101
|
Stukas S, Robert J, Lee M, Kulic I, Carr M, Tourigny K, Fan J, Namjoshi D, Lemke K, DeValle N, Chan J, Wilson T, Wilkinson A, Chapanian R, Kizhakkedathu JN, Cirrito JR, Oda MN, Wellington CL. Intravenously injected human apolipoprotein A-I rapidly enters the central nervous system via the choroid plexus. J Am Heart Assoc 2014; 3:e001156. [PMID: 25392541 PMCID: PMC4338702 DOI: 10.1161/jaha.114.001156] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Background Brain lipoprotein metabolism is dependent on lipoprotein particles that resemble plasma high‐density lipoproteins but that contain apolipoprotein (apo) E rather than apoA‐I as their primary protein component. Astrocytes and microglia secrete apoE but not apoA‐I; however, apoA‐I is detectable in both cerebrospinal fluid and brain tissue lysates. The route by which plasma apoA‐I enters the central nervous system is unknown. Methods and Results Steady‐state levels of murine apoA‐I in cerebrospinal fluid and interstitial fluid are 0.664 and 0.120 μg/mL, respectively, whereas brain tissue apoA‐I is ≈10% to 15% of its levels in liver. Recombinant, fluorescently tagged human apoA‐I injected intravenously into mice localizes to the choroid plexus within 30 minutes and accumulates in a saturable, dose‐dependent manner in the brain. Recombinant, fluorescently tagged human apoA‐I accumulates in the brain for 2 hours, after which it is eliminated with a half‐life of 10.3 hours. In vitro, human apoA‐I is specifically bound, internalized, and transported across confluent monolayers of primary human choroid plexus epithelial cells and brain microvascular endothelial cells. Conclusions Following intravenous injection, recombinant human apoA‐I rapidly localizes predominantly to the choroid plexus. Because apoA‐I mRNA is undetectable in murine brain, our results suggest that plasma apoA‐I, which is secreted from the liver and intestine, gains access to the central nervous system primarily by crossing the blood–cerebrospinal fluid barrier via specific cellular mediated transport, although transport across the blood–brain barrier may also contribute to a lesser extent.
Collapse
Affiliation(s)
- Sophie Stukas
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Jerome Robert
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Michael Lee
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Iva Kulic
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Michael Carr
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Katherine Tourigny
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Jianjia Fan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Dhananjay Namjoshi
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Kalistyne Lemke
- Children's Hospital Oakland Research Institute, Oakland, CA (K.L., N.D.V., M.N.O.)
| | - Nicole DeValle
- Children's Hospital Oakland Research Institute, Oakland, CA (K.L., N.D.V., M.N.O.)
| | - Jeniffer Chan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Tammy Wilson
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Anna Wilkinson
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Rafi Chapanian
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.) Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada (R.C., J.N.K.)
| | - Jayachandran N Kizhakkedathu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.) Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada (R.C., J.N.K.)
| | - John R Cirrito
- Department of Neurology, Washington University, St. Louis, MO (J.R.C.)
| | - Michael N Oda
- Children's Hospital Oakland Research Institute, Oakland, CA (K.L., N.D.V., M.N.O.)
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| |
Collapse
|
102
|
DiBattista AM, Stevens BW, Rebeck GW, Green AE. Two Alzheimer's disease risk genes increase entorhinal cortex volume in young adults. Front Hum Neurosci 2014; 8:779. [PMID: 25339884 PMCID: PMC4186290 DOI: 10.3389/fnhum.2014.00779] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/14/2014] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) risk genes alter brain structure and function decades before disease onset. Apolipoprotein E (APOE) is the strongest known genetic risk factor for AD, and a related gene, apolipoprotein J (APOJ), also affects disease risk. However, the extent to which these genes affect brain structure in young adults remains unclear. Here, we report that AD risk alleles of these two genes, APOE-ε4 and APOJ-C, cumulatively alter brain volume in young adults. Using voxel-based morphometry (VBM) in 57 individuals, we examined the entorhinal cortex, one of the earliest brain regions affected in AD pathogenesis. Apolipoprotein E-ε4 carriers exhibited higher right entorhinal cortex volume compared to non-carriers. Interestingly, APOJ-C risk genotype was associated with higher bilateral entorhinal cortex volume in non-APOE-ε4 carriers. To determine the combined disease risk of APOE and APOJ status per subject, we used cumulative odds ratios as regressors for volumetric measurements. Higher disease risk corresponded to greater right entorhinal cortex volume. These results suggest that, years before disease onset, two key AD genetic risk factors may exert influence on the structure of a brain region where AD pathogenesis takes root.
Collapse
Affiliation(s)
| | - Benson W Stevens
- Department of Neuroscience, Georgetown University Medical Center Washington, DC, USA ; Department of Psychology, Georgetown University Washington, DC, USA
| | - G William Rebeck
- Department of Neuroscience, Georgetown University Medical Center Washington, DC, USA
| | - Adam E Green
- Department of Psychology, Georgetown University Washington, DC, USA
| |
Collapse
|
103
|
Hottman DA, Chernick D, Cheng S, Wang Z, Li L. HDL and cognition in neurodegenerative disorders. Neurobiol Dis 2014; 72 Pt A:22-36. [PMID: 25131449 DOI: 10.1016/j.nbd.2014.07.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 06/26/2014] [Accepted: 07/28/2014] [Indexed: 12/12/2022] Open
Abstract
High-density lipoproteins (HDLs) are a heterogeneous group of lipoproteins composed of various lipids and proteins. HDL is formed both in the systemic circulation and in the brain. In addition to being a crucial player in the reverse cholesterol transport pathway, HDL possesses a wide range of other functions including anti-oxidation, anti-inflammation, pro-endothelial function, anti-thrombosis, and modulation of immune function. It has been firmly established that high plasma levels of HDL protect against cardiovascular disease. Accumulating evidence indicates that the beneficial role of HDL extends to many other systems including the central nervous system. Cognition is a complex brain function that includes all aspects of perception, thought, and memory. Cognitive function often declines during aging and this decline manifests as cognitive impairment/dementia in age-related and progressive neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. A growing concern is that no effective therapy is currently available to prevent or treat these devastating diseases. Emerging evidence suggests that HDL may play a pivotal role in preserving cognitive function under normal and pathological conditions. This review attempts to summarize recent genetic, clinical and experimental evidence for the impact of HDL on cognition in aging and in neurodegenerative disorders as well as the potential of HDL-enhancing approaches to improve cognitive function.
Collapse
Affiliation(s)
- David A Hottman
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dustin Chernick
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shaowu Cheng
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhe Wang
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
104
|
ApoA-I/HDL Generation and Intracellular Cholesterol Transport through Cytosolic Lipid-Protein Particles in Astrocytes. J Lipids 2014; 2014:530720. [PMID: 25197575 PMCID: PMC4146353 DOI: 10.1155/2014/530720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 06/24/2014] [Indexed: 01/24/2023] Open
Abstract
Exogenous apolipoprotein A-I (apoA-I) associates with ATP-binding cassette transporter A1 (ABCA1) on the cell surface of astrocytes like various peripheral cells and enhances the translocation of newly synthesized cholesterol from the endoplasmic reticulum/Golgi apparatus (ER/Golgi) to the cytosol. The cholesterol translocated to the cytosol is incorporated to cytosolic lipid-protein particles (CLPP) together with phospholipids and proteins such as sphingomyelin, phosphatidylcholine, caveolin-1, protein kinase Cα (PK-Cα), and cyclophilin A. The CLPP are high density lipoproteins- (HDL-)like cytosolic lipid-protein complex with densities of 1.09–1.16 g/mL and diameters of 17-18 nm. The association of exogenous apoA-I with cellular ABCA1 induces tyrosine phosphorylation, activation, and translocation to the CLPP of ABCA1-associated phospholipase Cγ (PL-Cγ) in rat astrocytes. Furthermore, PK-Cα is translocated and activated to/in the CLPP through theproduction of diacylglyceride in the CLPP. ApoA-I enhances both the association of CLPP with microtubules and the phosphorylation of α-tubulin as a component of microtubules. The CLPP are dissociated from microtubules after α-tubulin in microtubules is phosphorylated by the CLPP-associated PK-Cα. The association and dissociation between CLPP and microtubules may participate in the intracellular transport of cholesterol to the plasma membrane.
Collapse
|
105
|
Stevens BW, DiBattista AM, William Rebeck G, Green AE. A gene-brain-cognition pathway for the effect of an Alzheimer׳s risk gene on working memory in young adults. Neuropsychologia 2014; 61:143-9. [PMID: 24967550 PMCID: PMC4337824 DOI: 10.1016/j.neuropsychologia.2014.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 01/10/2023]
Abstract
Identifying pathways by which genetic Alzheimer׳s disease (AD) risk factors exert neurocognitive effects in young adults are essential for the effort to develop early interventions to forestall or prevent AD onset. Here, in a brain-imaging cohort of 59 young adults, we investigated effects of a variant within the clusterin (CLU) gene on working memory function and gray matter volume in cortical areas that support working memory. In addition, we investigated the extent to which effects of CLU genotype on working memory were independent of variation in the strongest AD risk factor gene apolipoprotein E (APOE). CLU is among the strongest genetic AD risk factors and, though it appears to share AD pathogenesis-related features with, APOE, it has been far less well studied. CLU genotype was associated with working memory performance in our study cohort. Notably, we found that variation in gray matter volume in a parietal region, previously implicated in maintenance of information for working memory, mediated the effect of CLU on working memory performance. APOE genotype did not affect working memory within our sample, and did not interact with CLU genotype. To our knowledge, this work represents the first evidence of a behavioral effect of CLU genotype in young people. In addition, this work identifies the first gene-brain-cognition mediation effect pathway for the transmission of the effect of an AD risk factor. Relative to conventional pairwise associations in cognitive neurogenetic research, gene-brain-cognition mediation modeling provides a more integrated understanding of how genetic effects transmit from gene to brain to cognitive function.
Collapse
Affiliation(s)
- Benson W Stevens
- Department of Neuroscience, Georgetown University Medical Center, United States
| | - Amanda M DiBattista
- Department of Neuroscience, Georgetown University Medical Center, United States
| | - G William Rebeck
- Department of Neuroscience, Georgetown University Medical Center, United States
| | - Adam E Green
- Department of Psychology, Georgetown University, 37(th) and O Streets, NW, 302-C White-Gravenor, Washington DC 20057, United States.
| |
Collapse
|
106
|
Stukas S, Freeman L, Lee M, Wilkinson A, Ossoli A, Vaisman B, Demosky S, Chan J, Hirsch-Reinshagen V, Remaley AT, Wellington CL. LCAT deficiency does not impair amyloid metabolism in APP/PS1 mice. J Lipid Res 2014; 55:1721-9. [PMID: 24950691 DOI: 10.1194/jlr.m049940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Indexed: 12/31/2022] Open
Abstract
A key step in plasma HDL maturation from discoidal to spherical particles is the esterification of cholesterol to cholesteryl ester, which is catalyzed by LCAT. HDL-like lipoproteins in cerebrospinal fluid (CSF) are also spherical, whereas nascent lipoprotein particles secreted from astrocytes are discoidal, suggesting that LCAT may play a similar role in the CNS. In plasma, apoA-I is the main LCAT activator, while in the CNS, it is believed to be apoE. apoE is directly involved in the pathological progression of Alzheimer's disease, including facilitating β-amyloid (Aβ) clearance from the brain, a function that requires its lipidation by ABCA1. However, whether apoE particle maturation by LCAT is also required for Aβ clearance is unknown. Here we characterized the impact of LCAT deficiency on CNS lipoprotein metabolism and amyloid pathology. Deletion of LCAT from APP/PS1 mice resulted in a pronounced decrease of apoA-I in plasma that was paralleled by decreased apoA-I levels in CSF and brain tissue, whereas apoE levels were unaffected. Furthermore, LCAT deficiency did not increase Aβ or amyloid in APP/PS1 LCAT(-/-) mice. Finally, LCAT expression and plasma activity were unaffected by age or the onset of Alzheimer's-like pathology in APP/PS1 mice. Taken together, these results suggest that apoE-containing discoidal HDLs do not require LCAT-dependent maturation to mediate efficient Aβ clearance.
Collapse
Affiliation(s)
- Sophie Stukas
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Lita Freeman
- National Institutes of Health, Bethesda, MD 20892-1508
| | - Michael Lee
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Anna Wilkinson
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Alice Ossoli
- National Institutes of Health, Bethesda, MD 20892-1508
| | - Boris Vaisman
- National Institutes of Health, Bethesda, MD 20892-1508
| | | | - Jeniffer Chan
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Veronica Hirsch-Reinshagen
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | | | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| |
Collapse
|
107
|
Abstract
Low plasma levels of HDL-cholesterol (HDL-C) represent a strong and independent risk factor for cardiovascular disease. HDL particles display a wide spectrum of atheroprotective activities, which include effluxing cellular cholesterol, diminishing cellular death, decreasing vascular constriction, reducing inflammatory response, protecting from pathological oxidation, combating bacterial infection, lessening platelet activation, regulating gene expression by virtue of microRNAs, and improving glucose metabolism. It remains presently indeterminate as to whether some biological activities of HDL are more relevant for the protection of the endothelium from atherogenesis when compared with others. The multitude of such activities raises the question of a proper assay to assess HDL functionality ex vivo. Together with clear understanding of molecular mechanisms underlying atheroprotective properties of HDL, such assay will provide a basis to resolve the ultimate question of the HDL field to allow the development of efficient HDL-targeting therapies.
Collapse
Affiliation(s)
- Anatol Kontush
- National Institute for Health and Medical Research (INSERM), UMR-ICAN 1166, University of Pierre and Marie Curie - Paris 6, Pitié - Salpétrière University Hospital, ICAN, 75651 Paris Cedex 13, France
| |
Collapse
|
108
|
Abstract
Cholesterol is an essential component of both the peripheral nervous system and central nervous system (CNS) of mammals. Brain cholesterol is synthesized in situ by astrocytes and oligodendrocytes and is almost completely isolated from other pools of cholesterol in the body, but a small fraction can be taken up from the circulation as 27-hydroxycholesterol, or via the scavenger receptor class B type I. Glial cells synthesize native high-density lipoprotein (HDL)-like particles, which are remodelled by enzymes and lipid transfer proteins, presumably as it occurs in plasma. The major apolipoprotein constituent of HDL in the CNS is apolipoprotein E, which is produced by astrocytes and microglia. Apolipoprotein A-I, the major protein component of plasma HDL, is not synthesized in the CNS, but can enter and become a component of CNS lipoproteins. Low HDL-C levels have been shown to be associated with cognitive impairment and various neurodegenerative diseases. On the contrary, no clear association with brain disorders has been shown in genetic HDL defects, with the exception of Tangier disease. Mutations in a wide variety of lipid handling genes can result in human diseases, often with a neuronal phenotype caused by dysfunctional intracellular lipid trafficking.
Collapse
Affiliation(s)
- Cecilia Vitali
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
109
|
Ito JI, Nagayasu Y, Miura Y, Yokoyama S, Michikawa M. Astrocyte׳s endogenous apoE generates HDL-like lipoproteins using previously synthesized cholesterol through interaction with ABCA1. Brain Res 2014; 1570:1-12. [DOI: 10.1016/j.brainres.2014.04.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/01/2014] [Accepted: 04/26/2014] [Indexed: 10/25/2022]
|
110
|
Tettey P, Simpson S, Taylor B, Blizzard L, Ponsonby AL, Dwyer T, Kostner K, van der Mei I. An adverse lipid profile is associated with disability and progression in disability, in people with MS. Mult Scler 2014; 20:1737-44. [DOI: 10.1177/1352458514533162] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: There is accumulating data suggesting an association between serum lipids, apolipoproteins and disability in multiple sclerosis (MS). Objectives: To investigate the associations between serum lipids, apolipoproteins and disability in MS. Methods: A cohort of 178 participants with clinically-definite MS in southern Tasmania, Australia were prospectively followed from 2002 – 2005, and serum samples were obtained at study entry and at each biannual review, to measure lipid profile and apolipoprotein levels. Associations with disability and annual change in disability were evaluated using linear regression and multilevel mixed-effects linear regression. Results: In the unadjusted analyses, nearly all lipid-related variables were positively associated with Expanded Disability Status Scale (EDSS). After adjustment for confounders, total cholesterol (TC) ( p = 0.037), apolipoprotein B (ApoB) ( p = 0.003), and the apolipoprotein B to apolipoprotein A-I ratio (ApoB/ApoA-I ratio) ( p = 0.018) were independently associated with a higher EDSS. Higher body mass index (BMI) was also independently associated with higher EDSS ( p = 0.013). With the progression analysis, the total cholesterol to high density lipoprotein (HDL) ratio (TC/HDL ratio) ( p = 0.029) was prospectively associated with subsequent change in EDSS. Conclusion: In this prospective population-based cohort study, an adverse lipid profile was associated with high levels of MS disability and disease progression. Improving serum lipids may be beneficial for MS patients, to potentially improve clinical outcomes and vascular comorbidities.
Collapse
Affiliation(s)
- Prudence Tettey
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Australia
| | - Steve Simpson
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Australia
| | - Bruce Taylor
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Australia
| | - Leigh Blizzard
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Australia
| | | | - Terence Dwyer
- Murdoch Children’s Research Institute, University of Melbourne, Australia
| | | | - Ingrid van der Mei
- Menzies Research Institute Tasmania, University of Tasmania, 17 Liverpool Street, Hobart TAS 7000, Australia
| |
Collapse
|
111
|
La Marca V, Spagnuolo MS, Cigliano L, Marasco D, Abrescia P. The enzyme lecithin-cholesterol acyltransferase esterifies cerebrosterol and limits the toxic effect of this oxysterol on SH-SY5Y cells. J Neurochem 2014; 130:97-108. [DOI: 10.1111/jnc.12713] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 03/10/2014] [Accepted: 03/10/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Valeria La Marca
- Dipartimento di Biologia; Università di Napoli Federico II; Napoli Italia
| | - Maria Stefania Spagnuolo
- Istituto per il Sistema Produzione Animale in Ambiente Mediterraneo; Consiglio Nazionale delle Ricerche; Napoli Italia
| | - Luisa Cigliano
- Dipartimento di Biologia; Università di Napoli Federico II; Napoli Italia
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi; Napoli Italia
| | - Daniela Marasco
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi; Napoli Italia
- Dipartimento di Farmacia; Università di Napoli Federico II; Napoli Italia
| | - Paolo Abrescia
- Dipartimento di Biologia; Università di Napoli Federico II; Napoli Italia
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi; Napoli Italia
| |
Collapse
|
112
|
Zimmer B, Pallocca G, Dreser N, Foerster S, Waldmann T, Westerhout J, Julien S, Krause KH, van Thriel C, Hengstler JG, Sachinidis A, Bosgra S, Leist M. Profiling of drugs and environmental chemicals for functional impairment of neural crest migration in a novel stem cell-based test battery. Arch Toxicol 2014; 88:1109-26. [PMID: 24691702 PMCID: PMC3996367 DOI: 10.1007/s00204-014-1231-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/18/2014] [Indexed: 11/28/2022]
Abstract
Developmental toxicity in vitro assays have hitherto been established as stand-alone systems, based on a limited number of toxicants. Within the embryonic stem cell-based novel alternative tests project, we developed a test battery framework that allows inclusion of any developmental toxicity assay and that explores the responses of such test systems to a wide range of drug-like compounds. We selected 28 compounds, including several biologics (e.g., erythropoietin), classical pharmaceuticals (e.g., roflumilast) and also six environmental toxicants. The chemical, toxicological and clinical data of this screen library were compiled. In order to determine a non-cytotoxic concentration range, cytotoxicity data were obtained for all compounds from HEK293 cells and from murine embryonic stem cells. Moreover, an estimate of relevant exposures was provided by literature data mining. To evaluate feasibility of the suggested test framework, we selected a well-characterized assay that evaluates ‘migration inhibition of neural crest cells.’ Screening at the highest non-cytotoxic concentration resulted in 11 hits (e.g., geldanamycin, abiraterone, gefitinib, chlorpromazine, cyproconazole, arsenite). These were confirmed in concentration–response studies. Subsequent pharmacokinetic modeling indicated that triadimefon exerted its effects at concentrations relevant to the in vivo situation, and also interferon-β and polybrominated diphenyl ether showed effects within the same order of magnitude of concentrations that may be reached in humans. In conclusion, the test battery framework can identify compounds that disturb processes relevant for human development and therefore may represent developmental toxicants. The open structure of the strategy allows rich information to be generated on both the underlying library, and on any contributing assay.
Collapse
Affiliation(s)
- B Zimmer
- Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York City, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
Cerebrovascular dysfunction significantly contributes to the clinical presentation and pathoetiology of Alzheimer's disease (AD). Deposition and aggregation of β-amyloid (Aβ) within vascular smooth muscle cells leads to inflammation, oxidative stress, impaired vasorelaxation, and disruption of blood-brain barrier integrity. Midlife vascular risk factors, such as hypertension, cardiovascular disease, diabetes, and dyslipidemia, increase the relative risk for AD. These comorbidities are all characterized by low and/or dysfunctional high-density lipoproteins (HDL), which itself is a risk factor for AD. HDL performs a wide variety of critical functions in the periphery and CNS. In addition to lipid transport, HDL regulates vascular health via mediating vasorelaxation, inflammation, and oxidative stress and promotes endothelial cell survival and integrity. Here, we summarize clinical and preclinical data examining the involvement of HDL, originating from the circulation and from within the CNS, on AD and hypothesize potential synergistic actions between the two lipoprotein pools.
Collapse
|
114
|
Wang R, Hong J, Lu M, Neil JE, Vitek MP, Liu X, Warner DS, Li F, Sheng H. ApoE mimetic ameliorates motor deficit and tissue damage in rat spinal cord injury. J Neurosci Res 2014; 92:884-92. [DOI: 10.1002/jnr.23371] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/13/2013] [Accepted: 01/17/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Ruihua Wang
- The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
- Department of Anesthesiology, Multidisciplinary Neuroprotection Laboratories; Duke University Medical Center; Durham North Carolina
| | - Jun Hong
- Department of Anesthesiology, Multidisciplinary Neuroprotection Laboratories; Duke University Medical Center; Durham North Carolina
- Tangshan Gongren Hospital; Hebei China
| | - Miaomiao Lu
- Department of Anesthesiology, Multidisciplinary Neuroprotection Laboratories; Duke University Medical Center; Durham North Carolina
- The Second Affiliated Hospital of Zhengzhou University; Zhengzhou China
| | | | | | - Xiaozhi Liu
- Department of Anesthesiology, Multidisciplinary Neuroprotection Laboratories; Duke University Medical Center; Durham North Carolina
- The Fifth Central Hospital of Tianjin; Tianjin China
| | - David S. Warner
- Department of Anesthesiology, Multidisciplinary Neuroprotection Laboratories; Duke University Medical Center; Durham North Carolina
- Department of Surgery (Neurosurgery); Duke University Medical Center; Durham North Carolina
- Department of Neurobiology; Duke University Medical Center; Durham North Carolina
| | - Fengqiao Li
- Cognosci Inc., Research Triangle Park; North Carolina
| | - Huaxin Sheng
- Department of Anesthesiology, Multidisciplinary Neuroprotection Laboratories; Duke University Medical Center; Durham North Carolina
| |
Collapse
|
115
|
Chirackal Manavalan AP, Kober A, Metso J, Lang I, Becker T, Hasslitzer K, Zandl M, Fanaee-Danesh E, Pippal JB, Sachdev V, Kratky D, Stefulj J, Jauhiainen M, Panzenboeck U. Phospholipid transfer protein is expressed in cerebrovascular endothelial cells and involved in high density lipoprotein biogenesis and remodeling at the blood-brain barrier. J Biol Chem 2014; 289:4683-98. [PMID: 24369175 PMCID: PMC3931031 DOI: 10.1074/jbc.m113.499129] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phospholipid transfer protein (PLTP) is a key protein involved in biogenesis and remodeling of plasma HDL. Several neuroprotective properties have been ascribed to HDL. We reported earlier that liver X receptor (LXR) activation promotes cellular cholesterol efflux and formation of HDL-like particles in an established in vitro model of the blood-brain barrier (BBB) consisting of primary porcine brain capillary endothelial cells (pBCEC). Here, we report PLTP synthesis, regulation, and its key role in HDL metabolism at the BBB. We demonstrate that PLTP is highly expressed and secreted by pBCEC. In a polarized in vitro model mimicking the BBB, pBCEC secreted phospholipid-transfer active PLTP preferentially to the basolateral ("brain parenchymal") compartment. PLTP expression levels and phospholipid transfer activity were enhanced (up to 2.5-fold) by LXR activation using 24(S)-hydroxycholesterol (a cerebral cholesterol metabolite) or TO901317 (a synthetic LXR agonist). TO901317 administration elevated PLTP activity in BCEC from C57/BL6 mice. Preincubation of HDL3 with human plasma-derived active PLTP resulted in the formation of smaller and larger HDL particles and enhanced the capacity of the generated HDL particles to remove cholesterol from pBCEC by up to 3-fold. Pre-β-HDL, detected by two-dimensional crossed immunoelectrophoresis, was generated from HDL3 in pBCEC-derived supernatants, and their generation was markedly enhanced (1.9-fold) upon LXR activation. Furthermore, RNA interference-mediated PLTP silencing (up to 75%) reduced both apoA-I-dependent (67%) and HDL3-dependent (30%) cholesterol efflux from pBCEC. Based on these findings, we propose that PLTP is actively involved in lipid transfer, cholesterol efflux, HDL genesis, and remodeling at the BBB.
Collapse
Affiliation(s)
| | | | - Jari Metso
- the National Institute for Health and Welfare, Biomedicum, FI-00290 Helsinki, Finland, and
| | - Ingrid Lang
- Institute of Cell Biology, Histology, and Embryology, and
| | | | | | - Martina Zandl
- From the Institute of Pathophysiology and Immunology
| | | | | | - Vinay Sachdev
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Jasminka Stefulj
- the Department of Molecular Biology, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Matti Jauhiainen
- the National Institute for Health and Welfare, Biomedicum, FI-00290 Helsinki, Finland, and
| | - Ute Panzenboeck
- From the Institute of Pathophysiology and Immunology, , To whom correspondence should be addressed: Institute of Pathophysiology and Immunology, Medical University of Graz, Heinrichstrasse 31a, 8010 Graz, Austria. Tel.: 43-316-3801955; Fax: 43-316-3809640; E-mail:
| |
Collapse
|
116
|
Dassati S, Waldner A, Schweigreiter R. Apolipoprotein D takes center stage in the stress response of the aging and degenerative brain. Neurobiol Aging 2014; 35:1632-42. [PMID: 24612673 PMCID: PMC3988949 DOI: 10.1016/j.neurobiolaging.2014.01.148] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/17/2014] [Accepted: 01/30/2014] [Indexed: 02/08/2023]
Abstract
Apolipoprotein D (ApoD) is an ancient member of the lipocalin family with a high degree of sequence conservation from insects to mammals. It is not structurally related to other major apolipoproteins and has been known as a small, soluble carrier protein of lipophilic molecules that is mostly expressed in neurons and glial cells within the central and peripheral nervous system. Recent data indicate that ApoD not only supplies cells with lipophilic molecules, but also controls the fate of these ligands by modulating their stability and oxidation status. Of particular interest is the binding of ApoD to arachidonic acid and its derivatives, which play a central role in healthy brain function. ApoD has been shown to act as a catalyst in the reduction of peroxidized eicosanoids and to attenuate lipid peroxidation in the brain. Manipulating its expression level in fruit flies and mice has demonstrated that ApoD has a favorable effect on both stress resistance and life span. The APOD gene is the gene that is upregulated the most in the aging human brain. Furthermore, ApoD levels in the nervous system are elevated in a large number of neurologic disorders including Alzheimer's disease, schizophrenia, and stroke. There is increasing evidence for a prominent neuroprotective role of ApoD because of its antioxidant and anti-inflammatory activity. ApoD emerges as an evolutionarily conserved anti-stress protein that is induced by oxidative stress and inflammation and may prove to be an effective therapeutic agent against a variety of neuropathologies, and even against aging.
Collapse
Affiliation(s)
- Sarah Dassati
- Department of Neurological Rehabilitation, Private Hospital "Villa Melitta", Bolzano, Italy
| | - Andreas Waldner
- Department of Neurological Rehabilitation, Private Hospital "Villa Melitta", Bolzano, Italy
| | - Rüdiger Schweigreiter
- Division of Neurobiochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria.
| |
Collapse
|
117
|
Green AE, Gray JR, Deyoung CG, Mhyre TR, Padilla R, Dibattista AM, William Rebeck G. A combined effect of two Alzheimer's risk genes on medial temporal activity during executive attention in young adults. Neuropsychologia 2014; 56:1-8. [PMID: 24388797 DOI: 10.1016/j.neuropsychologia.2013.12.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 12/19/2013] [Accepted: 12/21/2013] [Indexed: 11/18/2022]
Abstract
A recent history of failed clinical trials suggests that waiting until even the early stages of onset of Alzheimer's disease may be too late for effective treatment, pointing to the importance of early intervention in young people. Early intervention will require markers of Alzheimer's risk that track with genotype but are capable of responding to treatment. Here, we sought to identify a functional MRI signature of combined Alzheimer's risk imparted by two genetic risk factors. We used a task of executive attention during fMRI in participants genotyped for two Alzheimer's risk alleles: APOE-ε4 and CLU-C. Executive attention is a sensitive indicator of the progression of Alzheimer's even in the early stages of mild cognitive impairment, but has not yet been investigated as a marker of Alzheimer's risk in young adults. Functional MRI revealed that APOE-ε4 and CLU-C had an additive effect on brain activity such that increased combined genetic risk was associated with decreased brain activity during executive attention, including in the medial temporal lobe, a brain area affected early in Alzheimer's pathogenesis.
Collapse
Affiliation(s)
- Adam E Green
- Department of Psychology, Georgetown University, 37th and O Streets, NW, 302-C White-Gravenor, Washington, DC 20057, United States.
| | - Jeremy R Gray
- Department of Psychology, Michigan State University, East Lansing, MI, United States
| | - Colin G Deyoung
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
| | - Timothy R Mhyre
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Robert Padilla
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Amanda M Dibattista
- Department of Psychology, Georgetown University, 37th and O Streets, NW, 302-C White-Gravenor, Washington, DC 20057, United States; Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - G William Rebeck
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
118
|
Wang H, Eckel RH. What are lipoproteins doing in the brain? Trends Endocrinol Metab 2014; 25:8-14. [PMID: 24189266 PMCID: PMC4062975 DOI: 10.1016/j.tem.2013.10.003] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/30/2013] [Accepted: 10/02/2013] [Indexed: 12/25/2022]
Abstract
Lipoproteins in plasma transport lipids between tissues, however, only high-density lipoproteins (HDL) appear to traverse the blood-brain barrier (BBB); thus, lipoproteins found in the brain must be produced within the central nervous system. Apolipoproteins E (ApoE) and ApoJ are the most abundant apolipoproteins in the brain, are mostly synthesized by astrocytes, and are found on HDL. In the hippocampus and other brain regions, lipoproteins help to regulate neurobehavioral functions by processes that are lipoprotein receptor-mediated. Moreover, lipoproteins and their receptors also have roles in the regulation of body weight and energy balance, acting through lipoprotein lipase (LPL) and the low-density lipoprotein (LDL) receptor-related protein (LRP). Thus, understanding lipoproteins and their metabolism in the brain provides a new opportunity with potential therapeutic relevance.
Collapse
Affiliation(s)
- Hong Wang
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Robert H Eckel
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
119
|
Nusshold C, Uellen A, Bernhart E, Hammer A, Damm S, Wintersperger A, Reicher H, Hermetter A, Malle E, Sattler W. Endocytosis and intracellular processing of BODIPY-sphingomyelin by murine CATH.a neurons. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1831:1665-78. [PMID: 23973266 PMCID: PMC3807659 DOI: 10.1016/j.bbalip.2013.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/01/2013] [Accepted: 08/06/2013] [Indexed: 01/24/2023]
Abstract
Neuronal sphingolipids (SL) play important roles during axonal extension, neurotrophic receptor signaling and neurotransmitter release. Many of these signaling pathways depend on the presence of specialized membrane microdomains termed lipid rafts. Sphingomyelin (SM), one of the main raft constituents, can be formed de novo or supplied from exogenous sources. The present study aimed to characterize fluorescently-labeled SL turnover in a murine neuronal cell line (CATH.a). Our results demonstrate that at 4°C exogenously added BODIPY-SM accumulates exclusively at the plasma membrane. Treatment of cells with bacterial sphingomyelinase (SMase) and back-exchange experiments revealed that 55-67% of BODIPY-SM resides in the outer leaflet of the plasma membrane. Endocytosis of BODIPY-SM occurs via caveolae with part of internalized BODIPY-fluorescence ending up in the Golgi and the ER. Following endocytosis BODIPY-SM undergoes hydrolysis, a reaction substantially faster than BODIPY-SM synthesis from BODIPY-ceramide. RNAi demonstrated that both, acid (a)SMase and neutral (n)SMases contribute to BODIPY-SM hydrolysis. Finally, high-density lipoprotein (HDL)-associated BODIPY-SM was efficiently taken up by CATH.a cells. Our findings indicate that endocytosis of exogenous SM occurs almost exclusively via caveolin-dependent pathways, that both, a- and nSMases equally contribute to neuronal SM turnover and that HDL-like particles might represent physiological SM carriers/donors in the brain.
Collapse
Affiliation(s)
- Christoph Nusshold
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Andreas Uellen
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Eva Bernhart
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Astrid Hammer
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Sabine Damm
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Andrea Wintersperger
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Helga Reicher
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Albin Hermetter
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| |
Collapse
|
120
|
van den Berg SAA, Heemskerk MM, Geerling JJ, van Klinken JB, Schaap FG, Bijland S, Berbée JFP, van Harmelen VJA, Pronk ACM, Schreurs M, Havekes LM, Rensen PCN, van Dijk KW. Apolipoprotein A5 deficiency aggravates high-fat diet-induced obesity due to impaired central regulation of food intake. FASEB J 2013; 27:3354-62. [PMID: 23650188 DOI: 10.1096/fj.12-225367] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mutations in apolipoprotein A5 (APOA5) have been associated with hypertriglyceridemia in humans and mice. This has been attributed to a stimulating role for APOA5 in lipoprotein lipase-mediated triglyceride hydrolysis and hepatic clearance of lipoprotein remnant particles. However, because of the low APOA5 plasma abundance, we investigated an additional signaling role for APOA5 in high-fat diet (HFD)-induced obesity. Wild-type (WT) and Apoa5(-/-) mice fed a chow diet showed no difference in body weight or 24-h food intake (Apoa5(-/-), 4.5±0.6 g; WT, 4.2±0.5 g), while Apoa5(-/-) mice fed an HFD ate more in 24 h (Apoa5(-/-), 2.8±0.4 g; WT, 2.5±0.3 g, P<0.05) and became more obese than WT mice. Also, intravenous injection of APOA5-loaded VLDL-like particles lowered food intake (VLDL control, 0.26±0.04 g; VLDL+APOA5, 0.11±0.07 g, P<0.01). In addition, the HFD-induced hyperphagia of Apoa5(-/-) mice was prevented by adenovirus-mediated hepatic overexpression of APOA5. Finally, intracerebroventricular injection of APOA5 reduced food intake compared to injection of the same mouse with artificial cerebral spinal fluid (0.40±0.11 g; APOA5, 0.23±0.08 g, P<0.01). These data indicate that the increased HFD-induced obesity of Apoa5(-/-) mice as compared to WT mice is at least partly explained by hyperphagia and that APOA5 plays a role in the central regulation of food intake.
Collapse
|
121
|
Woods AG, Sokolowska I, Taurines R, Gerlach M, Dudley E, Thome J, Darie CC. Potential biomarkers in psychiatry: focus on the cholesterol system. J Cell Mol Med 2012; 16:1184-95. [PMID: 22304330 PMCID: PMC3823072 DOI: 10.1111/j.1582-4934.2012.01543.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Measuring biomarkers to identify and assess illness is a strategy growing in popularity and relevance. Although already in clinical use for treating and predicting cancer, no biological measurement is used clinically for any psychiatric disorder. Biomarkers could predict the course of a medical problem, and aid in determining how and when to treat. Several studies have indicated that of candidate psychiatric biomarkers detected using proteomic techniques, cholesterol and associated proteins, specifically apolipoproteins (Apos), may be of interest. Cholesterol is necessary for brain development and its synthesis continues at a lower rate in the adult brain. Apos are the protein component of lipoproteins responsible for lipid transport. There is extensive evidence that the levels of cholesterol and Apos may be disturbed in psychiatric disorders, including autistic spectrum disorders (ASD). Here, we describe putative serum biomarkers for psychiatric disorders, and the role of cholesterol and Apos in central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Alisa G Woods
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, Potsdam, NY 13699, USA.
| | | | | | | | | | | | | |
Collapse
|
122
|
Liu M, Kuhel DG, Shen L, Hui DY, Woods SC. Apolipoprotein E does not cross the blood-cerebrospinal fluid barrier, as revealed by an improved technique for sampling CSF from mice. Am J Physiol Regul Integr Comp Physiol 2012; 303:R903-8. [PMID: 22933021 DOI: 10.1152/ajpregu.00219.2012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apolipoprotein E (apoE) is a 34-kDa glycoprotein that is important in lipoprotein metabolism both peripherally and centrally. Because it is primarily produced in the liver, apoE observed in the brain or cerebrospinal fluid (CSF) could have originated in the periphery; i.e., circulating apoE may cross the blood-brain barrier (BBB) and/or enter CSF and be taken up by brain cells. To determine whether this occurs, a second-generation adenovirus encoding human apoE3 was administered intravenously (iv) to C57BL/6J mice, and the detection of human apoE3 in the CSF was used as a surrogate measure of central availability of this protein utilizing an improved method for sampling CSF from mice. This improved technique collects mouse CSF samples with a 92% success rate and consistently yields relatively large volumes of CSF with a very low rate of blood contamination, as determined by molecular assessment of apolipoprotein B, a plasma-derived protein that is absent in the central nervous system. Through this improved method, we demonstrated that in mice receiving the administered apoE3 adenovirus, human apoE3 was expressed at high levels in the liver, leading to high levels of human apoE3 in mouse plasma. In contrast, human apoE3 levels in the CSF, as assessed by a sensitive ELISA, were essentially undetectable in human apoE3 adenovirus-treated mice, and comparable to levels in LacZ adenovirus-treated control mice. These data indicate that apoE in the CSF cannot be derived from the plasma pool and, therefore, must be synthesized locally in the brain.
Collapse
Affiliation(s)
- Min Liu
- Dept. of Pathology and Laboratory Medicine, Univ. of Cincinnati College of Medicine, Cincinnati, Ohio 45237-0507, USA.
| | | | | | | | | |
Collapse
|
123
|
Insulin increases central apolipoprotein E levels as revealed by an improved technique for collection of cerebrospinal fluid from rats. J Neurosci Methods 2012; 209:106-12. [PMID: 22691999 DOI: 10.1016/j.jneumeth.2012.05.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/29/2012] [Accepted: 05/31/2012] [Indexed: 11/22/2022]
Abstract
Cerebrospinal fluid (CSF) provides an invaluable analytical window to the central nervous system (CNS) because it reflects the dynamically changing complement of CNS constituents. We describe an improved method for sampling CSF in rats that is easy to perform. It has a 96% success rate of CSF collection and consistently yields large volumes (150-200 μl) of CSF. The blood contamination rate is also low (6%) as determined by both visual inspection and the lack of molecular detection of apolipoprotein B, a plasma-derived protein, which is absent in the CNS. This improved method of CSF sampling can have broad applicability in physiological and pharmacological evaluation for diverse CNS targets. We used this technique to provide proof of principle by examining the effect of intraperitoneal insulin on the level of apolipoprotein E (apoE) in the CSF. Insulin (0.5 and 1 U/kg) led to a significant increase of insulin in both plasma and CSF at 2 h after intraperitoneal administration and decreased blood glucose for at least 2h. ApoE concentrations in CSF, but not in plasma, were also significantly increased, and its time-course was inversely correlated with the alterations in blood glucose over 2 h. These results provide a pharmacological validation of the novel CSF sampling and validation procedure for sampling rat CSF.
Collapse
|
124
|
Puppione DL, Della Donna L, Bassilian S, Souda P, MacDonald MH, Whitelegge JP. Mass spectral measurements of the apoHDL in horse (Equus caballus) cerebrospinal fluid. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2012; 7:172-4. [DOI: 10.1016/j.cbd.2012.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 10/28/2022]
|
125
|
LaDu MJ, Munson GW, Jungbauer L, Getz GS, Reardon CA, Tai LM, Yu C. Preferential interactions between ApoE-containing lipoproteins and Aβ revealed by a detection method that combines size exclusion chromatography with non-reducing gel-shift. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:295-302. [PMID: 22138302 DOI: 10.1016/j.bbalip.2011.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/29/2011] [Accepted: 11/02/2011] [Indexed: 01/06/2023]
Abstract
The association between apolipoprotein E (apoE) and amyloid-β peptide (Aβ) may significantly impact the function of both proteins, thus affecting the etiology of Alzheimer's disease (AD). However, apoE/Aβ interactions remain fundamentally defined by the stringency of the detection method. Here we use size exclusion chromatography (SEC) as a non-stringent approach to the detection of apoE/Aβ interactions in solution, specifically apoE and both endogenous and exogenous Aβ from plasma, CSF and astrocyte conditioned media. By SEC analysis, Aβ association with plasma and CNS lipoproteins is apoE-dependent. While endogenous Aβ elutes to specific human plasma lipoproteins distinct from those containing apoE, it is the apoE-containing lipoproteins that absorb excess amounts of exogenous Aβ40. In human CSF, apoE, endogenous Aβ and phospholipid elute in an almost identical profile, as do apoE, exogenous Aβ and phospholipid from astrocyte conditioned media. Combining SEC fractionation with subsequent analysis for SDS-stable apoE/Aβ complex reveals that apoE-containing astrocyte lipoproteins exhibit the most robust interactions with Aβ. Thus, standardization of the methods for detecting apoE/Aβ complex is necessary to determine its functional significance in the neuropathology characteristic of AD. Importantly, a systematic understanding of the role of apoE-containing plasma and CNS lipoproteins in Aβ homeostasis could potentially contribute to identifying a plasma biomarker currently over-looked because it has multiple components.
Collapse
Affiliation(s)
- Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
126
|
MiR-106b impairs cholesterol efflux and increases Aβ levels by repressing ABCA1 expression. Exp Neurol 2011; 235:476-83. [PMID: 22119192 DOI: 10.1016/j.expneurol.2011.11.010] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/30/2011] [Accepted: 11/08/2011] [Indexed: 11/24/2022]
Abstract
ATP-binding cassette transporter A1 (ABCA1) is a cholesterol transporter that transfers excess cellular cholesterol onto lipid-poor apolipoproteins. Given its critical role in cholesterol homeostasis, ABCA1 has been studied as a therapeutic target for Alzheimer's disease. Transcriptional regulation of ABCA1 by liver X receptor has been well characterized. However, whether ABCA1 expression is regulated at the posttranscriptional level is largely unknown. Identification of a novel pathway that regulates ABCA1 expression may provide new strategy for regulating cholesterol metabolism and amyloid β (Aβ) levels. Since ABCA1 has an unusually long 3' untranslated region, we investigated whether microRNAs could regulate ABCA1 expression. We identified miR-106b as a novel regulator of ABCA1 expression and Aβ metabolism. miR-106b significantly decreased ABCA1 levels and impaired cellular cholesterol efflux in neuronal cells. Furthermore, miR-106b dramatically increased levels of secreted Aβ by increasing Aβ production and preventing Aβ clearance. Alterations in Aβ production and clearance were rescued by expression of miR-106b-resistant ABCA1. Taken together, our data suggest that miR-106b affects Aβ metabolism by suppressing ABCA1 expression.
Collapse
|
127
|
Ferretti G, Bacchetti T. Peroxidation of lipoproteins in multiple sclerosis. J Neurol Sci 2011; 311:92-7. [PMID: 21967834 DOI: 10.1016/j.jns.2011.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 09/01/2011] [Accepted: 09/05/2011] [Indexed: 01/29/2023]
Abstract
Human plasma low density lipoproteins (LDL) and high density lipoproteins (HDL) are involved in the transport of lipids, modulate membrane lipid composition and regulate signal transduction. HDL-like lipoproteins have been shown also in human cerebrospinal fluid and it has been hypothesized that they could have a role in lipid transport in central nervous system. After synthesis, lipoproteins are susceptible to lipid peroxidation triggered by reactive oxygen species (ROS and RNS) produced by peripheral and brain cells. Aim of the paper has been to review the scientific literature on the role of lipid peroxidation of LDL and HDL in the molecular mechanisms of multiple sclerosis (MS). Several studies have demonstrated a significant increase in lipid peroxidation products in brain, plasma and cerebrospinal fluid of MS patients. The increase of antibodies against ox-LDL in plasma and the presence of ox-LDL in demyelinating plaques in MS brain suggests that the disease is associated with oxidative damage of lipoproteins. The impairment of antioxidant systems or an increase in the production of ROS and RNS could contribute to lipoprotein peroxidation in MS. Oxidized lipoproteins show several alterations of their functions, they are neurotoxic and have pro-inflammatory properties. Therefore lipoprotein lipid peroxidation products could be involved in demyelination and axonal injury in MS.
Collapse
Affiliation(s)
- Gianna Ferretti
- Dipartimento di Scienze Cliniche Sperimentali e Odontostomatologiche, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | | |
Collapse
|
128
|
Ito JI, Nagayasu Y, Kheirollah A, Abe-Dohmae S, Yokoyama S. ApoA-I enhances generation of HDL-like lipoproteins through interaction between ABCA1 and phospholipase Cγ in rat astrocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:1062-9. [PMID: 21907307 DOI: 10.1016/j.bbalip.2011.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/04/2011] [Accepted: 08/25/2011] [Indexed: 11/15/2022]
Abstract
In the previous paper, we reported that apolipoprotein (apo) A-I enhances generation of HDL-like lipoproteins in rat astrocytes to be accompanied with both increase in tyrosine phosphorylation of phospholipase Cγ (PL-Cγ) and PL-Cγ translocation to cytosolic lipid-protein particles (CLPP) fraction. In this paper, we studied the interaction between apoA-I and ATP-binding cassette transporter A1 (ABCA1) to relate with PL-Cγ function for generation of HDL-like lipoproteins in the apoA-I-stimulated astrocytes. ABCA1 co-migrated with exogenous apoA-I with apparent molecular weight over 260kDa on SDS-PAGE when rat astrocytes were treated with apoA-I and then with a cross-linker, BS3. The solubilized ABCA1 of rat astrocytes was associated with the apoA-I-immobilized Affi-Gel 15. An LXR agonist, To901317, increased the cellular level of ABCA1, association of apoA-I with ABCA1 and apoA-I-mediated lipid release in rat astrocytoma GA-1/Mock cells where ABCA1 expression at baseline is very low. PL-Cγ was co-isolated by apoA-I-immobilized Affi-Gel 15 and co-immunoprecipitated by anti-ABCA1 antibody along with ABCA1 from the solubilized membrane fraction of rat astrocytes. The SiRNA of ABCA1 suppressed not only the PL-Cγ binding to ABCA1 but also the tyrosine phosphorylation of PL-Cγ. A PL-C inhibitor, U73122, prevented generation of apoA-I-mediated HDL-like lipoproteins in rat astrocytes. To901317 increased the association of PL-Cγ with ABCA1 in GA-1/Mock cells dependently on the increase of cellular level of ABCA1 without changing that of PL-Cγ. These findings suggest that the exogenous apoA-I augments the interaction between PL-Cγ and ABCA1 to stimulate tyrosine phosphorylation and activation of PL-Cγ for generation of HDL-like lipoproteins in astrocytes.
Collapse
Affiliation(s)
- Jin-ichi Ito
- Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan. jitoh@@med.nagoya-cu.ac.jp
| | | | | | | | | |
Collapse
|
129
|
Stukas S, May S, Wilkinson A, Chan J, Donkin J, Wellington CL. The LXR agonist GW3965 increases apoA-I protein levels in the central nervous system independent of ABCA1. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:536-46. [PMID: 21889608 DOI: 10.1016/j.bbalip.2011.08.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 07/29/2011] [Accepted: 08/05/2011] [Indexed: 01/09/2023]
Abstract
Lipoprotein metabolism in the central nervous system (CNS) is based on high-density lipoprotein-like particles that use apoE as their predominant apolipoprotein rather than apoA-I. Although apoA-I is not expressed in astrocytes and microglia, which produce CNS apoE, apoA-I is reported to be expressed in porcine brain capillary endothelial cells and also crosses the blood-brain barrier (BBB). These mechanisms allow apoA-I to reach concentrations in cerebrospinal fluid (CSF) that are approximately 0.5% of its plasma levels. Recently, apoA-I has been shown to enhance cognitive function and reduce cerebrovascular amyloid deposition in Alzheimer's Disease (AD) mice, raising questions about the regulation and function of apoA-I in the CNS. Peripheral apoA-I metabolism is highly influenced by ABCA1, but less is known about how ABCA1 regulates CNS apoA-I. We report that ABCA1 deficiency leads to greater retention of apoA-I in the CNS than in the periphery. Additionally, treatment of symptomatic AD mice with GW3965, an LXR agonist that stimulates ABCA1 expression, increases apoA-I more dramatically in the CNS compared to the periphery. Furthermore, GW3965-mediated up-regulation of CNS apoA-I is independent of ABCA1. Our results suggest that apoA-I may be regulated by distinct mechanisms on either side of the BBB and that apoA-I may serve to integrate peripheral and CNS lipid metabolism. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- Sophie Stukas
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | | | | | | | | | | |
Collapse
|
130
|
Pfrieger FW, Ungerer N. Cholesterol metabolism in neurons and astrocytes. Prog Lipid Res 2011; 50:357-71. [PMID: 21741992 DOI: 10.1016/j.plipres.2011.06.002] [Citation(s) in RCA: 334] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/11/2011] [Accepted: 06/22/2011] [Indexed: 12/20/2022]
Abstract
Cells in the mammalian body must accurately maintain their content of cholesterol, which is an essential membrane component and precursor for vital signalling molecules. Outside the brain, cholesterol homeostasis is guaranteed by a lipoprotein shuttle between the liver, intestine and other organs via the blood circulation. Cells inside the brain are cut off from this circuit by the blood-brain barrier and must regulate their cholesterol content in a different manner. Here, we review how this is accomplished by neurons and astrocytes, two cell types of the central nervous system, whose cooperation is essential for normal brain development and function. The key observation is a remarkable cell-specific distribution of proteins that mediate different steps of cholesterol metabolism. This form of metabolic compartmentalization identifies astrocytes as net producers of cholesterol and neurons as consumers with unique means to prevent cholesterol overload. The idea that cholesterol turnover in neurons depends on close cooperation with astrocytes raises new questions that need to be addressed by new experimental approaches to monitor and manipulate cholesterol homeostasis in a cell-specific manner. We conclude that an understanding of cholesterol metabolism in the brain and its role in disease requires a close look at individual cell types.
Collapse
Affiliation(s)
- Frank W Pfrieger
- CNRS UPR 3212, University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI), 67084 Strasbourg Cedex, France.
| | | |
Collapse
|
131
|
Fan J, Stukas S, Wong C, Chan J, May S, DeValle N, Hirsch-Reinshagen V, Wilkinson A, Oda MN, Wellington CL. An ABCA1-independent pathway for recycling a poorly lipidated 8.1 nm apolipoprotein E particle from glia. J Lipid Res 2011; 52:1605-16. [PMID: 21705806 DOI: 10.1194/jlr.m014365] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Lipid transport in the brain is coordinated by glial-derived lipoproteins that contain apolipoprotein E (apoE) as their primary protein. Here we show that apoE is secreted from wild-type (WT) primary murine mixed glia as nascent lipoprotein subspecies ranging from 7.5 to 17 nm in diameter. Negative-staining electron microscropy (EM) revealed rouleaux, suggesting a discoidal structure. Potassium bromide (KBr) density gradient ultracentrifugation showed that all subspecies, except an 8.1 nm particle, were lipidated. Glia lacking the cholesterol transporter ABCA1 secreted only 8.1 nm particles, which were poorly lipidated and nondiscoidal but could accept lipids to form the full repertoire of WT apoE particles. Receptor-associated-protein (RAP)-mediated inhibition of apoE receptor function blocked appearance of the 8.1 nm species, suggesting that this particle may arise through apoE recycling. Selective deletion of the LDL receptor (LDLR) reduced the level of 8.1 nm particle production by approximately 90%, suggesting that apoE is preferentially recycled through the LDLR. Finally, apoA-I stimulated secretion of 8.1 nm particles in a dose-dependent manner. These results suggest that nascent glial apoE lipoproteins are secreted through multiple pathways and that a greater understanding of these mechanisms may be relevant to several neurological disorders.
Collapse
Affiliation(s)
- Jianjia Fan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Saher G, Quintes S, Nave KA. Cholesterol: a novel regulatory role in myelin formation. Neuroscientist 2011; 17:79-93. [PMID: 21343408 DOI: 10.1177/1073858410373835] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Myelin consists of tightly compacted membranes that form an insulating sheath around axons. The function of myelin for rapid saltatory nerve conduction is dependent on its unique composition, highly enriched in glycosphingolipids and cholesterol. Cholesterol emerged as the only integral myelin component that is essential and rate limiting for the development of CNS and PNS myelin. Experiments with conditional mouse mutants that lack cholesterol biosynthesis in oligodendrocytes revealed that only minimal changes of the CNS myelin lipid composition are tolerated. In Schwann cells of the PNS, protein trafficking and myelin compaction depend on cholesterol. In this review, the authors summarize the role of cholesterol in myelin biogenesis and myelin disease.
Collapse
Affiliation(s)
- Gesine Saher
- Max Planck Institute of Experimental Medicine, Neurogenetics, Göttingen, Germany.
| | | | | |
Collapse
|
133
|
Namjoshi D, Stukas S, Wellington CL. ABCA1, apoE and apoA-I as potential therapeutic targets for treating Alzheimer’s disease. Neurodegener Dis Manag 2011. [DOI: 10.2217/nmt.11.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY The association between apoE genotype and risk and age of onset for Alzheimer’s disease (AD) was first discovered in 1993. Innumerable studies since then have defined Aβ-dependent and Aβ-independent roles for apoE in AD pathogenesis. Although therapeutic approaches that specifically target apoE are not yet developed for AD, apoE may have a more fundamental role in brain physiology than previously appreciated. ApoE is the major apolipoprotein in the CNS, coordinating the uptake and delivery of lipids among various cell types in the brain. ApoE receives lipids from the membrane-bound cholesterol and phospholipid transporter ATP-binding cassette transporter A1 (ABCA1). Genetic and pharmacological methods to enhance ABCA1 activity generate lipid-rich apoE particles and provide cognitive and neuropathological benefits in animal models of AD. Recent studies on apoA-I, which is the major lipid acceptor for ABCA1 in peripheral tissues and is also present in the CNS, suggest that increasing apoA-I function may also have neuroprotective effects. In this article, we will discuss the potential of ABCA1, apoE and apoA-I as therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- Dhananjay Namjoshi
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Sophie Stukas
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | | |
Collapse
|
134
|
Arnold T, Brandlhofer S, Vrtikapa K, Stangl H, Hermann M, Zwiauer K, Mangge H, Karwautz A, Huemer J, Koller D, Schneider WJ, Strobl W. Effect of obesity on plasma clusterin, [corrected] a proposed modulator of leptin action. Pediatr Res 2011; 69:237-42. [PMID: 21135756 DOI: 10.1203/pdr.0b013e31820930cb] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Clusterin, a protein constituent of HDL, was recently shown to bind plasma leptin in vitro and has been proposed to modulate leptin activity. To gain insight into a possible role for plasma clusterin in human obesity, we measured plasma clusterin, leptin, soluble leptin receptor (sObR), and lipoproteins in 70 obese adolescents (12.4 ± 1.6 y; BMI-SD score (SDS-BMI) 2.35 ± 0.47) before and after 3 wk of weight reduction in a dietary camp and in 44 normal weight controls. Binding of plasma leptin to HDL or clusterin was studied using ultracentrifugation and immunoaffinity chromatography. During weight reduction, clusterin decreased from 14.6 ± 4.1 to 10.3 ± 2.9 mg/dL, p < 0.001) in obese adolescents, whereas sObR increased. However, baseline plasma clusterin in obese adolescents did not differ from controls. Clusterin did not correlate with SDS-BMI, weight loss, leptin, or lipoproteins. Only ∼ 1% of plasma leptin was associated with clusterin/apoA-I complexes or with HDL. Our results do not support a role for plasma clusterin as an important leptin-binding protein or modulator of leptin action. The decrease of plasma clusterin during weight reduction may be an effect of the hypocaloric diet rather than being directly linked to weight loss.
Collapse
Affiliation(s)
- Tim Arnold
- Department of Medical Chemistry, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Perrin RJ, Craig-Schapiro R, Malone JP, Shah AR, Gilmore P, Davis AE, Roe CM, Peskind ER, Li G, Galasko DR, Clark CM, Quinn JF, Kaye JA, Morris JC, Holtzman DM, Townsend RR, Fagan AM. Identification and validation of novel cerebrospinal fluid biomarkers for staging early Alzheimer's disease. PLoS One 2011; 6:e16032. [PMID: 21264269 PMCID: PMC3020224 DOI: 10.1371/journal.pone.0016032] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 12/03/2010] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Ideally, disease modifying therapies for Alzheimer disease (AD) will be applied during the 'preclinical' stage (pathology present with cognition intact) before severe neuronal damage occurs, or upon recognizing very mild cognitive impairment. Developing and judiciously administering such therapies will require biomarker panels to identify early AD pathology, classify disease stage, monitor pathological progression, and predict cognitive decline. To discover such biomarkers, we measured AD-associated changes in the cerebrospinal fluid (CSF) proteome. METHODS AND FINDINGS CSF samples from individuals with mild AD (Clinical Dementia Rating [CDR] 1) (n = 24) and cognitively normal controls (CDR 0) (n = 24) were subjected to two-dimensional difference-in-gel electrophoresis. Within 119 differentially-abundant gel features, mass spectrometry (LC-MS/MS) identified 47 proteins. For validation, eleven proteins were re-evaluated by enzyme-linked immunosorbent assays (ELISA). Six of these assays (NrCAM, YKL-40, chromogranin A, carnosinase I, transthyretin, cystatin C) distinguished CDR 1 and CDR 0 groups and were subsequently applied (with tau, p-tau181 and Aβ42 ELISAs) to a larger independent cohort (n = 292) that included individuals with very mild dementia (CDR 0.5). Receiver-operating characteristic curve analyses using stepwise logistic regression yielded optimal biomarker combinations to distinguish CDR 0 from CDR>0 (tau, YKL-40, NrCAM) and CDR 1 from CDR<1 (tau, chromogranin A, carnosinase I) with areas under the curve of 0.90 (0.85-0.94 95% confidence interval [CI]) and 0.88 (0.81-0.94 CI), respectively. CONCLUSIONS Four novel CSF biomarkers for AD (NrCAM, YKL-40, chromogranin A, carnosinase I) can improve the diagnostic accuracy of Aβ42 and tau. Together, these six markers describe six clinicopathological stages from cognitive normalcy to mild dementia, including stages defined by increased risk of cognitive decline. Such a panel might improve clinical trial efficiency by guiding subject enrollment and monitoring disease progression. Further studies will be required to validate this panel and evaluate its potential for distinguishing AD from other dementing conditions.
Collapse
Affiliation(s)
- Richard J Perrin
- Division of Neuropathology, Washington University School of Medicine, St. Louis, Missouri, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Nishitsuji K, Hosono T, Uchimura K, Michikawa M. Lipoprotein lipase is a novel amyloid beta (Abeta)-binding protein that promotes glycosaminoglycan-dependent cellular uptake of Abeta in astrocytes. J Biol Chem 2010; 286:6393-401. [PMID: 21177248 DOI: 10.1074/jbc.m110.172106] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipoprotein lipase (LPL) is a member of a lipase family known to hydrolyze triglyceride molecules in plasma lipoprotein particles. LPL also plays a role in the binding of lipoprotein particles to cell-surface molecules, including sulfated glycosaminoglycans (GAGs). LPL is predominantly expressed in adipose and muscle but is also highly expressed in the brain where its specific roles are unknown. It has been shown that LPL is colocalized with senile plaques in Alzheimer disease (AD) brains, and its mutations are associated with the severity of AD pathophysiological features. In this study, we identified a novel function of LPL; that is, LPL binds to amyloid β protein (Aβ) and promotes cell-surface association and uptake of Aβ in mouse primary astrocytes. The internalized Aβ was degraded within 12 h, mainly in a lysosomal pathway. We also found that sulfated GAGs were involved in the LPL-mediated cellular uptake of Aβ. Apolipoprotein E was dispensable in the LPL-mediated uptake of Aβ. Our findings indicate that LPL is a novel Aβ-binding protein promoting cellular uptake and subsequent degradation of Aβ.
Collapse
Affiliation(s)
- Kazuchika Nishitsuji
- Section of Pathophysiology and Neurobiology, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | | | | | | |
Collapse
|
137
|
Mielke MM, Lyketsos CG. Alterations of the sphingolipid pathway in Alzheimer's disease: new biomarkers and treatment targets? Neuromolecular Med 2010; 12:331-40. [PMID: 20571935 PMCID: PMC3129545 DOI: 10.1007/s12017-010-8121-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 06/11/2010] [Indexed: 12/14/2022]
Abstract
The public health burden of Alzheimer disease (AD), the most common neurodegenerative disease, threatens to explode in the middle of this century. Current FDA-approved AD treatments (e.g. cholinesterase inhibitors, NMDA-receptor agonists) do not provide a "cure", but rather a transient alleviation of symptoms for some individuals. Other available therapies are few and of limited effectiveness so additional avenues are needed. Sphingolipid metabolism is a dynamic process that modulates the formation of a number of bioactive metabolites, or second messengers critical in cellular signaling and apoptosis. In brain, the proper balance of sphingolipids is essential for normal neuronal function, as evidenced by a number of severe brain disorders that are the result of deficiencies in enzymes that control sphingolipid metabolism. Laboratory and animals studies suggest both direct and indirect mechanisms by which sphingolipids contribute to amyloid-beta production and Alzheimer pathogenesis but few studies have translated these findings to humans. Building on the laboratory and animal evidence demonstrating the importance of sphingolipid metabolism in AD, this review highlights relevant translational research incorporating and expanding basic findings to humans. A brief biological overview of sphingolipids (sphingomyelins, ceramides, and sulfatides) in AD is first described, followed by a review of human studies including post-mortem studies, clinical and epidemiological studies. Lastly, the potential role of peripheral ceramides in AD pathogenesis is discussed, as well as the possible use of sphingolipids as biomarkers for AD.
Collapse
Affiliation(s)
- Michelle M Mielke
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Bayview, Alpha Commons Building, 4th floor, room 454, Baltimore, MD 21224, USA.
| | | |
Collapse
|
138
|
Bouhenni RA, Al Shahwan S, Morales J, Wakim BT, Chomyk AM, Alkuraya FS, Edward DP. Identification of differentially expressed proteins in the aqueous humor of primary congenital glaucoma. Exp Eye Res 2010; 92:67-75. [PMID: 21078314 DOI: 10.1016/j.exer.2010.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/13/2010] [Accepted: 11/05/2010] [Indexed: 01/06/2023]
Abstract
Primary Congenital Glaucoma (PCG) is an autosomal recessive disease caused by an abnormal development of the anterior chamber angle. Although, PCG has been linked to several genetic loci, the role that the genes at these loci or their encoded proteins play in the pathophysiology of PCG and development of the anterior chamber is not known. To identify proteins that may be altered in PCG and that may help in understanding the underlying pathophysiology of the disease, we took a global proteomics approach. Tryptic digests of the complex mixtures of proteins in aqueous humor were analyzed using Liquid Chromatography/Mass Spectrometry (LC-MS/MS). Proteins were identified by searching the data against the human subset of the UniProt database. The proteomes of aqueous humor in PCG (n = 7) and patients undergoing cataract surgery as control (n = 4) were compared based on the scan counts of comparable proteins. Using stringent filtering criteria, Apolipoprotein A-IV (APOA-IV), Albumin and Antithrombin 3 (ANT3) were detected at significantly higher levels in PCG AH compared to control, whereas Transthyretin (TTR), Prostaglandin-H2 D-isomerase (PTGDS), Opticin (OPT) and Interphotoreceptor Retinoid Binding Protein (IRBP) were detected at significantly lower levels. Many of these proteins play a role in retinoic acid (RA) binding/transport and have been implicated in the pathogenesis of neurodegenerative diseases such as Alzheimer's (AD). It is possible that similar to AD, the pathologic changes in PCG during development could be influenced by the availability of RA in the anterior chamber.
Collapse
|
139
|
Wang ES, Sun Y, Guo JG, Gao X, Hu JW, Zhou L, Hu J, Jiang CC. Tetranectin and apolipoprotein A-I in cerebrospinal fluid as potential biomarkers for Parkinson's disease. Acta Neurol Scand 2010; 122:350-9. [PMID: 20085559 DOI: 10.1111/j.1600-0404.2009.01318.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The application of biomarkers may potentially improve the efficiency of the diagnosis for Parkinson's disease (PD). However, no reliable biomarker has been identified to date. This study is aimed to identify proteins that might serve as potential biomarkers for PD diagnosis or pathogenesis. MATERIALS AND METHODS Two-dimensional difference gel electrophoresis (2D DIGE) technique, in combination with matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), was used to determine the differentially expressed cerebrospinal fluid (CSF) proteins in PD patients (n = 3) compared with normal controls (n = 3). Selected proteins were further confirmed by Western blotting analysis in the CSF of PD patients (n = 8), Alzheimer's disease (AD) patients (n = 6) and normal control subjects (n = 7). RESULTS Eight proteins were identified after MS and protein database interrogation. In the CSF of PD patients, the expression levels of one isoform of apolipoprotein A-I (apoA-I), tetranectin, myosin phosphatase target subunit 1 (MYPT1), and two unknown proteins were down-regulated, whereas the expression levels of another apoA-I isoform, proapolipoprotein, and lipoprotein were up-regulated. Western blotting indicates that the expression of tetranectin was reduced in the CSF from PD patients and elevated in AD, while the expression of apoA-I was changed only in the CSF from PD patients. CONCLUSION Our preliminary results suggest that tetranectin and apoA-I may serve as potential biomarkers for PD, though further validation is needed.
Collapse
Affiliation(s)
- E-S Wang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Lewis TL, Cao D, Lu H, Mans RA, Su YR, Jungbauer L, Linton MF, Fazio S, LaDu MJ, Li L. Overexpression of human apolipoprotein A-I preserves cognitive function and attenuates neuroinflammation and cerebral amyloid angiopathy in a mouse model of Alzheimer disease. J Biol Chem 2010; 285:36958-68. [PMID: 20847045 DOI: 10.1074/jbc.m110.127829] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To date there is no effective therapy for Alzheimer disease (AD). High levels of circulating high density lipoprotein (HDL) and its main protein, apolipoprotein A-I (apoA-I), reduce the risk of cardiovascular disease. Clinical studies show that plasma HDL cholesterol and apoA-I levels are low in patients with AD. To investigate if increasing plasma apoA-I/HDL levels ameliorates AD-like memory deficits and amyloid-β (Aβ) deposition, we generated a line of triple transgenic (Tg) mice overexpressing mutant forms of amyloid-β precursor protein (APP) and presenilin 1 (PS1) as well as human apoA-I (AI). Here we show that APP/PS1/AI triple Tg mice have a 2-fold increase of plasma HDL cholesterol levels. When tested in the Morris water maze for spatial orientation abilities, whereas APP/PS1 mice develop age-related learning and memory deficits, APP/PS1/AI mice continue to perform normally during aging. Interestingly, no significant differences were found in the total level and deposition of Aβ in the brains of APP/PS1 and APP/PS1/AI mice, but cerebral amyloid angiopathy was reduced in APP/PS1/AI mice. Also, consistent with the anti-inflammatory properties of apoA-I/HDL, glial activation was reduced in the brain of APP/PS1/AI mice. In addition, Aβ-induced production of proinflammatory chemokines/cytokines was decreased in mouse organotypic hippocampal slice cultures expressing human apoA-I. Therefore, we conclude that overexpression of human apoA-I in the circulation prevents learning and memory deficits in APP/PS1 mice, partly by attenuating neuroinflammation and cerebral amyloid angiopathy. These findings suggest that elevating plasma apoA-I/HDL levels may be an effective approach to preserve cognitive function in patients with AD.
Collapse
Affiliation(s)
- Terry L Lewis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Elliott DA, Weickert CS, Garner B. Apolipoproteins in the brain: implications for neurological and psychiatric disorders. ACTA ACUST UNITED AC 2010; 51:555-573. [PMID: 21423873 DOI: 10.2217/clp.10.37] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The brain is the most lipid-rich organ in the body and, owing to the impermeable nature of the blood-brain barrier, lipid and lipoprotein metabolism within this organ is distinct from the rest of the body. Apolipoproteins play a well-established role in the transport and metabolism of lipids within the CNS; however, evidence is emerging that they also fulfill a number of functions that extend beyond lipid transport and are critical for healthy brain function. The importance of apolipoproteins in brain physiology is highlighted by genetic studies, where apolipoprotein gene polymorphisms have been identified as risk factors for several neurological diseases. Furthermore, the expression of brain apolipoproteins is significantly altered in several brain disorders. The purpose of this article is to provide an up-to-date assessment of the major apolipoproteins found in the brain (ApoE, ApoJ, ApoD and ApoA-I), covering their proposed roles and the factors influencing their level of expression. Particular emphasis is placed on associations with neurological and psychiatric disorders.
Collapse
Affiliation(s)
- David A Elliott
- Prince of Wales Medical Research Institute, Randwick, Sydney, NSW 2031, Australia
| | | | | |
Collapse
|
142
|
Pasvogel AE, Miketova P, Moore IM. Differences in CSF phospholipid concentration by traumatic brain injury outcome. Biol Res Nurs 2010; 11:325-31. [PMID: 20338895 DOI: 10.1177/1099800409346056] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality. A cascade of events is initiated with TBI that leads to degradation of the membrane lipid bilayer of neurons and neuroglia. The purpose of this study was to (a) describe changes in the cerebrospinal fluid (CSF) phospholipid concentration over time for those who survived and those who died following TBI; and (b) determine whether there were differences in the CSF phospholipid concentration between those who survived and those who died following TBI. Thirty-nine CSF samples were obtained from 10 participants who sustained a TBI. Following extraction, phospholipids were separated and quantified by normal-phase high performance liquid chromatography with ultraviolet detector. For those who died, the highest median concentration was on Day 1 after TBI for lysophosphatidylcholine and on Day 4 after TBI for phosphatidylethanolamine, phosphatidylserine, phosphatidylcholine, and sphingomyelin. For those who survived, the highest median concentration was on Day 1 after TBI for phosphatidylcholine, on Day 3 after TBI for phosphatidylethanolamine and phosphatidylserine, on Day 4 after TBI for sphingomyelin, and on Day 5 after TBI for lysophosphatidylcholine. There were significant differences in the concentrations of phosphatidylethanolamine and phosphatidylserine on Days 1-2 and of phosphatidylethanolamine, phosphatidylcholine, and sphingomyelin on Days 3-4 after TBI between those who survived and died, with the highest concentrations in those who died. These findings provide preliminary evidence of greater disruption of central nervous system membrane phospholipids in participants who died after TBI.
Collapse
Affiliation(s)
- Alice E Pasvogel
- College of Nursing, University of Arizona, 1305 N. Martin, Tucson, AZ 85721, USA.
| | | | | |
Collapse
|
143
|
ApoE4 reduces glutamate receptor function and synaptic plasticity by selectively impairing ApoE receptor recycling. Proc Natl Acad Sci U S A 2010; 107:12011-6. [PMID: 20547867 DOI: 10.1073/pnas.0914984107] [Citation(s) in RCA: 267] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Apolipoprotein E (ApoE) genotype is a powerful genetic modifier of Alzheimer's disease (AD). The ApoE4 isoform significantly reduces the mean age-of-onset of dementia through unknown mechanisms. Here, we show that ApoE4 selectively impairs synaptic plasticity and NMDA receptor phosphorylation by Reelin, a regulator of brain development and modulator of synaptic strength. ApoE4 reduces neuronal surface expression of Apoer2, a dual function receptor for ApoE and for Reelin, as well as NMDA and AMPA receptors by sequestration in intracellular compartments, thereby critically reducing the ability of Reelin to enhance synaptic glutamate receptor activity. As a result, the ability of Reelin to prevent LTP suppression by extracts from AD-afflicted human brains in hippocampal slices from knockin mice expressing the human ApoE4 isoform is severely impaired. These findings show an isoform-specific role of ApoE in the localization and intracellular trafficking of lipoprotein and glutamate receptors and thereby reveal an alternative mechanism by which ApoE4 may accelerate onset of dementia and neuronal degeneration by differentially impairing the maintenance of synaptic stability.
Collapse
|
144
|
Moriarty PM, Luyendyk JP, Gibson CA, Backes JM. Effect of low-density lipoprotein apheresis on plasma levels of apolipoprotein e4. Am J Cardiol 2010; 105:1585-7. [PMID: 20494666 DOI: 10.1016/j.amjcard.2010.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 01/11/2010] [Accepted: 01/11/2010] [Indexed: 11/17/2022]
Abstract
Apolipoprotein E4 (apoE4) is a positively charged proinflammatory apolipoprotein bound to high-density lipoprotein (HDL) cholesterol and remnant lipoproteins. ApoE4 is associated with an increased risk of cardiovascular and cerebrovascular disease. Low-density lipoprotein (LDL) apheresis, a therapy for patients with familial hypercholesterolemia, removes apolipoprotein B and other positively charged plasma proteins but negatively charged proteins such as HDL cholesterol are generally spared. Despite their negative charge, LDL apheresis still removes 10% to 15% of HDL cholesterol, in particular, inflammatory HDL cholesterol. Patients with familial hypercholesterolemia have increased plasma levels of apoE4 and apoE4-bound HDL cholesterol. We tested the hypothesis that LDL apheresis would reduce the plasma levels of apoE4. We analyzed the plasma apoE4 levels using enzyme-linked immunosorbent assay immediately before and after LDL apheresis in 10 patients with familial hypercholesterolemia who had tested positive for the apoE4 isoform. After one treatment, the mean plasma apoE4 levels had been reduced by 39%, LDL cholesterol by 75%, triglycerides by 38%, and HDL cholesterol by 18%. The change in HDL cholesterol was significantly related to the apoE4 baseline values (r = -0.83, p = 0.001) and apoE4 levels after apheresis (r = 0.816, p = 0.004). In conclusion, LDL apheresis acutely reduced the plasma levels of apoE4. The mechanism of apoE4 reduction by LDL apheresis might be related to the selective reduction of a particular HDL cholesterol.
Collapse
Affiliation(s)
- Patrick M Moriarty
- Department of Internal Medicine, Division of Clinical Pharmacology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| | | | | | | |
Collapse
|
145
|
Martins IJ, Berger T, Sharman MJ, Verdile G, Fuller SJ, Martins RN. Cholesterol metabolism and transport in the pathogenesis of Alzheimer's disease. J Neurochem 2010; 111:1275-308. [PMID: 20050287 DOI: 10.1111/j.1471-4159.2009.06408.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, affecting millions of people worldwide. Apart from age, the major risk factor identified so far for the sporadic form of AD is possession of the epsilon4 allele of apolipoprotein E (APOE), which is also a risk factor for coronary artery disease (CAD). Other apolipoproteins known to play an important role in CAD such as apolipoprotein B are now gaining attention for their role in AD as well. AD and CAD share other risk factors, such as altered cholesterol levels, particularly high levels of low density lipoproteins together with low levels of high density lipoproteins. Statins--drugs that have been used to lower cholesterol levels in CAD, have been shown to protect against AD, although the protective mechanism(s) involved are still under debate. Enzymatic production of the beta amyloid peptide, the peptide thought to play a major role in AD pathogenesis, is affected by membrane cholesterol levels. In addition, polymorphisms in several proteins and enzymes involved in cholesterol and lipoprotein transport and metabolism have been linked to risk of AD. Taken together, these findings provide strong evidence that changes in cholesterol metabolism are intimately involved in AD pathogenic processes. This paper reviews cholesterol metabolism and transport, as well as those aspects of cholesterol metabolism that have been linked with AD.
Collapse
Affiliation(s)
- Ian J Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University, Joondalup, Australia.
| | | | | | | | | | | |
Collapse
|
146
|
Hayashi H, Campenot RB, Vance DE, Vance JE. Protection of neurons from apoptosis by apolipoprotein E-containing lipoproteins does not require lipoprotein uptake and involves activation of phospholipase Cgamma1 and inhibition of calcineurin. J Biol Chem 2009; 284:29605-13. [PMID: 19717566 DOI: 10.1074/jbc.m109.039560] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein E-containing lipoproteins (LpE) are generated in the central nervous system by glial cells, primarily astrocytes, and are recognized as key players in lipid metabolism and transport in the brain. We previously reported that LpE protect retinal ganglion neurons from apoptosis induced by withdrawal of trophic additives (Hayashi, H., Campenot, R. B., Vance, D. E., and Vance, J. E. (2007) J. Neurosci. 27, 1933-1941). LpE bind to low density lipoprotein receptor-related protein-1 and initiate a signaling pathway that involves activation of protein kinase Cdelta and inhibition of the pro-apoptotic glycogen synthase kinase-3beta. We now show that uptake of LpE is not required for the neuroprotection. Experiments with inhibitors of phospholipase Cgamma1 and RNAi knockdown studies demonstrate that activation of phospholipase Cgamma1 is required for the anti-apoptotic signaling pathway induced by LpE. In addition, the protein phosphatase-2B, calcineurin, is involved in a neuronal death pathway induced by removal of trophic additives, and LpE inhibit calcineurin activation. LpE also attenuate neuronal death caused by oxidative stress. Moreover, physiologically relevant apoE3-containing lipoproteins generated by apoE3 knock-in mouse astrocytes more effectively protect neurons from apoptosis than do apoE4-containing lipoproteins. Because inheritance of the apoE4 allele is the strongest known genetic risk factor for Alzheimer disease, the reduced neuroprotection afforded by apoE4-containing LpE might contribute to the neurodegeneration characteristic of this disease.
Collapse
Affiliation(s)
- Hideki Hayashi
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 860-8556, Japan
| | | | | | | |
Collapse
|
147
|
Moriarty PM. Association of ApoE and HDL-C with cardiovascular and cerebrovascular disease: potential benefits of LDL-apheresis therapy. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/clp.09.21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
148
|
Abstract
PURPOSE OF REVIEW Aberrations in cerebral cholesterol homeostasis can lead to severe neurological diseases and have been linked to Alzheimer's disease. Many proteins involved in peripheral cholesterol metabolism are also present in the brain. Yet, brain cholesterol metabolism is very different from that in the remainder of the body. This review reports on present insights into the regulation of cerebral cholesterol homeostasis, focusing on cholesterol trafficking between astrocytes and neurons. RECENT FINDINGS Astrocytes are a major site of cholesterol synthesis. They secrete cholesterol in the form of apolipoprotein E-containing HDL-like particles. After birth, neurons are thought to reduce their cholesterol synthesis and rely predominantly on astrocytes for their cholesterol supply. How exactly neurons regulate their cholesterol supply is largely unknown. A role for the brain-specific cholesterol metabolite, 24(S)-hydroxycholesterol, in this process was recently proposed. Recent findings strengthen the link between brain cholesterol metabolism and factors involved in synaptic plasticity, a process essential for learning and memory functions, as well as regeneration, which are affected in Alzheimer's disease. SUMMARY Insight into the regulation of cerebral cholesterol homeostasis will provide possibilities to modulate the key steps involved and may lead to the development of therapies for the prevention as well as treatment of neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Monique Mulder
- Department of Internal Medicine and Division of Pharmacology, Vascular and Metabolic diseases, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
149
|
Golovko MY, Barceló-Coblijn G, Castagnet PI, Austin S, Combs CK, Murphy EJ. The role of α-synuclein in brain lipid metabolism: a downstream impact on brain inflammatory response. Mol Cell Biochem 2008; 326:55-66. [DOI: 10.1007/s11010-008-0008-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 06/26/2008] [Indexed: 11/28/2022]
|
150
|
Pasvogel AE, Miketova P, Moore IMK. Cerebrospinal fluid phospholipid changes following traumatic brain injury. Biol Res Nurs 2008; 10:113-20. [PMID: 18829594 DOI: 10.1177/1099800408323218] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality, with approximately 1.4 million people suffering a TBI each year. With TBI, a cascade of events is initiated including the activation of phospholipases, which leads to the disruption of the lipid bilayer of the membrane of neurons and neuroglia. The purpose of this study is to describe phospholipid changes following TBI. A total of 39 cerebrospinal fluid samples were obtained from the ventricular catheter system of 10 participants who received a TBI as a result of a motor vehicle crash, being struck by a vehicle as a pedestrian, or a fall. Phospholipids were extracted from samples and measured by normal-phase high-performance liquid chromatography with ultraviolet detector at a wavelength of 206 nm. The highest mean concentration of lysophosphatidylcholine occurred on Day 1 after injury. The concentration of phosphatidylserine was variable, with the highest mean concentration occurring on Day 2 after injury. The highest mean concentrations of phosphatidylethanolamine, phosphatidylcholine, and sphingomyelin occurred on Day 4 after injury. Findings provide preliminary evidence for disruption of central nervous system membrane phospholipids following TBI.
Collapse
Affiliation(s)
- Alice E Pasvogel
- College of Nursing, The University of Arizona, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|