101
|
Mohandas N, Gascard P. What do mouse gene knockouts tell us about the structure and function of the red cell membrane? Best Pract Res Clin Haematol 1999; 12:605-20. [PMID: 10895255 DOI: 10.1053/beha.1999.0044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent development of knockout mice with targeted deletion of specific genes encoding various red cell membrane proteins has added valuable armamentarium to red cell membrane structure-function studies. In this chapter we will summarize the various recent developments regarding the structure and function of the red cell membrane derived from studies using knockout mice. In addition to being expressed in red cells, all major red cell membrane proteins are also expressed in cells of various tissues. The potential use of knockout mice to decipher the biological functions of red cell membrane proteins in non-erythroid cells is also explored.
Collapse
Affiliation(s)
- N Mohandas
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | |
Collapse
|
102
|
Chan SL, Tan KO, Zhang L, Yee KS, Ronca F, Chan MY, Yu VC. F1Aalpha, a death receptor-binding protein homologous to the Caenorhabditis elegans sex-determining protein, FEM-1, is a caspase substrate that mediates apoptosis. J Biol Chem 1999; 274:32461-8. [PMID: 10542291 DOI: 10.1074/jbc.274.45.32461] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apoptosis is an evolutionarily conserved process that is critical for tissue homeostasis and development including sex determination in essentially all multicellular organisms. Here, we report the cloning of an ankyrin repeat-containing protein, termed F1Aalpha, in a yeast two-hybrid screen using the cytoplasmic domain of Fas (CD95/APO-1) as bait. Amino acid sequence analysis indicates that F1Aalpha has extensive homology to the sex-determining protein FEM-1 of the Caenorhabditis elegans, which is required for the development of all aspects of the male phenotype. F1Aalpha associates with the cytoplasmic domains of Fas and tumor necrosis factor receptor 1, two prototype members of the "death receptor" family. The F1Aalpha protein also oligomerizes. Overexpression of F1Aalpha induces apoptosis in mammalian cells, and co-expression of Bcl-XL or the dominant negative mutants of either FADD or caspase-9 blocks this effect. Deletion analysis revealed the center region of F1Aalpha, including a cluster of five ankyrin repeats to be necessary and sufficient for maximum apoptotic activity, and the N-terminal region appears to regulate negatively this activity. Furthermore, F1Aalpha is cleaved by a caspase-3-like protease at Asp(342), and the cleavage-resistant mutant is unable to induce apoptosis upon overexpression. F1Aalpha is therefore a member of a growing family of death receptor-associated proteins that mediates apoptosis.
Collapse
Affiliation(s)
- S L Chan
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Republic of Singapore
| | | | | | | | | | | | | |
Collapse
|
103
|
Citores L, Wesche J, Kolpakova E, Olsnes S. Uptake and intracellular transport of acidic fibroblast growth factor: evidence for free and cytoskeleton-anchored fibroblast growth factor receptors. Mol Biol Cell 1999; 10:3835-48. [PMID: 10564275 PMCID: PMC25683 DOI: 10.1091/mbc.10.11.3835] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Endocytic uptake and intracellular transport of acidic FGF was studied in cells transfected with FGF receptor 4 (FGFR4). Acidification of the cytosol to block endocytic uptake from coated pits did not inhibit endocytosis of the growth factor in COS cells transfected with FGFR4, indicating that it is to a large extent taken up by an alternative endocytic pathway. Fractionation of the cells demonstrated that part of the growth factor receptor was present in a low-density, caveolin-containing fraction, but we were unable to demonstrate binding to caveolin in immunoprecipitation studies. Upon treatment of the cells with acidic FGF, the activated receptor, together with the growth factor, moved to a juxtanuclear compartment, which was identified as the recycling endosome compartment. When the cells were lysed with Triton X-100, 3-([3-chloramidopropyl]dimethylammonio)-2-hydroxy-1-propanesulfona te, or 2-octyl glucoside, almost all surface-exposed and endocytosed FGFR4 was solubilized, but only a minor fraction of the total FGFR4 in the cells was found in the soluble fraction. The data indicate that the major part of FGFR4 is anchored to detergent-insoluble structures, presumably cytoskeletal elements associated with the recycling endosome compartment.
Collapse
Affiliation(s)
- L Citores
- Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | | | | | | |
Collapse
|
104
|
Abstract
This review is directed at understanding how neuronal death occurs in two distinct insults, global ischemia and focal ischemia. These are the two principal rodent models for human disease. Cell death occurs by a necrotic pathway characterized by either ischemic/homogenizing cell change or edematous cell change. Death also occurs via an apoptotic-like pathway that is characterized, minimally, by DNA laddering and a dependence on caspase activity and, optimally, by those properties, additional characteristic protein and phospholipid changes, and morphological attributes of apoptosis. Death may also occur by autophagocytosis. The cell death process has four major stages. The first, the induction stage, includes several changes initiated by ischemia and reperfusion that are very likely to play major roles in cell death. These include inhibition (and subsequent reactivation) of electron transport, decreased ATP, decreased pH, increased cell Ca(2+), release of glutamate, increased arachidonic acid, and also gene activation leading to cytokine synthesis, synthesis of enzymes involved in free radical production, and accumulation of leukocytes. These changes lead to the activation of five damaging events, termed perpetrators. These are the damaging actions of free radicals and their product peroxynitrite, the actions of the Ca(2+)-dependent protease calpain, the activity of phospholipases, the activity of poly-ADPribose polymerase (PARP), and the activation of the apoptotic pathway. The second stage of cell death involves the long-term changes in macromolecules or key metabolites that are caused by the perpetrators. The third stage of cell death involves long-term damaging effects of these macromolecular and metabolite changes, and of some of the induction processes, on critical cell functions and structures that lead to the defined end stages of cell damage. These targeted functions and structures include the plasmalemma, the mitochondria, the cytoskeleton, protein synthesis, and kinase activities. The fourth stage is the progression to the morphological and biochemical end stages of cell death. Of these four stages, the last two are the least well understood. Quite little is known of how the perpetrators affect the structures and functions and whether and how each of these changes contribute to cell death. According to this description, the key step in ischemic cell death is adequate activation of the perpetrators, and thus a major unifying thread of the review is a consideration of how the changes occurring during and after ischemia, including gene activation and synthesis of new proteins, conspire to produce damaging levels of free radicals and peroxynitrite, to activate calpain and other Ca(2+)-driven processes that are damaging, and to initiate the apoptotic process. Although it is not fully established for all cases, the major driving force for the necrotic cell death process, and very possibly the other processes, appears to be the generation of free radicals and peroxynitrite. Effects of a large number of damaging changes can be explained on the basis of their ability to generate free radicals in early or late stages of damage. Several important issues are defined for future study. These include determining the triggers for apoptosis and autophagocytosis and establishing greater confidence in most of the cellular changes that are hypothesized to be involved in cell death. A very important outstanding issue is identifying the critical functional and structural changes caused by the perpetrators of cell death. These changes are responsible for cell death, and their identity and mechanisms of action are almost completely unknown.
Collapse
Affiliation(s)
- P Lipton
- Department of Physiology, University of Wisconsin School of Medicine, Madison, Wisconsin, USA
| |
Collapse
|
105
|
Isono K, Yamamoto H, Satoh K, Kobayashi H. An Arabidopsis cDNA encoding a DNA-binding protein that is highly similar to the DEAH family of RNA/DNA helicase genes. Nucleic Acids Res 1999; 27:3728-35. [PMID: 10471743 PMCID: PMC148629 DOI: 10.1093/nar/27.18.3728] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A cDNA encoding a putative RNA and/or DNA helicase has been isolated from Arabidopsis thaliana cDNA libraries. The cloned cDNA is 5166 bases long, and its largest open reading frame encodes 1538 amino acids. The central region of the predicted protein is homologous to a group of nucleic acid helicases from the DEAD/H family. However, the N- and C-terminal regions of the Arabidopsis cDNA product are distinct from these animal DEIH proteins. We have found that the C-terminal region contains three characteristic sequences: (i) two DNA-binding segments that form a probe helix (PH) involved in DNA recognition; (ii) an SV40-type nuclear localization signal; and (iii) 11 novel tandem-repeat sequences each consisting of about 28 amino acids. We have designated this cDNA as NIH (nuclear DEIH-boxhelicase). Functional character-ization of a recombinant fusion product containing the repeated region indicates that NIH may form homodimers, and that this is the active form in solution. Based on this information and the observation that the sequence homology is limited to the DEAH regions, we conclude that the biological roles of the plant helicase NIH differ from those of the animal DEIH family.
Collapse
Affiliation(s)
- K Isono
- Laboratory of Plant Cell Technology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan
| | | | | | | |
Collapse
|
106
|
Bourguignon LY, Zhu H, Shao L, Zhu D, Chen YW. Rho-kinase (ROK) promotes CD44v(3,8-10)-ankyrin interaction and tumor cell migration in metastatic breast cancer cells. CELL MOTILITY AND THE CYTOSKELETON 1999; 43:269-87. [PMID: 10423269 DOI: 10.1002/(sici)1097-0169(1999)43:4<269::aid-cm1>3.0.co;2-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Metastatic breast tumor Met-1 cells express CD44v(3,8-10), a major adhesion receptor that binds extracellular matrix components at its extracellular domain and interacts with the cytoskeletal protein, ankyrin, at its cytoplasmic domain. In this study, we have determined that CD44v(3,8-10) and RhoA GTPases are physically associated in vivo, and that CD44v(3,8-10)-bound RhoA displays GTPase activity, which can be inhibited by botulinum toxin C3-mediated ADP-ribosylation. In addition, we have identified a 160 kDa Rho-Kinase (ROK) as one of the downstream targets for CD44v(3,8-10)-bound RhoA GTPase. Specifically, RhoA (complexed with CD44v(3, 8-10)) stimulates ROK-mediated phosphorylation of certain cellular proteins including the cytoplasmic domain of CD44v(3,8-10). Most importantly, phosphorylation of CD44v(3,8-10) by ROK enhances its interaction with the cytoskeletal protein, ankyrin. We have also constructed two ROK cDNA constructs that encode for proteins consisting of 537 amino acids [designated as the constitutively active form of ROK containing the catalytic domain (CAT, also the kinase domain)], and 173 amino acids [designated as the dominant-negative form of ROK containing the Rho-binding domain (RB)]. Microinjection of the ROK's CAT domain into Met-1 cells promotes CD44-ankyrin associated membrane ruffling and projections. This membrane motility can be blocked by CD44 antibodies and cytochalasin D (a microfilament inhibitor). Furthermore, overexpression of a dominant-negative form of ROK by transfection of Met-1 cells with ROK's Rho-binding (RB) domain cDNA effectively inhibits CD44-ankyrin-mediated metastatic behavior (e.g., membrane motility and tumor cell migration). These findings support the hypothesis that ROK plays a pivotal role in CD44v(3,8-10)-ankyrin interaction and RhoA-mediated oncogenic signaling required for membrane-cytoskeleton function and metastatic tumor cell migration.
Collapse
Affiliation(s)
- L Y Bourguignon
- Department of Cell Biology and Anatomy, University of Miami Medical School, Miami, Florida 33136, USA.
| | | | | | | | | |
Collapse
|
107
|
Abstract
The recent elucidation of protein structures based upon repeating amino acid motifs, including the armadillo motif, the HEAT motif and tetratricopeptide repeats, reveals that they belong to the class of helical repeat proteins. These proteins share the common property of being assembled from tandem repeats of an alpha-helical structural unit, creating extended superhelical structures that are ideally suited to create a protein recognition interface.
Collapse
Affiliation(s)
- M R Groves
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, UK
| | | |
Collapse
|
108
|
Abstract
Many diffusible axon guidance cues and their receptors have been identified recently. These cues are often found to be bifunctional, acting as attractants or repellents under different circumstances. Studies of cytoplasmic signaling mechanisms have led to the notion that the response of a growth cone to a particular guidance cue depends on the internal state of the neuron, which, in turn, is under the influence of other coincident signals received by the neuron. Furthermore, many diffusible guidance cues appear to share common cytoplasmic signaling pathways.
Collapse
Affiliation(s)
- H J Song
- Molecular Neurobiology Laboratory, Howard Hughes Medical Institute at the Salk Institute, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
109
|
Günther R, Zill H, Schmidt WE, Fölsch UR. [ZAP genes: characterizing the protein structure of a new family of proliferation associated genes in the exocrine pancreas]. MEDIZINISCHE KLINIK (MUNICH, GERMANY : 1983) 1999; 94:233-8. [PMID: 10373761 DOI: 10.1007/bf03044861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
While interested in proliferation-dependent gene regulation in a pancreatic carcinoma cell line, we cloned a set of proteins (ZAP) characterized by a conserved region consisting of consecutive zinc finger, ankyrin repeat and PH domains. Functional aspects of these domains were obtained by comparison with proteins involved in several signal transduction pathways and cell cycle regulation. The members of the ZAP protein family are individually characterized by different types of supplementary protein domains, their chromosomal localization and their tissue specific gene transcription. All results indicate a wide spectrum of protein-protein interactions. Up to now specific binding partners have not been identified. In summary, the multiplicity of conserved regions and transcriptional data indicate a scaffold function for ZAP proteins in the complex network of proliferation associated intracellular signal transduction pathways.
Collapse
Affiliation(s)
- R Günther
- I. Medizinische Klinik, Christian-Albrechts-Universität zu Kiel.
| | | | | | | |
Collapse
|
110
|
Ma Z, Wang X, Nowatzke W, Ramanadham S, Turk J. Human pancreatic islets express mRNA species encoding two distinct catalytically active isoforms of group VI phospholipase A2 (iPLA2) that arise from an exon-skipping mechanism of alternative splicing of the transcript from the iPLA2 gene on chromosome 22q13.1. J Biol Chem 1999; 274:9607-16. [PMID: 10092647 PMCID: PMC3715997 DOI: 10.1074/jbc.274.14.9607] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An 85-kDa Group VI phospholipase A2 enzyme (iPLA2) that does not require Ca2+ for catalysis has recently been cloned from three rodent species. A homologous 88-kDa enzyme has been cloned from human B-lymphocyte lines that contains a 54-amino acid insert not present in the rodent enzymes, but human cells have not previously been observed to express catalytically active iPLA2 isoforms other than the 88-kDa protein. We have cloned cDNA species that encode two distinct iPLA2 isoforms from human pancreatic islet RNA and a human insulinoma cDNA library. One isoform is an 85-kDa protein (short isoform of human iPLA2 (SH-iPLA2)) and the other an 88-kDa protein (long isoform of human iPLA2 (LH-iPLA2)). Transcripts encoding both isoforms are also observed in human promonocytic U937 cells. Recombinant SH-iPLA2 and LH-iPLA2 are both catalytically active in the absence of Ca2+ and inhibited by a bromoenol lactone suicide substrate, but LH-iPLA2 is activated by ATP, whereas SH-iPLA2 is not. The human iPLA2 gene has been found to reside on chromosome 22 in region q13.1 and to contain 16 exons represented in the LH-iPLA2 transcript. Exon 8 is not represented in the SH-iPLA2 transcript, indicating that it arises by an exon-skipping mechanism of alternative splicing. The amino acid sequence encoded by exon 8 of the human iPLA2 gene is proline-rich and shares a consensus motif of PX5PX8HHPX12NX4Q with the proline-rich middle linker domains of the Smad proteins DAF-3 and Smad4. Expression of mRNA species encoding two active iPLA2 isoforms with distinguishable catalytic properties in two different types of human cells demonstrated here may have regulatory or functional implications about the roles of products of the iPLA2 gene in cell biologic processes.
Collapse
Affiliation(s)
| | | | | | | | - John Turk
- To whom correspondence should be addressed: Box 8127, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110. Tel.: 314-362-8190; Fax: 314-362-8188;
| |
Collapse
|
111
|
Jaquemar D, Schenker T, Trueb B. An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. J Biol Chem 1999; 274:7325-33. [PMID: 10066796 DOI: 10.1074/jbc.274.11.7325] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified a novel transformation-sensitive mRNA, which is present in cultured fibroblasts but is lacking in SV40 transformed cells as well as in many mesenchymal tumor cell lines. The corresponding gene is located on human chromosome 8 in band 8q13. The open reading frame of the mRNA encodes a protein of 1119 amino acids forming two distinct domains. The N-terminal domain consists of 18 repeats that are related to the cytoskeletal protein ankyrin. The C-terminal domain contains six putative transmembrane segments that resemble many ion channels. This overall structure is reminiscent of TRP-like proteins that function as store-operated calcium channels. The novel protein with an Mr of 130 kDa is expressed at a very low level in human fibroblasts and at a moderate level in liposarcoma cells. Overexpression in eukaryotic cells appears to interfere with normal growth, suggesting that it might play a direct or indirect role in signal transduction and growth control.
Collapse
Affiliation(s)
- D Jaquemar
- M. E. Müller Institute, University of Bern, CH-3010 Bern, Switzerland
| | | | | |
Collapse
|
112
|
Kuriyama H, Takano H, Suzuki L, Uchida H, Kawano S, Kuroiwa H, Kuroiwa T. Characterization of Chlamydomonas reinhardtii zygote-specific cDNAs that encode novel proteins containing ankyrin repeats and WW domains. PLANT PHYSIOLOGY 1999; 119:873-84. [PMID: 10069826 PMCID: PMC32102 DOI: 10.1104/pp.119.3.873] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/1998] [Accepted: 12/02/1998] [Indexed: 05/18/2023]
Abstract
Genes that are expressed only in the young zygote are considered to be of great importance in the development of an isogamous green alga, Chlamydomonas reinhardtii. Clones representing the Zys3 gene were isolated from a cDNA library prepared using zygotes at 10 min after fertilization. Sequencing of Zys3 cDNA clones resulted in the isolation of two related molecular species. One of them encoded a protein that contained two kinds of protein-to-protein interaction motifs known as ankyrin repeats and WW domains. The other clone lacked the ankyrin repeats but was otherwise identical. These mRNA species began to accumulate simultaneously in cells beginning 10 min after fertilization, and reached maximum levels at about 4 h, after which time levels decreased markedly. Genomic DNA gel-blot analysis indicated that Zys3 was a single-copy gene. The Zys3 proteins exhibited parallel expression to the Zys3 mRNAs at first, appearing 2 h after mating, and reached maximum levels at more than 6 h, but persisted to at least 1 d. Immunocytochemical analysis revealed their localization in the endoplasmic reticulum, which suggests a role in the morphological changes of the endoplasmic reticulum or in the synthesis and transport of proteins to the Golgi apparatus or related vesicles.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Ankyrins/chemistry
- Ankyrins/genetics
- Base Sequence
- Chlamydomonas reinhardtii/genetics
- Chlamydomonas reinhardtii/growth & development
- Chlamydomonas reinhardtii/metabolism
- DNA, Complementary/genetics
- DNA, Plant/genetics
- DNA, Protozoan/genetics
- Genes, Plant
- Genes, Protozoan
- Molecular Sequence Data
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- Repetitive Sequences, Amino Acid
- Sequence Homology, Amino Acid
- Zygote/metabolism
Collapse
Affiliation(s)
- H Kuriyama
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113, Japan.
| | | | | | | | | | | | | |
Collapse
|
113
|
Díaz-Guerra M, Rivas C, Esteban M. Full activation of RNaseL in animal cells requires binding of 2-5A within ankyrin repeats 6 to 9 of this interferon-inducible enzyme. J Interferon Cytokine Res 1999; 19:113-9. [PMID: 10090396 DOI: 10.1089/107999099314252] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To define protein domains important for activation of the interferon (IFN)-induced enzyme 2-5A-dependent RNaseL, we have generated vaccinia virus (VV) recombinants able to express in cultured cells truncated forms of this protein and compared their biologic activities with those producing the wild-type enzyme, with and without coexpression of 2-5A synthetase. Our results show that full activation of RNaseL requires binding of 2-5A oligonucleotides within amino acid positions 212-339, corresponding to ankyrin repeats 6 to 9. The protein kinase and ribonuclease domains of RNaseL, amino acids 340-741, are sufficient for a constitutively active enzyme that is unresponsive to excess 2-5A. These results demonstrate in vivo the importance of the ankyrin domains in the biologic function of RNaseL. We suggest that ankyrin repeats act as key modulators of RNaseL activity.
Collapse
Affiliation(s)
- M Díaz-Guerra
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | | | |
Collapse
|
114
|
Prado L, Fernández E, Weissbach U, Blanco G, Quirós LM, Braña AF, Méndez C, Rohr J, Salas JA. Oxidative cleavage of premithramycin B is one of the last steps in the biosynthesis of the antitumor drug mithramycin. CHEMISTRY & BIOLOGY 1999; 6:19-30. [PMID: 9889148 DOI: 10.1016/s1074-5521(99)80017-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND Mithramycin is a member of the clinically important aureolic acid group of antitumor drugs that interact with GC-rich regions of DNA nonintercalatively. These drugs contain a chromophore aglycon that is derived from condensation of ten acetate units (catalyzed by a type II polyketide synthase). The aglycones are glycosylated at two positions with different chain length deoxyoligosaccharides, which are essential for the antitumor activity. During the early stages of mithramycin biosynthesis, tetracyclic intermediates of the tetracycline-type occur, which must be converted at later stages into the tricyclic glycosylated molecule, presumably through oxidative breakage of the fourth ring. RESULTS Two intermediates in the mithramycin biosynthetic pathway, 4-demethyl-premithramycinone and premithramycin B, were identified in a mutant lacking the mithramycin glycosyltransferase and methyltransferase genes and in the same mutant complemented with the deleted genes, respectively. Premithramycin B contains five deoxysugars moieties (like mithramycin), but contains a tetracyclic aglycon moiety instead of a tricyclic aglycon. We hypothesized that transcription of mtmOIV (encoding an oxygenase) was impaired in this strain, preventing oxidative breakage of the fourth ring of premithramycin B. Inactivating mtmOIV generated a mithramycin nonproducing mutant that accumulated premithramycin B instead of mithramycin. In vitro assays demonstrated that MtmOIV converted premithramycin B into a tricyclic compound. CONCLUSIONS In the late stages of mithramycin biosynthesis by Strepyomyces argillaceus, a fully glycosylated tetracyclic tetracycline-like intermediate (premithramycin B) is converted into a tricyclic compound by the oxygenase MtmOIV. This oxygenase inserts an oxygen (Baeyer-Villiger oxidation) and opens the resulting lactone. The following decarboxylation and ketoreduction steps lead to mithramycin. Opening of the fourth ring represents one of the last steps in mithramycin biosynthesis.
Collapse
Affiliation(s)
- L Prado
- Departamento de Biología Funcional e Instituto Universitario de Biotecnología de Asturias (IUBA-CSIC), Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Abstract
Tankyrase, a protein with homology to ankyrins and to the catalytic domain of poly(adenosine diphosphate-ribose) polymerase (PARP), was identified and localized to human telomeres. Tankyrase binds to the telomeric protein TRF1 (telomeric repeat binding factor-1), a negative regulator of telomere length maintenance. Like ankyrins, tankyrase contains 24 ankyrin repeats in a domain responsible for its interaction with TRF1. Recombinant tankyrase was found to have PARP activity in vitro, with both TRF1 and tankyrase functioning as acceptors for adenosine diphosphate (ADP)-ribosylation. ADP-ribosylation of TRF1 diminished its ability to bind to telomeric DNA in vitro, suggesting that telomere function in human cells is regulated by poly(ADP-ribosyl)ation.
Collapse
Affiliation(s)
- S Smith
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
116
|
Thevananther S, Kolli AH, Devarajan P. Identification of a novel ankyrin isoform (AnkG190) in kidney and lung that associates with the plasma membrane and binds alpha-Na, K-ATPase. J Biol Chem 1998; 273:23952-8. [PMID: 9727010 DOI: 10.1074/jbc.273.37.23952] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ankyrins are a family of adapter molecules that mediate linkages between integral membrane and cytoskeletal proteins. Such interactions are crucial to the polarized distribution of membrane proteins in transporting epithelia. We have cloned and characterized a novel 190-kDa member of this family from a rat kidney cDNA library, which we term AnkG190 based on the predicted size and homology with the larger neuronal AnkG isoform. AnkG190 displays a unique 31-residue amino terminus, a repeats domain consisting of 24 repetitive 33-residue motifs, a spectrin binding domain, and a truncated regulatory domain. Probes derived from the unique amino terminus hybridize to an 8-kilobase message exclusively in kidney and lung and specifically to the kidney outer medullary collecting ducts by in situ hybridization. Transfections of Madin-Darby canine kidney and COS-7 epithelial cell lines with a full-length AnkG190 construct result in (a) expression at the lateral plasma membrane, (b) functional assembly with the cytoskeleton, and (c) interaction with at least one membrane protein, the Na,K-ATPase. Two independent Na,K-ATPase binding domains on AnkG190 are demonstrated as follows: one within the distal 12 ankyrin repeats, and a second site within the spectrin binding domain. Thus, ankyrins may interact with integral membrane proteins in a pleiotropic manner that may involve complex tertiary structural determinants.
Collapse
Affiliation(s)
- S Thevananther
- Department of Pediatrics, Division of Pediatric Nephrology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
117
|
Mochizuki T, Saijoh Y, Tsuchiya K, Shirayoshi Y, Takai S, Taya C, Yonekawa H, Yamada K, Nihei H, Nakatsuji N, Overbeek PA, Hamada H, Yokoyama T. Cloning of inv, a gene that controls left/right asymmetry and kidney development. Nature 1998; 395:177-81. [PMID: 9744276 DOI: 10.1038/26006] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Most vertebrate internal organs show a distinctive left/right asymmetry. The inv (inversion of embryonic turning) mutation in mice was created previously by random insertional mutagenesis; it produces both a constant reversal of left/right polarity (situs inversus) and cyst formation in the kidneys. Asymmetric expression patterns of the genes nodal and lefty are reversed in the inv mutant, indicating that inv may act early in left/right determination. Here we identify a new gene located at the inv locus. The encoded protein contains 15 consecutive repeats of an Ank/Swi6 motif at its amino terminus. Expression of the gene is the highest in the kidneys and liver among adult tissues, and is seen in presomite-stage embryos. Analysis of the transgenic genome and the structure of the candidate gene indicate that the candidate gene is the only gene that is disrupted in inv mutants. Transgenic introduction of a minigene encoding the candidate protein restores normal left/right asymmetry and kidney development in the inv mutant, confirming the identity of the candidate gene.
Collapse
Affiliation(s)
- T Mochizuki
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Beck KA, Nelson WJ. A spectrin membrane skeleton of the Golgi complex. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1404:153-60. [PMID: 9714784 DOI: 10.1016/s0167-4889(98)00054-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The existence of a Golgi-localized membrane cytoskeleton has been revealed by the identification of two major components of the spectrin membrane skeleton, spectrin and ankyrin, that associate with the Golgi complex. Golgi spectrin was identified with an antibody specific for the beta-subunit of the erythroid isoform of spectrin (beta1Sigma1). This antibody recognizes a 220 kDa polypeptide that localizes to discrete regions of the Golgi complex and associates with Golgi membranes in a Brefeldin A sensitive manner. Two isoforms of Golgi ankyrin have been identified: a 119 kDa form (AnkG119) which represents a truncated, alternatively spliced isoform of a recently cloned novel ankyrin of the nervous system AnkG, and a larger 195 kDa ankyrin (Ank195) that cross-reacts with antibodies to erythrocyte ankyrin. A Golgi localized membrane skeleton composed of these unique membrane skeleton isoforms could serve a variety of important functions, including the maintenance of Golgi structural organization and the formation of discrete membrane domains within Golgi compartments.
Collapse
Affiliation(s)
- K A Beck
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
119
|
Zhang Z, Devarajan P, Dorfman AL, Morrow JS. Structure of the ankyrin-binding domain of alpha-Na,K-ATPase. J Biol Chem 1998; 273:18681-4. [PMID: 9668035 DOI: 10.1074/jbc.273.30.18681] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ankyrin 33-residue repeating motif, an L-shaped structure with protruding beta-hairpin tips, mediates specific macromolecular interactions with cytoskeletal, membrane, and regulatory proteins. The association between ankyrin and alpha-Na,K-ATPase, a ubiquitous membrane protein critical to vectorial transport of ions and nutrients, is required to assemble and stabilize Na,K-ATPase at the plasma membrane. alpha-Na,K-ATPase binds both red cell ankyrin (AnkR, a product of the ANK1 gene) and Madin-Darby canine kidney cell ankyrin (AnkG, a product of the ANK3 gene) utilizing residues 142-166 (SYYQEAKSSKIMESFK NMVPQQALV) in its second cytoplasmic domain. Fusion peptides of glutathione S-transferase incorporating these 25 amino acids bind specifically to purified ankyrin (Kd = 118 +/- 50 nM). The three-dimensional structure (2.6 A) of this minimal ankyrin-binding motif, crystallized as the fusion protein, reveals a 7-residue loop with one charged hydrophilic face capping a double beta-strand. Comparison with ankyrin-binding sequences in p53, CD44, neurofascin/L1, and the inositol 1,4,5-trisphosphate receptor suggests that the valency and specificity of ankyrin binding is achieved by the interaction of 5-7-residue surface loops with the beta-hairpin tips of multiple ankyrin repeat units.
Collapse
Affiliation(s)
- Z Zhang
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
120
|
Toyofuku T, Yabuki M, Otsu K, Kuzuya T, Hori M, Tada M. Direct association of the gap junction protein connexin-43 with ZO-1 in cardiac myocytes. J Biol Chem 1998; 273:12725-31. [PMID: 9582296 DOI: 10.1074/jbc.273.21.12725] [Citation(s) in RCA: 403] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gap junction protein connexin-43 is normally located at the intercalated discs of cardiac myocytes, and it plays a critical role in the synchronization of their contraction. The mechanism by which connexin-43 is localized within cardiac myocytes is unknown. However, localization of connexin-43 likely involves an interaction with the cytoskeleton; immunofluorescence microscopy showed that in cardiac myocytes, connexin-43 specifically colocalizes with the cytoskeletal proteins ZO-1 and alpha-spectrin. In transfected HEK293 cells, immunoprecipitation experiments using coexpressed epitope-tagged connexin-43 and ZO-1 indicated that ZO-1 links connexin-43 with alpha-spectrin. The domains responsible for the protein-protein interaction between connexin-43 and ZO-1 were identified using affinity binding assays with deleted ZO-1 and connexin-43 fusion proteins. Immunoblot analysis of associated proteins showed that the C-terminal domain of connexin-43 binds to the N-terminal domain of ZO-1. The role of this linkage in gap junction formation was examined by a dominant-negative assay using the N-terminal domain of ZO-1. Overexpression of the N-terminal domain of ZO-1 in connexin-43-expressing cells resulted in redistribution of connexin-43 from cell-cell interfaces to cytoplasmic structures; this intracellular redistribution of connexin-43 coincided with a loss of electrical coupling. We therefore conclude that the linkage between connexin-43 and alpha-spectrin, via ZO-1, may serve to localize connexin-43 at the intercalated discs, thereby generating functional gap junctions in cardiac myocytes.
Collapse
Affiliation(s)
- T Toyofuku
- Department of Medicine and Pathophysiology, Osaka University Medical School, 2-2 Yamada-oka, Suita, Osaka 565, Japan.
| | | | | | | | | | | |
Collapse
|
121
|
Jöns T, Drenckhahn D. Anion exchanger 2 (AE2) binds to erythrocyte ankyrin and is colocalized with ankyrin along the basolateral plasma membrane of human gastric parietal cells. Eur J Cell Biol 1998; 75:232-6. [PMID: 9587054 DOI: 10.1016/s0171-9335(98)80117-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The hydrochloric acid secreting parietal cells of the human stomach mucosa have been shown to express anion exchanger 2 (AE2). AE2 is restricted to the basolateral membrane domain and is responsible for the basolateral uptake of Cl- and release of HCO3-. It is unknown which mechanism is responsible for the basolateral positioning of AE2 in parietal cells. We raised the question whether AE2 might be immobilized at the cell surface by linkage via ankyrin to the spectrin/actin-based membrane cytoskeleton. In the present study we communicate two observations that support this hypothesis, namely that in parietal cells ankyrin is localized with AE2 along the basolateral cell surface and, secondly, that purified erythrocyte ankyrin binds to the in vitro-translated cytoplasmic domain of AE2. We conclude from these observations that AE2 in parietal cells might be linked via ankyrin to the basolateral membrane cytoskeleton and that this type of linkage might play a role in immobilizing AE2 in a non-random fashion along the basolateral membrane domain.
Collapse
Affiliation(s)
- T Jöns
- Institute of Anatomy of the Charité of the Humboldt-University of Berlin, Germany
| | | |
Collapse
|
122
|
Cifuentes-Diaz C, Goudou D, Mège RM, Velasco E, Nicolet M, Herrenknecht K, Rubin L, Rieger F. Distinct location and prevalence of alpha-, beta-catenins and gamma-catenin/plakoglobin in developing and denervated skeletal muscle. CELL ADHESION AND COMMUNICATION 1998; 5:161-76. [PMID: 9638336 DOI: 10.3109/15419069809040289] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We studied the distribution of alpha-catenin, beta-catenin and gamma-catenin/plakoglobin in developing, adult and denervated mouse skeletal muscle. During primary myogenesis, all three catenins present a subsarcolemmal distribution within primary myotubes. During secondary myogenesis they accumulate at myotube-myotube contacts. In contrast to the other catenins, gamma-catenin is strongly expressed in the sarcoplasm. In adult muscle, all three catenins are localized on the presynaptic elements of the neuromuscular junction. In denervated muscles, alpha- and beta-catenins are upregulated like N- and M-cadherin, while the levels of gamma-catenin/plakoglobin remain unchanged. The developmental changes in localization and regulation of alpha- and beta-catenins in muscle compared to gamma-catenin/plakoglobin are suggestive of a privileged association of alpha- and beta-catenins with N- and M-cadherins, while gamma-catenin/plakoglobin appears to be expressed quite independently and must assume a different role during myogenesis.
Collapse
Affiliation(s)
- C Cifuentes-Diaz
- INSERM, Neuromodulations Interactireset Neurophathologies, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Zimmermann S, Talke I, Ehrhardt T, Nast G, Müller-Röber B. Characterization of SKT1, an inwardly rectifying potassium channel from potato, by heterologous expression in insect cells. PLANT PHYSIOLOGY 1998; 116:879-90. [PMID: 9501121 PMCID: PMC35090 DOI: 10.1104/pp.116.3.879] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/1997] [Accepted: 12/03/1997] [Indexed: 05/18/2023]
Abstract
A cDNA encoding a novel, inwardly rectifying K+ (K+in) channel protein, SKT1, was cloned from potato (Solanum tuberosum L.). SKT1 is related to members of the AKT family of K+in channels previously identified in Arabidopsis thaliana and potato. Skt1 mRNA is most strongly expressed in leaf epidermal fragments and in roots. In electrophysiological, whole-cell, patch-clamp measurements performed on baculovirus-infected insect (Spodoptera frugiperda) cells, SKT1 was identified as a K+in channel that activates with slow kinetics by hyperpolarizing voltage pulses to more negative potentials than -60 mV. The pharmacological inhibitor Cs+, when applied externally, inhibited SKT1-mediated K+in currents half-maximally with an inhibitor concentration (IC50) of 105 microM. An almost identical high Cs+ sensitivity (IC50 = 90 microM) was found for the potato guard-cell K+in channel KST1 after expression in insect cells. SKT1 currents were reversibly activated by a shift in external pH from 6.6 to 5.5, which indicates a physiological role for pH-dependent regulation of AKT-type K+in channels. Comparative studies revealed generally higher current amplitudes for KST1-expressing cells than for SKT1-expressing insect cells, which correlated with a higher targeting efficiency of the KST1 protein to the insect cell's plasma membrane, as demonstrated by fusions to green fluorescence protein.
Collapse
Affiliation(s)
- S Zimmermann
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Karl-Liebknecht-Strasse 25, Haus 20, D-14476 Golm/Potsdam, Germany
| | | | | | | | | |
Collapse
|
124
|
Abstract
To identify proteins that are lost during the establishment of the transformed phenotype of a tumor cell, we have prepared a subtracted cDNA library with mRNA from normal human fibroblasts and from their matched SV40 transformed counterparts. More than 40 clones were obtained that showed a dramatic reduction in their relative expression after oncogenic transformation. The proteins encoded by these clones could be grouped into four distinct classes: extracellular matrix proteins (fibronectin, beta ig-h3, collagen VI), enzymes (collagenase, urokinase), cytoskeletal proteins (vinculin, SM22) and regulatory proteins (beta-glycan, integrin-associated protein, myosin kinase, IGFBP-5). Six novel gene products were discovered during these experiments, including a novel serine protease, a zyxin-like protein, an ankyrin-like protein and a GTP-binding protein. Only four of all the transformation-sensitive cDNAs were consistently down-regulated when a variety of cell lines derived from spontaneous mesenchymal tumors was investigated: beta ig-h3, collagen VI, the novel ankyrin-like protein, and IGFBP-5. It is likely that these gene products play an important role in the maintenance of the normal phenotype.
Collapse
Affiliation(s)
- T Schenker
- MEM-Institute, University of Bern, Switzerland
| | | |
Collapse
|
125
|
Batchelor AH, Piper DE, de la Brousse FC, McKnight SL, Wolberger C. The structure of GABPalpha/beta: an ETS domain- ankyrin repeat heterodimer bound to DNA. Science 1998; 279:1037-41. [PMID: 9461436 DOI: 10.1126/science.279.5353.1037] [Citation(s) in RCA: 240] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
GA-binding protein (GABP) is a transcriptional regulator composed of two structurally dissimilar subunits. The alpha subunit contains a DNA-binding domain that is a member of the ETS family, whereas the beta subunit contains a series of ankyrin repeats. The crystal structure of a ternary complex containing a GABPalpha/beta ETS domain-ankyrin repeat heterodimer bound to DNA was determined at 2. 15 angstrom resolution. The structure shows how an ETS domain protein can recruit a partner protein using both the ETS domain and a carboxyl-terminal extension and provides a view of an extensive protein-protein interface formed by a set of ankyrin repeats. The structure also reveals how the GABPalpha ETS domain binds to its core GGA DNA-recognition motif.
Collapse
Affiliation(s)
- A H Batchelor
- Department of Biophysics and Biophysical Chemistry and the Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
126
|
Colavita A, Culotti JG. Suppressors of ectopic UNC-5 growth cone steering identify eight genes involved in axon guidance in Caenorhabditis elegans. Dev Biol 1998; 194:72-85. [PMID: 9473333 DOI: 10.1006/dbio.1997.8790] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The UNC-5 guidance receptor, in response to the UNC-6/netrin path cue, orients growing axons in a dorsal direction along the epidermis of Caenorhabditis elegans. When ectopically expressed in the touch neurons, which normally extend ventrally or longitudinally, UNC-5 is able to reorient their axons toward the dorsal side in an UNC-6-dependent manner. This forms the basis of a genetic screen to identify other mutations that, like unc-6 mutations, suppress unc-5-induced growth cone guidance. These mutations may identify new components required for pioneer axon guidance by unc-5. In this paper, we describe eight genes that are required for ectopic unc-5-induced growth cone steering. Mutations in four of these identify the previously known axon guidance genes unc-6, unc-40, unc-34, and unc-44 and mutations in four others identify the novel genes unc-129, seu-1, seu-2, and seu-3. Several of these mutations cause axon guidance defects similar to those found in unc-5 mutants. We propose that some or all of these genes may function in a developmentally important unc-5 signaling pathway.
Collapse
Affiliation(s)
- A Colavita
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | | |
Collapse
|
127
|
Gallagher PG, Forget BG. An alternate promoter directs expression of a truncated, muscle-specific isoform of the human ankyrin 1 gene. J Biol Chem 1998; 273:1339-48. [PMID: 9430667 DOI: 10.1074/jbc.273.3.1339] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ankyrin 1, an erythrocyte membrane protein that links the underlying cytoskeleton to the plasma membrane, is also expressed in brain and muscle. We cloned a truncated, muscle-specific ankyrin 1 cDNA composed of novel 5' sequences and 3' sequences previously identified in the last 3 exons of the human ankyrin 1 erythroid gene. Northern blot analysis revealed expression restricted to cardiac and skeletal muscle tissues. Deduced amino acid sequence of this muscle cDNA predicted a peptide of 155 amino acids in length with a hydrophobic NH2 terminus. Cloning of the corresponding chromosomal gene revealed that the ankyrin 1 muscle transcript is composed of four exons spread over approximately 10 kilobase pairs of DNA. Reverse transcriptase-polymerase chain reaction of skeletal muscle cDNA identified multiple cDNA isoforms created by alternative splicing. The ankyrin 1 muscle promoter was identified as a (G + C)-rich promoter located > 200 kilobase pairs from the ankyrin 1 erythroid promoter. An ankyrin 1 muscle promoter fragment directed high level expression of a reporter gene in cultured C2C12 muscle cells, but not in HeLa or K562 (erythroid) cells. DNA-protein interactions were identified in vitro at a single Sp1 and two E box consensus binding sites contained within the promoter. A MyoD cDNA expression plasmid transactivated an ankyrin 1 muscle promoter fragment/reporter gene plasmid in a dose-dependent fashion in both HeLa and K562 cells. A polyclonal antibody raised to human ankyrin 1 muscle-specific sequences reacted with peptides of 28 and 30 kDa on immunoblots of human skeletal muscle.
Collapse
Affiliation(s)
- P G Gallagher
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520-8021, USA.
| | | |
Collapse
|
128
|
Nunomura W, Takakuwa Y, Tokimitsu R, Krauss SW, Kawashima M, Mohandas N. Regulation of CD44-protein 4.1 interaction by Ca2+ and calmodulin. Implications for modulation of CD44-ankyrin interaction. J Biol Chem 1997; 272:30322-8. [PMID: 9374519 DOI: 10.1074/jbc.272.48.30322] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Erythrocyte membrane skeletal protein 4.1 isoforms have been identified in a variety of non-erythroid cells. However, interactions between protein 4.1 and its binding partners in non-erythroid cell membranes are poorly understood. In the erythrocyte membrane, protein 4.1 binds to the cytoplasmic domain of band 3 and, through this interaction, modulates ankyrin binding to band 3. The sequences LRRRY or IRRRY in band 3 mediate the interaction between band 3 and protein 4.1. The cytoplasmic domain of CD44, a transmembrane glycoprotein found in erythroid as well as non-erythroid cells, has internal sequences SRRRC and QKKKL. We wanted to determine if protein 4.1 binds to CD44 in a fashion analogous to its binding to band 3 and through this interaction modulates ankyrin binding to CD44. We report here that protein 4.1 binds to the cytoplasmic domain of CD44 with a dissociation constant on the order of 10(-7) M and that Ca2+ and calmodulin reduce the affinity of this interaction. Furthermore, although independent binding of both protein 4.1 and ankyrin to CD44 could be documented, binding of protein 4.1 prevented subsequent ankyrin binding. These studies have enabled us to identify a potentially important functional role for protein 4.1 in modulating ankyrin binding to CD44.
Collapse
Affiliation(s)
- W Nunomura
- Department of Biochemistry, Tokyo Women's Medical College, Shinjuku, Tokyo 162, Japan.
| | | | | | | | | | | |
Collapse
|
129
|
Ribeiro CM, Reece J, Putney JW. Role of the cytoskeleton in calcium signaling in NIH 3T3 cells. An intact cytoskeleton is required for agonist-induced [Ca2+]i signaling, but not for capacitative calcium entry. J Biol Chem 1997; 272:26555-61. [PMID: 9334235 DOI: 10.1074/jbc.272.42.26555] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Treatment of NIH 3T3 cells with cytochalasin D (10 microM, 1 h at 37 degrees C) disrupted the actin cytoskeleton and changed the cells from a planar, extended morphology, to a rounded shape. Calcium mobilization by ATP or by platelet-derived growth factor was abolished, while the ability of thapsigargin (2 microM) to empty calcium stores and activate calcium influx was unaffected. Similar experiments with nocodazole to depolymerize the tubulin network yielded identical results. Platelet-derived growth factor induced an increase in inositol phosphates, and this increase was undiminished in the presence of cytochalasin D. Therefore, the blockade of agonist responses by this drug does not result from decreased phospholipase C. Injection of inositol 1,4,5-trisphosphate (IP3) released calcium to the same extent in control and cytochalasin D-treated cells. Confocal microscopic studies revealed a significant rearrangement of the endoplasmic reticulum after cytochalasin D treatment. Thus, disruption of the cytoskeleton blocks agonist-elicited [Ca2+]i mobilization, but this effect does not result from a lower calcium storage capacity, impaired function of the IP3 receptor, or diminished phospholipase C activity. We suggest that cytoskeletal disruption alters the spatial relationship between phospholipase C and IP3 receptors, impairing phospholipase C-dependent calcium signaling. Capacitative calcium entry was not altered under these conditions, indicating that the coupling between depletion of intracellular calcium stores and calcium entry does not depend on a precise structural relationship between intracellular stores and plasma membrane calcium channels.
Collapse
Affiliation(s)
- C M Ribeiro
- Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
130
|
Dubreuil RR, Maddux PB, Grushko TA, MacVicar GR. Segregation of two spectrin isoforms: polarized membrane-binding sites direct polarized membrane skeleton assembly. Mol Biol Cell 1997; 8:1933-42. [PMID: 9348534 PMCID: PMC25644 DOI: 10.1091/mbc.8.10.1933] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/1997] [Accepted: 07/14/1997] [Indexed: 02/05/2023] Open
Abstract
Spectrin isoforms are often segregated within specialized plasma membrane subdomains where they are thought to contribute to the development of cell surface polarity. It was previously shown that ankyrin and beta spectrin are recruited to sites of cell-cell contact in Drosophila S2 cells expressing the homophilic adhesion molecule neuroglian. Here, we show that neuroglian has no apparent effect on a second spectrin isoform (alpha beta H), which is constitutively associated with the plasma membrane in S2 cells. Another membrane marker, the Na,K-ATPase, codistributes with ankyrin and alpha beta spectrin at sites of neuroglian-mediated contact. The distributions of these markers in epithelial cells in vivo are consistent with the order of events observed in S2 cells. Neuroglian, ankyrin, alpha beta spectrin, and the Na,K-ATPase colocalize at the lateral domain of salivary gland cells. In contrast, alpha beta H spectrin is sorted to the apical domain of salivary gland and somatic follicle cells. Thus, the two spectrin isoforms respond independently to positional cues at the cell surface: in one case an apically sorted receptor and in the other case a locally activated cell-cell adhesion molecule. The results support a model in which the membrane skeleton behaves as a transducer of positional information within cells.
Collapse
Affiliation(s)
- R R Dubreuil
- Department of Pharmacological and Physiological Sciences, University of Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
131
|
Devarajan P, Stabach PR, De Matteis MA, Morrow JS. Na,K-ATPase transport from endoplasmic reticulum to Golgi requires the Golgi spectrin-ankyrin G119 skeleton in Madin Darby canine kidney cells. Proc Natl Acad Sci U S A 1997; 94:10711-6. [PMID: 9380700 PMCID: PMC23456 DOI: 10.1073/pnas.94.20.10711] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Spectrin (betaISigma*) and ankyrin (AnkG119) associate with Golgi membranes and the dynactin complex, but their role in vesicle trafficking remains uncertain. We find that the actin-binding domain and membrane-association domain 1 (MAD1) of betaI spectrin together form a constitutive Golgi targeting signal in transfected MDCK cells. Expression of this signal in transfected cells disrupts the endogenous Golgi spectrin skeleton and blocks transport of alpha- and beta-Na,K-ATPase and vesicular stomatitis virus-G protein from the endoplasmic reticulum (ER) but does not disrupt the formation of Golgi stacks, the distribution of beta-COP, or the transport and surface display of E-cadherin. The Golgi spectrin skeleton is thus required for the transport of a subset of membrane proteins from the ER to the Golgi. We postulate that together with polyfunctional adapter proteins such as AnkG119, Golgi spectrin forms a docking complex that acts prior to the cis-Golgi, presumably with vesicular-tubular clusters (VTCs or ERGIC), to sequester specific membrane proteins into vesicles transiting between the ER and Golgi, and subsequently (probably involving other isoforms of spectrin and ankyrin) to mediate cargo transport within the Golgi and to other membrane compartments. We hypothesize that this vesicular spectrin-ankyrin adapter-protein trafficking (or tethering) system (SAATS) mediates the capture and transport of many membrane proteins and acts in conjunction with vesicle-targeting molecules to effect the efficient transport of cargo proteins.
Collapse
Affiliation(s)
- P Devarajan
- Department of Pediatrics, Yale University, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
132
|
Neilan JG, Lu Z, Kutish GF, Zsak L, Lewis TL, Rock DL. A conserved African swine fever virus IkappaB homolog, 5EL, is nonessential for growth in vitro and virulence in domestic swine. Virology 1997; 235:377-85. [PMID: 9281518 DOI: 10.1006/viro.1997.8693] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An African swine fever virus (ASFV) gene with similarity to the cellular inhibitor of NFkappaB (IkappaB) was described in the pathogenic African isolate Malawi Lil-20/1 (ORF 5EL) and a cell-culture-adapted European virus, BA71V (ORF A238L). Recently, this gene was shown to be a functional IkappaB homolog capable of downregulating NFkappaB-regulated gene expression. This observation suggests the gene may be of significance to aspects of ASFV pathogenesis and virulence in domestic swine by interfering with a normal antiviral host response. Here we show, using nucleotide sequence analysis, that 5EL is highly conserved among various African and European pathogenic field isolates and that in all cases its similarity to IkappaB genes is limited to the presence of four low complexity ankyrin repeats in the ASFV gene. The 5EL gene of Malawi Lil-20/1 encodes a 28-kDa protein which was expressed early in virus-infected macrophage cell cultures with maximum levels observed at 3 to 5 hr postinfection. To study gene function, a Malawi Lil-20/1 5EL gene deletion mutant (Delta5EL) was constructed. Growth characteristics of Delta5EL in porcine macrophage cell cultures were indistinguishable from those of the parental virus. And, Delta5EL exhibited an unaltered parental Malawi Lil-20/1 disease and virulence phenotype in domestic swine. Thus, although highly conserved among ASFV isolates, 5EL is nonessential for growth in porcine macrophages in vitro and for viral virulence in domestic swine. A possible role for this gene in transmission of ASFV in nature, a setting which involves the cycling of ASFV between two highly adapted hosts, Ornithodoros ticks and warthogs or bush pigs, in sub-Saharan Africa is discussed.
Collapse
Affiliation(s)
- J G Neilan
- Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York, 11944-0848, USA
| | | | | | | | | | | |
Collapse
|
133
|
Gallagher PG, Tse WT, Scarpa AL, Lux SE, Forget BG. Structure and organization of the human ankyrin-1 gene. Basis for complexity of pre-mRNA processing. J Biol Chem 1997; 272:19220-8. [PMID: 9235914 DOI: 10.1074/jbc.272.31.19220] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ankyrin-1 (ANK-1) is an erythrocyte membrane protein that is defective in many patients with hereditary spherocytosis, a common hemolytic anemia. In the red cell, ankyrin-1 provides the primary linkage between the membrane skeleton and the plasma membrane. To gain additional insight into the structure and function of this protein and to provide the necessary tools for further genetic studies of hereditary spherocytosis patients, we cloned the human ANK-1 chromosomal gene. Characterization of the ANK-1 gene genomic structure revealed that the erythroid transcript is composed of 42 exons distributed over approximately 160 kilobase pairs of DNA. Comparison of the genomic structure with the protein domains reveals a near-absolute correlation between the tandem repeats encoding the membrane-binding domain of ankyrin with the location of the intron/exon boundaries in the corresponding part of the gene. Erythroid stage-specific, complex patterns of alternative splicing were identified in the region encoding the regulatory domain of ankyrin-1. Novel brain-specific transcripts were also identified in this region, as well as in the "hinge" region between the membrane-binding and spectrin-binding domains. Utilization of alternative polyadenylation signals was found to be the basis for the previously described, stage-specific 9.0- and 7.2-kilobase pair transcripts of the ANK-1 gene.
Collapse
Affiliation(s)
- P G Gallagher
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | | | | | | | |
Collapse
|
134
|
Beck KA, Buchanan JA, Nelson WJ. Golgi membrane skeleton: identification, localization and oligomerization of a 195 kDa ankyrin isoform associated with the Golgi complex. J Cell Sci 1997; 110 ( Pt 10):1239-49. [PMID: 9191047 DOI: 10.1242/jcs.110.10.1239] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To extend our finding of a Golgi-localized form of the membrane skeleton protein spectrin, we have identified an isoform of ankyrin that associates at steady state with the Golgi complex. Immuno-light and -electron microscopy show that this ankyrin isoform localizes to the perinuclear cytoplasm on tubular vesicular structures that co-stain with Golgi marker proteins. An antiserum raised against erythrocyte ankyrin, which was used to identify the Golgi ankyrin, recognized three prominent polypeptides of 220, 213 and 195 kDa in MDCK cells. Affinity purification of this antiserum against each of these MDCK cell ankyrins revealed that only an antibody specific for the 195 kDa form retained the ability to stain the Golgi complex; affinity purified antibody preparations specific for both the 220 and 213 kDa forms stained punctate and reticular cytoplasmic structures distinct from the Golgi complex. Antibody specific for the 195 kDa ankyrin did not recognize a recently identified 119 kDa ankyrin that is also localized to the Golgi. The 195 kDa Golgi ankyrin binds purified erythrocyte spectrin, and rapidly co-sediments with Golgi beta-spectrin during brief, low speed centrifugation of Triton X-100 extracts of MDCK cells. Golgi ankyrin and beta-spectrin are retained on tubular vesicular ‘Golgi ghosts’ following extraction of cultured cells with Triton X-100. Significantly, Golgi ghost tubules containing ankyrin/spectrin are co-linear with individual microtubules, suggesting a role for both Golgi membrane skeleton and microtubules in spatial localization of the Golgi. Golgi ankyrin dissociates from Golgi membranes during mitosis and in cells treated with brefeldin A, indicating that Golgi ankyrin has a dynamic assembly state similar to that of Golgi spectrin and other Golgi membrane coat proteins.
Collapse
Affiliation(s)
- K A Beck
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, CA 94305-5426, USA
| | | | | |
Collapse
|
135
|
Eaton RW. p-Cymene catabolic pathway in Pseudomonas putida F1: cloning and characterization of DNA encoding conversion of p-cymene to p-cumate. J Bacteriol 1997; 179:3171-80. [PMID: 9150211 PMCID: PMC179094 DOI: 10.1128/jb.179.10.3171-3180.1997] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Pseudomonas putida F1 utilizes p-cymene (p-isopropyltoluene) by an 11-step pathway through p-cumate (p-isopropylbenzoate) to isobutyrate, pyruvate, and acetyl coenzyme A. The cym operon, encoding the conversion of p-cymene to p-cumate, is located just upstream of the cmt operon, which encodes the further catabolism of p-cumate and is located, in turn, upstream of the tod (toluene catabolism) operon in P. putida F1. The sequences of an 11,236-bp DNA segment carrying the cym operon and a 915-bp DNA segment completing the sequence of the 2,673-bp DNA segment separating the cmt and tod operons have been determined and are discussed here. The cym operon contains six genes in the order cymBCAaAbDE. The gene products have been identified both by functional assays and by comparing deduced amino acid sequences to published sequences. Thus, cymAa and cymAb encode the two components of p-cymene monooxygenase, a hydroxylase and a reductase, respectively; cymB encodes p-cumic alcohol dehydrogenase; cymC encodes p-cumic aldehyde dehydrogenase; cymD encodes a putative outer membrane protein related to gene products of other aromatic hydrocarbon catabolic operons, but having an unknown function in p-cymene catabolism; and cymE encodes an acetyl coenzyme A synthetase whose role in this pathway is also unknown. Upstream of the cym operon is a regulatory gene, cymR. By using recombinant bacteria carrying either the operator-promoter region of the cym operon or the cmt operon upstream of genes encoding readily assayed enzymes, in the presence or absence of cymR, it was demonstrated that cymR encodes a repressor which controls expression of both the cym and cmt operons and is inducible by p-cumate but not p-cymene. Short (less than 350 bp) homologous DNA segments that are located upstream of cymR and between the cmt and tod operons may have been involved in recombination events that led to the current arrangement of cym, cmt, and tod genes in P. putida F1.
Collapse
Affiliation(s)
- R W Eaton
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Gulf Breeze, Florida 32561, USA.
| |
Collapse
|
136
|
Tang J, Kriz RW, Wolfman N, Shaffer M, Seehra J, Jones SS. A novel cytosolic calcium-independent phospholipase A2 contains eight ankyrin motifs. J Biol Chem 1997; 272:8567-75. [PMID: 9079687 DOI: 10.1074/jbc.272.13.8567] [Citation(s) in RCA: 238] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We report the purification, molecular cloning, and expression of a novel cytosolic calcium-independent phospholipase A2 (iPLA2) from Chinese hamster ovary cells, which lacks extended homology to other phospholipases. iPLA2 is an 85-kDa protein that exists as a multimeric complex of 270-350 kDa with a specific activity of 1 micromol/min/mg. The full-length cDNA clone encodes a 752-amino acid cytoplasmic protein with one lipase motif (GXS465XG) and eight ankyrin repeats. Expression of the cDNA in mammalian cells generates an active 85-kDa protein. Mutagenesis studies show that Ser465 and the ankyrin repeats are required for activity. We demonstrate that iPLA2 selectively hydrolyzes the sn-2 over sn-1 fatty acid by 5-fold for 1,2-dipalmitoyl phosphatidylcholine in a mixed micelle. Moreover, we found the fatty acid preference at the sn-2 position to be highly dependent upon substrate presentation. However, iPLA2 does have a marked preference for 1,2-dipalmitoyl phosphatidic acid presented in a vesicle, generating the lipid second messenger lysophosphatidic acid. Finally the enzyme is able to hydrolyze the acetyl moiety at the sn-2 position of platelet-activating factor.
Collapse
Affiliation(s)
- J Tang
- Genetics Institute, Cambridge, Massachusetts 02140, USA
| | | | | | | | | | | |
Collapse
|
137
|
Ding Y, Kobayashi S, Kopito R. Mapping of ankyrin binding determinants on the erythroid anion exchanger, AE1. J Biol Chem 1996; 271:22494-8. [PMID: 8798415 DOI: 10.1074/jbc.271.37.22494] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The association of ankyrin with the AE1 anion exchanger contributes an essential function to the mechanical and viscoelastic properties of the erythrocyte and constitutes the best understood link between the plasma membrane and the underlying membrane skeleton. The AE1 binding domain of ankyrin consists of 24 tandem repeats of a 33-amino acid motif that is present on a wide variety of otherwise unrelated proteins. The experiments described in this paper are aimed at identifying the specific amino acid sequences in AE1 that comprise the ankyrin binding site. We have exploited a cell-free binding assay to quantify the binding affinity of anion exchangers and a recombinant fragment of ANK1, R13-H. Our previous study (Ding, Y., Casey, J. R. and Kopito, R. R. (1995) J. Biol. Chem. 269, 32201-32208) identified an essential role of the amino-terminal 79 AE1 residues in ankyrin binding. The present study extends these findings to show that these 79 amino acids, although necessary, are not sufficient for ankyrin binding. Using chimeras between AE1 and the closely related anion exchanger AE2, which does not bind ankyrin, we have defined a 40-residue region of AE1 between positions 155 and 195 that is also essential for ankyrin binding.
Collapse
Affiliation(s)
- Y Ding
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA
| | | | | |
Collapse
|
138
|
Klauck TM, Xu X, Mousseau B, Jaken S. Cloning and characterization of a glucocorticoid-induced diacylglycerol kinase. J Biol Chem 1996; 271:19781-8. [PMID: 8702685 DOI: 10.1074/jbc.271.33.19781] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Diacylglycerol kinase (DGK) plays a key role in cellular processes by regulating the intracellular concentration of the second messenger diacylglycerol. We screened a hamster DDT1 smooth muscle cell library and isolated a unique, glucocorticoid-inducible cDNA with substantial homology to known DGKs. DGK activity was increased in lysates of insect cells infected with recombinant baculovirus containing this cDNA. Antibodies raised against expressed sequences recognized a glucocorticoid-inducible 130-140-kDa protein on immunoblots of DDT1 cell lysates. Thus, this sequence appears to be a new member of the DGK family that we refer to as DGKeta. Homology to other DGKs was apparent in domains that are thought to be important for DGK function including the cysteine-rich motifs and potential catalytic domains. DGKeta shares substantial homology with DGKdelta including the N-terminal pleckstrin homology domain. The tissue distribution of DGKeta message (determined by ribonuclease protection assays) and protein (determined by immunoblots) was broader than reported for other DGKs, indicating that DGKeta may play a more general role in regulating cellular DG levels than other DGKs. Heterogeneity among DGK family members indicates that individual DGKs may have unique functions.
Collapse
Affiliation(s)
- T M Klauck
- W. Alton Jones Cell Science Center, Lake Placid, New York 12946, USA
| | | | | | | |
Collapse
|
139
|
Bennett BL, Lacson RG, Chen CC, Cruz R, Wheeler JS, Kletzien RF, Tomasselli AG, Heinrikson RL, Manning AM. Identification of signal-induced IkappaB-alpha kinases in human endothelial cells. J Biol Chem 1996; 271:19680-8. [PMID: 8702671 DOI: 10.1074/jbc.271.33.19680] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Activation of the nuclear transcription factor-kappaB is an early event in endothelial activation. NF-kappaB activation is regulated by the inducible phosphorylation and subsequent degradation of the inhibitory subunit IkappaB-alpha. We identified two discrete kinases of approximately 36 and 41 kDa in the cytoplasm of human umbilical vein endothelial cells that specifically bind to and phosphorylate the IkappaB-alpha subunit. IkappaB-alpha kinase activity is transiently elevated following treatment with either tumor necrosis factor alpha, interleukin-1beta, or bacterial lipopolysaccharides and precedes activation of either mitogen-activated kinase or Jun kinase. Furthermore, activation of the IkappaB-alpha kinases precedes both the appearance of hyperphosphorylated IkappaB-alpha and its subsequent degradation, as well as the translocation of NF-kappaB to the nucleus. Deletion mutagenesis of the IkappaB-alpha polypeptide revealed that these kinases bind in or around the ankyrin repeat domains and phosphorylate residues within the C terminus. These kinases, however, were not identical to casein kinase II and displayed a pharmacologic profile distinct from other known kinases. These kinases may represent components of a signal transduction pathway regulating IkappaB-alpha levels in vascular endothelium.
Collapse
Affiliation(s)
- B L Bennett
- Cell Biology and Inflammation Research, Upjohn Laboratories, Kalamazoo, Michigan 49007, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Erttmann KD, Domeyer A, Gallin M. The putatively protective Onchocerca volvulus neuronal protein E1 is a member of the death domain protein family. FEBS Lett 1996; 390:21-4. [PMID: 8706821 DOI: 10.1016/0014-5793(96)00620-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Here we show that E1, an ankyrin-related, potentially protective, neuronal protein of the human filarial nematode Onchocerca volvulus contains a death domain (DD), most similar to that of human Mort1/FADD (39% identity). In addition, sequence comparison of E1 to its homologue from Litomosoides sigmodontis and to Caenorhabditis elegans ankyrin defines two further putative functional domains. One represents the end of the spectrin-binding domain of ankyrins, the other an unique domain, most highly conserved between these nematodes, containing a calpain sequence motif. Thus, E1 may be involved in apoptosis, raising the possibility that protection against this parasitic helminth may be induced by apoptotic processes.
Collapse
Affiliation(s)
- K D Erttmann
- Section of Molecular Biology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | |
Collapse
|
141
|
Handlogten ME, Dudenhausen EE, Yang W, Kilberg MS. Association of hepatic system A amino acid transporter with the membrane-cytoskeletal proteins ankyrin and fodrin. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1282:107-14. [PMID: 8679646 DOI: 10.1016/0005-2736(96)00046-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
System A activity is a highly regulated mechanism for the active transport of zwitterionic amino acids into mammalian cells. Monoclonal antibodies generated against a previously unidentified rat liver plasma membrane-associated protein were shown to immunoprecipitate solubilized System A transport activity. The immunoreactive protein was later determined by immunoblotting and peptide microsequencing to be rat liver alpha-fodrin (non-erythroid spectrin). Antibody against ankyrin, a protein that often serves as a bridge between integral membrane proteins and fodrin, also immunoprecipitated System A transport activity. Fractionation of solubilized plasma membrane proteins on sucrose gradients revealed that the System A transporter co-migrated as a complex with fodrin and ankyrin, even in the presence of detergent and urea. In contrast, the System N amino acid transporter does not co-migrate with ankyrin and fodrin, nor does the anti-fodrin antibody immunoprecipitate System N activity. The present data are the first to demonstrate an association between an organic solute transporter and the membranocytoskeletal proteins ankyrin and fodrin.
Collapse
Affiliation(s)
- M E Handlogten
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, JHMHC, Gainesville 32610, USA
| | | | | | | |
Collapse
|
142
|
Beck KA, Nelson WJ. The spectrin-based membrane skeleton as a membrane protein-sorting machine. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:C1263-70. [PMID: 8967424 DOI: 10.1152/ajpcell.1996.270.5.c1263] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Normal cell function is dependent on the existence of membrane compartments that have unique populations of membrane proteins. Sorting of membrane proteins forms the basis for the biogenesis of distinct membrane compartments. There are many examples of membrane protein-sorting events in cells, but the molecular machinery involved is poorly understood. We discuss characteristics of a putative membrane protein-sorting machine and show that the spectrin-based membrane skeleton conforms to these characteristics. The spectrin-based membrane skeleton is a submembranous, spatially limited, two-dimensional lattice that binds a subset of membrane proteins. These properties allow the membrane skeleton to facilitate the formation of distinct membrane domains and thus reveal its potential as a membrane protein-sorting machine.
Collapse
Affiliation(s)
- K A Beck
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, California 94305-5426, USA
| | | |
Collapse
|
143
|
Dulubova IE, Krasnoperov VG, Khvotchev MV, Pluzhnikov KA, Volkova TM, Grishin EV, Vais H, Bell DR, Usherwood PN. Cloning and structure of delta-latroinsectotoxin, a novel insect-specific member of the latrotoxin family: functional expression requires C-terminal truncation. J Biol Chem 1996; 271:7535-43. [PMID: 8631785 DOI: 10.1074/jbc.271.13.7535] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The venom of the black widow spider (BWSV) (Latrodectus mactans tredecimguttatus) contains several potent, high molecular mass (>110 kDa) neurotoxins that cause neurotransmitter release in a phylum-specific manner. The molecular mechanism of action of these proteins is poorly understood because their structures are largely unknown, and they have not been functionally expressed. This study reports on the primary structure of delta-latroinsectotoxin (delta-LIT), a novel insect-specific toxin from BWSV, that contains 1214 amino acids. delta-LIT comprises four structural domains: a signal peptide followed by an N-terminal domain that exhibits the highest degree of identity with other latrotoxins, a central region composed of 15 ankyrin-like repeats, and a C-terminal domain. The domain organization of delta-LIT is similar to that of other latrotoxins, suggesting that these toxins are a family of related proteins. The predicted molecular mass and apparent mobility of the protein (approximately 130 kDa) encoded in the delta-LIT gene differs from that of native delta-LIT purified from BWSV (approximately 100 kDa), suggesting that the toxin is produced by proteolytic processing of a precursor. MALDI-MS of purified native delta-LIT revealed a molecular ion with m/z+ of 110916 +/- 100, indicating that the native delta-LIT is 991 amino acids in length. When the full-length delta-LIT cDNA was expressed in bacteria the protein product was inactive, but expression of a C-terminally truncated protein containing 991 residues produced a protein that caused massive neurotransmitter release at the locust neuromuscular junction at nanomolar concentrations. Channels formed in locust muscle membrane and artificial lipid bilayers by the native delta-LIT have a high Ca2+ permeability, whereas those formed by truncated, recombinant protein do not.
Collapse
Affiliation(s)
- I E Dulubova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Affiliation(s)
- D G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | |
Collapse
|
145
|
Erttmann KD, Büttner DW, Gallin MY. Molecular cloning, expression, and localization of E1, an Onchocerca volvulus antigen with similarity to brain ankyrin. J Biol Chem 1996; 271:1645-50. [PMID: 8576165 DOI: 10.1074/jbc.271.3.1645] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Protective immunity against human onchocerciasis may best be reflected by the existence of individuals who in spite of exposure to the filarial nematode Onchocerca volvulus do not develop disease (putatively immune). We observed preferential recognition of an O. volvulus antigen of approximately 90 kDa by sera from putatively immune individuals compared with sera from diseased individuals. Screening of an adult worm cDNA library with one serum recognizing this antigen almost exclusively led to the identification of a full length clone of 2043 base pairs designated E1. The open reading frame of 462 amino acid residues shows similarity to human brain ankyrin. E1 appears to represent a small transcript of the O. volvulus ankyrin gene. The nonfusion protein obtained by expression of the complete E1 cDNA exhibits an apparent molecular mass of 90 kDa on SDS-polyacrylamide gel electrophoresis. An antiserum against the recombinant protein reacts with the 90-kDa antigen in O. volvulus extract. In O. volvulus, E1 was localized in the neuronal cell bodies, the nerve ring, and the extracellular clefts of the basal labyrinth. These results identify an ankyrin-related O. volvulus protein as an immunogen to putatively immune individuals, suggesting that neuronal proteins may be important targets for immunity against O. volvulus in vivo.
Collapse
Affiliation(s)
- K D Erttmann
- Section of Molecular Biology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Federal Republic of Germany
| | | | | |
Collapse
|
146
|
Chapter 6 The Spectrin Cytoskeleton and Organization of Polarized Epithelial Cell Membranes. CURRENT TOPICS IN MEMBRANES 1996. [DOI: 10.1016/s0070-2161(08)60386-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
|
147
|
Shimizu T, Takakuwa Y, Koizumi H, Ishibashi T, Ohkawara A. Immunoreactive analogues of erythrocyte ankyrin in human epidermal keratinocytes. Arch Dermatol Res 1996; 288:19-23. [PMID: 8750930 DOI: 10.1007/bf02505038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Using immunoblot and immunofluorescence analysis, we demonstrated the presence and localization of an immunoreactive form of erythrocyte ankyrin in human epidermal keratinocytes. Immunoblot analysis revealed that both human epidermis and cultured epidermal keratinocytes contained ankyrin-like proteins of molecular mass 210 kDa that crossreacted with antihuman erythrocyte ankyrin antibodies. Immunofluorescence microscopy revealed that the plasma membrane of epidermal keratinocytes was stained. Eccrine sweat gland cells and ductal cells were also stained. These results indicate that in human epidermal keratinocytes, eccrine sweat gland cells and ductal cells, an ankyrin-like protein is present as one of the membrane proteins. The present findings and our recent previous studies showing the presence of a spectrin-like protein (fodrin) and 4.1-like proteins in these cells enable us to suggest that a membrane skeletal protein lattice may exist in these cells.
Collapse
Affiliation(s)
- T Shimizu
- Department of Dermatology, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | |
Collapse
|
148
|
Chapter 2 Once There, Making the Descision To Stay or Leave. CURRENT TOPICS IN MEMBRANES 1996. [DOI: 10.1016/s0070-2161(08)60382-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
149
|
Repasky EA, Black JD. Chapter 15 Dynamic Properties of the Lymphocyte Membrane-Cytoskeleton: Relationship to Lymphocyte Activation Status, Signal Transduction, and Protein Kinase C. CURRENT TOPICS IN MEMBRANES 1996. [DOI: 10.1016/s0070-2161(08)60395-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
150
|
Beattie E, Kauffman EB, Martinez H, Perkus ME, Jacobs BL, Paoletti E, Tartaglia J. Host-range restriction of vaccinia virus E3L-specific deletion mutants. Virus Genes 1996; 12:89-94. [PMID: 8879125 DOI: 10.1007/bf00370005] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The vaccinia virus (VV) E3L gene product functions as a dsRNA binding protein that is involved in conferring an interferon-resistant phenotype upon the virus. Studies with a vaccinia virus (VV) E3L- deletion mutant (vP1080) have also demonstrated that the E3L gene product is critical for productive replication on certain cell substrates. While E3L was found to be nonessential for replication in chick embryo fibroblasts (CEFs), virus specifically deleted of E3L was found to be replication deficient in Vero, HeLa, and murine L929 cells. Further, the temporal block in replication appears to differ in these cell systems, as evidenced by the observed timing of protein synthesis inhibition. In Vero cells infected with the VV E3L- mutant, there was no detectable protein synthesis after 2 hr post-infection, whereas in L929 cells normal protein patterns were observed even at late times post-infection. Expression of a heterologous dsRNA binding protein, the reovirus sigma 3 protein, by the E3L- mutant virus restored near wild-type growth characteristics, suggesting the critical nature for regulating dsRNA levels in VV-infected cells.
Collapse
Affiliation(s)
- E Beattie
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany 12222, USA
| | | | | | | | | | | | | |
Collapse
|