108
|
Luczo JM, Stambas J, Durr PA, Michalski WP, Bingham J. Molecular pathogenesis of H5 highly pathogenic avian influenza: the role of the haemagglutinin cleavage site motif. Rev Med Virol 2015; 25:406-30. [PMID: 26467906 PMCID: PMC5057330 DOI: 10.1002/rmv.1846] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 11/22/2022]
Abstract
The emergence of H5N1 highly pathogenic avian influenza has caused a heavy socio‐economic burden through culling of poultry to minimise human and livestock infection. Although human infections with H5N1 have to date been limited, concerns for the pandemic potential of this zoonotic virus have been greatly intensified following experimental evidence of aerosol transmission of H5N1 viruses in a mammalian infection model. In this review, we discuss the dominance of the haemagglutinin cleavage site motif as a pathogenicity determinant, the host‐pathogen molecular interactions driving cleavage activation, reverse genetics manipulations and identification of residues key to haemagglutinin cleavage site functionality and the mechanisms of cell and tissue damage during H5N1 infection. We specifically focus on the disease in chickens, as it is in this species that high pathogenicity frequently evolves and from which transmission to the human population occurs. With >75% of emerging infectious diseases being of zoonotic origin, it is necessary to understand pathogenesis in the primary host to explain spillover events into the human population. © 2015 The Authors. Reviews in Medical Virology published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Jasmina M Luczo
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Victoria, Australia.,School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - John Stambas
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Peter A Durr
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Victoria, Australia
| | - Wojtek P Michalski
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Victoria, Australia
| | - John Bingham
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Victoria, Australia
| |
Collapse
|
109
|
Zhao J, Xu W, Ross JW, Walters EM, Butler SP, Whyte JJ, Kelso L, Fatemi M, Vanderslice NC, Giroux K, Spate LD, Samuel MS, Murphy CN, Wells KD, Masiello NC, Prather RS, Velander WH. Engineering protein processing of the mammary gland to produce abundant hemophilia B therapy in milk. Sci Rep 2015; 5:14176. [PMID: 26387706 PMCID: PMC4585688 DOI: 10.1038/srep14176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 07/22/2015] [Indexed: 11/20/2022] Open
Abstract
Both the low animal cell density of bioreactors and their ability to post-translationally process recombinant factor IX (rFIX) limit hemophilia B therapy to <20% of the world’s population. We used transgenic pigs to make rFIX in milk at about 3,000-fold higher output than provided by industrial bioreactors. However, this resulted in incomplete γ-carboxylation and propeptide cleavage where both processes are transmembrane mediated. We then bioengineered the co-expression of truncated, soluble human furin (rFurin) with pro-rFIX at a favorable enzyme to substrate ratio. This resulted in the complete conversion of pro-rFIX to rFIX while yielding a normal lactation. Importantly, these high levels of propeptide processing by soluble rFurin did not preempt γ-carboxylation in the ER and therefore was compartmentalized to the Trans-Golgi Network (TGN) and also to milk. The Golgi specific engineering demonstrated here segues the ER targeted enhancement of γ-carboxylation needed to biomanufacture coagulation proteins like rFIX using transgenic livestock.
Collapse
Affiliation(s)
- Jianguo Zhao
- National Swine Resource and Research Center &Division of Animal Science, University of Missouri, Columbia, MO 65211, USA.,State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China, 100101
| | - Weijie Xu
- Protein Purification and Characterization Laboratories, Department of Chemical and Biomolecular Engineering, 207 Othmer Hall, University of Nebraska, Lincoln 68588, USA
| | - Jason W Ross
- National Swine Resource and Research Center &Division of Animal Science, University of Missouri, Columbia, MO 65211, USA.,Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Eric M Walters
- National Swine Resource and Research Center &Division of Animal Science, University of Missouri, Columbia, MO 65211, USA
| | | | - Jeff J Whyte
- National Swine Resource and Research Center &Division of Animal Science, University of Missouri, Columbia, MO 65211, USA
| | - Lindsey Kelso
- National Swine Resource and Research Center &Division of Animal Science, University of Missouri, Columbia, MO 65211, USA
| | - Mostafa Fatemi
- Protein Purification and Characterization Laboratories, Department of Chemical and Biomolecular Engineering, 207 Othmer Hall, University of Nebraska, Lincoln 68588, USA
| | - Nicholas C Vanderslice
- Protein Purification and Characterization Laboratories, Department of Chemical and Biomolecular Engineering, 207 Othmer Hall, University of Nebraska, Lincoln 68588, USA
| | - Keith Giroux
- National Swine Resource and Research Center &Division of Animal Science, University of Missouri, Columbia, MO 65211, USA
| | - Lee D Spate
- National Swine Resource and Research Center &Division of Animal Science, University of Missouri, Columbia, MO 65211, USA
| | - Melissa S Samuel
- National Swine Resource and Research Center &Division of Animal Science, University of Missouri, Columbia, MO 65211, USA
| | - Cliff N Murphy
- National Swine Resource and Research Center &Division of Animal Science, University of Missouri, Columbia, MO 65211, USA
| | - Kevin D Wells
- National Swine Resource and Research Center &Division of Animal Science, University of Missouri, Columbia, MO 65211, USA
| | | | - Randall S Prather
- National Swine Resource and Research Center &Division of Animal Science, University of Missouri, Columbia, MO 65211, USA
| | - William H Velander
- Protein Purification and Characterization Laboratories, Department of Chemical and Biomolecular Engineering, 207 Othmer Hall, University of Nebraska, Lincoln 68588, USA
| |
Collapse
|
110
|
Surviladze Z, Sterkand RT, Ozbun MA. Interaction of human papillomavirus type 16 particles with heparan sulfate and syndecan-1 molecules in the keratinocyte extracellular matrix plays an active role in infection. J Gen Virol 2015; 96:2232-2241. [PMID: 26289843 PMCID: PMC4681067 DOI: 10.1099/vir.0.000147] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/13/2015] [Indexed: 12/18/2022] Open
Abstract
Oncogenic human papillomaviruses (HPVs) attach predominantly to extracellular matrix (ECM) components during infection of cultured keratinocytes and in the rodent vaginal challenge model in vivo. However, the mechanism of virion transfer from the ECM to receptors that mediate entry into host cells has not been determined. In this work we strove to assess the role of heparan sulfate (HS) chains in HPV16 binding to the ECM and determine how HPV16 release from the ECM is regulated. We also assessed the extent to which capsids released from the ECM are infectious. We show that a large fraction of HPV16 particles binds to the ECM via HS chains, and that syndecan-1 (snd-1) molecules present in the ECM are involved in virus binding. Inhibiting the normal processing of snd-1 and HS molecules via matrix metalloproteinases and heparanase dramatically reduces virus release from the ECM, cellular uptake and infection. Conversely, exogenous heparinase activates each of these processes. We confirm that HPV16 released from the ECM is infectious in keratinocytes. Use of a specific inhibitor shows furin is not involved in HPV16 release from ECM attachment factors and corroborates other studies showing only the intracellular activity of furin is responsible for modulating HPV infectivity. These data suggest that our recently proposed model, describing the action of HS proteoglycan processing enzymes in releasing HPV16 from the cell surface in complex with the attachment factor snd-1, is also relevant to the release of HPV16 particles from the ECM to promote efficient infection of keratinocytes.
Collapse
Affiliation(s)
- Zurab Surviladze
- Department of Molecular Genetics & Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA
| | - Rosa T. Sterkand
- Department of Molecular Genetics & Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA
| | - Michelle A. Ozbun
- Department of Molecular Genetics & Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
111
|
Molecular cloning and characterization of gloverin from the diamondback moth, Plutella xylostella L. and its interaction with bacterial membrane. World J Microbiol Biotechnol 2015; 31:1529-41. [DOI: 10.1007/s11274-015-1901-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/09/2015] [Indexed: 10/23/2022]
|
112
|
Jacquez P, Avila G, Boone K, Altiyev A, Puschhof J, Sauter R, Arigi E, Ruiz B, Peng X, Almeida I, Sherman M, Xiao C, Sun J. The Disulfide Bond Cys255-Cys279 in the Immunoglobulin-Like Domain of Anthrax Toxin Receptor 2 Is Required for Membrane Insertion of Anthrax Protective Antigen Pore. PLoS One 2015; 10:e0130832. [PMID: 26107617 PMCID: PMC4479931 DOI: 10.1371/journal.pone.0130832] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 05/25/2015] [Indexed: 11/19/2022] Open
Abstract
Anthrax toxin receptors act as molecular clamps or switches that control anthrax toxin entry, pH-dependent pore formation, and translocation of enzymatic moieties across the endosomal membranes. We previously reported that reduction of the disulfide bonds in the immunoglobulin-like (Ig) domain of the anthrax toxin receptor 2 (ANTXR2) inhibited the function of the protective antigen (PA) pore. In the present study, the disulfide linkage in the Ig domain was identified as Cys255-Cys279 and Cys230-Cys315. Specific disulfide bond deletion mutants were achieved by replacing Cys residues with Ala residues. Deletion of the disulfide bond C255-C279, but not C230-C315, inhibited the PA pore-induced release of the fluorescence dyes from the liposomes, suggesting that C255-C279 is essential for PA pore function. Furthermore, we found that deletion of C255-C279 did not affect PA prepore-to-pore conversion, but inhibited PA pore membrane insertion by trapping the PA membrane-inserting loops in proteinaceous hydrophobic pockets. Fluorescence spectra of Trp59, a residue adjacent to the PA-binding motif in von Willebrand factor A (VWA) domain of ANTXR2, showed that deletion of C255-C279 resulted in a significant conformational change on the receptor ectodomain. The disulfide deletion-induced conformational change on the VWA domain was further confirmed by single-particle 3D reconstruction of the negatively stained PA-receptor heptameric complexes. Together, the biochemical and structural data obtained in this study provides a mechanistic insight into the role of the receptor disulfide bond C255-C279 in anthrax toxin action. Manipulation of the redox states of the receptor, specifically targeting to C255-C279, may become a novel strategy to treat anthrax.
Collapse
Affiliation(s)
- Pedro Jacquez
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Gustavo Avila
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Kyle Boone
- Bioinformatics Program of University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Agamyrat Altiyev
- Bioinformatics Program of University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Jens Puschhof
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Roland Sauter
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Emma Arigi
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Blanca Ruiz
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Xiuli Peng
- China National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, 430070, P. R. China
| | - Igor Almeida
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Michael Sherman
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas, 77555, United States of America
| | - Chuan Xiao
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
- * E-mail: (CX); (JS)
| | - Jianjun Sun
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
- * E-mail: (CX); (JS)
| |
Collapse
|
113
|
Liao YY, Zuo YH, Tsai CL, Hsu CM, Chen ME. cDNA CLONING AND TRANSCRIPTIONAL REGULATION OF THE CECROPIN AND ATTACIN FROM THE ORIENTAL FRUIT FLY, Bactrocera dorsalis (DIPTERA: TEPHRITIDAE). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 89:111-126. [PMID: 25781309 DOI: 10.1002/arch.21230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We described the cDNA cloning of two antimicrobial peptides (AMPs), cecropin (BdCec), and attacin C (BdAttC), from the oriental fruit fly, Bactrocera dorsalis (Hendel), a serious insect pest of fruit trees. Using rapid amplification of cDNA ends, fragments encompassing the entire open reading frames of BdCec and BdAttC were cloned and sequenced. The complete 425 bp cDNA of BdCec encodes a protein of 64 amino acids with a predicted molecular weight of 6.84 kDa. The 931 bp cDNA of BdAttC encodes a protein of 239 residues with a predicted molecular weight of 24.97 kDa. Real-time quantitative RT-PCR demonstrated that the developmental transcription profiles of BdCec and BdAttC were similar in each larvae, pupae, and adults. The constitutive expression levels of both AMPs were high in the first-instar and late third-instar larvae, suggesting that their antimicrobial activity is active in the newly hatched larvae and just before pupation. The basal expression levels were not significant different in adult fat bodies. The expression of BdCec and BdAttC was upregulated after bacterial challenge in adult fat bodies. The ratio of inducible expression to constitutive expression was lower in males compared to females.
Collapse
Affiliation(s)
- Yin-Yin Liao
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Han Zuo
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Lung Tsai
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Chia-Ming Hsu
- Bachelor Program of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Mei-Er Chen
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
114
|
Yotmanee P, Rungrotmongkol T, Wichapong K, Choi SB, Wahab HA, Kungwan N, Hannongbua S. Binding specificity of polypeptide substrates in NS2B/NS3pro serine protease of dengue virus type 2: A molecular dynamics Study. J Mol Graph Model 2015; 60:24-33. [PMID: 26086900 DOI: 10.1016/j.jmgm.2015.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 02/05/2023]
Abstract
The pathogenic dengue virus (DV) is a growing global threat, particularly in South East Asia, for which there is no specific treatment available. The virus possesses a two-component (NS2B/NS3) serine protease that cleaves the viral precursor proteins. Here, we performed molecular dynamics simulations of the NS2B/NS3 protease complexes with six peptide substrates (capsid, intNS3, 2A/2B, 4B/5, 3/4A and 2B/3 containing the proteolytic site between P(1) and P(1)' subsites) of DV type 2 to compare the specificity of the protein-substrate binding recognition. Although all substrates were in the active conformation for cleavage reaction by NS2B/NS3 protease, their binding strength was somewhat different. The simulated results of intermolecular hydrogen bonds and decomposition energies suggested that among the ten substrate residues (P(5)-P(5)') the P(1) and P(2) subsites play a major role in the binding with the focused protease. The arginine residue at these two subsites was found to be specific preferential binding at the active site with a stabilization energy of <-10 kcal mol(-1). Besides, the P(3), P(1)', P(2)' and P(4)' subsites showed a less contribution in binding interaction (<-2 kcal mol(-1)). The catalytic water was detected nearby the carbonyl oxygen of the P(1) reacting center of the capsid, intNS3, 2A/2B and 4B/5 peptides. These results led to the order of absolute binding free energy (ΔGbind) between these substrates and the NS2B/NS3 protease ranked as capsid>intNS3>2A/2B>4B/5>3/4A>2B/3 in a relative correspondence with previous experimentally derived values.
Collapse
Affiliation(s)
- Pathumwadee Yotmanee
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand; Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanyada Rungrotmongkol
- Ph.D. Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanin Wichapong
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sy Bing Choi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia; Natural Product and Drug Discovery Centre, Malaysian Institutes of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Ministry of Science, Technology and Innovation, Block 5-A, Halaman Bukit Gambir, 11700, Penang, Malaysia
| | - Habibah A Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia; Natural Product and Drug Discovery Centre, Malaysian Institutes of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Ministry of Science, Technology and Innovation, Block 5-A, Halaman Bukit Gambir, 11700, Penang, Malaysia.
| | - Nawee Kungwan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supot Hannongbua
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
115
|
Ramos-Molina B, Lick AN, Blanco EH, Posada-Salgado JA, Martinez-Mayorga K, Johnson AT, Jiao GS, Lindberg I. Identification of potent and compartment-selective small molecule furin inhibitors using cell-based assays. Biochem Pharmacol 2015; 96:107-18. [PMID: 26003844 DOI: 10.1016/j.bcp.2015.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/11/2015] [Indexed: 12/20/2022]
Abstract
The proprotein convertase furin is implicated in a variety of pathogenic processes such as bacterial toxin activation, viral propagation, and cancer. Several groups have identified non-peptide compounds with high inhibitory potency against furin in vitro, although their efficacy in various cell-based assays is largely unknown. In this study we show that certain guanidinylated 2,5-dideoxystreptamine derivatives exhibit interesting ex vivo properties. Compound 1b (1,1'-(4-((2,4-diguanidino-5-(4-guanidinophenoxy)cyclohexyl)oxy)-1,3-phenylene)diguanidine) is a potent and cell-permeable inhibitor of cellular furin, since it was able to retard tumor cell migration, block release of a Golgi reporter, and protect cells against Bacillus anthracis (anthrax) and Pseudomonas aeruginosa intoxication, with no evident cell toxicity. Other compounds based on the 2,5-dideoxystreptamine scaffold, such as compound 1g (1,1'-(4,6-bis(4-guanidinophenoxy)cyclohexane-1,3-diyl)diguanidine) also efficiently protected cells against anthrax, but displayed only moderate protection against Pseudomonas exotoxin A and did not inhibit cell migration, suggesting poor cell permeability. Certain bis-guanidinophenyl ether derivatives such as 2f (1,3-bis(2,4-diguanidinophenoxy) benzene) exhibited micromolar potency against furin in vitro, low cell toxicity, and highly efficient protection against anthrax toxin; this compound only slightly inhibited intracellular furin. Thus, compounds 1g and 2f both represent potent furin inhibitors at the cell surface with low intracellular inhibitory action, and these particular compounds might therefore be of preferred therapeutic interest in the treatment of certain bacterial and viral infections.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland-Baltimore, MD, USA
| | - Adam N Lick
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland-Baltimore, MD, USA
| | - Elias H Blanco
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland-Baltimore, MD, USA
| | | | | | - Alan T Johnson
- Department of Chemistry, Hawaii Biotech, Inc., Aiea, HI, USA
| | - Guan-Sheng Jiao
- Department of Chemistry, Hawaii Biotech, Inc., Aiea, HI, USA.
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland-Baltimore, MD, USA.
| |
Collapse
|
116
|
Blitvich BJ, Firth AE. Insect-specific flaviviruses: a systematic review of their discovery, host range, mode of transmission, superinfection exclusion potential and genomic organization. Viruses 2015; 7:1927-59. [PMID: 25866904 PMCID: PMC4411683 DOI: 10.3390/v7041927] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/30/2015] [Accepted: 04/08/2015] [Indexed: 12/11/2022] Open
Abstract
There has been a dramatic increase in the number of insect-specific flaviviruses (ISFs) discovered in the last decade. Historically, these viruses have generated limited interest due to their inability to infect vertebrate cells. This viewpoint has changed in recent years because some ISFs have been shown to enhance or suppress the replication of medically important flaviviruses in co-infected mosquito cells. Additionally, comparative studies between ISFs and medically important flaviviruses can provide a unique perspective as to why some flaviviruses possess the ability to infect and cause devastating disease in humans while others do not. ISFs have been isolated exclusively from mosquitoes in nature but the detection of ISF-like sequences in sandflies and chironomids indicates that they may also infect other dipterans. ISFs can be divided into two distinct phylogenetic groups. The first group currently consists of approximately 12 viruses and includes cell fusing agent virus, Kamiti River virus and Culex flavivirus. These viruses are phylogenetically distinct from all other known flaviviruses. The second group, which is apparently not monophyletic, currently consists of nine viruses and includes Chaoyang virus, Nounané virus and Lammi virus. These viruses phylogenetically affiliate with mosquito/vertebrate flaviviruses despite their apparent insect-restricted phenotype. This article provides a review of the discovery, host range, mode of transmission, superinfection exclusion ability and genomic organization of ISFs. This article also attempts to clarify the ISF nomenclature because some of these viruses have been assigned more than one name due to their simultaneous discoveries by independent research groups.
Collapse
Affiliation(s)
- Bradley J Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Andrew E Firth
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.
| |
Collapse
|
117
|
Leone P, Bebeacua C, Opota O, Kellenberger C, Klaholz B, Orlov I, Cambillau C, Lemaitre B, Roussel A. X-ray and Cryo-electron Microscopy Structures of Monalysin Pore-forming Toxin Reveal Multimerization of the Pro-form. J Biol Chem 2015; 290:13191-201. [PMID: 25847242 DOI: 10.1074/jbc.m115.646109] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Indexed: 11/06/2022] Open
Abstract
β-Barrel pore-forming toxins (β-PFT), a large family of bacterial toxins, are generally secreted as water-soluble monomers and can form oligomeric pores in membranes following proteolytic cleavage and interaction with cell surface receptors. Monalysin has been recently identified as a β-PFT that contributes to the virulence of Pseudomonas entomophila against Drosophila. It is secreted as a pro-protein that becomes active upon cleavage. Here we report the crystal and cryo-electron microscopy structure of the pro-form of Monalysin as well as the crystal structures of the cleaved form and of an inactive mutant lacking the membrane-spanning region. The overall structure of Monalysin displays an elongated shape, which resembles those of β-pore-forming toxins, such as Aerolysin, but is devoid of a receptor-binding domain. X-ray crystallography, cryo-electron microscopy, and light-scattering studies show that pro-Monalysin forms a stable doughnut-like 18-mer complex composed of two disk-shaped nonamers held together by N-terminal swapping of the pro-peptides. This observation is in contrast with the monomeric pro-form of the other β-PFTs that are receptor-dependent for membrane interaction. The membrane-spanning region of pro-Monalysin is fully buried in the center of the doughnut, suggesting that upon cleavage of pro-peptides, the two disk-shaped nonamers can, and have to, dissociate to leave the transmembrane segments free to deploy and lead to pore formation. In contrast with other toxins, the delivery of 18 subunits at once, nearby the cell surface, may be used to bypass the requirement of receptor-dependent concentration to reach the threshold for oligomerization into the pore-forming complex.
Collapse
Affiliation(s)
- Philippe Leone
- From the CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB), Unité Mixte de Recherche (UMR) 7257, 13288 Marseille, France, the Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13288 Marseille, France
| | - Cecilia Bebeacua
- From the CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB), Unité Mixte de Recherche (UMR) 7257, 13288 Marseille, France, the Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13288 Marseille, France
| | - Onya Opota
- the Global Health Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne (EPFL), CH-1015 Lausanne, Switzerland, and
| | - Christine Kellenberger
- From the CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB), Unité Mixte de Recherche (UMR) 7257, 13288 Marseille, France, the Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13288 Marseille, France
| | - Bruno Klaholz
- the Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), CNRS, UMR 7104/INSERM U964/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Igor Orlov
- the Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), CNRS, UMR 7104/INSERM U964/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Christian Cambillau
- From the CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB), Unité Mixte de Recherche (UMR) 7257, 13288 Marseille, France, the Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13288 Marseille, France
| | - Bruno Lemaitre
- the Global Health Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne (EPFL), CH-1015 Lausanne, Switzerland, and
| | - Alain Roussel
- From the CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB), Unité Mixte de Recherche (UMR) 7257, 13288 Marseille, France, the Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13288 Marseille, France,
| |
Collapse
|
118
|
Wong E, Maretzky T, Peleg Y, Blobel CP, Sagi I. The Functional Maturation of A Disintegrin and Metalloproteinase (ADAM) 9, 10, and 17 Requires Processing at a Newly Identified Proprotein Convertase (PC) Cleavage Site. J Biol Chem 2015; 290:12135-46. [PMID: 25795784 DOI: 10.1074/jbc.m114.624072] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Indexed: 11/06/2022] Open
Abstract
Proenzyme maturation is a general mechanism to control the activation of enzymes. Catalytically active members of the A Disintegrin And Metalloprotease (ADAM) family of membrane-anchored metalloproteases are synthesized as proenzymes, in which the latency is maintained by their autoinhibitory pro-domains. A proteolytic processing then transforms the proenzyme into a catalytically active form. The removal of the pro-domain of ADAMs is currently thought to depend on processing at a canonical consensus site for the proprotein convertase Furin (RXXR) between the pro- and the catalytic domain. Here, we demonstrate that this previously described canonical site is a secondary cleavage site to a prerequisite cleavage in a newly characterized upstream PC site embedded within the pro-domain sequence. The novel upstream regulatory site is important for the maturation of several ADAM proenzymes. Mutations in the upstream regulatory site of ADAM17, ADAM10, and ADAM9 do not prevent pro-domain processing between the pro- and metalloprotease domain, but nevertheless, cause significantly reduced catalytic activity. Thus, our results have uncovered a novel functionally relevant PC processing site in the N-terminal part of the pro-domain that is important for the activation of these ADAMs. These results suggest that the novel PC site is part of a general mechanism underlying proenzyme maturation of ADAMs that is independent of processing at the previously identified canonical Furin cleavage site.
Collapse
Affiliation(s)
- Eitan Wong
- From the Department of Biological Regulation and
| | - Thorsten Maretzky
- the Arthritis and Tissue Degeneration Program, Hospital for Special Surgery and
| | - Yoav Peleg
- The Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot, 7610001, Israel and
| | - Carl P Blobel
- the Arthritis and Tissue Degeneration Program, Hospital for Special Surgery and the Departments of Medicine and of Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, New York 10021
| | - Irit Sagi
- From the Department of Biological Regulation and
| |
Collapse
|
119
|
Stolp ZD, Smurthwaite CA, Reed C, Williams W, Dharmawan A, Djaballah H, Wolkowicz R. A Multiplexed Cell-Based Assay for the Identification of Modulators of Pre-Membrane Processing as a Target against Dengue Virus. ACTA ACUST UNITED AC 2015; 20:616-26. [PMID: 25724189 PMCID: PMC4438100 DOI: 10.1177/1087057115571247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/14/2015] [Indexed: 12/19/2022]
Abstract
The DenV pre-membrane protein (prM) is a crucial chaperone for the viral envelope protein, preventing premature fusion with vesicles during viral export. prM molecules in immature particles are cleaved by host proteases, leading to mature fusogenic virions. Blockade of prM cleavage would restrict fusion and represents a novel druggable opportunity against DenV. We have thus established a cell-based platform to monitor prM processing that relies on an engineered two-tag scaffold that travels to the cell surface through the secretory pathway. The assay discriminates between a single cell-surface tag when prM is cleaved and two tags when it is not, as detected through fluorescent-coupled antibodies by flow cytometry. The assay, miniaturized into a 96-well plate format, was multiplexed with the HIV-1 envelope boundary, also cleaved in the same pathway. A pilot screen against 1280 compounds was executed, leading to the identification of a potential active and corroborating the robustness of our assay for large-scale screening. We describe for the first time a cell-based assay that monitors DenV prM processing within the classical secretory pathway, which was exploited to identify a potential novel drug against DenV.
Collapse
Affiliation(s)
- Zachary D Stolp
- Department of Biology, San Diego State University, San Diego, CA, USA
| | | | - Connor Reed
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Wesley Williams
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Andre Dharmawan
- Department of Biology, San Diego State University, San Diego, CA, USA
| | | | - Roland Wolkowicz
- Department of Biology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
120
|
Tessadori F, Noël ES, Rens EG, Magliozzi R, Evers-van Gogh IJA, Guardavaccaro D, Merks RMH, Bakkers J. Nodal signaling range is regulated by proprotein convertase-mediated maturation. Dev Cell 2015; 32:631-9. [PMID: 25684355 DOI: 10.1016/j.devcel.2014.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/29/2014] [Accepted: 12/17/2014] [Indexed: 01/24/2023]
Abstract
Tissue patterning is established by extracellular growth factors or morphogens. Although different theoretical models explaining specific patterns have been proposed, our understanding of tissue pattern establishment in vivo remains limited. In many animal species, left-right patterning is governed by a reaction-diffusion system relying on the different diffusivity of an activator, Nodal, and an inhibitor, Lefty. In a genetic screen, we identified a zebrafish loss-of-function mutant for the proprotein convertase FurinA. Embryological and biochemical experiments demonstrate that cleavage of the Nodal-related Spaw proprotein into a mature form by FurinA is required for Spaw gradient formation and activation of Nodal signaling. We demonstrate that FurinA is required cell-autonomously for the long-range signaling activity of Spaw and no other Nodal-related factors. Combined in silico and in vivo approaches support a model in which FurinA controls the signaling range of Spaw by cleaving its proprotein into a mature, extracellular form, consequently regulating left-right patterning.
Collapse
Affiliation(s)
- Federico Tessadori
- Cardiac Development and Genetics, Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584 CT Utrecht, the Netherlands
| | - Emily S Noël
- Cardiac Development and Genetics, Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584 CT Utrecht, the Netherlands
| | - Elisabeth G Rens
- Life Sciences Group, Centrum Wiskunde and Informatica, 1098 XG Amsterdam, the Netherlands; Mathematical Institute, Leiden University, 2333 CA Leiden, the Netherlands
| | - Roberto Magliozzi
- Cardiac Development and Genetics, Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584 CT Utrecht, the Netherlands
| | - Inkie J A Evers-van Gogh
- Cardiac Development and Genetics, Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584 CT Utrecht, the Netherlands
| | - Daniele Guardavaccaro
- Cardiac Development and Genetics, Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584 CT Utrecht, the Netherlands
| | - Roeland M H Merks
- Life Sciences Group, Centrum Wiskunde and Informatica, 1098 XG Amsterdam, the Netherlands; Mathematical Institute, Leiden University, 2333 CA Leiden, the Netherlands
| | - Jeroen Bakkers
- Cardiac Development and Genetics, Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
121
|
Van Overbeke W, Wongsantichon J, Everaert I, Verhelle A, Zwaenepoel O, Loonchanta A, Burtnick LD, De Ganck A, Hochepied T, Haigh J, Cuvelier C, Derave W, Robinson RC, Gettemans J. An ER-directed gelsolin nanobody targets the first step in amyloid formation in a gelsolin amyloidosis mouse model. Hum Mol Genet 2015; 24:2492-507. [PMID: 25601851 DOI: 10.1093/hmg/ddv010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/14/2015] [Indexed: 01/01/2023] Open
Abstract
Hereditary gelsolin amyloidosis is an autosomal dominantly inherited amyloid disorder. A point mutation in the GSN gene (G654A being the most common one) results in disturbed calcium binding by the second gelsolin domain (G2). As a result, the folding of G2 is hampered, rendering the mutant plasma gelsolin susceptible to a proteolytic cascade. Consecutive cleavage by furin and MT1-MMP-like proteases generates 8 and 5 kDa amyloidogenic peptides that cause neurological, ophthalmological and dermatological findings. To this day, no specific treatment is available to counter the pathogenesis. Using GSN nanobody 11 as a molecular chaperone, we aimed to protect mutant plasma gelsolin from furin proteolysis in the trans-Golgi network. We report a transgenic, GSN nanobody 11 secreting mouse that was used for crossbreeding with gelsolin amyloidosis mice. Insertion of the therapeutic nanobody gene into the gelsolin amyloidosis mouse genome resulted in improved muscle contractility. X-ray crystal structure determination of the gelsolin G2:Nb11 complex revealed that Nb11 does not directly block the furin cleavage site. We conclude that nanobodies can be used to shield substrates from aberrant proteolysis and this approach might establish a novel therapeutic strategy in amyloid diseases.
Collapse
Affiliation(s)
| | - Jantana Wongsantichon
- Institute of Molecular and Cellular Biology, A*STAR, Biopolis, Singapore 138673, Singapore
| | - Inge Everaert
- Department of Movement and Sport Sciences, Faculty of Medicine and Health Sciences
| | - Adriaan Verhelle
- Department of Biochemistry, Faculty of Medicine and Health Sciences
| | | | - Anantasak Loonchanta
- Department of Chemistry and Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leslie D Burtnick
- Department of Chemistry and Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ariane De Ganck
- Department of Biochemistry, Faculty of Medicine and Health Sciences
| | - Tino Hochepied
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium, Department of Biomedical Molecular Biology and
| | - Jody Haigh
- Department of Biomedical Molecular Biology and Vascular Cell Biology Unit, VIB Inflammation Research Centre, Ghent, Belgium and Mammalian Functional Genetics Laboratory, Division of Blood Cancers, Australian Centre for Blood Diseases, Department of Clinical Haematology, Monash University and Alfred Health Centre, Melbourne, Australia
| | - Claude Cuvelier
- Department of Pathology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Wim Derave
- Department of Movement and Sport Sciences, Faculty of Medicine and Health Sciences
| | - Robert C Robinson
- Institute of Molecular and Cellular Biology, A*STAR, Biopolis, Singapore 138673, Singapore, Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore,
| | - Jan Gettemans
- Department of Biochemistry, Faculty of Medicine and Health Sciences,
| |
Collapse
|
122
|
Sharma O, Collier RJ. Polylysine-mediated translocation of the diphtheria toxin catalytic domain through the anthrax protective antigen pore. Biochemistry 2014; 53:6934-40. [PMID: 25317832 PMCID: PMC4230326 DOI: 10.1021/bi500985v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The protective antigen (PA) moiety of anthrax toxin forms oligomeric pores in the endosomal membrane, which translocate the effector proteins of the toxin to the cytosol. Effector proteins bind to oligomeric PA via their respective N-terminal domains and undergo N- to C-terminal translocation through the pore. Earlier we reported that a tract of basic amino acids fused to the N-terminus of an unrelated effector protein (the catalytic domain diphtheria toxin, DTA) potentiated that protein to undergo weak PA-dependent translocation. In this study, we varied the location of the tract (N-terminal or C-terminal) and the length of a poly-Lys tract fused to DTA and examined the effects of these variations on PA-dependent translocation into cells and across planar bilayers in vitro. Entry into cells was most efficient with ∼12 Lys residues (K12) fused to the N-terminus but also occurred, albeit 10-100-fold less efficiently, with a C-terminal tract of the same length. Similarly, K12 tracts at either terminus occluded PA pores in planar bilayers, and occlusion was more efficient with the N-terminal tag. We used biotin-labeled K12 constructs in conjunction with streptavidin to show that a biotinyl-K12 tag at either terminus is transiently exposed to the trans compartment of planar bilayers at 20 mV; this partial translocation in vitro was more efficient with an N-terminal tag than a C-terminal tag. Significantly, our studies with polycationic tracts fused to the N- and C-termini of DTA suggest that PA-mediated translocation can occur not only in the N to C direction but also in the C to N direction.
Collapse
Affiliation(s)
- Onkar Sharma
- Department of Microbiology and Immunobiology, Harvard Medical School , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | | |
Collapse
|
123
|
Mu J, Liu F, Rajab MS, Shi M, Li S, Goh C, Lu L, Xu QH, Liu B, Ng LG, Xing B. A Small-Molecule FRET Reporter for the Real-Time Visualization of Cell-Surface Proteolytic Enzyme Functions. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407182] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
124
|
Mu J, Liu F, Rajab MS, Shi M, Li S, Goh C, Lu L, Xu QH, Liu B, Ng LG, Xing B. A Small-Molecule FRET Reporter for the Real-Time Visualization of Cell-Surface Proteolytic Enzyme Functions. Angew Chem Int Ed Engl 2014; 53:14357-62. [DOI: 10.1002/anie.201407182] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/26/2014] [Indexed: 01/16/2023]
|
125
|
Nablo BJ, Panchal RG, Bavari S, Nguyen TL, Gussio R, Ribot W, Friedlander A, Chabot D, Reiner JE, Robertson JWF, Balijepalli A, Halverson KM, Kasianowicz JJ. Anthrax toxin-induced rupture of artificial lipid bilayer membranes. J Chem Phys 2014; 139:065101. [PMID: 23947891 DOI: 10.1063/1.4816467] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We demonstrate experimentally that anthrax toxin complexes rupture artificial lipid bilayer membranes when isolated from the blood of infected animals. When the solution pH is temporally acidified to mimic that process in endosomes, recombinant anthrax toxin forms an irreversibly bound complex, which also destabilizes membranes. The results suggest an alternative mechanism for the translocation of anthrax toxin into the cytoplasm.
Collapse
Affiliation(s)
- Brian J Nablo
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8120, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Won YW, Bull DA, Kim SW. Functional polymers of gene delivery for treatment of myocardial infarct. J Control Release 2014; 195:110-9. [PMID: 25076177 DOI: 10.1016/j.jconrel.2014.07.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/18/2014] [Accepted: 07/20/2014] [Indexed: 01/18/2023]
Abstract
Ischemic heart disease is rapidly growing as the common cause of death in the world. It is a disease that occurs as a result of coronary artery stenosis and is caused by the lack of oxygen within cardiac muscles due to an imbalance between oxygen supply and demand. The conventional medical therapy is focused on the use of drug eluting stents, coronary-artery bypass graft surgery and anti-thrombosis. Gene therapy provides great opportunities for treatment of cardiovascular disease. In order for gene therapy to be successful, the development of proper gene delivery systems and hypoxia-regulated gene expression vectors is the most important factors. Several non-viral gene transfer methods have been developed to overcome the safety problems of viral transduction. Some of which include plasmids that regulate gene expression that is controlled by environment specific promoters in the transcriptional or the translational level. This review explores polymeric gene carriers that target the myocardium and hypoxia-inducible vectors, which regulate gene expression in response to hypoxia, and their application in animal myocardial infarction models.
Collapse
Affiliation(s)
- Young-Wook Won
- Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - David A Bull
- Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Sung Wan Kim
- Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
127
|
Brown PA, Lemaitre E, Briand FX, Courtillon C, Guionie O, Allée C, Toquin D, Bayon-Auboyer MH, Jestin V, Eterradossi N. Molecular comparisons of full length metapneumovirus (MPV) genomes, including newly determined French AMPV-C and -D isolates, further supports possible subclassification within the MPV Genus. PLoS One 2014; 9:e102740. [PMID: 25036224 PMCID: PMC4103871 DOI: 10.1371/journal.pone.0102740] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/20/2014] [Indexed: 01/12/2023] Open
Abstract
Four avian metapneumovirus (AMPV) subgroups (A-D) have been reported previously based on genetic and antigenic differences. However, until now full length sequences of the only known isolates of European subgroup C and subgroup D viruses (duck and turkey origin, respectively) have been unavailable. These full length sequences were determined and compared with other full length AMPV and human metapneumoviruses (HMPV) sequences reported previously, using phylogenetics, comparisons of nucleic and amino acid sequences and study of codon usage bias. Results confirmed that subgroup C viruses were more closely related to HMPV than they were to the other AMPV subgroups in the study. This was consistent with previous findings using partial genome sequences. Closer relationships between AMPV-A, B and D were also evident throughout the majority of results. Three metapneumovirus "clusters" HMPV, AMPV-C and AMPV-A, B and D were further supported by codon bias and phylogenetics. The data presented here together with those of previous studies describing antigenic relationships also between AMPV-A, B and D and between AMPV-C and HMPV may call for a subclassification of metapneumoviruses similar to that used for avian paramyxoviruses, grouping AMPV-A, B and D as type I metapneumoviruses and AMPV-C and HMPV as type II.
Collapse
Affiliation(s)
- Paul A. Brown
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, France
| | - Evelyne Lemaitre
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, France
| | - François-Xavier Briand
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, France
| | - Céline Courtillon
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, France
| | - Olivier Guionie
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, France
| | - Chantal Allée
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, France
| | - Didier Toquin
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, France
| | - Marie-Hélène Bayon-Auboyer
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, France
| | - Véronique Jestin
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, France
| | - Nicolas Eterradossi
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, France
| |
Collapse
|
128
|
Tilak A, Nelsen SM, Kim HS, Donley N, McKnite A, Lee H, Christian JL. Simultaneous rather than ordered cleavage of two sites within the BMP4 prodomain leads to loss of ligand in mice. Development 2014; 141:3062-71. [PMID: 24993941 DOI: 10.1242/dev.110130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ProBMP4 is generated as a latent precursor that is sequentially cleaved at two sites within the prodomain to generate an active ligand. An initial cleavage occurs adjacent to the ligand domain, which generates a non-covalently associated prodomain/ligand complex that is subsequently dissociated by cleavage at an upstream site. An outstanding question is whether the two sites need to be cleaved sequentially and in the correct order to achieve proper control of BMP4 signaling during development. In the current studies, we demonstrate that mice carrying a knock-in point mutation that causes simultaneous rather than sequential cleavage of both prodomain sites show loss of BMP4 function and die during mid-embryogenesis. Levels of mature BMP4 are severely reduced in mutants, although levels of precursor and cleaved prodomain are unchanged compared with wild type. Our biochemical analysis supports a model in which the transient prodomain/ligand complex that forms during sequential cleavage plays an essential role in prodomain-mediated stabilization of the mature ligand until it can acquire protection from degradation by other means. By contrast, simultaneous cleavage causes premature release of the ligand from the prodomain, leading to destabilization of the ligand and loss of signaling in vivo.
Collapse
Affiliation(s)
- Anup Tilak
- Department of Cell and Developmental Biology, Oregon Health and Sciences University, School of Medicine, Portland, OR 97239-3098, USA
| | - Sylvia M Nelsen
- Department of Cell and Developmental Biology, Oregon Health and Sciences University, School of Medicine, Portland, OR 97239-3098, USA
| | - Hyung-Seok Kim
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, School of Medicine, Salt Lake City, UT 94132, USA
| | - Nathan Donley
- Department of Cell and Developmental Biology, Oregon Health and Sciences University, School of Medicine, Portland, OR 97239-3098, USA
| | - Autumn McKnite
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, School of Medicine, Salt Lake City, UT 94132, USA
| | - Hyunjung Lee
- Department of Cell and Developmental Biology, Oregon Health and Sciences University, School of Medicine, Portland, OR 97239-3098, USA
| | - Jan L Christian
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, School of Medicine, Salt Lake City, UT 94132, USA
| |
Collapse
|
129
|
Bassi DE, Cenna J, Zhang J, Cukierman E, Klein-Szanto AJ. Enhanced aggressiveness of benzopyrene-induced squamous carcinomas in transgenic mice overexpressing the proprotein convertase PACE4 (PCSK6). Mol Carcinog 2014; 54:1122-31. [PMID: 24845697 DOI: 10.1002/mc.22183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 04/21/2014] [Accepted: 04/28/2014] [Indexed: 11/12/2022]
Abstract
PACE4 (PCSK6) is a proprotein convertase (PC) capable of processing numerous substrates involved in tumor growth, invasion, and metastasis. Because of the human relevancy of the tobacco-associated carcinogen benzo[a]pyrene (B(a)P) we investigated whether transgenic mice in which this PC is targeted to the epidermis (K5-PACE4) may be more susceptible to B(a)P complete carcinogenesis than wild type (WT) mice. In an in vitro experiment, using cell lines derived from skin tumors obtained after B(a)P treatment, we observed that PACE4 overexpression and activity accounts for an increased proliferation rate, exaggerated sensitivity to the PC inhibitor CMK, and interference with IGF-1R autophosphorylation. Squamous cell carcinomas, obtained from K5-PACE4 mice subjected to complete chemical carcinogenesis, were characterized by a 50% increase in cell proliferation, when compared with similar tumors from WT mice. In addition, tumors from K5-PACE4 mice showed deeper invasion into the underlying dermis. Thus, mice overexpressing PACE4 exhibited tumors of increased growth rate and invasive potential when exposed to the human carcinogen B(a)P, further supporting the significance of PCs in tumor growth and progression.
Collapse
Affiliation(s)
- Daniel E Bassi
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jonathan Cenna
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jirong Zhang
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Edna Cukierman
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Andres J Klein-Szanto
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
130
|
Wallbrecher R, Depré L, Verdurmen WPR, Bovée-Geurts PH, van Duinkerken RH, Zekveld MJ, Timmerman P, Brock R. Exploration of the Design Principles of a Cell-Penetrating Bicylic Peptide Scaffold. Bioconjug Chem 2014; 25:955-64. [DOI: 10.1021/bc500107f] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Rike Wallbrecher
- Department
of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Luc Depré
- Department
of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Wouter P. R. Verdurmen
- Department
of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Petra H. Bovée-Geurts
- Department
of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | | | - Mariët J. Zekveld
- Pepscan Therapeutics, Zuidersluisweg
2, 8243 RC Lelystad, The Netherlands
| | - Peter Timmerman
- Pepscan Therapeutics, Zuidersluisweg
2, 8243 RC Lelystad, The Netherlands
| | - Roland Brock
- Department
of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
131
|
Chow SK, Smith C, MacCarthy T, Pohl MA, Bergman A, Casadevall A. Disease-enhancing antibodies improve the efficacy of bacterial toxin-neutralizing antibodies. Cell Host Microbe 2014; 13:417-28. [PMID: 23601104 DOI: 10.1016/j.chom.2013.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/14/2013] [Accepted: 02/13/2013] [Indexed: 12/25/2022]
Abstract
During infection, humoral immunity produces a polyclonal response with various immunoglobulins recognizing different epitopes within the microbe or toxin. Despite this diverse response, the biological activity of an antibody (Ab) is usually assessed by the action of a monoclonal population. We demonstrate that a combination of monoclonal antibodies (mAbs) that are individually disease enhancing or neutralizing to Bacillus anthracis protective antigen (PA), a component of anthrax toxin, results in significantly augmented protection against the toxin. This boosted protection is Fc gamma receptor (FcγR) dependent and involves the formation of stoichiometrically defined mAb-PA complexes that requires immunoglobulin bivalence and simultaneous interaction between PA and the two mAbs. The formation of these mAb-PA complexes inhibits PA oligomerization, resulting in protection. These data suggest that functional assessments of single Abs may inaccurately predict how the same Abs will operate in polyclonal preparations and imply that potentially therapeutic mAbs may be overlooked in single Ab screens.
Collapse
Affiliation(s)
- Siu-Kei Chow
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
132
|
Amado F, Lobo MJC, Domingues P, Duarte JA, Vitorino R. Salivary peptidomics. Expert Rev Proteomics 2014; 7:709-21. [DOI: 10.1586/epr.10.48] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
133
|
Jacquez P, Lei N, Weigt D, Xiao C, Sun J. Expression and purification of the functional ectodomain of human anthrax toxin receptor 2 in Escherichia coli Origami B cells with assistance of bacterial Trigger Factor. Protein Expr Purif 2013; 95:149-55. [PMID: 24380801 DOI: 10.1016/j.pep.2013.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/18/2013] [Accepted: 12/23/2013] [Indexed: 11/15/2022]
Abstract
The ectodomain of anthrax toxin receptor 2 (ANTXR2) is composed of a von Willebrand factor A (VWA) domain that binds to anthrax toxin protective antigen (PA) and a newly defined immunoglobulin-like (Ig) domain, in which the disulfide bonds are required for PA pore formation and for the folding of ANTXR2. While the VWA domain has been well characterized, the structure and function of the whole ectodomain (VWA-Ig) are poorly defined, which is mainly due to the limited production of the soluble recombinant protein of the ectodomain. In the present study, the ANTXR2 ectodomain was fused to the C-terminus of bacterial Trigger Factor (TF), a chaperone that mediates the ribosome-associated, co-translational folding of newly synthesized polypeptides in Escherichia coli. Under the control of a cold shock promoter, the fusion protein was overly expressed as a dominant soluble protein at a low temperature in the oxidative cytoplasm of Origami B cells, where formation of the disulfide bonds is favored. Through a series of chromatography, the ANTXR2 ectodomain was purified into homogeneity. The purified ectodomain is functional in binding to PA and mediating PA pore formation on the liposomal membranes, and the yield is applicable for future biochemical and structural characterization.
Collapse
Affiliation(s)
- Pedro Jacquez
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519, United States
| | - Ningjing Lei
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519, United States
| | - David Weigt
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519, United States
| | - Chuan Xiao
- Department of Chemistry, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519, United States
| | - Jianjun Sun
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519, United States.
| |
Collapse
|
134
|
Gordon C, Petit F, Kroisel P, Jakobsen L, Zechi-Ceide R, Oufadem M, Bole-Feysot C, Pruvost S, Masson C, Tores F, Hieu T, Nitschké P, Lindholm P, Pellerin P, Guion-Almeida M, Kokitsu-Nakata N, Vendramini-Pittoli S, Munnich A, Lyonnet S, Holder-Espinasse M, Amiel J. Mutations in endothelin 1 cause recessive auriculocondylar syndrome and dominant isolated question-mark ears. Am J Hum Genet 2013; 93:1118-25. [PMID: 24268655 DOI: 10.1016/j.ajhg.2013.10.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/11/2013] [Accepted: 10/22/2013] [Indexed: 10/26/2022] Open
Abstract
Auriculocondylar syndrome (ACS) is a rare craniofacial disorder with mandibular hypoplasia and question-mark ears (QMEs) as major features. QMEs, consisting of a specific defect at the lobe-helix junction, can also occur as an isolated anomaly. Studies in animal models have indicated the essential role of endothelin 1 (EDN1) signaling through the endothelin receptor type A (EDNRA) in patterning the mandibular portion of the first pharyngeal arch. Mutations in the genes coding for phospholipase C, beta 4 (PLCB4) and guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 3 (GNAI3), predicted to function as signal transducers downstream of EDNRA, have recently been reported in ACS. By whole-exome sequencing (WES), we identified a homozygous substitution in a furin cleavage site of the EDN1 proprotein in ACS-affected siblings born to consanguineous parents. WES of two cases with vertical transmission of isolated QMEs revealed a stop mutation in EDN1 in one family and a missense substitution of a highly conserved residue in the mature EDN1 peptide in the other. Targeted sequencing of EDN1 in an ACS individual with related parents identified a fourth, homozygous mutation falling close to the site of cleavage by endothelin-converting enzyme. The different modes of inheritance suggest that the degree of residual EDN1 activity differs depending on the mutation. These findings provide further support for the hypothesis that ACS and QMEs are uniquely caused by disruption of the EDN1-EDNRA signaling pathway.
Collapse
|
135
|
Parker MW, Linkugel AD, Vander Kooi CW. Effect of C-terminal sequence on competitive semaphorin binding to neuropilin-1. J Mol Biol 2013; 425:4405-14. [PMID: 23871893 PMCID: PMC4038064 DOI: 10.1016/j.jmb.2013.07.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/09/2013] [Accepted: 07/11/2013] [Indexed: 01/11/2023]
Abstract
Neuropilins (Nrp) are type I transmembrane proteins that function as receptors for vascular endothelial growth factor (VEGF) and class III Semaphorin (Sema3) ligand families. Sema3s function as potent endogenous angiogenesis inhibitors but require proteolytically processing by furin to compete with VEGF for Nrp binding. This processing liberates a C-terminal arginine (CR) that is necessary for binding to the b1 domain of Nrp, a common feature shared by Nrp ligands. The CR is necessary but not sufficient for potent Nrp inhibition, and the role of upstream residues is unknown. We demonstrate that the second-to-last residue (C-1), immediately upstream of the CR, plays a significant role in controlling competitive ligand binding by orienting the C-terminus for productive Nrp binding. With the use of a peptide library derived from Sema3F, C-1 residues that preferentially adopt an extended bound-like conformation, including proline and β-branched amino acids, were found to produce the most avid competitors. Consistent with this, analysis of the binding thermodynamics revealed that more favorable entropy is responsible for the observed binding enhancement of C-1 proline. We further tested the effect of the C-1 residue on Sema3F processing by furin and found an inverse relationship between processing and inhibitory potency. Analysis of all Sema3 family members reveals two non-equivalent furin processing sites differentiated by the presence of either a C-1 proline or a C-1 arginine and resulting in up to a 40-fold difference in potency. These data reveal a novel regulatory mechanism of Sema3 activity and define a fundamental mechanism for preferential Nrp binding.
Collapse
Affiliation(s)
- Matthew W. Parker
- Department of Molecular and Cellular Biochemistry, Center for Structural Biology, University of Kentucky, Lexington, KY 40536
| | - Andrew D. Linkugel
- Department of Molecular and Cellular Biochemistry, Center for Structural Biology, University of Kentucky, Lexington, KY 40536
| | - Craig W. Vander Kooi
- Department of Molecular and Cellular Biochemistry, Center for Structural Biology, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
136
|
Modulation of the Bacillus anthracis secretome by the immune inhibitor A1 protease. J Bacteriol 2013; 196:424-35. [PMID: 24214942 DOI: 10.1128/jb.00690-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Bacillus anthracis secretome includes protective antigen, lethal factor, and edema factor, which are the components of anthrax toxin, and other proteins with known or potential roles in anthrax disease. Immune inhibitor A1 (InhA1) is a secreted metalloprotease that is unique to pathogenic members of the Bacillus genus and has been associated with cleavage of host proteins during infection. Here, we report the effect of InhA1 on the B. anthracis secretome. Differential in-gel electrophoresis of proteins present in culture supernatants from a parent strain and an isogenic inhA1-null mutant revealed multiple differences. Of the 1,340 protein spots observed, approximately one-third were less abundant and one-third were more abundant in the inhA1 secretome than in the parent strain secretome. Proteases were strongly represented among those proteins exhibiting a 9-fold or greater change. InhA1 purified from a B. anthracis culture supernatant directly cleaved each of the anthrax toxin proteins as well as an additional secreted protease, Npr599. The conserved zinc binding motif HEXXH of InhA1 (HEYGH) was critical for its proteolytic activity. Our data reveal that InhA1 directly and indirectly modulates the form and/or abundance of over half of all the secreted proteins of B. anthracis. The proteolytic activity of InhA1 on established secreted virulence factors, additional proteases, and other secreted proteins suggests that this major protease plays an important role in virulence not only by cleaving mammalian substrates but also by modulating the B. anthracis secretome itself.
Collapse
|
137
|
Rice RA, Berchtold NC, Cotman CW, Green KN. Age-related downregulation of the CaV3.1 T-type calcium channel as a mediator of amyloid beta production. Neurobiol Aging 2013; 35:1002-11. [PMID: 24268883 DOI: 10.1016/j.neurobiolaging.2013.10.090] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/07/2013] [Accepted: 10/25/2013] [Indexed: 11/25/2022]
Abstract
Alzheimer's is a crippling neurodegenerative disease that largely affects aged individuals. Decades of research have highlighted age-related changes in calcium homeostasis that occur before and throughout the duration of the disease, and the contributions of such dysregulation to Alzheimer's disease pathogenesis. We report an age-related decrease in expression of the CaV3.1 T-type calcium channel at the level of messenger RNA and protein in both humans and mice that is exacerbated with the presence of Alzheimer's disease. Downregulating T-type calcium channels in N2a cells and the 3xTg-AD mouse model of Alzheimer's disease, by way of pharmacologic inhibition with NNC-55-0396, results in a rapid increase in amyloid beta production via reductions in non-amyloidogenic processing, whereas genetic overexpression of the channel in human embryonic kidney cells expressing amyloid precursor protein produces complementary effects. The age-related decline in CaV3.1 expression may therefore contribute to a pro-amyloidogenic environment in the aging brain and represents a novel opportunity to intervene in the course of Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Rachel A Rice
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Nicole C Berchtold
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Carl W Cotman
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Kim N Green
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.
| |
Collapse
|
138
|
Hipp MM, Shepherd D, Gileadi U, Aichinger MC, Kessler BM, Edelmann MJ, Essalmani R, Seidah NG, Reis e Sousa C, Cerundolo V. Processing of human toll-like receptor 7 by furin-like proprotein convertases is required for its accumulation and activity in endosomes. Immunity 2013; 39:711-21. [PMID: 24138882 PMCID: PMC4839496 DOI: 10.1016/j.immuni.2013.09.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 07/25/2013] [Indexed: 11/18/2022]
Abstract
Toll-like receptor 7 (TLR7) triggers antiviral immune responses by recognizing viral single-stranded RNA in endosomes, but the biosynthetic pathway of human TLR7 (hTLR7) remains unclear. Here, we show that hTLR7 is proteolytically processed and that the C-terminal fragment selectively accumulates in endocytic compartments. hTLR7 processing occurred at neutral pH and was dependent on furin-like proprotein convertases (PCs). Furthermore, TLR7 processing was required for its functional response to TLR7 agonists such as R837 or influenza virus. Notably, proinflammatory and differentiation stimuli increased the expression of furin-like PCs in immune cells, suggesting a positive feedback mechanism for TLR7 processing during infection. Because self-RNA can under certain conditions activate TLR7 and trigger autoimmunity, our results identify furin-like PCs as a possible target to attenuate TLR7-dependent autoimmunity and other immune pathologies.
Collapse
Affiliation(s)
- Madeleine M Hipp
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DU, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Shin K, Pandey A, Liu XQ, Anini Y, Rainey JK. Preferential apelin-13 production by the proprotein convertase PCSK3 is implicated in obesity. FEBS Open Bio 2013; 3:328-33. [PMID: 24251091 PMCID: PMC3821026 DOI: 10.1016/j.fob.2013.08.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 12/30/2022] Open
Abstract
The peptide hormone apelin is translated as a 77-residue preproprotein, truncated to the 55-residue proapelin and, subsequently, to 13–36-residue bioactive isoforms named apelin-13 to -36. Proapelin is hypothesized to be cleaved to apelin-36 and then to the shorter isoforms. However, neither the mechanism of proapelin processing nor the endoproteases involved have been determined. We show direct cleavage of proapelin to apelin-13 by proprotein convertase subtilisin/kexin 3 (PCSK3, or furin) in vitro, with no production of longer isoforms. Conversely, neither PCSK1 nor PCSK7 has appreciable proapelin cleavage activity. Furthermore, we show that both proapelin and PCSK3 transcript expression levels are increased in adipose tissue with obesity and during adipogenesis, suggesting that PCSK3 is responsible for proapelin processing in adipose tissue. No prohormone processing mechanisms have yet been shown for apelin. Proapelin is cleaved into apelin-13 both specifically and preferentially by PCSK3. Conversely, PCSK1 and PCSK7 do not cleave proapelin. PCSK3 and apelin expression increase with adipocyte differentiation and obesity. We show the first evidence of and propose a new theory for apelin bioactivation.
Collapse
Affiliation(s)
- Kyungsoo Shin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | | | | | | | | |
Collapse
|
140
|
Hepcidin, show some self-control! How the hormone of iron metabolism regulates its own expression. Biochem J 2013; 452:e3-5. [PMID: 23662810 DOI: 10.1042/bj20130358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Does the hormone of iron metabolism, hepcidin, exhibit 'self-control'? Hepcidin is a small, disulfide-rich peptide synthesized by the liver, which plays a keystone role in regulating systemic iron metabolism in mammals. Hepcidin acts by binding and triggering the lysosomal degradation of the cellular iron exporter ferroportin. Ultimately, decreased ferroportin leads to decreased plasma iron levels. Although various modulators of HAMP (the hepcidin antimicrobial peptide gene) expression are known, no auto-regulatory pathway has been described. In their paper published in the Biochemical Journal in April 2013, Pandur et al. identify an auto-regulatory pathway in which prohepcidin regulates HAMP expression. The authors observe that prohepcidin can bind to the inflammation-regulated STAT3 (signal transducer and activator of transcription 3)-binding site in the HAMP promoter to negatively regulate HAMP expression. Furthermore, the authors find that the prohepcidin-binding partner, α-1 antitrypsin, inhibits prohepcidin's ability to decrease HAMP activity. This is significant as α-1 antitrypsin, similar to hepcidin, is an acute-phase reactant that is up-regulated by inflammation. In conclusion, the discovery of a hepcidin auto-regulatory pathway, first, supports the emerging notion that hepcidin regulation is exquisitely fine-tuned through a process of combinatorial control; and secondly, suggests that hepcidin may play a hand in its own deregulation in diseases of iron metabolism that involve aberrant cytokine signalling (e.g. the anaemia of inflammation).
Collapse
|
141
|
Stolp ZD, Stotland A, Diaz S, Hilton BJ, Burford W, Wolkowicz R. A Novel Two-Tag System for Monitoring Transport and Cleavage through the Classical Secretory Pathway - Adaptation to HIV Envelope Processing. PLoS One 2013; 8:e68835. [PMID: 23840860 PMCID: PMC3686725 DOI: 10.1371/journal.pone.0068835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/03/2013] [Indexed: 11/19/2022] Open
Abstract
The classical secretory pathway is essential for the transport of a host of proteins to the cell surface and/or extracellular matrix. While the pathway is well-established, many factors still remain to be elucidated. One of the most relevant biological processes that occur during transport involves the cleavage of pro-proteins by enzymes residing in the endoplasmic reticulum/Golgi/TransGolgi Network compartment. Teasing out the requirements involved in the classical secretory pathway and cleavage during transport would shed new light into mis-regulation leading to disease. Current methodologies fail to link transport and cleavage at the single cell level. Here, we describe a cell-based assay that relies on an engineered protein scaffold that can discriminate between transport to the cell surface, in the absence or presence of cleavage. Our novel two-tag system works in a robust and quantitative manner and distinguishes between cleaved and non-cleaved events based on cell surface expression of one or two epitope tags, respectively. Here, we have used the HIV-1 envelope as a substrate, which is cleaved during transport, as proof of principle. Importantly, this assay can be easily coupled to existing siRNA-based screens to identify novel regulators and effectors involved in transport and/or cleavage of cell surface proteins. In addition, unlike other in vivo based assays, the assay described here can also be easily adapted to drug discovery purposes.
Collapse
Affiliation(s)
- Zachary D. Stolp
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Aleksandr Stotland
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Samantha Diaz
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Brett J. Hilton
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Wesley Burford
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Roland Wolkowicz
- Department of Biology, San Diego State University, San Diego, California, United States of America
| |
Collapse
|
142
|
Izaguirre G, Qi L, Lima M, Olson ST. Identification of serpin determinants of specificity and selectivity for furin inhibition through studies of α1PDX (α1-protease inhibitor Portland)-serpin B8 and furin active-site loop chimeras. J Biol Chem 2013; 288:21802-14. [PMID: 23744066 DOI: 10.1074/jbc.m113.462804] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
α1-Protease inhibitor Portland (α1PDX) is an engineered serpin family inhibitor of the proprotein convertase (PC), furin, that exhibits high specificity but limited selectivity for inhibiting furin over other PC family proteases. Here, we characterize serpin B8, a natural inhibitor of furin, together with α1PDX-serpin B8 and furin-PC chimeras to identify determinants of serpin specificity and selectivity for furin inhibition. Replacing reactive center loop (RCL) sequences of α1PDX with those of serpin B8 demonstrated that both the P4-P1 RXXR recognition sequence as well as the P1'-P5' sequence are critical determinants of serpin specificity for furin. Alignments of PC catalytic domains revealed four variable active-site loops whose role in furin reactivity with serpin B8 was tested by engineering furin-PC loop chimeras. The furin(298-300) loop but not the other loops differentially affected furin reactivity with serpin B8 and α1PDX in a manner that depended on the serpin RCL-primed sequence. Modeling of the serpin B8-furin Michaelis complex identified serpin exosites in strand 3C close to the 298-300 loop whose substitution in α1PDX differentially affected furin reactivity depending on the furin loop and serpin RCL-primed sequences. These studies demonstrate that RCL-primed residues, strand 3C exosites, and the furin(298-300) loop are critical determinants of serpin reactivity with furin, which may be exploited in the design of specific and selective α1PDX inhibitors of PCs.
Collapse
Affiliation(s)
- Gonzalo Izaguirre
- Center for Molecular Biology of Oral Diseases and the Department of Periodontics, University of Illinois, Chicago, Illinois 60612, USA.
| | | | | | | |
Collapse
|
143
|
Feng JQ, Clinkenbeard EL, Yuan B, White KE, Drezner MK. Osteocyte regulation of phosphate homeostasis and bone mineralization underlies the pathophysiology of the heritable disorders of rickets and osteomalacia. Bone 2013; 54:213-21. [PMID: 23403405 PMCID: PMC3672228 DOI: 10.1016/j.bone.2013.01.046] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 12/13/2022]
Abstract
Although recent studies have established that osteocytes function as secretory cells that regulate phosphate metabolism, the biomolecular mechanism(s) underlying these effects remain incompletely defined. However, investigations focusing on the pathogenesis of X-linked hypophosphatemia (XLH), autosomal dominant hypophosphatemic rickets (ADHR), and autosomal recessive hypophosphatemic rickets (ARHR), heritable disorders characterized by abnormal renal phosphate wasting and bone mineralization, have clearly implicated FGF23 as a central factor in osteocytes underlying renal phosphate wasting, documented new molecular pathways regulating FGF23 production, and revealed complementary abnormalities in osteocytes that regulate bone mineralization. The seminal observations leading to these discoveries were the following: 1) mutations in FGF23 cause ADHR by limiting cleavage of the bioactive intact molecule, at a subtilisin-like protein convertase (SPC) site, resulting in increased circulating FGF23 levels and hypophosphatemia; 2) mutations in DMP1 cause ARHR, not only by increasing serum FGF23, albeit by enhanced production and not limited cleavage, but also by limiting production of the active DMP1 component, the C-terminal fragment, resulting in dysregulated production of DKK1 and β-catenin, which contributes to impaired bone mineralization; and 3) mutations in PHEX cause XLH both by altering FGF23 proteolysis and production and causing dysregulated production of DKK1 and β-catenin, similar to abnormalities in ADHR and ARHR, but secondary to different central pathophysiological events. These discoveries indicate that ADHR, XLH, and ARHR represent three related heritable hypophosphatemic diseases that arise from mutations in, or dysregulation of, a single common gene product, FGF23 and, in ARHR and XLH, complimentary DMP1 and PHEX directed events that contribute to abnormal bone mineralization.
Collapse
Affiliation(s)
- Jian Q Feng
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, TX 75246, USA
| | | | | | | | | |
Collapse
|
144
|
Ennemann EC, Radhakrishnan K, Mariappan M, Wachs M, Pringle TH, Schmidt B, Dierks T. Proprotein convertases process and thereby inactivate formylglycine-generating enzyme. J Biol Chem 2013; 288:5828-39. [PMID: 23288839 DOI: 10.1074/jbc.m112.405159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Formylglycine-generating enzyme (FGE) post-translationally converts a specific cysteine in newly synthesized sulfatases to formylglycine (FGly). FGly is the key catalytic residue of the sulfatase family, comprising 17 nonredundant enzymes in human that play essential roles in development and homeostasis. FGE, a resident protein of the endoplasmic reticulum, is also secreted. A major fraction of secreted FGE is N-terminally truncated, lacking residues 34-72. Here we demonstrate that this truncated form is generated intracellularly by limited proteolysis mediated by proprotein convertase(s) (PCs) along the secretory pathway. The cleavage site is represented by the sequence RYSR(72)↓, a motif that is conserved in higher eukaryotic FGEs, implying important functionality. Residues Arg-69 and Arg-72 are critical because their mutation abolishes FGE processing. Furthermore, residues Tyr-70 and Ser-71 confer an unusual property to the cleavage motif such that endogenous as well as overexpressed FGE is only partially processed. FGE is cleaved by furin, PACE4, and PC5a. Processing is disabled in furin-deficient cells but fully restored upon transient furin expression, indicating that furin is the major protease cleaving FGE. Processing by endogenous furin occurs mostly intracellularly, although also extracellular processing is observed in HEK293 cells. Interestingly, the truncated form of secreted FGE no longer possesses FGly-generating activity, whereas the unprocessed form of secreted FGE is active. As always both forms are secreted, we postulate that furin-mediated processing of FGE during secretion is a physiological means of higher eukaryotic cells to regulate FGE activity upon exit from the endoplasmic reticulum.
Collapse
Affiliation(s)
- Eva C Ennemann
- Department of Chemistry, Biochemistry I, Bielefeld University, 33615 Bielefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
145
|
Abstract
Human telomerase reverse transcriptase (hTERT) is the catalytic subunit of the human telomerase complex. Growing evidence suggests that hTERT also contributes to the cell physiology independently of telomere elongation. However, its role in bacterial infection is unknown. Here we show that hTERT is critical for Listeria monocytogenes infection, as the depletion of hTERT impaired bacterial intracellular replication. In addition, we observed that L. monocytogenes caused a decrease in hTERT levels at early time points of the infectious process. This effect was mediated by the pore-forming toxin listeriolysin O (LLO) and did not require bacterial entry into host cells. Calcium influx through the LLO pores contributed to a proteasome-independent decrease in hTERT protein levels. Together, our data provide evidence that these bacteria trigger hTERT degradation, an event that is detrimental to bacterial replication.
Collapse
|
146
|
Rajapaksha M, Lovell S, Janowiak BE, Andra KK, Battaile KP, Bann JG. pH effects on binding between the anthrax protective antigen and the host cellular receptor CMG2. Protein Sci 2012; 21:1467-80. [PMID: 22855243 DOI: 10.1002/pro.2136] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 11/11/2022]
Abstract
The anthrax protective antigen (PA) binds to the host cellular receptor capillary morphogenesis protein 2 (CMG2) with high affinity. To gain a better understanding of how pH may affect binding to the receptor, we have investigated the kinetics of binding as a function of pH to the full-length monomeric PA and to two variants: a 2-fluorohistidine-labeled PA (2-FHisPA), which is ∼1 pH unit more stable to variations in pH than WT, and an ∼1 pH unit less stable variant in which Trp346 in the domain 2β(3) -2β(4) loop is substituted with a Phe (W346F). We show using stopped-flow fluorescence that the binding rate increases as the pH is lowered for all proteins, with little influence on the rate of dissociation. In addition, we have crystallized PA and the two variants and examine the influence of pH on structure. In contrast to previous X-ray studies, the domain 2β(3) -2β(4) loop undergoes little change in structure from pH ∼8 to 5.5 for the WT protein, but for the 2-FHis labeled and W346F mutant there are changes in structure consistent with previous X-ray studies. In accord with pH stability studies, we find that the average B-factor values increase by ∼20-30% for all three proteins at low pH. Our results suggest that for the full-length PA, low pH increases the binding affinity, likely through a change in structure that favors a more "bound-like" conformation.
Collapse
|
147
|
Cawley NX, Sridhar M, Hong H, Loh P. Exploring the membrane topology of prohormone convertase 1 in AtT20 Cells: in situ analysis by immunofluorescence microscopy. F1000Res 2012; 1:9. [PMID: 24163733 PMCID: PMC3799554 DOI: 10.12688/f1000research.1-9.v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2012] [Indexed: 11/20/2022] Open
Abstract
Prohormone convertase 1 (PC1) was previously characterized as a partially transmembrane protein in purified chromaffin granules of bovine adrenal medulla1. This was challenged with experiments on transfected PC1 in COS1 cells, a non-endocrine cell line2. To address this issue, we undertook to analyze its extraction properties in vitro and its immunocytochemical localization in situ in AtT20 cells, an endocrine cell line that expresses PC1. Most of the 87 kDa form of PC1 was resistant to carbonate extraction suggesting that it had properties of a transmembrane protein. Under semi-permeabilized conditions whereby only the plasma membrane was permeabilized, the carboxy-terminus of PC1 was specifically immunostained whereas the amino-terminus was not. These results indicate that the amino-terminus of PC1 was within the lumen of the Golgi and granules, and some of the C-terminus was exposed to the cytosol. Thus, endogenous PC1 can assume a transmembrane orientation in situ in AtT20 cells.
Collapse
Affiliation(s)
- Niamh X Cawley
- Section on Cellular Neurobiology, Program in Developmental Neuroscience, Eunice Shriver Kennedy National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA ; National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | | |
Collapse
|
148
|
Artenstein AW, Opal SM. Novel approaches to the treatment of systemic anthrax. Clin Infect Dis 2012; 54:1148-61. [PMID: 22438345 DOI: 10.1093/cid/cis017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anthrax continues to generate concern as an agent of bioterrorism and as a natural cause of sporadic disease outbreaks. Despite the use of appropriate antimicrobial agents and advanced supportive care, the mortality associated with the systemic disease remains high. This is primarily due to the pathogenic exotoxins produced by Bacillus anthracis as well as other virulence factors of the organism. For this reason, new therapeutic strategies that target events in the pathogenesis of anthrax and may potentially augment antimicrobials are being investigated. These include anti-toxin approaches, such as passive immune-based therapies; non-antimicrobial drugs with activity against anthrax toxin components; and agents that inhibit binding, processing, or assembly of toxins. Adjunct therapies that target spore germination or downstream events in anthrax intoxication are also under investigation. In combination, these modalities may enhance the management of systemic anthrax.
Collapse
Affiliation(s)
- Andrew W Artenstein
- Center for Biodefense and Emerging Pathogens, Department of Medicine, Memorial Hospital of Rhode Island, Pawtucket, and The Warren Alpert Medical School of Brown University, Providence, RI 02860, USA
| | | |
Collapse
|
149
|
Setoh YX, Prow NA, Hobson-Peters J, Lobigs M, Young PR, Khromykh AA, Hall RA. Identification of residues in West Nile virus pre-membrane protein that influence viral particle secretion and virulence. J Gen Virol 2012; 93:1965-1975. [PMID: 22764317 DOI: 10.1099/vir.0.044453-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pre-membrane protein (prM) of West Nile virus (WNV) functions as a chaperone for correct folding of the envelope (E) protein, and prevents premature fusion during virus egress. However, little is known about its role in virulence. To investigate this, we compared the amino acid sequences of prM between a highly virulent North American strain (WNV(NY99)) and a weakly virulent Australian subtype (WNV(KUN)). Five amino acid differences occur in WNV(NY99) compared with WNV(KUN) (I22V, H43Y, L72S, S105A and A156V). When expressed in mammalian cells, recombinant WNV(NY99) prM retained native antigenic structure, and was partially exported to the cell surface. In contrast, WNV(KUN) prM (in the absence of the E protein) failed to express a conserved conformational epitope and was mostly retained at the pre-Golgi stage. Substitutions in residues 22 (Ile to Val) and 72 (Leu to Ser) restored the antigenic structure and cell surface expression of WNV(KUN) prM to the same level as that of WNV(NY99), and enhanced the secretion of WNV(KUN) prME particles when expressed in the presence of E. Introduction of the prM substitutions into a WNV(KUN) infectious clone (FLSDX) enhanced the secretion of infectious particles in Vero cells, and enhanced virulence in mice. These findings highlight the role of prM in viral particle secretion and virulence, and suggest the involvement of the L72S and I22V substitutions in modulating these activities.
Collapse
Affiliation(s)
- Y X Setoh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - N A Prow
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - J Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - M Lobigs
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - P R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - A A Khromykh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - R A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, QLD, Australia
| |
Collapse
|
150
|
Endocytic processing of adeno-associated virus type 8 vectors for transduction of target cells. Gene Ther 2012; 20:308-17. [PMID: 22622241 DOI: 10.1038/gt.2012.41] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We investigated the transduction of HEK293T cells permissive to adeno-associated virus serotype 8 (AAV8) to understand the mechanisms underlying its endocytic processing. Results showed that AAV8 enters cells through clathrin-mediated endocytosis followed by trafficking through various endosomal compartments. Interestingly, compared to the relatively well-characterized AAV2, a distinct involvement of late endosomes was observed for AAV8 trafficking within the target cell. AAV8 particles were also shown to exploit the cytoskeleton network to facilitate their transport within cells. Moreover, the cellular factors involved during endosomal escape were examined by an in vitro membrane permeabilization assay. Our data demonstrated that an acidic endosomal environment was required for AAV2 penetration through endosomal membranes and that the cellular endoprotease furin could promote AAV2 escape from the early endosomes. In contrast, these factors were not sufficient for AAV8 penetration through endosomal membranes. We further found that the ubiquitin-proteasome system is likely involved in the intracellular transport of AAV8 to nucleus. Taken together, our data have shed some light on the intracellular trafficking pathways of AAV8, which, in turn, could provide insight for potentializing AAV-mediated gene delivery.
Collapse
|