101
|
Fan TWM, Lane AN. Applications of NMR spectroscopy to systems biochemistry. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2016; 92-93:18-53. [PMID: 26952191 PMCID: PMC4850081 DOI: 10.1016/j.pnmrs.2016.01.005] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 05/05/2023]
Abstract
The past decades of advancements in NMR have made it a very powerful tool for metabolic research. Despite its limitations in sensitivity relative to mass spectrometric techniques, NMR has a number of unparalleled advantages for metabolic studies, most notably the rigor and versatility in structure elucidation, isotope-filtered selection of molecules, and analysis of positional isotopomer distributions in complex mixtures afforded by multinuclear and multidimensional experiments. In addition, NMR has the capacity for spatially selective in vivo imaging and dynamical analysis of metabolism in tissues of living organisms. In conjunction with the use of stable isotope tracers, NMR is a method of choice for exploring the dynamics and compartmentation of metabolic pathways and networks, for which our current understanding is grossly insufficient. In this review, we describe how various direct and isotope-edited 1D and 2D NMR methods can be employed to profile metabolites and their isotopomer distributions by stable isotope-resolved metabolomic (SIRM) analysis. We also highlight the importance of sample preparation methods including rapid cryoquenching, efficient extraction, and chemoselective derivatization to facilitate robust and reproducible NMR-based metabolomic analysis. We further illustrate how NMR has been applied in vitro, ex vivo, or in vivo in various stable isotope tracer-based metabolic studies, to gain systematic and novel metabolic insights in different biological systems, including human subjects. The pathway and network knowledge generated from NMR- and MS-based tracing of isotopically enriched substrates will be invaluable for directing functional analysis of other 'omics data to achieve understanding of regulation of biochemical systems, as demonstrated in a case study. Future developments in NMR technologies and reagents to enhance both detection sensitivity and resolution should further empower NMR in systems biochemical research.
Collapse
Affiliation(s)
- Teresa W-M Fan
- Department of Toxicology and Cancer Biology, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536, United States.
| | - Andrew N Lane
- Department of Toxicology and Cancer Biology, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536, United States.
| |
Collapse
|
102
|
Abstract
Chaperonins are nanomachines that facilitate protein folding by undergoing energy (ATP)-dependent movements that are coordinated in time and space owing to complex allosteric regulation. They consist of two back-to-back stacked oligomeric rings with a cavity at each end where protein substrate folding can take place. Here, we focus on the GroEL/GroES chaperonin system from Escherichia coli and, to a lesser extent, on the more poorly characterized eukaryotic chaperonin CCT/TRiC. We describe their various functional (allosteric) states and how they are affected by substrates and allosteric effectors that include ATP, ADP, nonfolded protein substrates, potassium ions, and GroES (in the case of GroEL). We also discuss the pathways of intra- and inter-ring allosteric communication by which they interconvert and the coupling between allosteric transitions and protein folding reactions.
Collapse
Affiliation(s)
- Ranit Gruber
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Amnon Horovitz
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 76100, Israel
| |
Collapse
|
103
|
Li G, Zhang C, Xing XH. A kinetic model for analysis of physical tunnels in sequentially acting enzymes with direct proximity channeling. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
104
|
Adolfsen KJ, Brynildsen MP. A Kinetic Platform to Determine the Fate of Hydrogen Peroxide in Escherichia coli. PLoS Comput Biol 2015; 11:e1004562. [PMID: 26545295 PMCID: PMC4636272 DOI: 10.1371/journal.pcbi.1004562] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/18/2015] [Indexed: 11/29/2022] Open
Abstract
Hydrogen peroxide (H2O2) is used by phagocytic cells of the innate immune response to kill engulfed bacteria. H2O2 diffuses freely into bacteria, where it can wreak havoc on sensitive biomolecules if it is not rapidly detoxified. Accordingly, bacteria have evolved numerous systems to defend themselves against H2O2, and the importance of these systems to pathogenesis has been substantiated by the many bacteria that require them to establish or sustain infections. The kinetic competition for H2O2 within bacteria is complex, which suggests that quantitative models will improve interpretation and prediction of network behavior. To date, such models have been of limited scope, and this inspired us to construct a quantitative, systems-level model of H2O2 detoxification in Escherichia coli that includes detoxification enzymes, H2O2-dependent transcriptional regulation, enzyme degradation, the Fenton reaction and damage caused by •OH, oxidation of biomolecules by H2O2, and repair processes. After using an iterative computational and experimental procedure to train the model, we leveraged it to predict how H2O2 detoxification would change in response to an environmental perturbation that pathogens encounter within host phagosomes, carbon source deprivation, which leads to translational inhibition and limited availability of NADH. We found that the model accurately predicted that NADH depletion would delay clearance at low H2O2 concentrations and that detoxification at higher concentrations would resemble that of carbon-replete conditions. These results suggest that protein synthesis during bolus H2O2 stress does not affect clearance dynamics and that access to catabolites only matters at low H2O2 concentrations. We anticipate that this model will serve as a computational tool for the quantitative exploration and dissection of oxidative stress in bacteria, and that the model and methods used to develop it will provide important templates for the generation of comparable models for other bacterial species.
Collapse
Affiliation(s)
- Kristin J Adolfsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
105
|
Gameiro D, Pérez-Pérez M, Pérez-Rodríguez G, Monteiro G, Azevedo NF, Lourenço A. Computational resources and strategies to construct single-molecule metabolic models of microbial cells. Brief Bioinform 2015; 17:863-76. [DOI: 10.1093/bib/bbv096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Indexed: 11/12/2022] Open
|
106
|
McCormick SP, Moore MJ, Lindahl PA. Detection of Labile Low-Molecular-Mass Transition Metal Complexes in Mitochondria. Biochemistry 2015; 54:3442-53. [PMID: 26018429 DOI: 10.1021/bi5015437] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Liquid chromatography was used with an online inductively coupled plasma mass spectrometer to detect low-molecular-mass (LMM) transition metal complexes in mitochondria isolated from fermenting yeast cells, human Jurkat cells, and mouse brain and liver. These complexes constituted 20-40% of total mitochondrial Mn, Fe, Zn, and Cu ions. The major LMM Mn complex in yeast mitochondria, called Mn1100, had a mass of ∼1100 Da and a concentration of ∼2 μM. Mammalian mitochondria contained a second Mn species with a mass of ∼2000 Da at a comparable concentration. The major Fe complex in mitochondria isolated from exponentially growing yeast cells had a mass of ∼580 Da; the concentration of Fe580 in mitochondria was ∼100 μM. When mitochondria were isolated from fermenting cells in postexponential phase, the mass of the dominant LMM Fe complex was ∼1100 Da. Upon incubation, the intensity of Fe1100 declined and that of Fe580 increased, suggesting that the two are interrelated. Mammalian mitochondria contained Fe580 and two other Fe species (Fe2000 and Fe1100) at concentrations of ∼50 μM each. The dominant LMM Zn species in mitochondria had a mass of ∼1200 Da and a concentration of ∼110 μM. Mammalian mitochondria contained a second major LMM Zn species at 1500 Da. The dominant LMM Cu species in yeast mitochondria had a mass of ∼5000 Da and a concentration in yeast mitochondria of ∼16 μM; Cu5000 was not observed in mammalian mitochondria. The dominant Co species in mitochondria, Co1200, had a concentration of 20 nM and was probably a cobalamin. Mammalian but not yeast mitochondria contained a LMM Mo species, Mo730, at a concentration of ∼1 μM. Increasing Mn, Fe, Cu, and Zn concentrations 10-fold in the medium increased the concentration of the same element in the corresponding isolated mitochondria. Treatment with metal chelators confirmed that these LMM species were labile. The dominant S species at 1100 Da was not free glutathione or glutathione disulfide.
Collapse
|
107
|
Abstract
Sec17 [soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein; α-SNAP] and Sec18 (NSF) perform ATP-dependent disassembly of cis-SNARE complexes, liberating SNAREs for subsequent assembly of trans-complexes for fusion. A mutant of Sec17, with limited ability to stimulate Sec18, still strongly enhanced fusion when ample Sec18 was supplied, suggesting that Sec17 has additional functions. We used fusion reactions where the four SNAREs were initially separate, thus requiring no disassembly by Sec18. With proteoliposomes bearing asymmetrically disposed SNAREs, tethering and trans-SNARE pairing allowed slow fusion. Addition of Sec17 did not affect the levels of trans-SNARE complex but triggered sudden fusion of trans-SNARE paired proteoliposomes. Sec18 did not substitute for Sec17 in triggering fusion, but ADP- or ATPγS-bound Sec18 enhanced this Sec17 function. The extent of the Sec17 effect varied with the lipid headgroup and fatty acyl composition of the proteoliposomes. Two mutants further distinguished the two Sec17 functions: Sec17(L291A,L292A) did not stimulate Sec18 to disassemble cis-SNARE complex but triggered the fusion of trans-SNARE paired membranes. Sec17(F21S,M22S), with diminished apolar character to its hydrophobic loop, fully supported Sec18-mediated SNARE complex disassembly but had lost the capacity to stimulate the fusion of trans-SNARE paired membranes. To model the interactions of SNARE-bound Sec17 with membranes, we show that Sec17, but not Sec17(F21S,M22S), interacted synergistically with the soluble SNARE domains to enable their stable association with liposomes. We propose a model in which Sec17 binds to trans-SNARE complexes, oligomerizes, and inserts apolar loops into the apposed membranes, locally disturbing the lipid bilayer and thereby lowering the energy barrier for fusion.
Collapse
|
108
|
Hudson DA, Gannon SA, Thorpe C. Oxidative protein folding: from thiol-disulfide exchange reactions to the redox poise of the endoplasmic reticulum. Free Radic Biol Med 2015; 80:171-82. [PMID: 25091901 PMCID: PMC4312752 DOI: 10.1016/j.freeradbiomed.2014.07.037] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/23/2014] [Indexed: 12/21/2022]
Abstract
This review examines oxidative protein folding within the mammalian endoplasmic reticulum (ER) from an enzymological perspective. In protein disulfide isomerase-first (PDI-first) pathways of oxidative protein folding, PDI is the immediate oxidant of reduced client proteins and then addresses disulfide mispairings in a second isomerization phase. In PDI-second pathways the initial oxidation is PDI-independent. Evidence for the rapid reduction of PDI by reduced glutathione is presented in the context of PDI-first pathways. Strategies and challenges are discussed for determination of the concentrations of reduced and oxidized glutathione and of the ratios of PDI(red):PDI(ox). The preponderance of evidence suggests that the mammalian ER is more reducing than first envisaged. The average redox state of major PDI-family members is largely to almost totally reduced. These observations are consistent with model studies showing that oxidative protein folding proceeds most efficiently at a reducing redox poise consistent with a stoichiometric insertion of disulfides into client proteins. After a discussion of the use of natively encoded fluorescent probes to report the glutathione redox poise of the ER, this review concludes with an elaboration of a complementary strategy to discontinuously survey the redox state of as many redox-active disulfides as can be identified by ratiometric LC-MS-MS methods. Consortia of oxidoreductases that are in redox equilibrium can then be identified and compared to the glutathione redox poise of the ER to gain a more detailed understanding of the factors that influence oxidative protein folding within the secretory compartment.
Collapse
Affiliation(s)
- Devin A Hudson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Shawn A Gannon
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
109
|
Doherty K, Meere M, Piiroinen PT. Some mathematical models of intermolecular autophosphorylation. J Theor Biol 2015; 370:27-38. [PMID: 25636493 DOI: 10.1016/j.jtbi.2015.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 01/08/2015] [Accepted: 01/15/2015] [Indexed: 11/26/2022]
Abstract
Intermolecular autophosphorylation refers to the process whereby a molecule of an enzyme phosphorylates another molecule of the same enzyme. The enzyme thereby catalyses its own phosphorylation. In the present paper, we develop two generic models of intermolecular autophosphorylation that also include dephosphorylation by a phosphatase of constant concentration. The first of these, a solely time-dependent model, is written as one ordinary differential equation that relies upon mass-action and Michaelis-Menten kinetics. Beginning with the enzyme in its dephosphorylated state, it predicts a lag before the enzyme becomes significantly phosphorylated, for suitable parameter values. It also predicts that there exists a threshold concentration for the phosphorylation of enzyme and that for suitable parameter values, a continuous or discontinuous switch in the phosphorylation of enzyme are possible. The model developed here has the advantage that it is relatively easy to analyse compared with most existing models for autophosphorylation and can qualitatively describe many different systems. We also extend our time-dependent model of autophosphorylation to include a spatial dependence, as well as localised binding reactions. This spatio-temporal model consists of a system of partial differential equations that describe a soluble autophosphorylating enzyme in a spherical geometry. We use the spatio-temporal model to describe the phosphorylation of an enzyme throughout the cell due to an increase in local concentration by binding. Using physically realistic values for model parameters, our results provide a proof-of-concept of the process of activation by local concentration and suggest that, in the presence of a phosphatase, this activation can be irreversible.
Collapse
Affiliation(s)
- Kevin Doherty
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, University Road, Galway, Ireland; AgroParisTech, CRNH-IdF, UMR914, Nutrition Physiology and Ingestive Behavior, F-75005 Paris, France; INRA, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, F-75005 Paris, France.
| | - Martin Meere
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, University Road, Galway, Ireland.
| | - Petri T Piiroinen
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, University Road, Galway, Ireland.
| |
Collapse
|
110
|
Woehrer SL, Aronica L, Suhren JH, Busch CJL, Noto T, Mochizuki K. A Tetrahymena Hsp90 co-chaperone promotes siRNA loading by ATP-dependent and ATP-independent mechanisms. EMBO J 2015; 34:559-77. [PMID: 25588944 PMCID: PMC4331008 DOI: 10.15252/embj.201490062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The loading of small interfering RNAs (siRNAs) and microRNAs into Argonaute proteins is enhanced by Hsp90 and ATP in diverse eukaryotes. However, whether this loading also occurs independently of Hsp90 and ATP remains unclear. We show that the Tetrahymena Hsp90 co-chaperone Coi12p promotes siRNA loading into the Argonaute protein Twi1p in both ATP-dependent and ATP-independent manners in vitro. The ATP-dependent activity requires Hsp90 and the tetratricopeptide repeat (TPR) domain of Coi12p, whereas these factors are dispensable for the ATP-independent activity. Both activities facilitate siRNA loading by counteracting the Twi1p-binding protein Giw1p, which is important to specifically sort the 26- to 32-nt siRNAs to Twi1p. Although Coi12p lacking its TPR domain does not bind to Hsp90, it can partially restore the siRNA loading and DNA elimination defects of COI12 knockout cells, suggesting that Hsp90- and ATP-independent loading of siRNA occurs in vivo and plays a physiological role in Tetrahymena.
Collapse
Affiliation(s)
- Sophie L Woehrer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Lucia Aronica
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Jan H Suhren
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Clara Jana-Lui Busch
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Tomoko Noto
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Kazufumi Mochizuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| |
Collapse
|
111
|
Paget CM, Schwartz JM, Delneri D. Environmental systems biology of cold-tolerant phenotype in Saccharomyces species adapted to grow at different temperatures. Mol Ecol 2014; 23:5241-57. [PMID: 25243355 PMCID: PMC4283049 DOI: 10.1111/mec.12930] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 09/03/2014] [Accepted: 09/15/2014] [Indexed: 12/01/2022]
Abstract
Temperature is one of the leading factors that drive adaptation of organisms and ecosystems. Remarkably, many closely related species share the same habitat because of their different temporal or micro-spatial thermal adaptation. In this study, we seek to find the underlying molecular mechanisms of the cold-tolerant phenotype of closely related yeast species adapted to grow at different temperatures, namely S. kudriavzevii CA111 (cryo-tolerant) and S. cerevisiae 96.2 (thermo-tolerant). Using two different systems approaches, i. thermodynamic-based analysis of a genome-scale metabolic model of S. cerevisiae and ii. large-scale competition experiment of the yeast heterozygote mutant collection, genes and pathways important for the growth at low temperature were identified. In particular, defects in lipid metabolism, oxidoreductase and vitamin pathways affected yeast fitness at cold. Combining the data from both studies, a list of candidate genes was generated and mutants for two predicted cold-favouring genes, GUT2 and ADH3, were created in two natural isolates. Compared with the parental strains, these mutants showed lower fitness at cold temperatures, with S. kudriavzevii displaying the strongest defect. Strikingly, in S. kudriavzevii, these mutations also significantly improve the growth at warm temperatures. In addition, overexpression of ADH3 in S. cerevisiae increased its fitness at cold. These results suggest that temperature-induced redox imbalances could be compensated by increased glycerol accumulation or production of cytosolic acetaldehyde through the deletion of GUT2 or ADH3, respectively.
Collapse
Affiliation(s)
- Caroline Mary Paget
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, M13 9PT, UK
| | | | | |
Collapse
|
112
|
Goncalves RLS, Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Brand MD. Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise. J Biol Chem 2014; 290:209-27. [PMID: 25389297 DOI: 10.1074/jbc.m114.619072] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The sites and rates of mitochondrial production of superoxide and H2O2 in vivo are not yet defined. At least 10 different mitochondrial sites can generate these species. Each site has a different maximum capacity (e.g. the outer quinol site in complex III (site IIIQo) has a very high capacity in rat skeletal muscle mitochondria, whereas the flavin site in complex I (site IF) has a very low capacity). The maximum capacities can greatly exceed the actual rates observed in the absence of electron transport chain inhibitors, so maximum capacities are a poor guide to actual rates. Here, we use new approaches to measure the rates at which different mitochondrial sites produce superoxide/H2O2 using isolated muscle mitochondria incubated in media mimicking the cytoplasmic substrate and effector mix of skeletal muscle during rest and exercise. We find that four or five sites dominate during rest in this ex vivo system. Remarkably, the quinol site in complex I (site IQ) and the flavin site in complex II (site IIF) each account for about a quarter of the total measured rate of H2O2 production. Site IF, site IIIQo, and perhaps site EF in the β-oxidation pathway account for most of the remainder. Under conditions mimicking mild and intense aerobic exercise, total production is much less, and the low capacity site IF dominates. These results give novel insights into which mitochondrial sites may produce superoxide/H2O2 in vivo.
Collapse
Affiliation(s)
| | - Casey L Quinlan
- From the Buck Institute for Research on Aging, Novato, California 94945
| | | | | | - Martin D Brand
- From the Buck Institute for Research on Aging, Novato, California 94945
| |
Collapse
|
113
|
Engelhard C, Wang X, Robles D, Moldt J, Essen LO, Batschauer A, Bittl R, Ahmad M. Cellular metabolites enhance the light sensitivity of Arabidopsis cryptochrome through alternate electron transfer pathways. THE PLANT CELL 2014; 26:4519-31. [PMID: 25428980 PMCID: PMC4277212 DOI: 10.1105/tpc.114.129809] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cryptochromes are blue light receptors with multiple signaling roles in plants and animals. Plant cryptochrome (cry1 and cry2) biological activity has been linked to flavin photoreduction via an electron transport chain comprising three evolutionarily conserved tryptophan residues known as the Trp triad. Recently, it has been reported that cry2 Trp triad mutants, which fail to undergo photoreduction in vitro, nonetheless show biological activity in vivo, raising the possibility of alternate signaling pathways. Here, we show that Arabidopsis thaliana cry2 proteins containing Trp triad mutations indeed undergo robust photoreduction in living cultured insect cells. UV/Vis and electron paramagnetic resonance spectroscopy resolves the discrepancy between in vivo and in vitro photochemical activity, as small metabolites, including NADPH, NADH, and ATP, were found to promote cry photoreduction even in mutants lacking the classic Trp triad electron transfer chain. These metabolites facilitate alternate electron transfer pathways and increase light-induced radical pair formation. We conclude that cryptochrome activation is consistent with a mechanism of light-induced electron transfer followed by flavin photoreduction in vivo. We further conclude that in vivo modulation by cellular compounds represents a feature of the cryptochrome signaling mechanism that has important consequences for light responsivity and activation.
Collapse
Affiliation(s)
| | - Xuecong Wang
- University of Paris VI, UMR 8256 (B2A), IBPS, 75005 Paris, France
| | - David Robles
- University of Paris VI, UMR 8256 (B2A), IBPS, 75005 Paris, France
| | - Julia Moldt
- Department of Plant Physiology and Photobiology, Faculty of Biology, Philipps-University, 35032 Marburg, Germany
| | - Lars-Oliver Essen
- Biomedical Research Centre/Faculty of Chemistry, Philipps-University, 35032 Marburg, Germany
| | - Alfred Batschauer
- Department of Plant Physiology and Photobiology, Faculty of Biology, Philipps-University, 35032 Marburg, Germany
| | - Robert Bittl
- Fachbereich Physik, Free University, 14195 Berlin, Germany
| | - Margaret Ahmad
- University of Paris VI, UMR 8256 (B2A), IBPS, 75005 Paris, France Xavier University, Cincinatti, Ohio 45207
| |
Collapse
|
114
|
The structural and functional coordination of glycolytic enzymes in muscle: evidence of a metabolon? BIOLOGY 2014; 3:623-44. [PMID: 25247275 PMCID: PMC4192631 DOI: 10.3390/biology3030623] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 12/22/2022]
Abstract
Metabolism sustains life through enzyme-catalyzed chemical reactions within the cells of all organisms. The coupling of catalytic function to the structural organization of enzymes contributes to the kinetic optimization important to tissue-specific and whole-body function. This coupling is of paramount importance in the role that muscle plays in the success of Animalia. The structure and function of glycolytic enzyme complexes in anaerobic metabolism have long been regarded as a major regulatory element necessary for muscle activity and whole-body homeostasis. While the details of this complex remain to be elucidated through in vivo studies, this review will touch on recent studies that suggest the existence of such a complex and its structure. A potential model for glycolytic complexes and related subcomplexes is introduced.
Collapse
|
115
|
Induced Self-Assembly of Platinum(II) Alkynyl Complexes through Specific Interactions between Citrate and Guanidinium for Proof-of-Principle Detection of Citrate and an Assay of Citrate Lyase. Chemistry 2014; 20:13016-27. [DOI: 10.1002/chem.201402137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Indexed: 01/26/2023]
|
116
|
Theory on the dynamics of oscillatory loops in the transcription factor networks. PLoS One 2014; 9:e104328. [PMID: 25111803 PMCID: PMC4128676 DOI: 10.1371/journal.pone.0104328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 07/11/2014] [Indexed: 11/19/2022] Open
Abstract
We develop a detailed theoretical framework for various types of transcription factor gene oscillators. We further demonstrate that one can build genetic-oscillators which are tunable and robust against perturbations in the critical control parameters by coupling two or more independent Goodwin-Griffith oscillators through either -OR- or -AND- type logic. Most of the coupled oscillators constructed in the literature so far seem to be of -OR- type. When there are transient perturbations in one of the -OR- type coupled-oscillators, then the overall period of the system remains constant (period-buffering) whereas in case of -AND- type coupling the overall period of the system moves towards the perturbed oscillator. Though there is a period-buffering, the amplitudes of oscillators coupled through -OR- type logic are more sensitive to perturbations in the parameters associated with the promoter state dynamics than -AND- type. Further analysis shows that the period of -AND- type coupled dual-feedback oscillators can be tuned without conceding on the amplitudes. Using these results we derive the basic design principles governing the robust and tunable synthetic gene oscillators without compromising on their amplitudes.
Collapse
|
117
|
Mulukutla BC, Yongky A, Daoutidis P, Hu WS. Bistability in glycolysis pathway as a physiological switch in energy metabolism. PLoS One 2014; 9:e98756. [PMID: 24911170 PMCID: PMC4049617 DOI: 10.1371/journal.pone.0098756] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/07/2014] [Indexed: 12/13/2022] Open
Abstract
The flux of glycolysis is tightly controlled by feed-back and feed-forward allosteric regulations to maintain the body's glucose homeostasis and to respond to cell's growth and energetic needs. Using a mathematical model based on reported mechanisms for the allosteric regulations of the enzymes, we demonstrate that glycolysis exhibits multiple steady state behavior segregating glucose metabolism into high flux and low flux states. Two regulatory loops centering on phosphofructokinase and on pyruvate kinase each gives rise to the bistable behavior, and together impose more complex flux control. Steady state multiplicity endows glycolysis with a robust switch to transit between the two flux states. Under physiological glucose concentrations the glycolysis flux does not move between the states easily without an external stimulus such as hormonal, signaling or oncogenic cues. Distinct combination of isozymes in glycolysis gives different cell types the versatility in their response to different biosynthetic and energetic needs. Insights from the switch behavior of glycolysis may reveal new means of metabolic intervention in the treatment of cancer and other metabolic disorders through suppression of glycolysis.
Collapse
Affiliation(s)
- Bhanu Chandra Mulukutla
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Andrew Yongky
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Prodromos Daoutidis
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
118
|
Micheloni A, Orsi G, De Maria C, Vozzi G. ADMET: ADipocyte METabolism mathematical model. Comput Methods Biomech Biomed Engin 2014; 18:1386-91. [DOI: 10.1080/10255842.2014.908855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
119
|
Shin M, Bryant JD, Momb J, Appling DR. Mitochondrial MTHFD2L is a dual redox cofactor-specific methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase expressed in both adult and embryonic tissues. J Biol Chem 2014; 289:15507-17. [PMID: 24733394 DOI: 10.1074/jbc.m114.555573] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian mitochondria are able to produce formate from one-carbon donors such as serine, glycine, and sarcosine. This pathway relies on the mitochondrial pool of tetrahydrofolate (THF) and several folate-interconverting enzymes in the mitochondrial matrix. We recently identified MTHFD2L as the enzyme that catalyzes the oxidation of 5,10-methylenetetrahydrofolate (CH2-THF) in adult mammalian mitochondria. We show here that the MTHFD2L enzyme is bifunctional, possessing both CH2-THF dehydrogenase and 5,10-methenyl-THF cyclohydrolase activities. The dehydrogenase activity can use either NAD(+) or NADP(+) but requires both phosphate and Mg(2+) when using NAD(+). The NADP(+)-dependent dehydrogenase activity is inhibited by inorganic phosphate. MTHFD2L uses the mono- and polyglutamylated forms of CH2-THF with similar catalytic efficiencies. Expression of the MTHFD2L transcript is low in early mouse embryos but begins to increase at embryonic day 10.5 and remains elevated through birth. In adults, MTHFD2L is expressed in all tissues examined, with the highest levels observed in brain and lung.
Collapse
Affiliation(s)
- Minhye Shin
- From the Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Joshua D Bryant
- From the Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Jessica Momb
- From the Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Dean R Appling
- From the Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
120
|
Noel A, Cheung KC, Schober R. Improving Receiver Performance of Diffusive Molecular Communication With Enzymes. IEEE Trans Nanobioscience 2014; 13:31-43. [DOI: 10.1109/tnb.2013.2295546] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
121
|
Moreno-Sánchez R, Marín-Hernández A, Saavedra E, Pardo JP, Ralph SJ, Rodríguez-Enríquez S. Who controls the ATP supply in cancer cells? Biochemistry lessons to understand cancer energy metabolism. Int J Biochem Cell Biol 2014; 50:10-23. [PMID: 24513530 DOI: 10.1016/j.biocel.2014.01.025] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/21/2014] [Accepted: 01/26/2014] [Indexed: 11/17/2022]
Abstract
Applying basic biochemical principles, this review analyzes data that contrasts with the Warburg hypothesis that glycolysis is the exclusive ATP provider in cancer cells. Although disregarded for many years, there is increasing experimental evidence demonstrating that oxidative phosphorylation (OxPhos) makes a significant contribution to ATP supply in many cancer cell types and under a variety of conditions. Substrates oxidized by normal mitochondria such as amino acids and fatty acids are also avidly consumed by cancer cells. In this regard, the proposal that cancer cells metabolize glutamine for anabolic purposes without the need for a functional respiratory chain and OxPhos is analyzed considering thermodynamic and kinetic aspects for the reductive carboxylation of 2-oxoglutarate catalyzed by isocitrate dehydrogenase. In addition, metabolic control analysis (MCA) studies applied to energy metabolism of cancer cells are reevaluated. Regardless of the experimental/environmental conditions and the rate of lactate production, the flux-control of cancer glycolysis is robust in the sense that it involves the same steps: glucose transport, hexokinase, hexosephosphate isomerase and glycogen degradation, all at the beginning of the pathway; these steps together with phosphofructokinase 1 also control glycolysis in normal cells. The respiratory chain complexes exert significantly higher flux-control on OxPhos in cancer cells than in normal cells. Thus, determination of the contribution of each pathway to ATP supply and/or the flux-control distribution of both pathways in cancer cells is necessary in order to identify differences from normal cells which may lead to the design of rational alternative therapies that selectively target cancer energy metabolism.
Collapse
Affiliation(s)
- Rafael Moreno-Sánchez
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Tlalpan, México D.F., Mexico.
| | - Alvaro Marín-Hernández
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Tlalpan, México D.F., Mexico
| | - Emma Saavedra
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Tlalpan, México D.F., Mexico
| | - Juan P Pardo
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica, México D.F., Mexico
| | - Stephen J Ralph
- School of Medical Sciences, Griffith University, Gold Coast Campus, Qld, Australia
| | - Sara Rodríguez-Enríquez
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Tlalpan, México D.F., Mexico; Instituto Nacional de Cancerología, Laboratorio de Medicina Translacional, Tlalpan, México D.F., Mexico
| |
Collapse
|
122
|
Regulatory and functional diversity of methylmercaptopropionate coenzyme A ligases from the dimethylsulfoniopropionate demethylation pathway in Ruegeria pomeroyi DSS-3 and other proteobacteria. J Bacteriol 2014; 196:1275-85. [PMID: 24443527 DOI: 10.1128/jb.00026-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The organosulfur compound dimethylsulfoniopropionate (DMSP) is produced by phytoplankton and is ubiquitous in the surface ocean. Once released from phytoplankton, marine bacteria degrade DMSP by either the cleavage pathway to form the volatile gas dimethylsulfide (DMS) or the demethylation pathway, yielding methanethiol (MeSH), which is readily assimilated or oxidized. The enzyme DmdB, a methylmercaptopropionate (MMPA)-coenzyme A (CoA) ligase, catalyzes the second step in the demethylation pathway and is a major regulatory point. The two forms of DmdB present in the marine roseobacter Ruegeria pomeroyi DSS-3, RPO_DmdB1 and RPO_DmdB2, and the single form in the SAR11 clade bacterium "Candidatus Pelagibacter ubique" HTCC1062, PU_DmdB1, were characterized in detail. DmdB enzymes were also examined from Ruegeria lacuscaerulensis ITI-1157, Pseudomonas aeruginosa PAO1, and Burkholderia thailandensis E264. The DmdB enzymes separated into two phylogenetic clades. All enzymes had activity with MMPA and were sensitive to inhibition by salts, but there was no correlation between the clades and substrate specificity or salt sensitivity. All Ruegeria species enzymes were inhibited by physiological concentrations (70 mM) of DMSP. However, ADP reversed the inhibition of RPO_DmdB1, suggesting that this enzyme was responsive to cellular energy charge. MMPA reversed the inhibition of RPO_DmdB2 as well as both R. lacuscaerulensis ITI-1157 DmdB enzymes, suggesting that a complex regulatory system exists in marine bacteria. In contrast, the DmdBs of the non-DMSP-metabolizing P. aeruginosa PAO1 and B. thailandensis E264 were not inhibited by DMSP, suggesting that DMSP inhibition is a specific adaptation of DmdBs from marine bacteria.
Collapse
|
123
|
González-García RA, Garcia-Peña EI, Salgado-Manjarrez E, Aranda-Barradas JS. Metabolic flux distribution and thermodynamic analysis of green fluorescent protein production in recombinant Escherichia coli: The effect of carbon source and CO 2 partial pressure. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0277-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
124
|
Analysis of Chinese hamster ovary cell metabolism through a combined computational and experimental approach. Cytotechnology 2013; 66:945-66. [PMID: 24292563 DOI: 10.1007/s10616-013-9648-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 09/20/2013] [Indexed: 01/22/2023] Open
Abstract
Optimization of cell culture processes can benefit from the systematic analysis of experimental data and their organization in mathematical models, which can be used to decipher the effect of individual process variables on multiple outputs of interest. Towards this goal, a kinetic model of cytosolic glucose metabolism coupled with a population-level model of Chinese hamster ovary cells was used to analyse metabolic behavior under batch and fed-batch cell culture conditions. The model was parameterized using experimental data for cell growth dynamics, extracellular and intracellular metabolite profiles. The results highlight significant differences between the two culture conditions in terms of metabolic efficiency and motivate the exploration of lactate as a secondary carbon source. Finally, the application of global sensitivity analysis to the model parameters highlights the need for additional experimental information on cell cycle distribution to complement metabolomic analyses with a view to parameterize kinetic models.
Collapse
|
125
|
Milo R. What is the total number of protein molecules per cell volume? A call to rethink some published values. Bioessays 2013; 35:1050-5. [PMID: 24114984 PMCID: PMC3910158 DOI: 10.1002/bies.201300066] [Citation(s) in RCA: 380] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Novel methods such as mass-spectrometry enable a view of the proteomes of cells in unprecedented detail. Recently, these efforts have culminated in quantitative measurements of the number of copies per cell for most expressed proteins in organisms ranging from bacteria to mammalian cells. Here, we estimate the expected total number of proteins per unit of cell volume using known parameters related to the composition of cells such as the fraction of cell mass that is protein, and the average protein length. Using simple arguments, we estimate a range of 2–4 million proteins per cubic micron (i.e. 1 fL) in bacteria, yeast, and mammalian cells. Interestingly, we find that measured values that are reported for fission yeast and mammalian cells are often about 3–10 times lower. We discuss this apparent discrepancy and how to use the estimate as benchmark to recalibrate proteome-wide quantitative censuses or to revisit assumptions about cell composition. We estimate the expected total number of proteins per unit cell volume as 2–4 million proteins per cubic micron. Some reported values for fission yeast and mammalian cells using mass spectrometry are 3–10 times lower than these estimates. We discuss this apparent discrepancy and how to recalibrate proteome-wide quantitative censuses.
Collapse
Affiliation(s)
- Ron Milo
- Department of Plant Sciences, Weizmann Institute of Science, Israel
| |
Collapse
|
126
|
Finka A, Goloubinoff P. Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis. Cell Stress Chaperones 2013; 18:591-605. [PMID: 23430704 PMCID: PMC3745260 DOI: 10.1007/s12192-013-0413-3] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 10/27/2022] Open
Abstract
In the crowded environment of human cells, folding of nascent polypeptides and refolding of stress-unfolded proteins is error prone. Accumulation of cytotoxic misfolded and aggregated species may cause cell death, tissue loss, degenerative conformational diseases, and aging. Nevertheless, young cells effectively express a network of molecular chaperones and folding enzymes, termed here "the chaperome," which can prevent formation of potentially harmful misfolded protein conformers and use the energy of adenosine triphosphate (ATP) to rehabilitate already formed toxic aggregates into native functional proteins. In an attempt to extend knowledge of chaperome mechanisms in cellular proteostasis, we performed a meta-analysis of human chaperome using high-throughput proteomic data from 11 immortalized human cell lines. Chaperome polypeptides were about 10% of total protein mass of human cells, half of which were Hsp90s and Hsp70s. Knowledge of cellular concentrations and ratios among chaperome polypeptides provided a novel basis to understand mechanisms by which the Hsp60, Hsp70, Hsp90, and small heat shock proteins (HSPs), in collaboration with cochaperones and folding enzymes, assist de novo protein folding, import polypeptides into organelles, unfold stress-destabilized toxic conformers, and control the conformal activity of native proteins in the crowded environment of the cell. Proteomic data also provided means to distinguish between stable components of chaperone core machineries and dynamic regulatory cochaperones.
Collapse
Affiliation(s)
- Andrija Finka
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
127
|
Chakrabarti A, Miskovic L, Soh KC, Hatzimanikatis V. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints. Biotechnol J 2013; 8:1043-57. [PMID: 23868566 DOI: 10.1002/biot.201300091] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/07/2013] [Accepted: 07/16/2013] [Indexed: 11/12/2022]
Abstract
Mathematical modeling is an essential tool for the comprehensive understanding of cell metabolism and its interactions with the environmental and process conditions. Recent developments in the construction and analysis of stoichiometric models made it possible to define limits on steady-state metabolic behavior using flux balance analysis. However, detailed information on enzyme kinetics and enzyme regulation is needed to formulate kinetic models that can accurately capture the dynamic metabolic responses. The use of mechanistic enzyme kinetics is a difficult task due to uncertainty in the kinetic properties of enzymes. Therefore, the majority of recent works considered only mass action kinetics for reactions in metabolic networks. Herein, we applied the optimization and risk analysis of complex living entities (ORACLE) framework and constructed a large-scale mechanistic kinetic model of optimally grown Escherichia coli. We investigated the complex interplay between stoichiometry, thermodynamics, and kinetics in determining the flexibility and capabilities of metabolism. Our results indicate that enzyme saturation is a necessary consideration in modeling metabolic networks and it extends the feasible ranges of metabolic fluxes and metabolite concentrations. Our results further suggest that enzymes in metabolic networks have evolved to function at different saturation states to ensure greater flexibility and robustness of cellular metabolism.
Collapse
Affiliation(s)
- Anirikh Chakrabarti
- Laboratory of Computational Systems Biotechnology (LCSB), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland; Swiss Institute of Bioinformatics, Switzerland
| | | | | | | |
Collapse
|
128
|
Farelli JD, Gumbart JC, Akey IV, Hempstead A, Amyot W, Head JF, McKnight CJ, Isberg RR, Akey CW. IcmQ in the Type 4b secretion system contains an NAD+ binding domain. Structure 2013; 21:1361-73. [PMID: 23850453 DOI: 10.1016/j.str.2013.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 05/06/2013] [Accepted: 05/26/2013] [Indexed: 12/23/2022]
Abstract
A Type 4b secretion system (T4bSS) is required for Legionella growth in alveolar macrophages. IcmQ associates with IcmR, binds to membranes, and has a critical role in the T4bSS. We have now solved a crystal structure of IcmR-IcmQ to further our understanding of this complex. This structure revealed an amphipathic four-helix bundle, formed by IcmR and the N-terminal domain of IcmQ, which is linked to a novel C-terminal domain of IcmQ (Qc) by a linker helix. The Qc domain has structural homology with ADP ribosyltransferase domains in certain bacterial toxins and binds NAD(+) with a dissociation constant in the physiological range. Structural homology and molecular dynamics were used to identify an extended NAD(+) binding site on Qc, and the resulting model was tested by mutagenesis and binding assays. Based on the data, we suggest that IcmR-IcmQ binds to membranes, where it may interact with, or perhaps modify, a protein in the T4bSS when NAD(+) is bound.
Collapse
Affiliation(s)
- Jeremiah D Farelli
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118-2526, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Valvano G, Orsi G, Guzzardi MA, Vozzi F, Vozzi G. CREPE: mathematical model for crosstalking of endothelial cells and hepatocyte metabolism. IEEE Trans Biomed Eng 2013; 61:224-30. [PMID: 23864152 DOI: 10.1109/tbme.2013.2272942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The liver shows a close coexistence between endothelial cells and hepatocytes (HepG2). Endothelial cells' main purpose is to protect (HepG2) from blood vessel shear stress, acting as a barrier, but experimental evidence suggests that they could also play a role in regulating (HepG2) glucose metabolism. A well-known singular effect in hepatocyte-endothelial co-cultures is the reduction of glucose consumption respect to (HepG2) in single culture. (HepG2) were shown to reduce their glucose consumption supporting energy needs of endothelial cells. Monti have studied the effects of endothelin-1 (Et-1) on Glucokinase activity in adult rat (HepG2). They observed a reduction in hepatocytes Glucokinase catalytic rate, which is dependent on Et-1 concentration. We developed crosstalking of endothelial cells and hepatocyte metabolism (CREPE) that is a mathematical model of the endothelin-1 mediated crosstalk between HepG2 and endothelial cells (human umbilical vein endothelial cells) in a traditional static co-culture system. CREPE was validated against experimental data, showing good agreement with them. CREPE can be a starting point to develop predictive tools on complex and highly interconnected environments.
Collapse
|
130
|
Honda Y, Kirimura K. Generation of circularly permuted fluorescent-protein-based indicators for in vitro and in vivo detection of citrate. PLoS One 2013; 8:e64597. [PMID: 23717638 PMCID: PMC3661591 DOI: 10.1371/journal.pone.0064597] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/15/2013] [Indexed: 11/30/2022] Open
Abstract
Indicators for citrate, particularly those applicable to its in vivo detection and quantitation, have attracted much interest in both biochemical studies and industrial applications since citrate is a key metabolic intermediate playing important roles in living cells. We generated novel fluorescence indicators for citrate by fusing the circularly permuted fluorescent protein (cpFP) and the periplasmic domain of the bacterial histidine kinase CitA, which can bind to citrate with high specificity. The ratiometric fluorescent signal change was observed with one of these cpFP-based indicators, named CF98: upon addition of citrate, the excitation peak at 504 nm increased proportionally to the decrease in the peak at 413 nm, suitable for build-in quantitative estimation of the binding compound. We confirmed that CF98 can be used for detecting citrate in vitro at millimolar levels in the range of 0.1 to 50 mM with high selectivity; even in the presence of other organic acids such as isocitrate and malate, the fluorescence intensity of CF98 remains unaffected. We finally demonstrated the in vivo applicability of CF98 to estimation of the intracellular citrate concentration in Escherichia coli co-expressing the genes encoding CF98 and the citrate carrier CitT. The novel indicator CF98 can be a specific and simple detection tool for citrate in vitro and a non-invasive tool for real-time estimation of intracellular concentrations of the compound in vivo.
Collapse
Affiliation(s)
- Yuki Honda
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Kohtaro Kirimura
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
131
|
Metallo CM, Vander Heiden MG. Understanding metabolic regulation and its influence on cell physiology. Mol Cell 2013; 49:388-98. [PMID: 23395269 DOI: 10.1016/j.molcel.2013.01.018] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 11/25/2012] [Accepted: 01/03/2013] [Indexed: 12/13/2022]
Abstract
Metabolism impacts all cellular functions and plays a fundamental role in biology. In the last century, our knowledge of metabolic pathway architecture and the genomic landscape of disease has increased exponentially. Combined with these insights, advances in analytical methods for quantifying metabolites and systems approaches to analyze these data now provide powerful tools to study metabolic regulation. Here we review the diverse mechanisms cells use to adapt metabolism to specific physiological states and discuss how metabolic flux analyses can be applied to identify important regulatory nodes to understand normal and pathological cell physiology.
Collapse
Affiliation(s)
- Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
132
|
Venditti V, Ghirlando R, Clore GM. Structural basis for enzyme I inhibition by α-ketoglutarate. ACS Chem Biol 2013; 8:1232-40. [PMID: 23506042 PMCID: PMC3735840 DOI: 10.1021/cb400027q] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Creating new bacterial strains in which carbon and nitrogen metabolism are uncoupled is potentially very useful for optimizing yields of microbial produced chemicals from renewable carbon sources. However, the mechanisms that balance carbon and nitrogen consumption in bacteria are poorly understood. Recently, α-ketoglutarate (αKG), the carbon substrate for ammonia assimilation, has been observed to inhibit Escherichia coli enzyme I (EI), the first component of the bacterial phosphotransferase system (PTS), thereby providing a direct biochemical link between central carbon and nitrogen metabolism. Here we investigate the EI-αKG interaction by NMR and enzymatic assays. We show that αKG binds with a KD of ∼2.2 mM at the active site of EI, acting as a competitive inhibitor. In addition, we use molecular docking simulations to derive a structural model of the enzyme-inhibitor complex that is fully consistent with NMR and analytical ultracentrifugation data. We expect that the EI-αKG structure presented here will provide a starting point for structure-based design of EI mutants resistant to αKG.
Collapse
Affiliation(s)
- Vincenzo Venditti
- Laboratorie of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - Rodolfo Ghirlando
- Laboratorie of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - G. Marius Clore
- Laboratorie of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| |
Collapse
|
133
|
Chen N, Koumpouras GC, Polizzi KM, Kontoravdi C. Genome-based kinetic modeling of cytosolic glucose metabolism in industrially relevant cell lines: Saccharomyces cerevisiae and Chinese hamster ovary cells. Bioprocess Biosyst Eng 2012; 35:1023-33. [PMID: 22286123 DOI: 10.1007/s00449-012-0687-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 01/13/2012] [Indexed: 01/23/2023]
Abstract
Model-based analysis of cellular metabolism can facilitate our understanding of intracellular kinetics and aid the improvement of cell growth and biological product manufacturing. In this paper, a model-based kinetic study of cytosolic glucose metabolism for two industrially relevant cell lines, Saccharomyces cerevisiae and Chinese hamster ovary (CHO) cells, based on enzyme genetic presence and expression information is described. We have reconstructed the cytosolic glucose metabolism map for S. cerevisiae and CHO cells, containing 18 metabolites and 18 enzymes using information from the Kyoto Encyclopedia of Genes and Genomes (KEGG). Based on this map, we have developed akinetic mathematical model for the pathways involved,considering regulation and/or inhibition by products orco-substrates. The values of the maximum rates of reactions(V(max)) were estimated based on kinetic parameter information and metabolic flux analysis results available in literature, and the resulting simulation results for steady-state metabolite concentrations are in good agreement with published experimental data. Finally, the model was used to analyse how the production of DHAP, an important intermediate in fine chemicals synthesis, could be increased using gene knockout.
Collapse
Affiliation(s)
- Ning Chen
- Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
134
|
Sarma U, Ghosh I. Different designs of kinase-phosphatase interactions and phosphatase sequestration shapes the robustness and signal flow in the MAPK cascade. BMC SYSTEMS BIOLOGY 2012; 6:82. [PMID: 22748295 PMCID: PMC3508828 DOI: 10.1186/1752-0509-6-82] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/09/2012] [Indexed: 02/08/2023]
Abstract
Background The three layer mitogen activated protein kinase (MAPK) signaling cascade exhibits different designs of interactions between its kinases and phosphatases. While the sequential interactions between the three kinases of the cascade are tightly preserved, the phosphatases of the cascade, such as MKP3 and PP2A, exhibit relatively diverse interactions with their substrate kinases. Additionally, the kinases of the MAPK cascade can also sequester their phosphatases. Thus, each topologically distinct interaction design of kinases and phosphatases could exhibit unique signal processing characteristics, and the presence of phosphatase sequestration may lead to further fine tuning of the propagated signal. Results We have built four architecturally distinct types of models of the MAPK cascade, each model with identical kinase-kinase interactions but unique kinases-phosphatases interactions. Our simulations unravelled that MAPK cascade’s robustness to external perturbations is a function of nature of interaction between its kinases and phosphatases. The cascade’s output robustness was enhanced when phosphatases were sequestrated by their target kinases. We uncovered a novel implicit/hidden negative feedback loop from the phosphatase MKP3 to its upstream kinase Raf-1, in a cascade resembling the B cell MAPK cascade. Notably, strength of the feedback loop was reciprocal to the strength of phosphatases’ sequestration and stronger sequestration abolished the feedback loop completely. An experimental method to verify the presence of the feedback loop is also proposed. We further showed, when the models were activated by transient signal, memory (total time taken by the cascade output to reach its unstimulated level after removal of signal) of a cascade was determined by the specific designs of interaction among its kinases and phosphatases. Conclusions Differences in interaction designs among the kinases and phosphatases can differentially shape the robustness and signal response behaviour of the MAPK cascade and phosphatase sequestration dramatically enhances the robustness to perturbations in each of the cascade. An implicit negative feedback loop was uncovered from our analysis and we found that strength of the negative feedback loop is reciprocally related to the strength of phosphatase sequestration. Duration of output phosphorylation in response to a transient signal was also found to be determined by the individual cascade’s kinase-phosphatase interaction design.
Collapse
Affiliation(s)
- Uddipan Sarma
- National Centre for Cell Science, Ganeshkhind, Pune-7, India.
| | | |
Collapse
|
135
|
Moisset P, Vaisman D, Cintolesi A, Urrutia J, Rapaport I, Andrews B, Asenjo J. Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters. Biotechnol Bioeng 2012; 109:2325-39. [DOI: 10.1002/bit.24503] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 11/12/2022]
|
136
|
Leonardi R, Subramanian C, Jackowski S, Rock CO. Cancer-associated isocitrate dehydrogenase mutations inactivate NADPH-dependent reductive carboxylation. J Biol Chem 2012; 287:14615-20. [PMID: 22442146 DOI: 10.1074/jbc.c112.353946] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Isocitrate dehydrogenase (IDH) is a reversible enzyme that catalyzes the NADP(+)-dependent oxidative decarboxylation of isocitrate (ICT) to α-ketoglutarate (αKG) and the NADPH/CO(2)-dependent reductive carboxylation of αKG to ICT. Reductive carboxylation by IDH1 was potently inhibited by NADP(+) and, to a lesser extent, by ICT. IDH1 and IDH2 with cancer-associated mutations at the active site arginines were unable to carry out the reductive carboxylation of αKG. These mutants were also defective in ICT decarboxylation and converted αKG to 2-hydroxyglutarate using NADPH. These mutant proteins were thus defective in both of the normal reactions of IDH. Biochemical analysis of heterodimers between wild-type and mutant IDH1 subunits showed that the mutant subunit did not inactivate reductive carboxylation by the wild-type subunit. Cells expressing the mutant IDH are thus deficient in their capacity for reductive carboxylation and may be compromised in their ability to produce acetyl-CoA under hypoxia or when mitochondrial function is otherwise impaired.
Collapse
Affiliation(s)
- Roberta Leonardi
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | |
Collapse
|
137
|
Zuris JA, Ali SS, Yeh H, Nguyen TA, Nechushtai R, Paddock ML, Jennings PA. NADPH inhibits [2Fe-2S] cluster protein transfer from diabetes drug target MitoNEET to an apo-acceptor protein. J Biol Chem 2012; 287:11649-55. [PMID: 22351774 DOI: 10.1074/jbc.m111.319731] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MitoNEET (mNT) is the founding member of the recently discovered CDGSH family of [2Fe-2S] proteins capable of [2Fe-2S] cluster transfer to apo-acceptor proteins. It is a target of the thiazolidinedione (TZD) class of anti-diabetes drugs whose binding modulate both electron transfer and cluster transfer properties. The [2Fe-2S] cluster in mNT is destabilized upon binding of NADPH, which leads to loss of the [2Fe-2S] cluster to the solution environment. Because mNT is capable of transferring [2Fe-2S] clusters to apo-acceptor proteins, we sought to determine whether NADPH binding also affects cluster transfer. We show that NADPH inhibits transfer of the [2Fe-2S] cluster to an apo-acceptor protein with an inhibition constant (K(i)) of 200 μm, which reflects that of NADPH concentrations expected under physiological conditions. In addition, we determined that the strictly conserved cluster interacting residue Asp-84 in the CDGSH domain is necessary for the NADPH-dependent inhibition of [2Fe-2S] cluster transfer. The most critical cellular function of NADPH is in the maintenance of a pool of reducing equivalents, which is essential to counteract oxidative damage. Taken together, our findings suggest that NADPH can regulate both mNT [2Fe-2S] cluster levels in the cell as well as the ability of the protein to transfer [2Fe-2S] clusters to cytosolic or mitochondrial acceptors.
Collapse
Affiliation(s)
- John A Zuris
- Department of Chemistry, University of California at San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | |
Collapse
|
138
|
Voets IK, Trappe V, Schurtenberger P. Generic pathways to stability in concentrated protein mixtures. Phys Chem Chem Phys 2012; 14:2929-33. [PMID: 22261790 DOI: 10.1039/c2cp22558a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a series of experimental results that disclose the crucial role of ionic strength and partial volume fractions in the control of the phase behaviour of binary protein mixtures. Our findings can be understood as that the ionic strength determines the relative contribution of the entropy of the protein counter-ions to the overall thermodynamics of the system. Associative phase separation and crystallization observed at, respectively, low and high ionic strength are suppressed at intermediate salt concentrations, where the entropy gain upon releasing the counter-ions from the double layer of the proteins is negligible and the entropy loss upon confining the counter-ions within the protein crystal phase significant. Moreover, we find that the partial volume fraction of the protein prone to crystallize determines the crystallization boundary and that the presence of other proteins strongly delays crystallization, leading to temporarily stable mixtures. These findings suggest that stability in more complex protein mixtures, such as the cytosol, relates to the ionic strength and protein composition rather than to protein specific properties.
Collapse
Affiliation(s)
- Ilja K Voets
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | | | | |
Collapse
|
139
|
Saha S, Ghose S, Adhikari R, Dua A. Nonrenewal statistics in the catalytic activity of enzyme molecules at mesoscopic concentrations. PHYSICAL REVIEW LETTERS 2011; 107:218301. [PMID: 22181931 DOI: 10.1103/physrevlett.107.218301] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Indexed: 05/31/2023]
Abstract
Recent fluorescence spectroscopy measurements of single-enzyme kinetics have shown that enzymatic turnovers form a renewal stochastic process in which the inverse of the mean waiting time between turnovers follows the Michaelis-Menten equation. We study enzyme kinetics at physiologically relevant mesoscopic concentrations using a master equation. From the exact solution of the master equation we find that the waiting times are neither independent nor identically distributed, implying that enzymatic turnovers form a nonrenewal stochastic process. The inverse of the mean waiting time shows strong departure from the Michaelis-Menten equation. The waiting times between consecutive turnovers are anticorrelated, where short intervals are more likely to be followed by long intervals and vice versa. Correlations persist beyond consecutive turnovers indicating that multiscale fluctuations govern enzyme kinetics.
Collapse
Affiliation(s)
- Soma Saha
- Department of Chemistry, Indian Institute of Technology, Madras, Chennai, India
| | | | | | | |
Collapse
|
140
|
Musset B, Cherny VV, DeCoursey TE. Strong glucose dependence of electron current in human monocytes. Am J Physiol Cell Physiol 2011; 302:C286-95. [PMID: 22012327 DOI: 10.1152/ajpcell.00335.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Reactive oxygen species (ROS) production by human monocytes differs profoundly from that by neutrophils and eosinophils in its dependence on external media glucose. Activated granulocytes produce vast amounts of ROS, even in the absence of glucose. Human peripheral blood monocytes (PBM), in contrast, are suspected not to be able to produce any ROS if glucose is absent from the media. Here we compare ROS production by monocytes and neutrophils, measured electrophysiologically on a single-cell level. Perforated-patch-clamp measurements revealed that electron current appeared after stimulation of PBM with phorbol myristate acetate. Electron current reflects the translocation of electrons through the NADPH oxidase, the main source of ROS production. The electron current was nearly abolished by omitting glucose from the media. Furthermore, in preactivated glucose-deprived cells, electron current appeared immediately with the addition of glucose to the bath. To characterize glucose dependence of PBM further, NADPH oxidase activity was assessed as hydrogen peroxide (H(2)O(2)) production and was recorded fluorometrically. H(2)O(2) production exhibited similar glucose dependence as did electron current. We show fundamental differences in the glucose dependence of ROS in human monocytes compared with human neutrophils.
Collapse
Affiliation(s)
- Boris Musset
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
141
|
Cossins BP, Jacobson MP, Guallar V. A new view of the bacterial cytosol environment. PLoS Comput Biol 2011; 7:e1002066. [PMID: 21695225 PMCID: PMC3111478 DOI: 10.1371/journal.pcbi.1002066] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Accepted: 04/09/2011] [Indexed: 11/19/2022] Open
Abstract
The cytosol is the major environment in all bacterial cells. The true physical and dynamical nature of the cytosol solution is not fully understood and here a modeling approach is applied. Using recent and detailed data on metabolite concentrations, we have created a molecular mechanical model of the prokaryotic cytosol environment of Escherichia coli, containing proteins, metabolites and monatomic ions. We use 200 ns molecular dynamics simulations to compute diffusion rates, the extent of contact between molecules and dielectric constants. Large metabolites spend ∼80% of their time in contact with other molecules while small metabolites vary with some only spending 20% of time in contact. Large non-covalently interacting metabolite structures mediated by hydrogen-bonds, ionic and π stacking interactions are common and often associate with proteins. Mg2+ ions were prominent in NIMS and almost absent free in solution. Κ+ is generally not involved in NIMSs and populates the solvent fairly uniformly, hence its important role as an osmolyte. In simulations containing ubiquitin, to represent a protein component, metabolite diffusion was reduced owing to long lasting protein-metabolite interactions. Hence, it is likely that with larger proteins metabolites would diffuse even more slowly. The dielectric constant of these simulations was found to differ from that of pure water only through a large contribution from ubiquitin as metabolite and monatomic ion effects cancel. These findings suggest regions of influence specific to particular proteins affecting metabolite diffusion and electrostatics. Also some proteins may have a higher propensity for associations with metabolites owing to their larger electrostatic fields. We hope that future studies may be able to accurately predict how binding interactions differ in the cytosol relative to dilute aqueous solution. The cytosol is the major cellular environment housing the majority of cellular activity. Although the cytosol is an aqueous environment, it contains high concentrations of ions, metabolites, and proteins, making it very different from dilute aqueous solution, which is frequently used for in vitro biochemistry. Recent advances in metabolomics have provided detailed concentration data for metabolites in E.coli. We used this information to construct accurate atomistic models of the cytosol solution. We find that, unlike the situation in dilute solutions, most metabolites spend the majority of their time in contact with other metabolites, or in contact with proteins. Furthermore, we find large non-covalently interacting metabolite structures are common and often associated with proteins. The presence of proteins reduced metabolite diffusion owing to long lasting correlations of motion. The dielectric constant of these simulations was found to differ from that of pure water only through a large contribution from proteins as metabolite and monatomic ion effects largely cancel. These findings suggest specific protein spheres of influence affecting metabolite diffusion and the electrostatic environment.
Collapse
Affiliation(s)
- Benjamin P. Cossins
- Department of Life Science, Barcelona Supercomputer Center, Barcelona, Spain
| | - Matthew P. Jacobson
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Victor Guallar
- Department of Life Science, Barcelona Supercomputer Center, Barcelona, Spain
- * E-mail:
| |
Collapse
|
142
|
Costa R, Rocha I, Ferreira E, Machado D. Critical perspective on the consequences of the limited availability of kinetic data in metabolic dynamic modelling. IET Syst Biol 2011; 5:157-63. [DOI: 10.1049/iet-syb.2009.0058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
143
|
Wolfenden R, Lewis CA, Yuan Y. Kinetic challenges facing oxalate, malonate, acetoacetate, and oxaloacetate decarboxylases. J Am Chem Soc 2011; 133:5683-5. [PMID: 21434608 DOI: 10.1021/ja111457h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To compare the powers of the corresponding enzymes as catalysts, the rates of uncatalyzed decarboxylation of several aliphatic acids (oxalate, malonate, acetoacetate, and oxaloacetate) were determined at elevated temperatures and extrapolated to 25 °C. In the extreme case of oxalate, the rate of the uncatalyzed reaction at pH 4.2 was 1.1 × 10(-12) s(-1), implying a 2.5 × 10(13)-fold rate enhancement by oxalate decarboxylase. Whereas the enzymatic decarboxylation of oxalate requires O(2) and Mn(II), the uncatalyzed reaction is unaffected by the presence of these cofactors and appears to proceed by heterolytic elimination of CO(2).
Collapse
Affiliation(s)
- Richard Wolfenden
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260, United States.
| | | | | |
Collapse
|
144
|
Watson PY, Fedor MJ. The glmS riboswitch integrates signals from activating and inhibitory metabolites in vivo. Nat Struct Mol Biol 2011; 18:359-63. [PMID: 21317896 PMCID: PMC3075592 DOI: 10.1038/nsmb.1989] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 11/25/2010] [Indexed: 12/20/2022]
Abstract
The glmS riboswitch belongs to the family of regulatory RNAs that provide feedback regulation of metabolic genes. It is also a ribozyme that self-cleaves upon binding glucosamine-6-phosphate, the product of the enzyme encoded by glmS. The ligand concentration dependence of intracellular self-cleavage kinetics was measured for the first time in a yeast model system and unexpectedly revealed that this riboswitch is subject to inhibition as well as activation by hexose metabolites. Reporter gene experiments in Bacillus subtilis confirmed that this riboswitch integrates positive and negative chemical signals in its natural biological context. Contrary to the conventional view that a riboswitch responds to just a single cognate metabolite, our new model proposes that a single riboswitch integrates information from an array of chemical signals to modulate gene expression based on the overall metabolic state of the cell.
Collapse
Affiliation(s)
- Peter Y. Watson
- Department of Chemical Physiology, Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Martha J. Fedor
- Department of Chemical Physiology, Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
145
|
Jin G, Reitman ZJ, Spasojevic I, Batinic-Haberle I, Yang J, Schmidt-Kittler O, Bigner DD, Yan H. 2-hydroxyglutarate production, but not dominant negative function, is conferred by glioma-derived NADP-dependent isocitrate dehydrogenase mutations. PLoS One 2011; 6:e16812. [PMID: 21326614 PMCID: PMC3033901 DOI: 10.1371/journal.pone.0016812] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 01/03/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Gliomas frequently contain mutations in the cytoplasmic NADP(+)-dependent isocitrate dehydrogenase (IDH1) or the mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDH2). Several different amino acid substitutions recur at either IDH1 R132 or IDH2 R172 in glioma patients. Genetic evidence indicates that these mutations share a common gain of function, but it is unclear whether the shared function is dominant negative activity, neomorphic production of (R)-2-hydroxyglutarate (2HG), or both. METHODOLOGY/PRINCIPAL FINDINGS We show by coprecipitation that five cancer-derived IDH1 R132 mutants bind IDH1-WT but that three cancer-derived IDH2 R172 mutants exert minimal binding to IDH2-WT. None of the mutants dominant-negatively lower isocitrate dehydrogenase activity at physiological (40 µM) isocitrate concentrations in mammalian cell lysates. In contrast to this, all of these mutants confer 10- to 100-fold higher 2HG production to cells, and glioma tissues containing IDH1 R132 or IDH2 R172 mutations contain high levels of 2HG compared to glioma tissues without IDH mutations (54.4 vs. 0.1 mg 2HG/g protein). CONCLUSIONS Binding to, or dominant inhibition of, WT IDH1 or IDH2 is not a shared feature of the IDH1 and IDH2 mutations, and thus is not likely to be important in cancer. The fact that the gain of the enzymatic activity to produce 2HG is a shared feature of the IDH1 and IDH2 mutations suggests that this is an important function for these mutants in driving cancer pathogenesis.
Collapse
Affiliation(s)
- Genglin Jin
- The Preston Robert Tisch Brain Tumor Center at Duke, Pediatric Brain Tumor Foundation Institute, and Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Orsi G, De Maria C, Guzzardi M, Vozzi F, Vozzi G. HEMETβ: improvement of hepatocyte metabolism mathematical model. Comput Methods Biomech Biomed Engin 2011; 14:837-51. [DOI: 10.1080/10255842.2010.497145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
147
|
Moehlenbrock MJ, Toby TK, Pelster LN, Minteer SD. Metabolon Catalysts: An Efficient Model for Multi-enzyme Cascades at Electrode Surfaces. ChemCatChem 2011. [DOI: 10.1002/cctc.201000384] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
148
|
Lubitz T, Schulz M, Klipp E, Liebermeister W. Parameter balancing in kinetic models of cell metabolism. J Phys Chem B 2010; 114:16298-303. [PMID: 21038890 PMCID: PMC2999964 DOI: 10.1021/jp108764b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Kinetic modeling of metabolic pathways has become a major field of systems biology. It combines structural information about metabolic pathways with quantitative enzymatic rate laws. Some of the kinetic constants needed for a model could be collected from ever-growing literature and public web resources, but they are often incomplete, incompatible, or simply not available. We address this lack of information by parameter balancing, a method to complete given sets of kinetic constants. Based on Bayesian parameter estimation, it exploits the thermodynamic dependencies among different biochemical quantities to guess realistic model parameters from available kinetic data. Our algorithm accounts for varying measurement conditions in the input data (pH value and temperature). It can process kinetic constants and state-dependent quantities such as metabolite concentrations or chemical potentials, and uses prior distributions and data augmentation to keep the estimated quantities within plausible ranges. An online service and free software for parameter balancing with models provided in SBML format (Systems Biology Markup Language) is accessible at www.semanticsbml.org. We demonstrate its practical use with a small model of the phosphofructokinase reaction and discuss its possible applications and limitations. In the future, parameter balancing could become an important routine step in the kinetic modeling of large metabolic networks.
Collapse
Affiliation(s)
- Timo Lubitz
- Humboldt-Universität zu Berlin, Institut für Biologie, Theoretische Biophysik, Invalidenstrasse 42, D-10115 Berlin
| | | | | | | |
Collapse
|
149
|
Jamshidi N, Palsson BØ. Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models. Biophys J 2010; 98:175-85. [PMID: 20338839 DOI: 10.1016/j.bpj.2009.09.064] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 08/30/2009] [Accepted: 09/22/2009] [Indexed: 01/28/2023] Open
Abstract
The ability to characterize biological dynamics is important for understanding the integrated molecular processes that underlie normal and abnormal cellular states. The availability of metabolomic data, in addition to new developments in the formal description of dynamic states of networks, has enabled a new data integration approach for building large-scale kinetic networks. We show that dynamic network models can be constructed in a scalable manner using metabolomic data mapped onto stoichiometric models, resulting in mass action stoichiometric simulation (MASS) models. Enzymes and their various functional states are represented explicitly as compounds, or nodes in a stoichiometric network, within this formalism. Analyses and simulations of MASS models explicitly show that regulatory enzymes can control dynamic states of networks in part by binding numerous metabolites at multiple sites. Thus, network functional states are reflected in the fractional states of a regulatory enzyme, such as the fraction of the total enzyme concentration that is in a catalytically active versus inactive state. The feasible construction of MASS models represents a practical means to increase the size, scope, and predictive capabilities of dynamic network models in cell and molecular biology.
Collapse
Affiliation(s)
- Neema Jamshidi
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | | |
Collapse
|
150
|
Abstract
AbstractAmong four pyruvate kinase isoenzymes, M1, M2, R and L, only M1 is considered as a nonallosteric enzyme. However, here we show that the non-phosphorylated L-type pyruvate kinase (L-PK) is also a non-allosteric enzyme with respect to its substrate phosphoenolpyruvate (PEP). The allosteric catalytic properties of L-PK are switched on through phosphorylation by cAMP-dependent protein kinase. The non-phosphorylated enzyme was produced by expressing the rat L-PK in E. coli, as the bacterium does not have mammalian-type protein kinases. The resulting tetrameric protein was phosphorylated with a stoichiometric ratio of one mole of phosphate per one L-PK monomer. Activity of the phosphorylated enzyme was allosterically regulated by PEP with the Hill coefficient n=2.5. It was observed that allostery was engaged by phosphorylation of the first subunit in the tetrameric enzyme, while further phosphorylation only modulated this effect. The discovered switching between non-allosteric and allosteric forms of L-PK and the possibility of modulating the allostery by phosphorylation are important for understanding of the interrelationship between allostery and the regulatory phosphorylation in general, and may have implication for further analysis of glycolysis regulation in the liver.
Collapse
|