101
|
Shifrin N, Raulet DH, Ardolino M. NK cell self tolerance, responsiveness and missing self recognition. Semin Immunol 2014; 26:138-44. [PMID: 24629893 PMCID: PMC3984600 DOI: 10.1016/j.smim.2014.02.007] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 02/12/2014] [Indexed: 01/01/2023]
Abstract
Natural killer (NK) cells represent a first line of defense against pathogens and tumor cells. The activation of NK cells is regulated by the integration of signals deriving from activating and inhibitory receptors expressed on their surface. However, different NK cells respond differently to the same stimulus, be it target cells or agents that crosslink activating receptors. The processes that determine the level of NK cell responsiveness have been referred to collectively as NK cell education. NK cell education plays an important role in steady state conditions, where potentially auto-reactive NK cells are rendered tolerant to the surrounding environment. According to the "tuning" concept, the responsiveness of each NK cell is quantitatively adjusted to ensure self tolerance while at the same time ensuring useful reactivity against potential threats. MHC-specific inhibitory receptors displayed by NK cells play a major role in tuning NK cell responsiveness, but recent studies indicate that signaling from activating receptors is also important, suggesting that the critical determinant is an integrated signal from both types of receptors. An important and still unresolved question is whether NK cell education involves interactions with a specific cell population in the environment. Whether hematopoietic and/or non-hematopoietic cells play a role is still under debate. Recent results demonstrated that NK cell tuning exhibits plasticity in steady state conditions, meaning that it can be re-set if the MHC environment changes. Other evidence suggests, however, that inflammatory conditions accompanying infections may favor high responsiveness, indicating that inflammatory agents can over-ride the natural tendency of NK cells to adjust to the steady state environment. These findings raise many questions such as whether viruses and tumor cells manipulate NK cell responsiveness to evade immune-recognition. As knowledge of the underlying processes grows, the possibility of modulating NK cell responsiveness for therapeutic purposes is becoming increasingly attractive, and is now under serious investigation in clinical studies.
Collapse
Affiliation(s)
- Nataliya Shifrin
- Department of Molecular and Cell Biology and Cancer Research Laboratory, Division of Immunology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - David H Raulet
- Department of Molecular and Cell Biology and Cancer Research Laboratory, Division of Immunology, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Michele Ardolino
- Department of Molecular and Cell Biology and Cancer Research Laboratory, Division of Immunology, University of California at Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
102
|
Marcus A, Eshhar Z. Allogeneic chimeric antigen receptor-modified cells for adoptive cell therapy of cancer. Expert Opin Biol Ther 2014; 14:947-54. [PMID: 24661086 DOI: 10.1517/14712598.2014.900540] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Chimeric antigen (or antibody) receptors (CAR) are fusion proteins typically combining an antibody-derived targeting fragment with signaling domains capable of activating immune cells. Recent clinical trials have shown the tremendous potential of adoptive cell transfer (ACT) of autologous T cells engineered to express a CD19-specific CAR targeting B-cell malignancies. Building on this approach, ACT therapies employing allogeneic CAR-expressing cytotoxic cells are now being explored. AREAS COVERED The basic principles of CAR-ACT are introduced. The potential benefits as well as problems of using allogeneic CAR-modified cells against tumor antigens are discussed. Various approaches to allogeneic CAR therapy are presented, including donor leukocyte infusion, CAR-redirected γδ T cells and natural killer cells, strategies to avoid graft-versus-host disease, modulation of lymphocyte migration, and exploitation of graft-versus-host reactivity. EXPERT OPINION CAR-modified allogeneic cells have the potential to act as universal effector cells, which can be administered to any patient regardless of MHC type. Such universal effector cells could be used as an 'off-the-shelf' cell-mediated treatment for cancer.
Collapse
Affiliation(s)
- Assaf Marcus
- University of California, Department of Molecular and Cell Biology, Cancer Research Laboratory Berkeley , Berkeley, CA 94720-3200 , USA
| | | |
Collapse
|
103
|
Rashidi A. Tumors with a more complex genome have a higher frequency of HLA class I total loss: a unifying pan-cancer hypothesis. ACTA ACUST UNITED AC 2014; 83:286-9. [PMID: 24571087 DOI: 10.1111/tan.12315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 12/13/2022]
Affiliation(s)
- A Rashidi
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
104
|
Romero I, Garrido C, Algarra I, Collado A, Garrido F, Garcia-Lora AM. T lymphocytes restrain spontaneous metastases in permanent dormancy. Cancer Res 2014; 74:1958-68. [PMID: 24531750 DOI: 10.1158/0008-5472.can-13-2084] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor dormancy is a clinical phenomenon related to immune equilibrium during cancer immunoediting. The mechanisms involved in dormant metastases are poorly understood due to the lack of preclinical models. Here, we present a nontransgenic mouse model in which spontaneous metastases remain in permanent immunomediated dormancy with no additional antitumor treatment. After the injection of a GR9-B11 mouse fibrosarcoma clone into syngeneic BALB/c mice, all animals remained free of spontaneous metastases at the experimental endpoints (3-8 months) but also as long as 24 months after tumor cell injection. Strikingly, when tumor-bearing mice were immunodepleted of T lymphocytes or asialo GM1-positive cells, the restraint on dormant disseminated metastatic cells was relieved and lung metastases progressed. Immunostimulation was documented at both local and systemic levels, with results supporting the evidence that the immune system was able to restrain spontaneous metastases in permanent dormancy. Notably, the GR9-B11 tumor clone did not express MHC class I molecules on the cell surface, yet all metastases in immunodepleted mice were MHC class I-positive. This model system may be valuable for more in-depth analyses of metastatic dormancy, offering new opportunities for immunotherapeutic management of metastatic disease.
Collapse
Affiliation(s)
- Irene Romero
- Authors' Affiliations: Dept. Analisis Clinicos e Inmunologia, UGC Laboratorio Clínico; Unidad de Investigación, Hospital Universitario Virgen de las Nieves, Granada; Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada; and Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
| | | | | | | | | | | |
Collapse
|
105
|
Marcus A, Gowen BG, Thompson TW, Iannello A, Ardolino M, Deng W, Wang L, Shifrin N, Raulet DH. Recognition of tumors by the innate immune system and natural killer cells. Adv Immunol 2014; 122:91-128. [PMID: 24507156 PMCID: PMC4228931 DOI: 10.1016/b978-0-12-800267-4.00003-1] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, roles of the immune system in immune surveillance of cancer have been explored using a variety of approaches. The roles of the adaptive immune system have been a major emphasis, but increasing evidence supports a role for innate immune effector cells such as natural killer (NK) cells in tumor surveillance. Here, we discuss some of the evidence for roles in tumor surveillance of innate immune cells. In particular, we focus on NK cells and other immune cells that express germline-encoded receptors, often labeled NK receptors. The impact of these receptors and the cells that express them on tumor suppression is summarized. We discuss in detail some of the pathways and events in tumor cells that induce or upregulate cell-surface expression of the ligands for these receptors, and the logic of how those pathways serve to identify malignant, or potentially malignant cells. How tumors often evade tumor suppression mediated by innate killer cells is another major subject of the review. We end with a discussion on some of the implications of the various findings with respect to possible therapeutic approaches.
Collapse
Affiliation(s)
- Assaf Marcus
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - Benjamin G Gowen
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - Thornton W Thompson
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - Alexandre Iannello
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - Michele Ardolino
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - Weiwen Deng
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - Lin Wang
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - Nataliya Shifrin
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - David H Raulet
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA.
| |
Collapse
|
106
|
Srivatsan S, Patel JM, Bozeman EN, Imasuen IE, He S, Daniels D, Selvaraj P. Allogeneic tumor cell vaccines: the promise and limitations in clinical trials. Hum Vaccin Immunother 2013; 10:52-63. [PMID: 24064957 DOI: 10.4161/hv.26568] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The high mortality rate associated with cancer and its resistance to conventional treatments such as radiation and chemotherapy has led to the investigation of a variety of anti-cancer immunotherapies. The development of novel immunotherapies has been bolstered by the discovery of tumor-associated antigens (TAAs), through gene sequencing and proteomics. One such immunotherapy employs established allogeneic human cancer cell lines to induce antitumor immunity in patients through TAA presentation. Allogeneic cancer immunotherapies are desirable in a clinical setting due to their ease of production and availability. This review aims to summarize clinical trials of allogeneic tumor immunotherapies in various cancer types. To date, clinical trials have shown limited success due potentially to extensive degrees of inter- and intra-tumoral heterogeneity found among cancer patients. However, these clinical results provide guidance for the rational design and creation of more effective allogeneic tumor immunotherapies for use as monotherapies or in combination with other therapies.
Collapse
Affiliation(s)
- Sanjay Srivatsan
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta, GA USA
| | - Jaina M Patel
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta, GA USA
| | - Erica N Bozeman
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta, GA USA
| | - Imade E Imasuen
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta, GA USA
| | - Sara He
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta, GA USA
| | - Danielle Daniels
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta, GA USA
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta, GA USA
| |
Collapse
|
107
|
Raaijmakers MIG, Rozati S, Goldinger SM, Widmer DS, Dummer R, Levesque MP. Melanoma immunotherapy: historical precedents, recent successes and future prospects. Immunotherapy 2013; 5:169-82. [PMID: 23413908 DOI: 10.2217/imt.12.162] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The idea of cancer immunotherapy has been around for more than a century; however, the first immunotherapeutic ipilimumab, an anti-CTLA-4 antibody, has only recently been approved by the US FDA for melanoma. With an increasing understanding of the immune response, it is expected that more therapies will follow. This review aims to provide a general overview of immunotherapy in melanoma. We first explain the development of cancer immunotherapy more than a century ago and the general opinions about it over time. This is followed by a general overview of the immune reaction in order to give insight into the possible targets for therapy. Finally, we will discuss the current therapies for melanoma, their shortcomings and why it is important to develop patient stratification criteria. We conclude with an overview of recent discoveries and possible future therapies.
Collapse
Affiliation(s)
- Marieke I G Raaijmakers
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
108
|
Gyorki DE, Callahan M, Wolchok JD, Ariyan CE. The delicate balance of melanoma immunotherapy. Clin Transl Immunology 2013; 2:e5. [PMID: 25505953 PMCID: PMC4232053 DOI: 10.1038/cti.2013.5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/21/2013] [Accepted: 06/22/2013] [Indexed: 12/31/2022] Open
Abstract
The strategy of immune modulation for the treatment of cancer is being refined with the introduction of multiple new therapeutic agents into the clinic. Melanoma is a disease where many of these agents have demonstrated efficacy. The mechanisms of action of these agents exploit the counter-regulatory mechanisms of the immune response. However, these agents are also associated with immune-related adverse events (IRAEs), which represent tissue-specific inflammatory responses. These IRAEs highlight the delicate balance of immunologic homeostasis and, with some interventions, may occur more frequently in patients who sustain a therapeutic response. This review will discuss melanoma immunogenicity and immunotherapy. Furthermore, the spectrum and distinction between a reversible immune adverse event and autoimmunity will be highlighted.
Collapse
Affiliation(s)
- David E Gyorki
- Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Margaret Callahan
- Memorial Sloan-Kettering Cancer Center , New York, NY, USA ; Ludwig Center, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Jedd D Wolchok
- Memorial Sloan-Kettering Cancer Center , New York, NY, USA ; Ludwig Center, Memorial Sloan-Kettering Cancer Center , New York, NY, USA ; Weill Cornell Medical College , New York, NY, USA
| | - Charlotte E Ariyan
- Memorial Sloan-Kettering Cancer Center , New York, NY, USA ; Weill Cornell Medical College , New York, NY, USA
| |
Collapse
|
109
|
Leone P, Shin EC, Perosa F, Vacca A, Dammacco F, Racanelli V. MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J Natl Cancer Inst 2013; 105:1172-87. [PMID: 23852952 DOI: 10.1093/jnci/djt184] [Citation(s) in RCA: 369] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The surface presentation of peptides by major histocompatibility complex (MHC) class I molecules is critical to all CD8(+) T-cell adaptive immune responses, including those against tumors. The generation of peptides and their loading on MHC class I molecules is a multistep process involving multiple molecular species that constitute the so-called antigen processing and presenting machinery (APM). The majority of class I peptides begin as proteasome degradation products of cytosolic proteins. Once transported into the endoplasmic reticulum by TAP (transporter associated with antigen processing), peptides are not bound randomly by class I molecules but are chosen by length and sequence, with peptidases editing the raw peptide pool. Aberrations in APM genes and proteins have frequently been observed in human tumors and found to correlate with relevant clinical variables, including tumor grade, tumor stage, disease recurrence, and survival. These findings support the idea that APM defects are immune escape mechanisms that disrupt the tumor cells' ability to be recognized and killed by tumor antigen-specific cytotoxic CD8(+) T cells. Detailed knowledge of APM is crucial for the optimization of T cell-based immunotherapy protocols.
Collapse
Affiliation(s)
- Patrizia Leone
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | | | | | | | | | | |
Collapse
|
110
|
Skov V, Riley CH, Thomassen M, Larsen TS, Jensen MK, Bjerrum OW, Kruse TA, Hasselbalch HC. Whole blood transcriptional profiling reveals significant down-regulation of human leukocyte antigen class I and II genes in essential thrombocythemia, polycythemia vera and myelofibrosis. Leuk Lymphoma 2013; 54:2269-73. [DOI: 10.3109/10428194.2013.764417] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
111
|
Vago L, Toffalori C, Ciceri F, Fleischhauer K. Genomic loss of mismatched human leukocyte antigen and leukemia immune escape from haploidentical graft-versus-leukemia. Semin Oncol 2013. [PMID: 23206847 DOI: 10.1053/j.seminoncol.2012.09.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent developments in cell processing and immunosuppressive strategies has allowed the safe infusion of high numbers of donor T cells in the context of clinical haploidentical hematopoietic stem cell transplantation (HSCT). Haploidentical T cells display an intrinsic ability to recognize and eliminate residual patient leukemic cells, largely due to alloreactivity against the patient-specific human leukocyte antigen (HLA) molecules encoded on the mismatched haplotype. However, recent evidence has shown that leukemia, like many other tumors displaying pronounced genomic instability, is frequently able to evade this potent graft-versus-leukemia effect by undergoing de novo genomic mutations, which result in the permanent loss of only those HLA molecules targeted by haploidentical donor T-cell alloreactivity. This review summarizes the recent clinical and experimental evidence regarding this phenomenon, and its therapeutic and clinical consequences.
Collapse
Affiliation(s)
- Luca Vago
- Hematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milano, Italy.
| | | | | | | |
Collapse
|
112
|
Vermeer DW, Spanos WC, Vermeer PD, Bruns AM, Lee KM, Lee JH. Radiation-induced loss of cell surface CD47 enhances immune-mediated clearance of human papillomavirus-positive cancer. Int J Cancer 2013; 133:120-9. [PMID: 23292955 DOI: 10.1002/ijc.28015] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/26/2012] [Indexed: 12/26/2022]
Abstract
The increasing incidence of human papillomavirus (HPV) related oropharyngeal squamous cell carcinoma (OSSC) demands development of novel therapies. Despite presenting at a more advanced stage, HPV(+) oropharyngeal squamous cell carcinoma (OSCC) have a better prognosis than their HPV(-) counterparts. We have previously demonstrated that clearance of HPV(+) OSCC during treatment with radiation and chemotherapy requires an immune response which is likely responsible for the improved clinical outcomes. To further elucidate the mechanism of immune-mediated clearance, we asked whether radiation therapy induces tumor cell changes that allow the body to recognize and aid in tumor clearance. Here, we describe a radiation-induced change in tumor surface protein expression that is critical for immune-mediated clearance. Radiation therapy decreases surface expression of CD47, a self-marker. CD47 is frequently overexpressed in head and neck squamous cell carcinoma and radiation induces a decrease of CD47 in a dose-dependent manner. We show that both in vitro and in vivo tumor cell CD47 protein levels are restored over time after sublethal radiation exposure and that protein levels on adjacent, normal tissues remain unaffected. Furthermore, reduction of tumor cell CD47 increases phagocytosis of these cells by dendritic cells and leads to increased interferon gamma and granzyme production from mixed lymphocytes. Finally, decreasing tumor cell CD47 in combination with standard radiation and chemotherapy results in improved immune-mediated tumor clearance in vivo. These findings help define an important mechanism of radiation-related immune clearance and suggest that decreasing CD47 specifically on tumor cells may be a good therapeutic target for HPV related disease.
Collapse
Affiliation(s)
- Daniel W Vermeer
- Cancer Biology Research Center, Sanford Research/University of South Dakota, Sioux Falls, SD 57104, USA
| | | | | | | | | | | |
Collapse
|
113
|
Foulds GA, Radons J, Kreuzer M, Multhoff G, Pockley AG. Influence of tumors on protective anti-tumor immunity and the effects of irradiation. Front Oncol 2013; 3:14. [PMID: 23378947 PMCID: PMC3561630 DOI: 10.3389/fonc.2013.00014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/15/2013] [Indexed: 12/20/2022] Open
Abstract
Innate and adaptive immunity plays important roles in the development and progression of cancer and it is becoming apparent that tumors can influence the induction of potentially protective responses in a number of ways. The prevalence of immunoregulatory T cell populations in the circulation and tumors of patients with cancer is increased and the presence of these cells appears to present a major barrier to the induction of tumor immunity. One aspect of tumor-mediated immunoregulation which has received comparatively little attention is that which is directed toward natural killer (NK) cells, although evidence that the phenotype and function of NK cell populations are modified in patients with cancer is accumulating. Although the precise mechanisms underlying these localized and systemic immunoregulatory effects remain unclear, tumor-derived factors appear, in part at least, to be involved. The effects could be manifested by an altered function and/or via an influence on the migratory properties of individual cell subsets. A better insight into endogenous immunoregulatory mechanisms and the capacity of tumors to modify the phenotype and function of innate and adaptive immune cells might assist the development of new immunotherapeutic approaches and improve the management of patients with cancer. This article reviews current knowledge relating to the influence of tumors on protective anti-tumor immunity and considers the potential influence that radiation-induced effects might have on the prevalence, phenotype, and function of innate and adaptive immune cells in patients with cancer.
Collapse
Affiliation(s)
- Gemma A Foulds
- Department of Oncology, The Medical School, The University of Sheffield Sheffield, UK ; Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München Munich, Germany
| | | | | | | | | |
Collapse
|
114
|
Höchst B, Schildberg FA, Böttcher J, Metzger C, Huss S, Türler A, Overhaus M, Knoblich A, Schneider B, Pantelis D, Kurts C, Kalff JC, Knolle P, Diehl L. Liver sinusoidal endothelial cells contribute to CD8 T cell tolerance toward circulating carcinoembryonic antigen in mice. Hepatology 2012; 56:1924-33. [PMID: 22610745 DOI: 10.1002/hep.25844] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 05/08/2012] [Indexed: 12/11/2022]
Abstract
UNLABELLED Immunity against cancer is impeded by local mechanisms promoting development of tumor-specific T cell tolerance, such as regulatory T cells, myeloid-derived suppressor cells, or immunosuppressive factors in the tumor microenvironment. The release of soluble antigens, such as carcinoembryonic antigen (CEA) from colorectal carcinoma (CRC) cells, has been investigated for diagnostic purposes, but not for its immunological consequences. Here, we address the question of whether soluble CEA influences tumor-specific immunity. Mice were injected with soluble CEA protein, and CEA-specific CD8 T cells were analyzed for their phenotype and functionality by means of restimulation ex vivo or antitumor efficacy in vivo. We furthermore characterized the CD8 T cell population in peripheral blood mononuclear cell (PBMCs) from healthy donors and colorectal carcinoma patients. In mice, circulating CEA was preferentially taken up in a mannose receptor-dependent manner and cross-presented by liver sinusoidal endothelial cells, but not dendritic cells, to CD8 T cells. Such systemically circulating CEA promoted tolerization of CEA-specific CD8 T cells in the endogenous T cell repertoire through the coinhibitory molecule B7H1. These CD8 T cells were not deleted but were rendered nonresponsive to antigen-specific stimulation and failed to control growth of CEA-expressing tumor cells. These nonresponsive CD8 T cells were phenotypically similar to central memory T cells being CD44(high) CD62L(high) CD25(neg) . We found T cells with a similar phenotype in PBMCs of healthy donors and at increased frequency also in patients with colorectal carcinoma. CONCLUSION Our results provide evidence for the existence of an unrecognized tumor immune escape involving cross-presentation of systemically circulating tumor antigens that may influence immunotherapy of cancer.
Collapse
Affiliation(s)
- Bastian Höchst
- Institutes of Molecular Medicine and Experimental Immunology, University of Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Carretero R, Wang E, Rodriguez AI, Reinboth J, Ascierto ML, Engle AM, Liu H, Camacho FM, Marincola FM, Garrido F, Cabrera T. Regression of melanoma metastases after immunotherapy is associated with activation of antigen presentation and interferon-mediated rejection genes. Int J Cancer 2012; 131:387-95. [PMID: 21964766 PMCID: PMC3504975 DOI: 10.1002/ijc.26471] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 09/12/2011] [Indexed: 01/11/2023]
Abstract
We present the results of a comparative gene expression analysis of 15 metastases (10 regressing and 5 progressing) obtained from 2 melanoma patients with mixed response following different forms of immunotherapy. Whole genome transcriptional analysis clearly indicate that regression of melanoma metastases is due to an acute immune rejection mediated by the upregulation of genes involved in antigen presentation and interferon mediated response (STAT-1/IRF-1) in all the regressing metastases from both patients. In contrast, progressing metastases showed low transcription levels of genes involved in these pathways. Histological analysis showed T cells and HLA-DR positive infiltrating cells in the regressing but not in the progressing metastases. Quantitative expression analysis of HLA-A,B and C genes on microdisected tumoral regions indicate higher HLA expression in regressing than in progressing metastases. The molecular signature obtained in melanoma rejection appeared to be similar to that observed in other forms of immune-mediated tissue-specific rejection such as allograft, pathogen clearance, graft versus host or autoimmune disease, supporting the immunological constant of rejection. We favor the idea that the major factor determining the success or failure of immunotherapy is the nature of HLA Class I alterations in tumor cells and not the type of immunotherapy used. If the molecular alteration is reversible by the immunotherapy, the HLA expression will be upregulated and the lesion will be recognized and rejected. In contrast, if the defect is structural the MHC Class I expression will remain unchanged and the lesion will progress.
Collapse
Affiliation(s)
- Rafael Carretero
- Departamento de Bioquímica, Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
- Departamento de Análisis Clínicos e Inmunología, Hospital Virgen de las Nieves, Granada, Spain
| | - Ena Wang
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD
| | - Ana I. Rodriguez
- Departamento de Análisis Clínicos e Inmunología, Hospital Virgen de las Nieves, Granada, Spain
| | - Jennifer Reinboth
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD
- Department of Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
- Genelux Corporation, San Diego Science Center, San Diego, CA
| | - Maria L. Ascierto
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD
| | - Alyson M. Engle
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD
| | - Hui Liu
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD
| | | | - Francesco M. Marincola
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD
| | - Federico Garrido
- Departamento de Bioquímica, Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
- Departamento de Análisis Clínicos e Inmunología, Hospital Virgen de las Nieves, Granada, Spain
| | - Teresa Cabrera
- Departamento de Bioquímica, Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
- Departamento de Análisis Clínicos e Inmunología, Hospital Virgen de las Nieves, Granada, Spain
| |
Collapse
|
116
|
Romero I, Martinez M, Garrido C, Collado A, Algarra I, Garrido F, Garcia-Lora AM. The tumour suppressor Fhit positively regulates MHC class I expression on cancer cells. J Pathol 2012; 227:367-79. [PMID: 22451343 DOI: 10.1002/path.4029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 03/12/2012] [Accepted: 03/20/2012] [Indexed: 12/12/2022]
Abstract
MHC class I (MHC-I) molecules are ubiquitously expressed on the cells of an organism. Study of the regulation of these molecules in normal and disease conditions is important. In tumour cells, the expression of MHC-I molecules is very frequently lost, allowing these cells to evade the immune response. Cancers of different histology have shown total loss of MHC-I molecule expression, due to a coordinated transcriptional down-regulation of various antigen-processing machinery (APM) components and/or MHC-I heavy chains. The mechanisms responsible for these alterations remain unclear. We determined the possible genes involved by comparing MHC-I-positive with MHC-I-negative murine metastases derived from the same fibrosarcoma tumour clone. MHC-I-negative metastases showed transcriptional down-regulation of APM and MHC-I heavy chains. The use of microarrays and subtraction cDNA libraries revealed four candidate genes responsible for this alteration, but two of them were ruled out by real-time RT-PCR analyses. The other two genes, AP-2α and Fhit tumour suppressors, were studied by using siRNA to silence their expression in a MHC-I-positive metastatic cell line. AP-2α inhibition did not modify transcriptional expression of APM components or MHC-I heavy chains or surface expression of MHC-I. In contrast, silencing of the Fhit gene produced the transcriptional down-regulation of APM components and MHC-I heavy chains and decreased MHC-I surface expression. Moreover, transfection of Fhit in MHC-I-negative tumour cell lines restored MHC-I cell surface expression. These data indicate that defects in Fhit expression may promote MHC-I down-regulation in cancer cells and allow escape from immunosurveillance(#).
Collapse
Affiliation(s)
- Irene Romero
- Servicio de Análisis Clínicos & Inmunología, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
117
|
Langers I, Renoux VM, Thiry M, Delvenne P, Jacobs N. Natural killer cells: role in local tumor growth and metastasis. Biologics 2012; 6:73-82. [PMID: 22532775 PMCID: PMC3333822 DOI: 10.2147/btt.s23976] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Historically, the name of natural killer (NK) cells came from their natural ability to kill tumor cells in vitro. From the 1970s to date, accumulating data highlighted the importance of NK cells in host immune response against cancer and in therapy-induced antitumor response. The recognition and the lysis of tumor cells by NK cells are regulated by a complex balance of inhibitory and activating signals. This review summarizes NK cell mechanisms to kill cancer cells, their role in host immune responses against tumor growth or metastasis, and their implications in antitumor immunotherapies via cytokines, antibodies, or in combination with other therapies. The regulatory role of NK cells in autoimmunity is also discussed.
Collapse
Affiliation(s)
- Inge Langers
- Laboratory of Experimental Pathology, GIGA-I3/GIGA-Cancer, University of Liège, Liège, Belgium
| | | | | | | | | |
Collapse
|
118
|
Garrido C, Paco L, Romero I, Berruguilla E, Stefansky J, Collado A, Algarra I, Garrido F, Garcia-Lora AM. MHC class I molecules act as tumor suppressor genes regulating the cell cycle gene expression, invasion and intrinsic tumorigenicity of melanoma cells. Carcinogenesis 2012; 33:687-93. [PMID: 22219178 DOI: 10.1093/carcin/bgr318] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The alteration of MHC class I (MHC-I) expression is a frequent event during cancer progression, allowing tumor cells to evade the immune system. We report that the loss of one major histocompatibility complex haplotype in human melanoma cells not only allowed them to evade immunosurveillance but also increased their intrinsic oncogenic potential. A second successive defect in MHC-I expression, MHC-I total downregulation, gave rise to melanoma cells that were more oncogenic per se in vivo and showed a higher proliferation rate and greater migratory and invasive potential in vitro. All these processes were reversed by restoring MHC-I expression via human leukocite antigen-A2 gene transfection. MHC-I cell surface expression was inversely correlated with intrinsic oncogenic potential. Modifications in the expression of various cell cycle genes were correlated with changes in MHC-I expression; the most important differences among the melanoma cell lines were in the transcriptional level of AP2-alpha, cyclin A1 and p21WAF1/CIP1. According to these results, altered MHC-I expression in malignant cells can directly increase their intrinsic oncogenic and invasive potential and modulate the expression of cell cycle genes. These findings suggest that human leukocite antigen class I molecules may act directly as tumor suppressor genes in melanoma.
Collapse
Affiliation(s)
- Cristina Garrido
- Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, 18012 Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Down-regulation of HLA-A mRNA in peripheral blood mononuclear cell of colorectal cancer. Int J Colorectal Dis 2012; 27:31-6. [PMID: 21947186 DOI: 10.1007/s00384-011-1315-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2011] [Indexed: 02/04/2023]
Abstract
PURPOSE It has been demonstrated that the alteration of human leukocyte antigen (HLA) class I expression frequently occurs in colorectal tumor. Previous studies mainly focused on the expression of HLA-A in tumor cells. The expression of HLA-A in peripheral blood mononuclear cells (PBMC) was unknown. To develop a non-invasive diagnostic method for colorectal cancer (CRC), this work investigated the expression of HLA-A mRNA in PBMC in patients with CRC. METHODS Real-time quantitative RT-PCR was used to study the expression of HLA-A mRNA in PBMC from 48 patients with colorectal cancer, 38 patients with benign colorectal lesions, 20 patients with rheumatoid arthritis, 20 patients with esophageal cancer and 40 healthy individuals. Protein chip was utilized to detect the levels of serum CEA, CA 19-9, and CA 242 in all the cases. Overall results from the two methods were compared. RESULTS The relative expression of HLA-A mRNA in PBMC was 1.11 ± 0.45 in healthy group, 0.81 ± 0.42 in benign colorectal lesion group, and 0.39 ± 0.34 in cancer group, respectively. The diagnostic sensitivity of HLA-A mRNA, CEA, CA19-9, and CA242 was 81%, 59%, 61%, and 63%, and their diagnostic specificity was 75%, 64%, 52%, and 67%, respectively. CONCLUSIONS The expression of HLA-A mRNA in PBMC from colorectal cancer group was significantly lower than those in both benign group and healthy group (P < 0.001). It could be potentially developed as a tumor assistant marker in future.
Collapse
|
120
|
Rodríguez JA, Galeano L, Palacios DM, Gómez C, Serrano ML, Bravo MM, Combita AL. Altered HLA class I and HLA-G expression is associated with IL-10 expression in patients with cervical cancer. Pathobiology 2011; 79:72-83. [PMID: 22213066 DOI: 10.1159/000334089] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 09/21/2011] [Indexed: 12/14/2022] Open
Abstract
Although high-risk human papillomaviruses (HPVs) are an important risk factor in the etiopathogenesis of cervical cancer, increasing evidence suggests that the ability to avoid immune surveillance seems to be linked to the transforming potential of HPV and a rapid progression to cancer. In other cancer models, IL-10 contributes to impair anti-tumor immune response either by downregulating human leukocyte antigen Class I (HLA-I) expression or by increasing HLA-G expression. To comprehend how these alterations could contribute to evasion of immune surveillance in cervical cancer, we analyzed HLA-I, HLA-G and IL-10 expressions by immunohistochemistry in 63 biopsies from patients with cervical intraepithelial neoplasia III (CIN-III) and cervical cancer. Immunohistochemistry showed absent or weak HLA-I expression in 50/59 cases. In these cases, a high percentage had loss of heterozygosis. IL-10 and HLA-G expression were observed in 46.6 and 27.6% of cases, respectively. Concurrent upregulation of IL-10 was found in 87.5% of HLA-G positive cases (p = 0.000). Similarly, a significant association between IL-10 expression and HLA-I downregulation was found (p = 0.028). Finally, we observed higher HLA-G expression in patients with HLA-I downregulation than in those with normal HLA-I expression (p = 0.004). Our results suggest that, in cervical cancer, the IL-10 expression may induce an immunosuppressive environment by upregulating HLA-G expression and downregulating HLA class I expression.
Collapse
Affiliation(s)
- Josefa Antonia Rodríguez
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | | | | | | | | | | | | |
Collapse
|
121
|
A novel category of antigens enabling CTL immunity to tumor escape variants: Cinderella antigens. Cancer Immunol Immunother 2011; 61:119-25. [PMID: 22116347 PMCID: PMC3249164 DOI: 10.1007/s00262-011-1160-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 11/10/2011] [Indexed: 12/11/2022]
Abstract
Deficiencies in MHC class I antigen presentation are a common feature of tumors and allows escape from cytotoxic T lymphocyte (CTL)-mediated killing. It is crucial to take this capacity of tumors into account for the development of T-cell-based immunotherapy, as it may strongly impair their effectiveness. A variety of escape mechanisms has been described thus far, but progress in counteracting them is poor. Here we review a novel strategy to target malignancies with defects in the antigenic processing machinery (APM). The concept is based on a unique category of CD8+ T-cell epitopes that is associated with impaired peptide processing, which we named TEIPP. We characterized this alternative peptide repertoire emerging in MHC-I on tumors lacking classical antigen processing due to defects in the peptide transporter TAP (transporter associated with peptide processing). These TEIPPs exemplify interesting parallels with the folktale figure Cinderella: they are oppressed and neglected by a stepmother (like functional TAP prevents TEIPP presentation), until the suppression is released and Cinderella/TEIPP achieves unexpected recognition. TEIPP-specific CTLs and their cognate peptide-epitopes provide a new strategy to counteract immune evasion by APM defects and bear potential to targeting escape variants observed in a wide range of cancers.
Collapse
|
122
|
Hu YX, Cui Q, Liang B, Huang H. Relapsing Hematologic Malignancies after Haploidentical Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2011; 17:1099-111. [DOI: 10.1016/j.bbmt.2011.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 02/11/2011] [Indexed: 11/16/2022]
|
123
|
Carretero R, Cabrera T, Gil H, Saenz-Lopez P, Maleno I, Aptsiauri N, Cozar JM, Garrido F. Bacillus Calmette-Guerin immunotherapy of bladder cancer induces selection of human leukocyte antigen class I-deficient tumor cells. Int J Cancer 2011; 129:839-46. [PMID: 20957629 DOI: 10.1002/ijc.25733] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 09/27/2010] [Indexed: 11/09/2022]
Abstract
Bacillus Calmette-Guerin (BCG) immunotherapy is a standard treatment for high-risk non-muscle-infiltrating bladder cancer patients. Although the outcomes are good, cancer relapse is observed in around 40% of patients. We present the comparative analysis of human leukocyte antigen (HLA) class I expression in recurrent bladder tumors in patients treated with mitomycin or BCG. HLA class I expression was analyzed by RT-Q-PCR and immunohistochemical techniques. Loss of heterozygosity (LOH) was determined by microsatellite amplification of markers in chromosome 6 and 15. More profound alterations in HLA class I expression were found in post-BCG recurrent tumors than in pre-BCG lesions, whereas mitomycin treatment did not change the HLA class I expression pattern. Post-BCG recurrent tumors also showed a higher incidence of structural defects underlying altered HLA class I expression. We hypothesize that the immunotherapy-activated immune system recognizes and eliminates tumor cells with reversible ("soft") HLA class I changes but not transformed cells with additional, irreversible ("hard") alterations. To our knowledge, this is the first clinical evidence of immunotherapy-induced immunoselection of HLA class I loss tumor variants in bladder cancer, although the study involved a small number of patients.
Collapse
Affiliation(s)
- Rafael Carretero
- Department of Clinical Analysis, Virgen de las Nieves University Hospital, and Department of Biochemistry, Molecular Biology III and Immunology, University of Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Cavallo F, De Giovanni C, Nanni P, Forni G, Lollini PL. 2011: the immune hallmarks of cancer. Cancer Immunol Immunother 2011; 60:319-26. [PMID: 21267721 PMCID: PMC3042096 DOI: 10.1007/s00262-010-0968-0] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 12/27/2010] [Indexed: 12/26/2022]
Abstract
Ten years after the publication of the position paper “The hallmarks of cancer” (Hanahan and Weinberg Cell 100:57–70, 2000), it has become increasingly clear that mutated cells on their way to giving rise to a tumor have also to learn how to thrive in a chronically inflamed microenvironment, evade immune recognition, and suppress immune reactivity. Genetic and molecular definition of these three immune hallmarks of cancer offers the opportunity to learn how to deploy specific countermeasures to reverse the situation in favor of the immune system and, eventually, the patient. This new information could be channeled to address what seem to be the three major hallmarks for the immune control of cancer progression: effective procedures to activate immune reactivity; characterization of not-disposable oncoantigens; and counteraction of immune suppression.
Collapse
Affiliation(s)
- Federica Cavallo
- Department of Clinical and Biological Sciences, University of Turin, Molecular Biotechnology Center, Via Nizza 52, 10126 Turin, Italy.
| | | | | | | | | |
Collapse
|
125
|
Stickel JS, Stickel N, Hennenlotter J, Klingel K, Stenzl A, Rammensee HG, Stevanović S. Quantification of HLA class I molecules on renal cell carcinoma using Edman degradation. BMC Urol 2011; 11:1. [PMID: 21251276 PMCID: PMC3037347 DOI: 10.1186/1471-2490-11-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 01/20/2011] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Unimpaired HLA class I antigen presentation is a prerequisite for the recognition of tumor cells by cytotoxic T lymphocytes and thus essential for the success of anticancer immunotherapeutic concepts. Several approaches have been taken in the immunotherapy of metastatic renal cell carcinoma (RCC), however of limited success. HLA loss or down-regulation have often been reported and might interfere with immunotherapeutic approaches aimed at the recognition of HLA-presented peptides. METHODS We employed a quantitative method of molecular analysis for the comparison of HLA amounts on primary tumor, normal kidney and metastases of RCC, using Edman degradation. We analyzed a series of 47 RCC samples including corresponding renal parenchyma, local lymph node metastases and distant metastases. RESULTS Results of quantitative Edman degradation revealed significantly higher HLA yields on primary tumor and metastases compared to normal kidney tissue. This effect was shown not to result from infiltrating immune cells, since tumor-infiltrating lymphocytes had no influence on the overall HLA recovery from tumor tissue. Unexpectedly, we found a higher amount of HLA class I molecules on distant metastases compared to local lymph node metastases. CONCLUSION Edman degradation allows the direct quantitative comparison of HLA class I protein expression by tumor or normal tissue and metastases of RCC patients. Our results raise hopes for improving the success and effectiveness of future immunotherapeutic concepts for metastatic RCC.
Collapse
Affiliation(s)
- Juliane S Stickel
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
126
|
Maleno I, Aptsiauri N, Cabrera T, Gallego A, Paschen A, López-Nevot MA, Garrido F. Frequent loss of heterozygosity in the β2-microglobulin region of chromosome 15 in primary human tumors. Immunogenetics 2010; 63:65-71. [PMID: 21086121 DOI: 10.1007/s00251-010-0494-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 11/03/2010] [Indexed: 01/01/2023]
Abstract
Downregulation or total loss of HLA class I expression on tumor cells is known as a mechanism of cancer immune escape. Alterations of the HLA phenotype are frequently due to mutations affecting genes encoding the HLA class I heavy chains located on chromosome 6p21 or the β2-microglobulin (β2m) gene encoding the light chain of the HLA complex located on chromosome 15q21. Frequently irreversible total loss of HLA class I molecules is due to the coincidence of two molecular events, the mutation of one β2m gene and the loss of the second copy. The latter is detectable as loss of heterozygosity (LOH) of microsatellite markers in the β2m region on chromosome 15q21 (LOH-15q21). Thus, LOH-15q21 might be an important event in the processes of HLA class I downregulation and total loss. Here we studied the frequency of LOH-15q21 in tumor tissues of different entities. By determining the status of heterozygosity of two microsatellite markers we detected LOH-15q21 in 44% of bladder carcinomas (n = 69), in 35% of colon carcinomas (n = 95), in 16% of melanomas (n = 70) but only in 7% of renal cancers (n = 45). Moreover, we observed a frequent coincidence of LOH-15q21 and LOH-6p21 in colorectal carcinoma, bladder carcinoma and melanoma, but not for renal carcinoma. We believe that the high incidence of LOH-15q21 in some malignancies and especially the coincidence of LOH-15q21 and LOH-6p21 might have a strong impact on tumor immunogenicity and on the efficiency of cancer immunotherapy.
Collapse
Affiliation(s)
- Isabel Maleno
- Department of Clinical Analysis, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
The overexpression and aberrant glycosylation of MUC1 is associated with a wide variety of cancers, making it an ideal target for immunotherapeutic strategies. This review highlights the main avenues of research in this field, focusing on adenocarcinomas, from the preclinical to clinical; the problems and possible solutions associated with each approach; and speculates on the direction of MUC1 immunotherapeutic research over the next 5-10 years.
Collapse
Affiliation(s)
- Richard E Beatson
- Breast Cancer Biology Group, King's College London, Guy's Hospital, London SE1 9RT, UK
| | | | | |
Collapse
|
128
|
Lampen MH, Verweij MC, Querido B, van der Burg SH, Wiertz EJHJ, van Hall T. CD8+ T cell responses against TAP-inhibited cells are readily detected in the human population. THE JOURNAL OF IMMUNOLOGY 2010; 185:6508-17. [PMID: 20980626 DOI: 10.4049/jimmunol.1001774] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Target cell recognition by CTLs depends on the presentation of peptides by HLA class I molecules. Tumors and herpes viruses have adopted strategies to greatly hamper this peptide presentation at the important bottleneck, the peptide transporter TAP. Previously, we described the existence of a CD8(+) CTL subpopulation that selectively recognizes such TAP-deficient cells in mouse models. In this study, we show that the human counterpart of this CTL subset is readily detectable in healthy subjects. Autologous PBMC cultures were initiated with dendritic cells rendered TAP-impaired by gene transfer of the viral evasion molecule UL49.5. Strikingly, specific reactivity to B-LCLs expressing one of the other viral TAP-inhibitors (US6, ICP47, or BNLF2a) was already observed after three rounds of stimulation. These short-term T cell cultures and isolated CD8(+) CTL clones derived thereof did not recognize the normal B-LCL, indicating that the cognate peptide-epitopes emerge at the cell surface upon an inhibition in the MHC class I processing pathway. A diverse set of TCRs was used by the clones, and the cellular reactivity was TCR-dependent and HLA class I-restricted, implying the involvement of a broad antigenic peptide repertoire. Our data indicate that the human CD8(+) T cell pool comprises a diverse reactivity to target cells with impairments in the intracellular processing pathway, and these might be exploited for cancers that are associated with such defects and for infections with immune-evading herpes viruses.
Collapse
Affiliation(s)
- Margit H Lampen
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
129
|
Garrido F, Algarra I, García-Lora AM. The escape of cancer from T lymphocytes: immunoselection of MHC class I loss variants harboring structural-irreversible "hard" lesions. Cancer Immunol Immunother 2010; 59:1601-6. [PMID: 20625726 PMCID: PMC11029827 DOI: 10.1007/s00262-010-0893-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 06/30/2010] [Indexed: 10/19/2022]
Abstract
The discovery of tumor antigens recognized by T lymphocytes has stimulated the development of a variety of cancer treatment protocols aimed at enhancing antitumor-specific T cell responses and tumor rejection. However, immunotherapy-mediated regression of established tumors and clearly positive clinical response to such treatment has not been achieved yet despite the induction of T cells directed against tumor antigens. The failure of the modern immunotherapy protocols can be explained by different tumor escape mechanisms that have been defined in various types of malignancy. The loss or downregulation of MHC class I antigens in tumor cells is one of the best analyzed mechanisms. In this review, we show experimental evidence obtained in our laboratory on human tumors and in a mouse cancer model suggesting that the molecular mechanism responsible for the MHC class I alteration in tumor cells might have a crucial impact on tumor recovery of normal H-2/HLA expression during the natural history of tumor development or after immunotherapy. When the preexisting molecular lesion underlying tumor MHC class I alteration is reversible (regulatory or soft), class I expression can be recovered leading to regression of tumor lesion. In contrast, if the HLA class I alteration is irreversible in nature (structural or hard), the lesion will progress killing the host. This is a new vision of the role of MHC class I alteration in tumors that can explain the failure of immunotherapy in a variety of different clinical protocols.
Collapse
Affiliation(s)
- Federico Garrido
- Servicio de Análisis Clínicos and Inmunología, Hospital Universitario Virgen de las Nieves, Av. de las Fuerzas Armadas 2, 18014 Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Ignacio Algarra
- Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
| | - Angel M. García-Lora
- Servicio de Análisis Clínicos and Inmunología, Hospital Universitario Virgen de las Nieves, Av. de las Fuerzas Armadas 2, 18014 Granada, Spain
| |
Collapse
|
130
|
Analysis of HLA-ABC locus-specific transcription in normal tissues. Immunogenetics 2010; 62:711-9. [PMID: 20842357 DOI: 10.1007/s00251-010-0470-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 08/03/2010] [Indexed: 10/19/2022]
Abstract
We developed a novel human leukocyte antigen HLA-ABC locus-specific quantitative real-time polymerase chain reaction (PCR) to determine the locus-specific gene expression of HLA-ABC in peripheral blood leukocytes (PBLs, n = 53), colon mucosa (n = 15), and larynx mucosa (n = 15). Laser-assisted tissue microdissection allowed us to study the selected cells without interference from surrounding stroma. We report evidence on the specificity of the technique, describing the HLA-ABC locus-specific gene expression patterns found in the PBLs and two solid tissues studied. PBLs showed a higher gene expression of HLA-B than of HLA-A or HLA-C (p = 4.7 × 10(-10) and p = 1.6 × 10(-6), respectively). In solid tissue, HLA-A and HLA-B gene expressions were similar and HLA-C expression lower. In particular, in larynx mucosa, significant differences were found between HLA-A and HLA-C expressions and between HLA-B and HLA-C expressions (p = 6.5 × 10(-4) and p = 8.1 × 10(-4), respectively). The same differences were observed in colon mucosa, but significance was not reached (p = 0.08 and p = 0.06, respectively). Differences in locus-specific regulation may be related to the control of cytotoxic responses of NK and CD8 positive T cells. Gene expression of HLA-ABC specific locus showed no intra-individual variability, but there was a high inter-individual variability. This may result from differences in the expression of common regulatory factors that control HLA-ABC constitutive expression.
Collapse
|
131
|
Sharabi A, Laronne-Bar-On A, Meshorer A, Haran-Ghera N. Chemoimmunotherapy reduces the progression of multiple myeloma in a mouse model. Cancer Prev Res (Phila) 2010; 3:1265-76. [PMID: 20719903 DOI: 10.1158/1940-6207.capr-10-0138] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiple myeloma (MM) is a B-cell malignancy characterized by clonal proliferation of malignant plasma cells in the bone marrow. Recently, we showed a correlation between increased ratios of functional regulatory T cells (Treg) and disease progression in a unique mouse model that mimics the human disease. Cyclophosphamide (CYC) is a cytotoxic alkylating agent widely used in chemotherapeutic regimens. Low-dose CYC was previously reported to selectively reduce Treg levels and to contribute to immunostimulation. Our objectives were (a) to determine whether treatment using a low-dose CYC could reduce MM progression and (b) to further characterize the modes of action underlying these effects. We found that both low- and high-dose CYC given to sick mice with hind limb paralysis resulted in the disappearance of the paralysis, the replacement of plasma tumor cells in the bone marrow by normal cell populations, and a significant prolongation of survival. However, only low-dose CYC treatment decreased the incidence of MM. Low-dose CYC rendered Tregs susceptible to apoptosis because of the downregulation of Bcl-xL and CTLA-4 in these cells, and a decreased production of interleukin 2 by effector CD4 cells. Moreover, using this treatment, we noted the recovery of IFN-γ-producing natural killer T cells and maturation of dendritic cells. Treatment of tumor-bearing mice with repeated administrations of low-dose CYC at longer time intervals (coinciding with the blocked renewal of Tregs) resulted in reduced tumor load, and the prevention or delay of disease recurrence, thereby breaking immune tolerance against MM tumor cells.
Collapse
Affiliation(s)
- Amir Sharabi
- Department of Immunology, The Weizmann Institute of Science, 240 Hertzl Street, Rehovot 76100, Israel.
| | | | | | | |
Collapse
|
132
|
Muthana M, Multhoff G, Pockley AG. Tumour infiltrating host cells and their significance for hyperthermia. Int J Hyperthermia 2010; 26:247-55. [PMID: 20388022 DOI: 10.3109/02656730903413375] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Much information can be gained by investigating the consequences of hyperthermia on individual cell populations in vitro, however the precise effects of such a therapeutic modality in vivo depend on the tumour microenvironment and the cellular composition therein. Although the direct cytotoxic effects of hyperthermia on tumour tissue can lead to an immediate reduction in tumour volume, long-term benefits to local and distal tumour recurrence will very much depend on the induction of immunity and the capacity of effector cells to traffic to tumours and elicit their cytotoxic functions. The immunological sequelae to hyperthermia are even more important in those instances when large tumour volumes preclude the delivery of appropriate thermal damage. The development of protective anti-tumour immunity requires a plethora of interactions and responses, the vast majority of which can be influenced by temperatures that are consistent with fever-like temperatures (39 degrees -40 degrees C), as well as hyperthermia treatment (<41 degrees C). This article reviews current knowledge relating to the effects of hyperthermia treatment on aspects of the induction and manifestation of immunological responses that are most pertinent to the development and maintenance of protective anti-tumour immunity.
Collapse
Affiliation(s)
- Munitta Muthana
- Department of Infection and Immunity, The Medical School, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
133
|
van Dongen M, Savage NDL, Jordanova ES, Briaire-de Bruijn IH, Walburg KV, Ottenhoff THM, Hogendoorn PCW, van der Burg SH, Gelderblom H, van Hall T. Anti-inflammatory M2 type macrophages characterize metastasized and tyrosine kinase inhibitor-treated gastrointestinal stromal tumors. Int J Cancer 2010; 127:899-909. [PMID: 20013807 DOI: 10.1002/ijc.25113] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have made a detailed inventory of the immune infiltrate of gastrointestinal stromal tumors (GISTs), which originate from mesenchymal cells in the intestinal tract. These sarcomas are heavily infiltrated with macrophages and T cells, while immune cells of other lineages were much less abundant. Dissecting the functional subtypes of T cells with multicolor fluorescent microscopy revealed substantial populations of cytotoxic T cells, helper T cells and FoxP3(+) regulatory T cells. The balance of cytotoxic T cells and FoxP3(+) T cells was toward immune suppression. Analysis of the macrophage population also showed a dominance of anti-inflammatory cells, as the M2 type scavenger receptor CD163 was abundantly present. Other subsets of macrophages (CD14(+)CD163(-)) were occasionally detected. M2 type CD163(+) macrophages were associated with the number of infiltrating FoxP3(+) regulatory T cells and twice as many macrophages were found in metastatic GIST compared to primary lesions. Most metastatic GISTs had been treated with the tyrosine kinase inhibitors imatinib and sunitinib, but the high macrophage infiltrate was not related to this treatment. However, imatinib and sunitinib did induce secretion of anti-inflammatory IL-10 in macrophage cultures, indicating that treatment with these inhibitors might contribute to an immune suppressive microenvironment in GIST. Overall, our data reveal a picture of GIST as an active site of tumor-immune interaction in which suppressive mechanisms overrule potential antitumor responses. Tyrosine kinase inhibitors might promote this negative balance.
Collapse
Affiliation(s)
- Minka van Dongen
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Garrido F, Cabrera T, Aptsiauri N. "Hard" and "soft" lesions underlying the HLA class I alterations in cancer cells: implications for immunotherapy. Int J Cancer 2010; 127:249-56. [PMID: 20178101 DOI: 10.1002/ijc.25270] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The ability of cancer cells to escape from the natural or immunotherapy-induced antitumor immune response is often associated with alterations in the tumor cell surface expression of Major Histocompatibility Complex (MHC) Class I antigens. Considerable knowledge has been gained on the prevalence of various patterns of MHC Class I defects and the underlying molecular mechanisms in different types of cancer. In contrast, few data are available on the changes in MHC Class I expression happening during the course of cancer immunotherapy. We have recently proposed that the progression or regression of a tumor lesion in cancer patients undergoing immunotherapy could be predetermined by the molecular mechanism responsible for the MHC Class I alteration and not by the type of immunotherapy used, i.e., interleukin-2 (IL-2), Bacillus Calmette-Guèrin (BCG), interferon-alpha (IFN-alpha), peptides alone, dendritic cells loaded with peptides, protein-bound polysaccharide etc. If the molecular alteration responsible for the changes in MHC Class I expression is reversible by cytokines ("soft" lesion), the MHC Class I expression will be upregulated, the specific T cell-mediated response will increase and the lesion will regress. However, if the molecular defect is structural ("hard" lesion), the MHC Class I expression will remain low, the escape mechanism will prevail and the primary tumor or the metastatic lesion will progress. According to this idea, the nature of the preexisting MHC Class I lesion in the cancer cell has a crucial impact determining the final outcome of cancer immunotherapy. In this article, we discuss the importance of these two types of molecular mechanisms of MHC Class I-altered expression.
Collapse
Affiliation(s)
- Federico Garrido
- Departamento de Bioquímica, Universidad de Granada, Granada, Spain.
| | | | | |
Collapse
|
135
|
Evans CFM, Galustian C, Bodman-Smith M, Dalgleish AG, Kumar D. The effect of colorectal cancer upon host peripheral immune cell function. Colorectal Dis 2010; 12:561-9. [PMID: 19250260 DOI: 10.1111/j.1463-1318.2009.01819.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Colorectal cancer is immunogenic. However, it is also associated with suppression of host immunity. Identifying the mechanisms involved in immune suppression is necessary to develop future immunotherapeutic strategies. The aim of this study was to assess immune cell function in colorectal cancer patients. METHOD A total of 80 colorectal cancer patients (41 male) prior to treatment and 38 matched controls (21 male) were recruited. Venous blood samples were taken. White blood cell composition was determined using monoclonal antibodies. Levels of cytokines IFN-gamma, TNF-alpha, IL-2, IL-10, IL-4 and IL-6 were measured from the supernatants of activated peripheral blood mononuclear cells (PBMC) following thawing and re-suspension. Peripheral blood mononuclear proliferation was measured using 3H-Thymidine. RESULTS Stage I-III cancer patients had elevated percentages of CD8 T cell (P = 0.004) whilst stage IV patients had low total lymphocyte percentages (P = 0.016). Monocyte and NKT cell percentage decreased with advanced tumour stages (P = 0.013 and P = 0.038). Patients had lower PBMC proliferation and production of the TH1 cytokines (IFN-gamma and TNF-alpha) (P < 0.001) than that of the controls. IL-6 and IL-4 production were not significantly different. IFN-gamma and TNF-alpha concentrations reduced with tumour vascular invasion (P = 0.011 and P = 0.019). CONCLUSION Colorectal cancer induces an immunological response, shifting the cytokine balance. The most profound changes are seen once disease has spread systemically.
Collapse
Affiliation(s)
- C F M Evans
- St Georges University of London, Cranmer Terrace, London, UK
| | | | | | | | | |
Collapse
|
136
|
Türkseven MR, Oygür T. Evaluation of natural killer cell defense in oral squamous cell carcinoma. Oral Oncol 2010; 46:e34-7. [DOI: 10.1016/j.oraloncology.2010.02.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 02/19/2010] [Accepted: 02/19/2010] [Indexed: 11/15/2022]
|
137
|
Li J, Weng X, Liang Z, Zhong M, Chen X, Lu S, Sun W, Song Y, Wu X, Shen G. Viral specific cytotoxic T cells inhibit the growth of TfR-expressing tumor cells with antibody targeted viral peptide/HLA-A2 complex. Cell Immunol 2010; 263:154-60. [PMID: 20406704 DOI: 10.1016/j.cellimm.2010.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 02/25/2010] [Accepted: 03/09/2010] [Indexed: 11/26/2022]
Abstract
A fusion protein of single chain antibody (scFv) specific for transferrin receptor (TfR, CD71) and viral peptide/HLA-A2 complex was prepared in this study to redirect cytotoxic T cells (CTLs) of viral specificity to tumor cells by attaching the ligand of T cell receptor (TCR) to tumor cells via binding of TfR scFv to TfR. The results demonstrate that the fusion protein can attach the active virus-peptide/HLA-A2 complex to HLA class I-negative, TfR-expressing K562 cells through binding of TfR scFv to TfR, and mediate cytotoxicity of viral peptide-specific CTLs against K562 cells in vitro. In addition, the fusion protein can induce inhibition of solid tumor formation and improve survival time in tumor xenograft nude mouse with the injection of the sorted viral peptide-specific CTLs generated by co-culture of peripheral blood lymphocytes from HLA-A2 positive donors with inactivated T2 cells pulsed with the viral peptide.
Collapse
Affiliation(s)
- Jianan Li
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Clausen J, Kircher B, Auberger J, Schumacher P, Ulmer H, Hetzenauer G, Wolf D, Gastl G, Nachbaur D. The Role of Missing Killer Cell Immunoglobulin-Like Receptor Ligands in T Cell Replete Peripheral Blood Stem Cell Transplantation from HLA-Identical Siblings. Biol Blood Marrow Transplant 2010; 16:273-80. [DOI: 10.1016/j.bbmt.2009.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 10/16/2009] [Indexed: 01/16/2023]
|
139
|
Sáenz-López P, Gouttefangeas C, Hennenlotter J, Concha A, Maleno I, Ruiz-Cabello F, Cózar JM, Tallada M, Stenzl A, Rammensee HG, Garrido F, Cabrera T. Higher HLA class I expression in renal cell carcinoma than in autologous normal tissue. ACTA ACUST UNITED AC 2010; 75:110-8. [DOI: 10.1111/j.1399-0039.2009.01409.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
140
|
Ash S, Gigi V, Askenasy N, Fabian I, Stein J, Yaniv I. Graft versus neuroblastoma reaction is efficiently elicited by allogeneic bone marrow transplantation through cytolytic activity in the absence of GVHD. Cancer Immunol Immunother 2009; 58:2073-84. [PMID: 19437016 PMCID: PMC11030755 DOI: 10.1007/s00262-009-0715-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 04/16/2009] [Indexed: 12/01/2022]
Abstract
Continuous efforts are dedicated to develop immunotherapeutic approaches to neuroblastoma (NB), a tumor that relapses at high rates following high-dose conventional cytotoxic therapy and autologous bone marrow cell (BMC) reconstitution. This study presents a series of transplant experiments aiming to evaluate the efficacy of allogeneic BMC transplantation. Neuro-2a cells were found to express low levels of class I major histocompatibility complex (MHC) antigens. While radiation and syngeneic bone marrow transplantation (BMT) reduced tumor growth (P < 0.001), allogeneic BMT further impaired subcutaneous development of Neuro-2a cells (P < 0.001). Allogeneic donor-derived T cells displayed direct cytotoxic activity against Neuro-2a in vitro, a mechanism of immune-mediated suppression of tumor growth. The proliferation of lymphocytes from congenic mice bearing subcutaneous tumors was inhibited by tumor lysate, suggesting that a soluble factor suppresses cytotoxic activity of syngeneic lymphocytes. However, the growth of Neuro-2a cells was impaired when implanted into chimeric mice at various times after syngeneic and allogeneic BMT. F1 (donor-host) splenocytes were infused attempting to foster immune reconstitution, however they engrafted transiently and had no effect on tumor growth. Taken together, these data indicate: (1) Neuro-2a cells express MHC antigens and immunogenic tumor associated antigens. (2) Allogeneic BMT is a significantly better platform to develop graft versus tumor (GVT) immunotherapy to NB as compared to syngeneic (autologous) immuno-hematopoietic reconstitution. (3) An effective GVT reaction in tumor bearing mice is primed by MHC disparity and targets tumor associated antigens.
Collapse
Affiliation(s)
- Shifra Ash
- Department of Pediatric Hematology-Oncology, Schneider Children’s Medical Center of Israel, 14 Kaplan Street, 49202 Petach Tikva, Israel
- Frankel Laboratory, Schneider Children’s Medical Center of Israel, 14 Kaplan Street, 49202 Petach Tikva, Israel
| | - Vered Gigi
- Frankel Laboratory, Schneider Children’s Medical Center of Israel, 14 Kaplan Street, 49202 Petach Tikva, Israel
- Department of Cell Biology, Sackler School of Medicine, Tel Aviv University, 69788 Ramat Aviv, Israel
| | - Nadir Askenasy
- Frankel Laboratory, Schneider Children’s Medical Center of Israel, 14 Kaplan Street, 49202 Petach Tikva, Israel
| | - Ina Fabian
- Department of Cell Biology, Sackler School of Medicine, Tel Aviv University, 69788 Ramat Aviv, Israel
| | - Jerry Stein
- Department of Pediatric Hematology-Oncology, Schneider Children’s Medical Center of Israel, 14 Kaplan Street, 49202 Petach Tikva, Israel
| | - Isaac Yaniv
- Department of Pediatric Hematology-Oncology, Schneider Children’s Medical Center of Israel, 14 Kaplan Street, 49202 Petach Tikva, Israel
| |
Collapse
|
141
|
Shehata M, Mukherjee A, Deen S, Al-Attar A, Durrant LG, Chan S. Human leukocyte antigen class I expression is an independent prognostic factor in advanced ovarian cancer resistant to first-line platinum chemotherapy. Br J Cancer 2009; 101:1321-8. [PMID: 19755991 PMCID: PMC2768455 DOI: 10.1038/sj.bjc.6605315] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Loss of HLA class I is important in ovarian cancer prognosis but its role as a prognostic indicator in relation to therapy remains unproven. We studied the prognostic potential of this antigen and its significance in relation to platinum therapy. Methods: A total of 157 primary ovarian cancers were assessed for HLA class I immunohistochemically and linked to a comprehensive database of clinicopathological variables, treatment details, and platinum sensitivity. Results: Tumours expressing high levels of HLA class I had significantly improved survival (P=0.044). There was a 19-month difference in the median overall survival between tumours with high and low antigen expression. HLA class I antigen expression, stage, and platinum sensitivity were independently predictive of prognosis on multivariate analysis. HLA class I antigen was shown to be expressed at higher levels in patients with good overall survival in platinum-resistant patients (P=0.042). HLA class I significantly correlated with overall survival on multivariate analyses (P=0.034). Conclusion: Low-level HLA class I expression is an independent prognostic indicator of poor clinical outcome in ovarian cancer. The survival advantage of patients with platinum-resistant tumours expressing high levels of HLA class I suggests that immunotherapy may be of use in these ovarian cancers resistant to standard chemotherapy.
Collapse
Affiliation(s)
- M Shehata
- Academic and Clinical Department of Oncology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | | | | | | | | | | |
Collapse
|
142
|
Mendez R, Aptsiauri N, Del Campo A, Maleno I, Cabrera T, Ruiz-Cabello F, Garrido F, Garcia-Lora A. HLA and melanoma: multiple alterations in HLA class I and II expression in human melanoma cell lines from ESTDAB cell bank. Cancer Immunol Immunother 2009; 58:1507-15. [PMID: 19340423 PMCID: PMC11030131 DOI: 10.1007/s00262-009-0701-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 03/14/2009] [Indexed: 10/20/2022]
Abstract
Altered HLA class I and class II cell surface expression has been reported in many types of malignancy and represents one of the major mechanism by which tumour cells escape from T lymphocytes. In this report, we review the results obtained from the study of constitutive and IFN-gamma-induced expression of HLA class I and II molecules in 91 human melanoma cell lines from the European Searchable Tumour Cell Line Database, and compare them with published data on HLA expression in other types of cancer. Various types of alterations in HLA class I cell surface expression were found in a high percentage (67%) of the studied cell lines. These alterations range from total to selective HLA class I loss and are associated with beta2-microglobulin gene mutations, transcriptional downregulation of HLA class I genes and antigen processing machinery components, or with the loss of heterozygosity in chromosome 6. The most frequently observed phenotype is selective downregulation of HLA-B locus, reversible after treatment with IFN-gamma. The expression of constitutive- or IFN-gamma induced-surface expression of at least one HLA class II locus is positive in 71.5% of the analysed cell lines. Four different HLA class II expression phenotypes were defined, and a positive correlation between the expression of class I and II molecules is discussed. More detailed information on the HLA expression patterns and others immunological characteristics of these melanoma cell lines can be found on the following website http://www.ebi.ac.uk/ipd/estdab .
Collapse
Affiliation(s)
- Rosa Mendez
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Natalia Aptsiauri
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Ana Del Campo
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Isabel Maleno
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Teresa Cabrera
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
- Departamento de Bioquímica, Biologia Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Francisco Ruiz-Cabello
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
- Departamento de Bioquímica, Biologia Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Federico Garrido
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
- Departamento de Bioquímica, Biologia Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Angel Garcia-Lora
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
| |
Collapse
|
143
|
del Campo AB, Aptsiauri N, Méndez R, Zinchenko S, Vales A, Paschen A, Ward S, Ruiz-Cabello F, González-Aseguinolaza G, Garrido F. Efficient recovery of HLA class I expression in human tumor cells after beta2-microglobulin gene transfer using adenoviral vector: implications for cancer immunotherapy. Scand J Immunol 2009; 70:125-35. [PMID: 19630918 DOI: 10.1111/j.1365-3083.2009.02276.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we report a successful use of a non-replicating adenovirus expressing the wild-type human beta2m gene in recovery of normal human leucocyte antigen (HLA) class I expression in beta2m-null cancer cells. Total loss of HLA class I expression in these cell lines is caused by a mutation in beta2m gene and a loss of heterozygosity in chromosome 15 carrying another copy of that gene. Normal HLA class I expression on the tumour cell surface is critical for the successful outcome of cancer immunotherapy as T cells can only recognize tumour-derived peptides in a complex with self-HLA class I molecules. In this report we characterize the newly generated adenoviral vector AdCMVbeta2m and demonstrate an efficient beta2m gene transfer in tumour cell lines of different histological origin, including melanoma, prostate and colorectal carcinoma. The beta2m re-expression lasted for an extended period of time both in vitro and in vivo in human tumour xenograft transplants. We propose that in a subset of cancer patients with structural defect in beta2m gene or chromosome 15, the adenoviral-mediated recovery (or even increase) of HLA class I expression on tumour cells in combination with vaccination or adoptive T-cell therapy can provide a complementary approach to improve the clinical efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- A B del Campo
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Granada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Vago L, Perna SK, Zanussi M, Mazzi B, Barlassina C, Stanghellini MTL, Perrelli NF, Cosentino C, Torri F, Angius A, Forno B, Casucci M, Bernardi M, Peccatori J, Corti C, Bondanza A, Ferrari M, Rossini S, Roncarolo MG, Bordignon C, Bonini C, Ciceri F, Fleischhauer K. Loss of mismatched HLA in leukemia after stem-cell transplantation. N Engl J Med 2009; 361:478-88. [PMID: 19641204 DOI: 10.1056/nejmoa0811036] [Citation(s) in RCA: 411] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Transplantation of hematopoietic stem cells from partially matched family donors is a promising therapy for patients who have a hematologic cancer and are at high risk for relapse. The donor T-cell infusions associated with such transplantation can promote post-transplantation immune reconstitution and control residual disease. METHODS We identified 43 patients who underwent haploidentical transplantation and infusion of donor T cells for acute myeloid leukemia or myelodysplastic syndrome and conducted post-transplantation studies that included morphologic examination of bone marrow, assessment of hematopoietic chimerism with the use of short-tandem-repeat amplification, and HLA typing. The genomic rearrangements in mutant variants of leukemia were studied with the use of genomic HLA typing, microsatellite mapping, and single-nucleotide-polymorphism arrays. The post-transplantation immune responses against the original cells and the mutated leukemic cells were analyzed with the use of mixed lymphocyte cultures. RESULTS In 5 of 17 patients with leukemia relapse after haploidentical transplantation and infusion of donor T cells, we identified mutant variants of the original leukemic cells. In the mutant leukemic cells, the HLA haplotype that differed from the donor's haplotype had been lost because of acquired uniparental disomy of chromosome 6p. T cells from the donor and the patient after transplantation did not recognize the mutant leukemic cells, whereas the original leukemic cells taken at the time of diagnosis were efficiently recognized and killed. CONCLUSIONS After transplantation of haploidentical hematopoietic stem cells and infusion of donor T cells, leukemic cells can escape from the donor's antileukemic T cells through the loss of the mismatched HLA haplotype. This event leads to relapse.
Collapse
Affiliation(s)
- Luca Vago
- Hospital San Raffaele-Telethon Institute for Gene Therapy, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Wang H, Wei H, Zhang R, Hou S, Li B, Qian W, Zhang D, Kou G, Dai J, Guo Y. Genetically targeted T cells eradicate established breast cancer in syngeneic mice. Clin Cancer Res 2009; 15:943-50. [PMID: 19188165 DOI: 10.1158/1078-0432.ccr-08-2381] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The purpose of the present study was to evaluate the capacity and mechanisms of genetically modified erbB2-specific T cells to eradicate erbB2+ tumors in syngeneic mice. EXPERIMENTAL DESIGN Primary mouse T cells were modified to target the breast tumor-associated antigen erbB2 through retroviral-mediated transfer of a chimeric antigen receptor, termed single-chain antibody (scFv)-CD28-zeta. Antitumor efficacy of scFv-CD28-zeta-modified T cells was analyzed in mice bearing D2F2/E2 breast tumors. RESULTS The scFv-CD28-zeta-modified T cells were shown to specifically secrete T cytotoxic-1 cytokines and lyse erbB2+ breast tumor cells following receptor stimulation in vitro. Treatment with scFv-CD28-zeta-modified T cells was able to lead to long-term, tumor-free survival in mice bearing erbB2+ D2F2/E2 breast tumors. Importantly, the surviving mice developed a host memory response to D2F2/E2 tumor cells, and this host response was able to protect against a rechallenge with erbB2+ D2F2/E2 tumor cells and parental erbB2(-) D2F2 tumor cells. In addition, scFv-CD28-zeta T-cell expression of perforin and interferon-gamma were essential for complete antitumor efficacy. CONCLUSIONS Treatment with scFv-CD28-zeta-modified T cells was able to induce a host antitumor immunity in syngeneic mice. Complete tumor elimination by scFv-CD28-zeta-modified T cells required T cell-derived interferon-gamma and perforin, indicating that cytotoxicity and cytokine secretion play a role in the in vivo response.
Collapse
Affiliation(s)
- Hao Wang
- International Joint Cancer Institute and Changhai Hospital Cancer Center, The Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Dammeyer P, Mwakigonja AR, Rethi B, Chiodi F, Wolpert EZ. Vaccination with beta(2)-microglobulin-deficient dendritic cells protects against growth of beta(2)-microglobulin-deficient tumours. Scand J Immunol 2009; 70:44-52. [PMID: 19522767 DOI: 10.1111/j.1365-3083.2009.02270.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Defects in cell surface expression of major histocompatibility complex class I antigen molecules are common in tumour cells. We have previously described the generation of adaptive immunity to tumour cells deficient in the transporter associated with antigen processing molecule. In this study, we demonstrate enhanced in vivo protection against growth of beta(2)-microglobulin-deficient tumour cells in syngeneic C57Bl/6 mice, following vaccination with beta(2)-microglobulin-deficient dendritic cells. In vitro analysis suggested that vaccinated mice produced CD3+ cells, which could induce apoptosis in syngeneic beta(2)-microglobulin-deficient tumour and non-malignant cells. Further investigation of target cell recognition suggested that also tumour cells lacking expression of classical major histocompatibility complex class I heavy chains and functional transporter associated with antigen processing molecules were recognized by CD3+ effector cells from vaccinated mice. Histopathological examination of organs from vaccinated mice showed no significant vaccination-induced pathology. The present findings point to a new possible strategy to counteract the growth of major histocompatibility complex class I-deficient tumour cells.
Collapse
Affiliation(s)
- P Dammeyer
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
147
|
Abstract
Cancer is a complex collection of distinct genetic diseases united by common hallmarks. Here, we expand upon the classic hallmarks to include the stress phenotypes of tumorigenesis. We describe a conceptual framework of how oncogene and non-oncogene addictions contribute to these hallmarks and how they can be exploited through stress sensitization and stress overload to selectively kill cancer cells. In particular, we present evidence for a large class of non-oncogenes that are essential for cancer cell survival and present attractive drug targets. Finally, we discuss the path ahead to therapeutic discovery and provide theoretical considerations for combining orthogonal cancer therapies.
Collapse
Affiliation(s)
- Ji Luo
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
148
|
Abstract
Interferons represent a protein family with pleiotropic functions including immunomodulatory, cytostatic, and cytotoxic activities. Based on these effects, interferons are involved in innate as well as adaptive immunity, thereby shaping the tumor host immune responses. These cytokines, alone or in combination, have been successfully implemented for the treatment of some malignancies. However, it has been recently demonstrated that tumor cells could be resistant to interferon treatment, which may be associated with an escape of tumor cells from immune surveillance. Therefore, the aim of this chapter is to summarize the frequency of impaired interferon signal transduction, their underlying molecular mechanisms, and their clinical relevance.
Collapse
Affiliation(s)
- Barbara Seliger
- Martin Luther University Halle-Wittenberg, Institute of Medical Immunology, Halle, Germany
| | | | | |
Collapse
|
149
|
Frecuencias de las pérdidas de heterocigocidad en la región que codifica para HLA en biopsias de pacientes con cáncer de cuello uterino. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s0123-9015(09)70118-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
150
|
Aptsiauri N, Carretero R, Garcia-Lora A, Real LM, Cabrera T, Garrido F. Regressing and progressing metastatic lesions: resistance to immunotherapy is predetermined by irreversible HLA class I antigen alterations. Cancer Immunol Immunother 2008; 57:1727-33. [PMID: 18491093 PMCID: PMC11030993 DOI: 10.1007/s00262-008-0532-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 04/29/2008] [Indexed: 10/22/2022]
Abstract
Despite the significant efforts to enhance immune reactivity against malignancies the clinical effect of anti-tumor vaccines and cancer immunotherapy is still below expectations. Understanding of the possible causes of such poor clinical outcome has become very important for improvement of the existing cancer treatment modalities. In particular, the critical role of HLA class I antigens in the success of T cell based immunotherapy has led to a growing interest in investigating the expression and function of these molecules in metastatic cancer progression and, especially in response to immunotherapy. In this report, we illustrate that two types of metastatic lesions are commonly generated in response to immunotherapy according to the pattern of HLA class I expression. We found that metastatic lesions, that progress after immunotherapy have low level of HLA class I antigens, while the regressing lesions demonstrate significant upregulation of these molecules. Presumably, immunotherapy changes tumor microenvironment and creates an additional immune selection pressure on tumor cells. As a result, two subtypes of metastatic lesions arise from pre-existing malignant cells: (a) regressors, with upregulated HLA class I expression after therapy, and (b) progressors with resistance to immunotherapy and with low level of HLA class I. Tumor cells with reversible defects (soft lesions) respond to therapy by upregulation of HLA class I expression and regress, while tumor cells with structural irreversible defects (hard lesions) demonstrate resistance to immunostimulation, fail to upregulate HLA class I antigens and eventually progress. These two types of metastases appear independently of type of the immunotherapy used, either non-specific immunomodulators (cytokines or BCG) or autologous tumor vaccination. Similarly, we also detected two types of metastatic colonies in a mouse fibrosarcoma model after in vitro treatment with IFN-gamma. One type of metastases characterized by upregulation of all MHC class I antigens and another type with partial IFN-gamma resistance, namely with lack of expression of L(d)-MHC class I molecule. Our observations may shed new light on the understanding of the mechanisms of tumor escape and might have implications for improvement of the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Natalia Aptsiauri
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Rafael Carretero
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
- Departamento de Bioquímica, Biología Molecular III e Inmunologia, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Angel Garcia-Lora
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Luis M. Real
- Neocodex, Departamento de Genomica Estructural, Sevilla, Spain
| | - Teresa Cabrera
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
- Departamento de Bioquímica, Biología Molecular III e Inmunologia, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Federico Garrido
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
- Departamento de Bioquímica, Biología Molecular III e Inmunologia, Facultad de Medicina, Universidad de Granada, Granada, Spain
| |
Collapse
|