101
|
Maternal separation induces long-term effects on monoamines and brain-derived neurotrophic factor levels on the frontal cortex, amygdala, and hippocampus: differential effects after a stress challenge. Behav Pharmacol 2017; 28:545-557. [DOI: 10.1097/fbp.0000000000000324] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
102
|
Decreased environmental complexity during development impairs habituation of reinforcer effectiveness of sensory stimuli. Behav Brain Res 2017; 337:53-60. [PMID: 28943426 DOI: 10.1016/j.bbr.2017.09.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 02/03/2023]
Abstract
Previous research has shown that rats reared in simple/impoverished environments demonstrate greater repetitive responding for sensory reinforcers (e.g., light onset). Moreover, the brains of these rats are abnormally developed, compared to brains of rats reared in more complex/enriched environments. Repetitive behaviors are commonly observed in individuals with developmental disorders. Some of these repetitive behaviors could be maintained by the reinforcing effects of the sensory stimulation that they produce. Therefore, rearing rats in impoverished conditions may provide an animal model for certain repetitive behaviors associated with developmental disorders. We hypothesize that in rats reared in simple/impoverished environments, the normal habituation process to sensory reinforcers is impaired, resulting in high levels of repetitive behaviors. We tested the hypothesis using an operant sensory reinforcement paradigm in rats reared in simple/impoverished (IC), standard laboratory (SC), and complex/enrichened conditions (EC, treatments including postnatal handling and environmental enrichment). Results show that the within-session habituation of the reinforcer effectiveness of light onset was slower in the IC and SC rats than in the EC rats. A dishabituation challenge indicated that within-session decline of responses was due to habituation and not motor fatigue or sensory adaptation. In conclusion, rearing rats in simple/impoverished environments, and comparing them to rats reared in more complex/enriched environments, may constitute a useful approach for studying certain repetitive behaviors associated with developmental disorders.
Collapse
|
103
|
Kuhlman KR, Chiang JJ, Horn S, Bower JE. Developmental psychoneuroendocrine and psychoneuroimmune pathways from childhood adversity to disease. Neurosci Biobehav Rev 2017; 80:166-184. [PMID: 28577879 PMCID: PMC5705276 DOI: 10.1016/j.neubiorev.2017.05.020] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 04/13/2017] [Accepted: 05/22/2017] [Indexed: 12/17/2022]
Abstract
Childhood adversity has been repeatedly and robustly linked to physical and mental illness across the lifespan. Yet, the biological pathways through which this occurs remain unclear. Functioning of the inflammatory arm of the immune system and the hypothalamic-pituitary-adrenal (HPA)-axis are both hypothesized pathways through which childhood adversity leads to disease. This review provides a novel developmental framework for examining the role of adversity type and timing in inflammatory and HPA-axis functioning. In particular, we identify elements of childhood adversity that are salient to the developing organism: physical threat, disrupted caregiving, and unpredictable environmental conditions. We propose that existing, well-characterized animal models may be useful in differentiating the effects of these adversity elements and review both the animal and human literature that supports these ideas. To support these hypotheses, we also provide a detailed description of the development and structure of both the HPA-axis and the inflammatory arm of the immune system, as well as recent methodological advances in their measurement. Recommendations for future basic, developmental, translational, and clinical research are discussed.
Collapse
|
104
|
Delayed effect of early-life corticosterone treatment on adult anti-predator behavior in a common passerine. Physiol Behav 2017; 177:82-90. [DOI: 10.1016/j.physbeh.2017.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 01/06/2023]
|
105
|
Enduring Neural and Behavioral Effects of Early Life Adversity in Infancy: Consequences of Maternal Abuse and Neglect, Trauma and Fear. Curr Behav Neurosci Rep 2017. [DOI: 10.1007/s40473-017-0112-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
106
|
van Bodegom M, Homberg JR, Henckens MJAG. Modulation of the Hypothalamic-Pituitary-Adrenal Axis by Early Life Stress Exposure. Front Cell Neurosci 2017; 11:87. [PMID: 28469557 PMCID: PMC5395581 DOI: 10.3389/fncel.2017.00087] [Citation(s) in RCA: 328] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022] Open
Abstract
Exposure to stress during critical periods in development can have severe long-term consequences, increasing overall risk on psychopathology. One of the key stress response systems mediating these long-term effects of stress is the hypothalamic-pituitary-adrenal (HPA) axis; a cascade of central and peripheral events resulting in the release of corticosteroids from the adrenal glands. Activation of the HPA-axis affects brain functioning to ensure a proper behavioral response to the stressor, but stress-induced (mal)adaptation of the HPA-axis' functional maturation may provide a mechanistic basis for the altered stress susceptibility later in life. Development of the HPA-axis and the brain regions involved in its regulation starts prenatally and continues after birth, and is protected by several mechanisms preventing corticosteroid over-exposure to the maturing brain. Nevertheless, early life stress (ELS) exposure has been reported to have numerous consequences on HPA-axis function in adulthood, affecting both its basal and stress-induced activity. According to the match/mismatch theory, encountering ELS prepares an organism for similar ("matching") adversities during adulthood, while a mismatching environment results in an increased susceptibility to psychopathology, indicating that ELS can exert either beneficial or disadvantageous effects depending on the environmental context. Here, we review studies investigating the mechanistic underpinnings of the ELS-induced alterations in the structural and functional development of the HPA-axis and its key external regulators (amygdala, hippocampus, and prefrontal cortex). The effects of ELS appear highly dependent on the developmental time window affected, the sex of the offspring, and the developmental stage at which effects are assessed. Albeit by distinct mechanisms, ELS induced by prenatal stressors, maternal separation, or the limited nesting model inducing fragmented maternal care, typically results in HPA-axis hyper-reactivity in adulthood, as also found in major depression. This hyper-activity is related to increased corticotrophin-releasing hormone signaling and impaired glucocorticoid receptor-mediated negative feedback. In contrast, initial evidence for HPA-axis hypo-reactivity is observed for early social deprivation, potentially reflecting the abnormal HPA-axis function as observed in post-traumatic stress disorder, and future studies should investigate its neural/neuroendocrine foundation in further detail. Interestingly, experiencing additional (chronic) stress in adulthood seems to normalize these alterations in HPA-axis function, supporting the match/mismatch theory.
Collapse
Affiliation(s)
| | | | - Marloes J. A. G. Henckens
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and BehaviourRadboudumc, Nijmegen, Netherlands
| |
Collapse
|
107
|
King G, Scott E, Graham BM, Richardson R. Individual differences in fear extinction and anxiety-like behavior. ACTA ACUST UNITED AC 2017; 24:182-190. [PMID: 28416629 PMCID: PMC5397683 DOI: 10.1101/lm.045021.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/03/2017] [Indexed: 11/25/2022]
Abstract
There is growing appreciation for the substantial individual differences in the acquisition and inhibition of aversive associations, and the insights this might give into identifying individuals particularly vulnerable to stress and psychopathology. We examined whether animals that differed in rate of extinction (i.e., Fast versus Slow) were different in their response to an acute stress in adulthood or following a chronic stress that occurred either early or later in life. We found that Slow Extinguishers had significantly poorer extinction retention than Fast Extinguishers, but an acute stressor did not differentially affect anxiety-like behavior in the two groups. Further, while exposure to chronic stress in adulthood did not impact on the extinction phenotypes or anxiety-like behavior, exposure to chronic stress early in life affected both extinction retention and anxiety-like behavior. These findings have implications for the development of a more nuanced approach to identifying those most at risk of anxiety disorders.
Collapse
Affiliation(s)
- Gabrielle King
- School of Psychology, The University of New South Wales, UNSW, Sydney, 2052, Australia
| | - Elliot Scott
- School of Psychology, The University of New South Wales, UNSW, Sydney, 2052, Australia
| | - Bronwyn M Graham
- School of Psychology, The University of New South Wales, UNSW, Sydney, 2052, Australia
| | - Rick Richardson
- School of Psychology, The University of New South Wales, UNSW, Sydney, 2052, Australia
| |
Collapse
|
108
|
Schöner J, Heinz A, Endres M, Gertz K, Kronenberg G. Post-traumatic stress disorder and beyond: an overview of rodent stress models. J Cell Mol Med 2017; 21:2248-2256. [PMID: 28374949 PMCID: PMC5618668 DOI: 10.1111/jcmm.13161] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/13/2017] [Indexed: 11/26/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disorder of high prevalence and major socioeconomic impact. Patients suffering from PTSD typically present intrusion and avoidance symptoms and alterations in arousal, mood and cognition that last for more than 1 month. Animal models are an indispensable tool to investigate underlying pathophysiological pathways and, in particular, the complex interplay of neuroendocrine, genetic and environmental factors that may be responsible for PTSD induction. Since the 1960s, numerous stress paradigms in rodents have been developed, based largely on Seligman's seminal formulation of 'learned helplessness' in canines. Rodent stress models make use of physiological or psychological stressors such as foot shock, underwater trauma, social defeat, early life stress or predator-based stress. Apart from the brief exposure to an acute stressor, chronic stress models combining a succession of different stressors for a period of several weeks have also been developed. Chronic stress models in rats and mice may elicit characteristic PTSD-like symptoms alongside, more broadly, depressive-like behaviours. In this review, the major existing rodent models of PTSD are reviewed in terms of validity, advantages and limitations; moreover, significant results and implications for future research-such as the role of FKBP5, a mediator of the glucocorticoid stress response and promising target for therapeutic interventions-are discussed.
Collapse
Affiliation(s)
- Johanna Schöner
- Klinik für Psychiatrie und Psychotherapie, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany.,Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Heinz
- Klinik für Psychiatrie und Psychotherapie, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Matthias Endres
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Karen Gertz
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Golo Kronenberg
- Klinik für Psychiatrie und Psychotherapie, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany.,Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Klinik und Poliklinik für Psychiatrie und Psychotherapie, Zentrum für Nervenheilkunde, Universitätsmedizin Rostock, Rostock, Germany
| |
Collapse
|
109
|
Chaby LE, Zhang L, Liberzon I. The effects of stress in early life and adolescence on posttraumatic stress disorder, depression, and anxiety symptomatology in adulthood. Curr Opin Behav Sci 2017. [DOI: 10.1016/j.cobeha.2017.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
110
|
Effects of early-life stress on cognitive function and hippocampal structure in female rodents. Neuroscience 2017; 342:101-119. [DOI: 10.1016/j.neuroscience.2015.08.024] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/06/2015] [Accepted: 08/12/2015] [Indexed: 01/30/2023]
|
111
|
González-Mariscal G, Melo AI. Bidirectional Effects of Mother-Young Contact on the Maternal and Neonatal Brains. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1015:97-116. [PMID: 29080023 DOI: 10.1007/978-3-319-62817-2_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adaptive plasticity occurs intensely during the early postnatal period through processes like proliferation, migration, differentiation, synaptogenesis, myelination and apoptosis. Exposure to particular stimuli during this critical period has long-lasting effects on cognition, stress reactivity and behavior. Maternal care is the main source of social, sensory and chemical stimulation to the young and is, therefore, critical to "fine-tune" the offspring's neural development. Mothers providing a low quantity or quality of stimulation produce offspring that will exhibit reduced cognitive performance, impaired social affiliation and increased agonistic behaviors. Transgenerational transmission of such traits occurs epigenetically, i.e., through mechanisms like DNA methylation and post-translational modification of nucleosomal histones, processes that silence or increase gene expression without affecting the DNA sequence. Reciprocally, providing maternal care profoundly affects the behavior, learning, memory and fine neuroanatomy of the adult female. Such effects are in many cases permanent and sometimes they involve the hormones of pregnancy and lactation. The above evidence supports the idea that the mother-young dyad exerts profound and permanent effects on the brains of both adult and developing organisms, respectively. Effects on the latter can be explained by the neural developmental processes taking place during the early postnatal period. In contrast, little is known about the mechanisms mediating the plasticity of the adult maternal brain. The bidirectional effects that mother and young exert on each other's brains exemplify a remarkable plasticity of this organ for organizing itself and provide an immense source of variability for adaptation and evolution in mammals.
Collapse
Affiliation(s)
- Gabriela González-Mariscal
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Apdo Postal 62, Tlaxcala, Tlax, 90000, Mexico.
| | - Angel I Melo
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Apdo Postal 62, Tlaxcala, Tlax, 90000, Mexico
| |
Collapse
|
112
|
Prusator DK, Greenwood-Van Meerveld B. Sex differences in stress-induced visceral hypersensitivity following early life adversity: a two hit model. Neurogastroenterol Motil 2016; 28:1876-1889. [PMID: 27385091 DOI: 10.1111/nmo.12891] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/29/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Early life adversity (ELA) has been indicated as a risk factor for the development of stress axis dysfunction in adulthood, specifically in females. We previously showed that unpredictable ELA induces visceral hyperalgesia in adult female rats. It remains to be determined whether ELA alters visceral nociceptive responses to stress in adulthood. The current study tested the hypothesis that following ELA, exposure to an adulthood stressor, or second hit, serves as a risk factor for exaggerated stress-induced visceral hypersensitivity that is sex-specific. METHODS Following ELA, adult stress was induced via a single exposure (acute) or repetitive daily exposure, 1 h/day for 7 days (chronic), to water avoidance stress (WAS). KEY RESULTS Acute WAS increased pain behaviors in all adult female rats, however, females that experienced unpredictable ELA exhibited significantly more pain behaviors compared to those exposed to predictable ELA or controls. Following chronic WAS, all adult females exhibited increased pain responses, however, an exaggerated response was observed in rats exposed to unpredictable or predictable ELA compared to controls. Similarly, in adult male rats exposure to acute or chronic WAS increased pain behaviors, however, there were no differences in pain behaviors between ELA groups. CONCLUSIONS & INFERENCES This study highlights a novel consequence of ELA on stress-induced visceral nociception in adulthood that is sex-specific. More importantly, our study suggests that ELA not only serves as a risk factor for development of chronic pain in adulthood, but also serves as a predisposition for worsening of visceral pain following adult stress in female rats.
Collapse
Affiliation(s)
- D K Prusator
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - B Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.,VA Medical Center, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.,Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| |
Collapse
|
113
|
Dönmez RA, Candansayar S, Derinöz O, Gülbahar Ö, Bolay H. Adulthood behavioral and neurodevelopmental effects of being raised byan ambivalent mother in rats: what does not kill you makes you stronger. Turk J Med Sci 2016; 46:1546-1560. [PMID: 27966328 DOI: 10.3906/sag-1502-39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 12/13/2015] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND/AIM This study aimed to investigate the effects of early adverse life events and being raised by an ambivalent mother on rats. MATERIALS AND METHODS The rats were separated into four groups: 1) the control group (n = 12), which was raised under standard care; 2) the early handling (EH) group, which was raised using an EH model (n = 16); 3) the early deprivation (ED) group, which was raised using an ED model (n = 13), and 4) the ambivalent mother (AM) group, which spent 3 h/day with a "fake mother" (n = 17). When they became adults, their anxiety levels, depressive-like behaviors, and memory functions were measured using the elevated plus maze test, the forced swim test, and the novel object recognition test, respectively. Their neurodevelopment was evaluated by measuring the brain-derived neurotrophic factor (BDNF) levels in the prefrontal cortex, the dentate gyrus, and the cerebellum via ELISA. RESULTS The rats in the ED and AM groups exhibited less anxiety and depressive-like behavior than those in the control and EH groups, particularly in females. There was no significant difference between the groups in memory function or brain BDNF levels. CONCLUSION Severe and ambivalent early adverse life events may decrease anxiety and depressive-like behavior in adult rats.
Collapse
Affiliation(s)
| | | | - Okşan Derinöz
- Department of Pediatric Emergency, Gazi University Hospital, Ankara, Turkey
| | - Özlem Gülbahar
- Department of Medical Biochemistry, Gazi University Hospital, Ankara, Turkey
| | - Hayrunnisa Bolay
- Department of Neurology, Gazi University Hospital, Ankara, Turkey
| |
Collapse
|
114
|
Jordan CJ, Andersen SL. Sensitive periods of substance abuse: Early risk for the transition to dependence. Dev Cogn Neurosci 2016; 25:29-44. [PMID: 27840157 PMCID: PMC5410194 DOI: 10.1016/j.dcn.2016.10.004] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/10/2016] [Indexed: 12/20/2022] Open
Abstract
Early substance use dramatically increases the risk of substance use disorder (SUD). Although many try drugs, only a small percentage transition to SUD. High reactivity of reward, habit, and stress systems increase risk. Identification of early risk enables targeted, preventative interventions for SUD. Prevention must start before the sensitive adolescent period to maximize resilience.
Early adolescent substance use dramatically increases the risk of lifelong substance use disorder (SUD). An adolescent sensitive period evolved to allow the development of risk-taking traits that aid in survival; today these may manifest as a vulnerability to drugs of abuse. Early substance use interferes with ongoing neurodevelopment to induce neurobiological changes that further augment SUD risk. Although many individuals use drugs recreationally, only a small percentage transition to SUD. Current theories on the etiology of addiction can lend insights into the risk factors that increase vulnerability from early recreational use to addiction. Building on the work of others, we suggest individual risk for SUD emerges from an immature PFC combined with hyper-reactivity of reward salience, habit, and stress systems. Early identification of risk factors is critical to reducing the occurrence of SUD. We suggest preventative interventions for SUD that can be either tailored to individual risk profiles and/or implemented broadly, prior to the sensitive adolescent period, to maximize resilience to developing substance dependence. Recommendations for future research include a focus on the juvenile and adolescent periods as well as on sex differences to better understand early risk and identify the most efficacious preventions for SUD.
Collapse
Affiliation(s)
- Chloe J Jordan
- Department of Psychiatry, Mclean Hospital/Harvard Medical School, Belmont, MA 02478, United States.
| | - Susan L Andersen
- Department of Psychiatry, Mclean Hospital/Harvard Medical School, Belmont, MA 02478, United States
| |
Collapse
|
115
|
Chaby LE. Why are there lasting effects from exposure to stress during development? An analysis of current models of early stress. Physiol Behav 2016; 164:164-81. [DOI: 10.1016/j.physbeh.2016.05.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/29/2016] [Accepted: 05/17/2016] [Indexed: 01/19/2023]
|
116
|
Mild daily stressors in adulthood may counteract behavioural effects after constant presence of mother during early life. Physiol Behav 2016; 165:313-21. [DOI: 10.1016/j.physbeh.2016.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 08/01/2016] [Accepted: 08/17/2016] [Indexed: 01/28/2023]
|
117
|
Prusator DK, Andrews A, Greenwood-Van Meerveld B. Neurobiology of early life stress and visceral pain: translational relevance from animal models to patient care. Neurogastroenterol Motil 2016; 28:1290-305. [PMID: 27251368 DOI: 10.1111/nmo.12862] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/22/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Epidemiological studies show that females are twice as likely to receive a diagnosis of irritable bowel syndrome (IBS) than their male counterparts. Despite evidence pointing to a role for sex hormones in the onset or exacerbation of IBS symptoms, the mechanism by which ovarian hormones may predispose women to develop IBS remains largely undefined. On the other hand, there is a growing body of research showing a correlation between reports of early life stress (ELS) and the diagnosis of IBS. Current treatments available for IBS patients target symptom relief including abdominal pain and alterations in bowel habits, but are not directed to the etiology of the disease. PURPOSE To better understand the mechanisms by which sex hormones and ELS contribute to IBS, animal models have been developed to mirror complex human experiences allowing for longitudinal studies that investigate the lifelong consequences of ELS. These preclinical models have been successful in recapitulating ELS-induced visceral pain. Moreover, in female rats the influence of cycling hormones on visceral hypersensitivity resembles that seen in women with IBS. Such studies suggest that rodent models of ELS may serve as pivotal tools in determining (i) the etiology of IBS, (ii) novel future treatments for IBS, and (iii) improving individualized patient care. The current review aims to shed light on the progress and the challenges observed by clinicians within the field of gastroenterology and the preclinical science aimed at addressing those challenges in an effort to understand and more efficiently treat functional gastrointestinal disorders (FGIDs) in both children and adults.
Collapse
Affiliation(s)
- D K Prusator
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - A Andrews
- Section of Pediatric Gastroenterology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - B Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
- VA Medical Center, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| |
Collapse
|
118
|
Gehrand AL, Hoeynck B, Jablonski M, Leonovicz C, Ye R, Scherer PE, Raff H. Sex differences in adult rat insulin and glucose responses to arginine: programming effects of neonatal separation, hypoxia, and hypothermia. Physiol Rep 2016; 4:e12972. [PMID: 27664190 PMCID: PMC5037920 DOI: 10.14814/phy2.12972] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 01/26/2023] Open
Abstract
Acute neonatal hypoxia, a common stressor, causes a spontaneous decrease in body temperature which may be protective. There is consensus that hypothermia should be prevented during acute hypoxia in the human neonate; however, this may be an additional stress with negative consequences. We hypothesize that maintaining body temperature during hypoxia in the first week of postnatal life alters the subsequent insulin, glucose, and glucagon secretion in adult rats. Rat pups were separated from their dam daily from postnatal days (PD) 2-6 for the following 90 min experimental treatments: (1) normoxic separation (control), (2) hypoxia (8% O2) allowing spontaneous hypothermia, (3) normoxic hypothermia with external cold, and (4) exposure to 8% O2 while maintaining body temperature using external heat. An additional normoxic non-separated control group was performed to determine if separation per se changed the adult phenotype. Plasma insulin, glucose, and glucagon responses to arginine stimulation were evaluated from PD105 to PD133. Maternal separation (compared to non-separated neonates) had more pronounced effects on the adult response to arginine compared to the hypoxic, hypothermic, and hypoxic-isothermic neonatal treatments. Adult males exposed to neonatal maternal separation had augmented insulin and glucose responses to arginine compared to unseparated controls. Additionally, neonatal treatment had a significant effect on body weight gain; adults exposed to neonatal maternal separation were significantly heavier. Female adults had significantly smaller insulin and glucose responses to arginine regardless of neonatal treatment. Neonatal maternal separation during the first week of life significantly altered adult beta-cell function in a sexually dimorphic manner.
Collapse
Affiliation(s)
- Ashley L Gehrand
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Brian Hoeynck
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Mack Jablonski
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Cole Leonovicz
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Risheng Ye
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hershel Raff
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin Departments of Medicine, Surgery, and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
119
|
Callaghan BL, Cowan CSM, Richardson R. Treating Generational Stress. Psychol Sci 2016; 27:1171-80. [DOI: 10.1177/0956797616653103] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 05/12/2016] [Indexed: 12/26/2022] Open
Affiliation(s)
- Bridget L. Callaghan
- School of Psychology, University of New South Wales
- Department of Psychology, Columbia University
- Department of Psychiatry, University of Melbourne
| | | | | |
Collapse
|
120
|
Lu S, Gao W, Huang M, Li L, Xu Y. In search of the HPA axis activity in unipolar depression patients with childhood trauma: Combined cortisol awakening response and dexamethasone suppression test. J Psychiatr Res 2016; 78:24-30. [PMID: 27049575 DOI: 10.1016/j.jpsychires.2016.03.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 03/07/2016] [Accepted: 03/23/2016] [Indexed: 11/28/2022]
Abstract
The aim of the present study was to examine the impact of childhood trauma on HPA axis activity both in depression patients and healthy controls in order to determine the role of HPA axis abnormalities in depression and to find the differences in HPA axis functioning that may lead certain individuals more susceptible to the depressogenic effects of childhood trauma. Eighty subjects aged 18-45 years were recruited into four study groups (n = 18, depression patients with childhood trauma exposures, CTE/MDD; n = 17, depression patients without childhood adversity, non-CTE/MDD; n = 23, healthy persons with childhood trauma, CTE/non-MDD; and n = 22, healthy persons without childhood adversity, non-CTE/non-MDD). Each participant collected salivary samples in the morning at four time points: immediately upon awakening, 30, 45, and 60 min after awakening for the assessment of CAR and underwent a 1 mg-dexamethasone suppression test (DST). Regardless of depression, subjects with CTE exhibited an enhanced CAR and the CAR areas under the curve to ground (AUCg) were associated with their childhood trauma questionnaire (CTQ) physical neglect scores and CTQ total scores. In addition, the CTE/MDD group also showed a highest post-DST cortisol concentration and a decreased glucocorticoid feedback inhibition among four groups of subjects. The present findings suggested that childhood trauma was associated with hyperactivity of HPA axis as measured with CAR, potentially reflecting the vulnerability for developing depression after early life stress exposures. Moreover, dysfunction of the GR-mediated negative feedback control might contribute to the development of depression after CTE.
Collapse
Affiliation(s)
- Shaojia Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Weijia Gao
- Department of Child Psychology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Lingjiang Li
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, China.
| | - Yi Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
121
|
Prusator DK, Greenwood-Van Meerveld B. Sex-related differences in pain behaviors following three early life stress paradigms. Biol Sex Differ 2016; 7:29. [PMID: 27293543 PMCID: PMC4901516 DOI: 10.1186/s13293-016-0082-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/01/2016] [Indexed: 01/01/2023] Open
Abstract
Background Early life stress (ELS) serves as a risk factor for the development of functional pain disorders such as irritable bowel syndrome (IBS) in adults. Although rodent models have been developed to mimic different forms of ELS experience, the use of predominantly male animals across various rodent strains has led to a paucity of information regarding sex-related differences in the persistent effects of ELS on pain behaviors in adulthood. We hypothesized that the context or nature of ELS experience may interact with sex differences to influence the development of chronic pain. Methods We employed three rodent models mimicking different facets of early life adversity to investigate the effects of ELS on pain perception in adulthood. To eliminate strain differences, all experiments were carried out using Long Evans rats. As neonates, male and female rat pups were exposed to maternal separation (MS), limited nesting (LN), or odor attachment learning (OAL). In adulthood, visceral sensitivity and somatic sensitivity were assessed at ~postnatal day 90 via quantification of visceromotor responses to colorectal distension and von Frey probing, respectively. Results Following exposure to MS or LN, male rats developed visceral and somatic hypersensitivity compared to controls, whereas females subjected to the same paradigms were normosensitive. In the OAL model, females exposed to unpredictable ELS exhibited visceral but not somatic hypersensitivity. There were no observed differences in visceral or somatic sensitivity in male animals following OAL exposure. Conclusions In summary, our data confirms that early adverse experiences in the form of MS, LN, and OAL contribute to the long-term development of heightened pain responsiveness in adulthood. Furthermore, this study indicates that sex-related vulnerability or resilience for the development of heightened pain perception is directly associated with the context or nature of the ELS experienced.
Collapse
Affiliation(s)
- Dawn K Prusator
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, BRC 272, 975 NE 10th St, Oklahoma, 73104 OK USA
| | - Beverley Greenwood-Van Meerveld
- VA Medical Center, University of Oklahoma Health Science Center, Oklahoma, OK USA ; Department of Physiology, University of Oklahoma Health Science Center, Oklahoma, OK USA ; Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, BRC 272, 975 NE 10th St, Oklahoma, 73104 OK USA
| |
Collapse
|
122
|
Markostamou I, Ioannidis A, Dandi E, Mandyla MA, Nousiopoulou E, Simeonidou C, Spandou E, Tata DA. Maternal separation prior to neonatal hypoxia-ischemia: Impact on emotional aspects of behavior and markers of synaptic plasticity in hippocampus. Int J Dev Neurosci 2016; 52:1-12. [PMID: 27165447 DOI: 10.1016/j.ijdevneu.2016.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/08/2016] [Accepted: 04/09/2016] [Indexed: 12/20/2022] Open
Abstract
Exposure to early-life stress is associated with long-term alterations in brain and behavior, and may aggravate the outcome of neurological insults. This study aimed at investigating the possible interaction between maternal separation, a model of early stress, and subsequent neonatal hypoxia-ischemia on emotional behavior and markers of synaptic plasticity in hippocampus. Therefore, rat pups (N=60) were maternally separated for a prolonged (MS 180min) or a brief (MS 15min) period during the first six postnatal days, while a control group was left undisturbed. Hypoxia-ischemia was applied to a subgroup of each rearing condition on postnatal day 7. Emotional behavior was examined at three months of age and included assessments of anxiety (elevated plus maze), depression-like behavior (forced swimming) and spontaneous exploration (open field). Synaptic plasticity was evaluated based on BDNF and synaptophysin expression in CA3 and dentate gyrus hippocampal regions. We found that neonatal hypoxia-ischemia caused increased levels of anxiety, depression-like behavior and locomotor activity (ambulation). Higher anxiety levels were also seen in maternally separated rats (MS180min) compared to non-maternally separated rats, but prolonged maternal separation prior to HI did not potentiate the HI-associated effect. No differences among the three rearing conditions were found regarding depression-like behavior or ambulation. Immunohistochemical evaluation of synaptophysin revealed that both prolonged maternal separation (MS180min) and neonatal hypoxia-ischemia significantly reduced its expression in the CA3 and dentate gyrus. Decreases in synaptophysin expression in these areas were not exacerbated in rats that were maternally separated for a prolonged period prior to HI. Regarding BDNF expression, we found a significant decrease in immunoreactivity only in the hypoxic-ischemic rats that were subjected to the prolonged maternal separation paradigm. The above findings suggest that early-life stress prior to neonatal hypoxia-ischemia leads to significant alterations in synaptic plasticity of the dorsal hippocampus during adulthood, but does not exacerbate HI-related changes in emotional behavior.
Collapse
Affiliation(s)
- Ioanna Markostamou
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anestis Ioannidis
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evgenia Dandi
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria-Aikaterini Mandyla
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Nousiopoulou
- Laboratory of Experimental Neurology & Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Constantina Simeonidou
- Laboratory of Experimental Physiology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Spandou
- Laboratory of Experimental Physiology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Despina A Tata
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
123
|
The effects of a probiotic formulation (Lactobacillus rhamnosus and L. helveticus) on developmental trajectories of emotional learning in stressed infant rats. Transl Psychiatry 2016; 6:e823. [PMID: 27244232 PMCID: PMC5545650 DOI: 10.1038/tp.2016.94] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 03/22/2016] [Accepted: 04/10/2016] [Indexed: 12/13/2022] Open
Abstract
Recently, scientific interest in the brain-gut axis has grown dramatically, particularly with respect to the link between gastrointestinal and psychiatric dysfunction. However, the role of gut function in early emotional dysregulation is yet to be examined, despite the prevalence and treatment resistance of early-onset psychiatric disorders. The present studies utilized a developmental rodent model of early-life stress (ELS) to explore this gap. Rats were exposed to maternal separation (MS) on postnatal days 2-14. Throughout MS, dams received either vehicle or a probiotic formulation (previously shown to reduce gastrointestinal dysfunction) in their drinking water. Replicating past research, untreated MS infants exhibited an adult-like profile of long-lasting fear memories and fear relapse following extinction. In contrast, probiotic-exposed MS infants exhibited age-appropriate infantile amnesia and resistance to relapse. These effects were not mediated by changes in pups' or dams' anxiety at the time of training, nor by maternal responsiveness. Overall, probiotics acted as an effective and non-invasive treatment to restore normal developmental trajectories of emotion-related behaviors in infant rats exposed to ELS. These results provide promising initial evidence for this novel approach to reduce the risk of mental health problems in vulnerable individuals. Future studies are needed to test this treatment in humans exposed to ELS and to elucidate mechanisms for the observed behavioral changes.
Collapse
|
124
|
Kumari A, Singh P, Baghel MS, Thakur M. Social isolation mediated anxiety like behavior is associated with enhanced expression and regulation of BDNF in the female mouse brain. Physiol Behav 2016; 158:34-42. [DOI: 10.1016/j.physbeh.2016.02.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 01/04/2023]
|
125
|
Keller SM, Roth TL. Environmental influences on the female epigenome and behavior. ENVIRONMENTAL EPIGENETICS 2016; 2:dvw007. [PMID: 27746953 PMCID: PMC5065103 DOI: 10.1093/eep/dvw007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
Environmental factors have long-lasting effects on brain development and behavior. One way experiences are propagated is via epigenetic modifications to the genome. Environmentally-driven epigenetic modifications show incredible brain region- and sex-specificity, and many brain regions affected are ones involved in maternal behavior. In rodent models, females are typically the primary caregiver and thus, any environmental factors that modulate the epigenotype of the mother could have consequences for her current and future offspring. Here we review evidence of the susceptibility of the female epigenome to environmental factors, with a focus on brain regions involved in maternal behavior. Accordingly, implications for interventions that target the mother's epigenome and parenting behavior are discussed.
Collapse
Affiliation(s)
- Samantha M. Keller
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Tania L. Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
126
|
Adolescent mice show anxiety- and aggressive-like behavior and the reduction of long-term potentiation in mossy fiber-CA3 synapses after neonatal maternal separation. Neuroscience 2016; 316:221-31. [DOI: 10.1016/j.neuroscience.2015.12.041] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/05/2015] [Accepted: 12/21/2015] [Indexed: 11/17/2022]
|
127
|
Jung S, Son H, Lee DH, Roh GS, Kang SS, Cho GJ, Choi WS, Kim HJ. Decreased levels of RGS4 in the paraventricular nucleus facilitate GABAergic inhibition during the acute stress response. Biochem Biophys Res Commun 2016; 472:276-80. [DOI: 10.1016/j.bbrc.2016.02.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 02/25/2016] [Indexed: 01/01/2023]
|
128
|
Todkar A, Granholm L, Aljumah M, Nilsson KW, Comasco E, Nylander I. HPA Axis Gene Expression and DNA Methylation Profiles in Rats Exposed to Early Life Stress, Adult Voluntary Ethanol Drinking and Single Housing. Front Mol Neurosci 2016; 8:90. [PMID: 26858597 PMCID: PMC4726785 DOI: 10.3389/fnmol.2015.00090] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/24/2015] [Indexed: 11/24/2022] Open
Abstract
The neurobiological basis of early life stress (ELS) impact on vulnerability to alcohol use disorder is not fully understood. The effect of ELS, adult ethanol consumption and single housing, on expression of stress and DNA methylation regulatory genes as well as blood corticosterone levels was investigated in the hypothalamus and pituitary of adult out-bred Wistar rats subjected to different rearing conditions. A prolonged maternal separation (MS) of 360 min (MS360) was used to study the effect of ELS, and a short MS of 15 min (MS15) was used as a control. Voluntary ethanol drinking was assessed using a two-bottle free choice paradigm to simulate human episodic drinking. The effects of single housing and ethanol were assessed in conventional animal facility rearing (AFR) conditions. Single housing in adulthood was associated with lower Crhr1 and higher Pomc expression in the pituitary, whereas ethanol drinking was associated with higher expression of Crh in the hypothalamus and Crhr1 in the pituitary, accompanied by lower corticosterone levels. As compared to controls with similar early life handling, rats exposed to ELS displayed lower expression of Pomc in the hypothalamus, and higher Dnmt1 expression in the pituitary. Voluntary ethanol drinking resulted in lower Fkbp5 expression in the pituitary and higher Crh expression in the hypothalamus, independently of rearing conditions. In rats exposed to ELS, water and ethanol drinking was associated with higher and lower corticosterone levels, respectively. The use of conventionally reared rats as control group yielded more significant results than the use of rats exposed to short MS. Positive correlations, restricted to the hypothalamus and ELS group, were observed between the expression of the hypothalamus-pituitary-adrenal receptor and the methylation-related genes. Promoter DNA methylation and expression of respective genes did not correlate suggesting that other loci are involved in transcriptional regulation. Concluding, single housing is a confounding factor to be considered in voluntary ethanol drinking paradigms. ELS and ethanol drinking in adulthood exert independent effects on hypothalamic and pituitary related genes, however, in a manner dependent on the control group used.
Collapse
Affiliation(s)
| | - Linnea Granholm
- Department of Pharmaceutical Bioscience, Uppsala University Uppsala, Sweden
| | - Mujtaba Aljumah
- Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Kent W Nilsson
- Centre for Clinical Research, Västerås Central Hospital, Uppsala University Uppsala, Sweden
| | - Erika Comasco
- Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Ingrid Nylander
- Department of Pharmaceutical Bioscience, Uppsala University Uppsala, Sweden
| |
Collapse
|
129
|
Maternal separation facilitates extinction of social fear in adult male mice. Behav Brain Res 2016; 297:323-8. [DOI: 10.1016/j.bbr.2015.10.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/28/2015] [Accepted: 10/15/2015] [Indexed: 01/27/2023]
|
130
|
Borghans B, Homberg JR. Animal models for posttraumatic stress disorder: An overview of what is used in research. World J Psychiatry 2015; 5:387-396. [PMID: 26740930 PMCID: PMC4694552 DOI: 10.5498/wjp.v5.i4.387] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/27/2015] [Accepted: 10/27/2015] [Indexed: 02/05/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is a common anxiety disorder characterised by its persistence of symptoms after a traumatic experience. Although some patients can be cured, many do not benefit enough from the psychological therapies or medication strategies used. Many researchers use animal models to learn more about the disorder and several models are available. The most-used physical stressor models are single-prolonged stress, restraint stress, foot shock, stress-enhanced fear learning, and underwater trauma. Common social stressors are housing instability, social instability, early-life stress, and social defeat. Psychological models are not as diverse and rely on controlled exposure to the test animal’s natural predator. While validation of these models has been resolved with replicated symptoms using analogous stressors, translating new findings to human patients remains essential for their impact on the field. Choosing a model to experiment with can be challenging; this overview of what is possible with individual models may aid in making a decision.
Collapse
|
131
|
The impact of early postnatal environmental enrichment on maternal care and offspring behaviour following weaning. Behav Processes 2015; 122:51-8. [PMID: 26562657 DOI: 10.1016/j.beproc.2015.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/27/2015] [Accepted: 11/05/2015] [Indexed: 11/20/2022]
Abstract
The early postnatal period is a sensitive period in rodents as behavioural systems are developing and maturing during this time. However, relatively little information is available about the impact of environmental enrichment on offspring behaviour if enrichment is implemented only during this period. Here, environmental enrichment was provided from postnatal day 1 until weaning. On post-natal day 9, maternal behaviour and nonmaternal behaviour of the dam was observed. Nursing time in the enriched group was reduced but dams showed more non-maternal appetitive behaviours. Offspring were exposed to either the open field or the elevated plus maze (EPM) after weaning. In the open field, rats from the enriched group approached the more aversive inner zone of the open field later than control rats. Offspring from the enriched group made fewer entries into the inner zone and spent less time in this part of the arena. Enrichment had no impact on behaviour in the EPM. The present study provides evidence that postnatal enrichment can interfere with maternal behaviour in rats and can possibly lead to increased anxiety in the offspring. The findings suggest that enrichment procedures can have potentially unintended effects, interfering with the development of emotional behaviours in rats.
Collapse
|
132
|
Tay AK, Rees S, Chen J, Kareth M, Silove D. Pathways involving traumatic losses, worry about family, adult separation anxiety and posttraumatic stress symptoms amongst refugees from West Papua. J Anxiety Disord 2015; 35:1-8. [PMID: 26275507 DOI: 10.1016/j.janxdis.2015.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 07/02/2015] [Accepted: 07/04/2015] [Indexed: 11/15/2022]
Abstract
There is some evidence that adult separation anxiety disorder (ASAD) symptoms are closely associated with posttraumatic stress disorder (PTSD) amongst refugees exposed to traumatic events (TEs), but the pathways involved remain to be elucidated. A recent study suggests that separation anxiety disorder precedes and predicts onset of PTSD. We examined a path model testing whether ASAD symptoms and worry about family mediated the path from traumatic losses to PTSD symptoms amongst 230 refugees from West Papua. Culturally adapted measures were applied to assess TE exposure and symptoms of ASAD and PTSD. A structural equation model indicated that ASAD symptoms played an important role in mediating the effects of traumatic losses and worry about family in the pathway to PTSD symptoms. Although based on cross-sectional data, our findings suggest that ASAD symptoms may play a role in the path from traumatic losses to PTSD amongst refugees. We propose an evolutionary model in which the ASAD and PTSD reactions represent complementary survival responses designed to protect the individual and close attachments from external threats.
Collapse
Affiliation(s)
- Alvin Kuowei Tay
- Psychiatry Research and Teaching Unit, School of Psychiatry and Ingham Institute, University of New South Wales, NSW, Australia.
| | - Susan Rees
- Psychiatry Research and Teaching Unit, School of Psychiatry and Ingham Institute, University of New South Wales, NSW, Australia
| | - Jack Chen
- Simpson Centre for Health Services Research, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Moses Kareth
- Psychiatry Research and Teaching Unit, School of Psychiatry and Ingham Institute, University of New South Wales, NSW, Australia
| | - Derrick Silove
- Psychiatry Research and Teaching Unit, School of Psychiatry and Ingham Institute, University of New South Wales, NSW, Australia
| |
Collapse
|
133
|
Corticotropin-releasing factor receptor type 1 and type 2 interaction in irritable bowel syndrome. J Gastroenterol 2015; 50:819-30. [PMID: 25962711 DOI: 10.1007/s00535-015-1086-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/25/2015] [Indexed: 02/06/2023]
Abstract
Irritable bowel syndrome (IBS) displays chronic abdominal pain or discomfort with altered defecation, and stress-induced altered gut motility and visceral sensation play an important role in the pathophysiology. Corticotropin-releasing factor (CRF) is a main mediator of stress responses and mediates these gastrointestinal functional changes. CRF in brain and periphery acts through two subtype receptors such as CRF receptor type 1 (CRF1) and type 2 (CRF2), and activating CRF1 exclusively stimulates colonic motor function and induces visceral hypersensitivity. Meanwhile, several recent studies have demonstrated that CRF2 has a counter regulatory action against CRF1, which may imply that CRF2 inhibits stress response induced by CRF1 in order to prevent it from going into an overdrive state. Colonic contractility and sensation may be explained by the state of the intensity of CRF1 signaling. CRF2 signaling may play a role in CRF1-triggered enhanced colonic functions through modulation of CRF1 activity. Blocking CRF2 further enhances CRF-induced stimulation of colonic contractility and activating CRF2 inhibits stress-induced visceral sensitization. Therefore, we proposed the hypothesis, i.e., balance theory of CRF1 and CRF2 signaling as follows. Both CRF receptors may be activated simultaneously and the signaling balance of CRF1 and CRF2 may determine the functional changes of gastrointestinal tract induced by stress. CRF signaling balance might be abnormally shifted toward CRF1, leading to enhanced colonic motility and visceral sensitization in IBS. This theory may lead to understanding the pathophysiology and provide the novel therapeutic options targeting altered signaling balance of CRF1 and CRF2 in IBS.
Collapse
|
134
|
Huzard D, Mumby DG, Sandi C, Poirier GL, van der Kooij MA. The effects of extrinsic stress on somatic markers and behavior are dependent on animal housing conditions. Physiol Behav 2015. [PMID: 26220463 DOI: 10.1016/j.physbeh.2015.07.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Properties of the environment play an important role in animal wellbeing and may modulate the effects of external threats. Whereas stressors can affect emotion and impair cognition, environmental enrichment may prevent the occurrence of such negative sequelae. Animals exposed to semi-natural group-housing experience a complex environment; whereas environmental enrichment might protect against stressors, a socially-enriched environment(SEE) could entail aggressive inter-male encounters with additive stress effects. In the present study, we investigated the effects of exposure to external stressors, footshocks and forced swimming, on adrenal gland and body weights as well as on behavior in rats housed under SEE or standard, non-enriched environment (NEE), conditions. We found that SEEs reduced the anxiogenic effects of stress. Moreover, SEEs improved the performance in an operant task and prevented the increase in impulsive behavior produced by external stressors on NEE animals. Whereas these findings are indicative of stress-buffering effects of SEEs, adrenal gland weights were increased while total body weights were decreased in SEE rats, suggesting that SEEs may simultaneously exacerbate physiological measurements of stress. Finally, in the SEE, total aggressive behaviors and body wounds were paradoxically reduced in animals that received external stressors in comparison to non-stressed controls. The consequences of the external stressors applied here are not uniform, varying according to the housing condition and the outcome considered.
Collapse
Affiliation(s)
- Damien Huzard
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland; Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada
| | - Dave G Mumby
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Guillaume L Poirier
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Michael A van der Kooij
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.
| |
Collapse
|
135
|
Brunton PJ. Programming the brain and behaviour by early-life stress: a focus on neuroactive steroids. J Neuroendocrinol 2015; 27:468-80. [PMID: 25688636 DOI: 10.1111/jne.12265] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/11/2015] [Accepted: 02/11/2015] [Indexed: 01/09/2023]
Abstract
Animal studies have amply demonstrated that stress exposure during pregnancy or in early postnatal life can adversely influence brain development and have long-term 'programming' effects on future brain function and behaviour. Furthermore, a growing body of evidence from human studies supports the hypothesis that some psychiatric disorders may have developmental origins. Here, the focus is on three adverse consequences of early-life stress: dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, heightened anxiety behaviour and cognitive impairments, with review of what is known about the underlying central mechanisms. Neuroactive steroids modulate neuronal activity and play a key role in neurodevelopment. Moreover they can negatively modulate activity of the HPA axis, exert anxiolytic actions and influence cognitive performance. Thus, neuroactive steroids may provide a link between early-life stress and the resultant adverse effects on the brain and behaviour. Here, a role for neuroactive steroids, in particular the 5α-reduced/3α-hydroxylated metabolites of progesterone, testosterone and deoxycorticosterone, is discussed in the context of early-life stress. Furthermore, the impact of early-life stress on the brain's capacity to generate neurosteroids is considered and the evidence for an ability of neuroactive steroids to over-write the negative effects of early-life stress on the brain and behaviour is examined. An enhanced understanding of the influence of early-life stress on brain neurosteroid systems could aid the identification of new targets for developing treatments for stress-related conditions in humans.
Collapse
Affiliation(s)
- P J Brunton
- Division of Neurobiology, The Roslin Institute & R(D)SVS, University of Edinburgh, Midlothian, UK
| |
Collapse
|
136
|
Wang T, Hu X, Liang S, Li W, Wu X, Wang L, Jin F. Lactobacillus fermentum NS9 restores the antibiotic induced physiological and psychological abnormalities in rats. Benef Microbes 2015; 6:707-17. [PMID: 25869281 DOI: 10.3920/bm2014.0177] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gut microbiota play a vital role in maintaining the health of the host. Many factors affect gut microbiota; application of broad range antibiotics disturb microbiota, while probiotic application protects the microbiota. To investigate how probiotics alter the physiological and psychological changes induced by antibiotics, we tested the performance of ampicillin-treated rats in the presence or absence of Lactobacillus fermentum strain NS9, in elevated plus maze and Morris water maze. The results showed that NS9 normalised the composition of gut microbiota and alleviated the ampicillin-induced inflammation in the colon. The levels of the mineralocorticoid and N-methyl-D-aspartate receptors were also elevated in the hippocampus of the ampillicin+NS9 treated group. NS9 administration also reduced the anxiety-like behaviour and alleviated the ampicillin-induced impairment in memory retention. These findings suggest that NS9 is beneficial to the host, because it restores the physiological and psychological abnormalities induced by ampicillin. Our results highlight how gut contents regulate the brain, and shed light on the clinical applications of probiotics to treat the side effect of antibiotics and mental disorders.
Collapse
Affiliation(s)
- T Wang
- 1 Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China P.R
| | - X Hu
- 1 Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China P.R
| | - S Liang
- 1 Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China P.R
| | - W Li
- 1 Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China P.R
| | - X Wu
- 1 Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China P.R
| | - L Wang
- 2 Institute of Ageing Research, Hangzhou Normal University, Building D, Science and Technology Park, 1378 Wenyi West Road, Hangzhou, Zhejiang 311121, China P.R
| | - F Jin
- 1 Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China P.R
| |
Collapse
|
137
|
Early rearing experience is associated with vasopressin immunoreactivity but not reactivity to an acute non-social stressor in the prairie vole. Physiol Behav 2015; 147:149-56. [PMID: 25890274 DOI: 10.1016/j.physbeh.2015.04.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/06/2015] [Accepted: 04/12/2015] [Indexed: 01/06/2023]
Abstract
The early life experiences of an organism have the potential to alter its developmental trajectories. Perhaps one of the most powerful influences during this period is the parent-offspring relationship. Previous work in several mammalian species has demonstrated that parental care in early life and specifically maternal behavior can influence several adult outcomes in offspring, including affiliative and aggressive behavior, parental behavior, hypothalamic-pituitary-adrenal (HPA) functioning and risk of psychopathology. We have previously demonstrated that naturally occurring variation in the type and amount of care given to offspring in a biparental species, the prairie vole (Microtus ochrogaster), is related to social, anxiety-like, aggressive behaviors as well as HPA response to chronic and acute social stressors. Here we aim to determine the effects of early biparental care on HPA functioning and the interaction between early care and later reactivity to a forced swim test, an acute non-social stressor. Behavior during the swim test as well as several indicators of HPA activity, including plasma corticosterone (CORT), corticotropin releasing hormone immunoreactivity (CRH-ir), and vasopressin immunoreactivity (AVP-ir) were measured. Results here indicate an effect of early experience on AVP-ir but not CRH-ir or plasma CORT. There were no differences in CORT levels between high-contact (HC) and low-contact (LC) males or females for either control animals or after a swim stressor. CRH-ir was higher in the central amygdala following a swim test but was not influenced by early care. However, AVP-ir was not influenced by exposure to a swim stressor but was affected by early parental care in a sex-dependent manner. Female HC offspring had increased AVP-ir in the SON while HC male offspring had decreased AVP-ir in the PVN compared to their LC counterparts. The differential response of CRH and AVP to early experience and later stress, and the lack of an interaction between early care rearing and later adult stress, suggest an independence in response of some components of the HPA system. In addition, these findings expand our understanding of the relationship between naturally occurring variation in early biparental care and sexual dimorphisms in adult outcomes.
Collapse
|
138
|
Abstract
Post-traumatic stress disorder (PTSD) is a complex psychiatric disorder characterized by the intrusive re-experiencing of past trauma, avoidant behavior, enhanced fear, and hyperarousal following a traumatic event in vulnerable populations. Preclinical animal models do not replicate the human condition in its entirety, but seek to mimic symptoms or endophenotypes associated with PTSD. Although many models of traumatic stress exist, few adequately capture the complex nature of the disorder and the observed individual variability in susceptibility of humans to PTSD. In addition, various types of stressors may produce different molecular neuroadaptations that likely contribute to the various behavioral disruptions produced by each model, although certain consistent neurobiological themes related to PTSD have emerged. For example, animal models report traumatic stress-induced and trauma reminder-induced alterations in neuronal activity in the amygdala and prefrontal cortex, in agreement with the human PTSD literature. Models have also provided a conceptual framework for the often-observed combination of PTSD and comorbid conditions such as alcohol use disorder. Future studies will continue to refine preclinical PTSD models in hope of capitalizing on their potential to deliver new and more efficacious treatments for PTSD and associated psychiatric disorders.
Collapse
|
139
|
Korgan AC, Vonkeman J, Esser MJ, Perrot TS. An enhanced home cage modulates hypothalamic CRH-ir Labeling in juvenile rats, with and without sub-threshold febrile convulsions. Dev Psychobiol 2015; 57:374-81. [DOI: 10.1002/dev.21300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 02/07/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Austin C. Korgan
- Department of Psychology and Neuroscience; Dalhousie University; Halifax Nova Scotia Canada
| | - Janeske Vonkeman
- Department of Psychology and Neuroscience; Dalhousie University; Halifax Nova Scotia Canada
| | - Michael J. Esser
- Department of Psychology and Neuroscience; Dalhousie University; Halifax Nova Scotia Canada
- Departments of Pediatrics and Pharmacology; IWK Health Care Center; Halifax Nova Scotia Canada
| | - Tara S. Perrot
- Department of Psychology and Neuroscience; Dalhousie University; Halifax Nova Scotia Canada
| |
Collapse
|
140
|
Boku S, Toda H, Nakagawa S, Kato A, Inoue T, Koyama T, Hiroi N, Kusumi I. Neonatal maternal separation alters the capacity of adult neural precursor cells to differentiate into neurons via methylation of retinoic acid receptor gene promoter. Biol Psychiatry 2015; 77:335-44. [PMID: 25127741 PMCID: PMC5241093 DOI: 10.1016/j.biopsych.2014.07.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/05/2014] [Accepted: 07/09/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Early life stress is thought to contribute to psychiatric disorders, but the precise mechanisms underlying this link are poorly understood. As neonatal stress decreases adult hippocampal neurogenesis, which, in turn, functionally contributes to many behavioral phenotypes relevant to psychiatric disorders, we examined how in vivo neonatal maternal separation (NMS) impacts the capacity of adult hippocampal neural precursor cells via epigenetic alterations in vitro. METHODS Rat pups were separated from their dams for 3 hours daily from postnatal day (PND) 2 to PND 14 or were never separated from the dam (as control animals). We isolated adult neural precursor cells from the hippocampal dentate gyrus at PND 56 and assessed rates of proliferation, apoptosis, and differentiation in cell culture. We also evaluated the effect of DNA methylation at the retinoic acid receptor (RAR) promoter stemming from NMS on adult neural precursor cells. RESULTS NMS attenuated neural differentiation of adult neural precursor cells but had no detectible effect on proliferation, apoptosis, or astroglial differentiation. The DNA methyltransferase (DNMT) inhibitor, 5-aza-dC, reversed a reduction by NMS of neural differentiation of adult neural precursor cells. NMS increased DNMT1 expression and decreased expression of RARα. An RARα agonist increased neural differentiation and an antagonist reduced retinoic acid-induced neural differentiation. NMS increased the methylated portion of RARα promoter, and the DNMT inhibitor reversed a reduction by NMS of RARα messenger RNA expression. CONCLUSIONS NMS attenuates the capacity of adult hippocampal neural precursor cells to differentiate into neurons by decreasing expression of RARα through DNMT1-mediated methylation of its promoter.
Collapse
Affiliation(s)
- Shuken Boku
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York; Department of Psychiatry, Hokkaido University School of Medicine, Sapporo.
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Kong L, Wu R, Wang L, Feng W, Cao Y, Tai F. Postpartum repeated separation from pups affects the behavior and neuroendocrine parameters of mandarin vole fathers. Physiol Behav 2015; 139:89-96. [DOI: 10.1016/j.physbeh.2014.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 12/18/2022]
|
142
|
Towards a better preclinical model of PTSD: characterizing animals with weak extinction, maladaptive stress responses and low plasma corticosterone. J Psychiatr Res 2015; 61:158-65. [PMID: 25575638 DOI: 10.1016/j.jpsychires.2014.12.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/19/2014] [Accepted: 12/18/2014] [Indexed: 12/30/2022]
Abstract
Most of the available preclinical models of PTSD have focused on isolated behavioural aspects and have not considered individual variations in response to stress. We employed behavioural criteria to identify and characterize a subpopulation of rats that present several features analogous to PTSD-like states after exposure to classical fear conditioning. Outbred Sprague-Dawley rats were segregated into weak- and strong-extinction groups on the basis of behavioural scores during extinction of conditioned fear responses. Animals were subsequently tested for anxiety-like behaviour in the open-field test (OFT), novelty suppressed feeding (NSF) and elevated plus maze (EPM). Baseline plasma corticosterone was measured prior to any behavioural manipulation. In a second experiment, rats underwent OFT, NSF and EPM prior to being subjected to fear conditioning to ascertain whether or not pre-stress levels of anxiety-like behaviours could predict extinction scores. We found that 25% of rats exhibit low extinction rates of conditioned fear, a feature that was associated with increased anxiety-like behaviour across multiple tests in comparison to rats showing strong extinction. In addition, weak-extinction animals showed low levels of corticosterone prior to fear conditioning, a variable that seemed to predict extinction recall scores. In a separate experiment, anxiety measures taken prior to fear conditioning were not predictive of a weak-extinction phenotype, suggesting that weak-extinction animals do not show detectable traits of anxiety in the absence of a stressful experience. These findings suggest that extinction impairment may be used to identify stress-vulnerable rats, thus providing a useful model for elucidating mechanisms and investigating potential treatments for PTSD.
Collapse
|
143
|
Monoamine-sensitive developmental periods impacting adult emotional and cognitive behaviors. Neuropsychopharmacology 2015; 40:88-112. [PMID: 25178408 PMCID: PMC4262911 DOI: 10.1038/npp.2014.231] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/30/2014] [Accepted: 08/20/2014] [Indexed: 02/07/2023]
Abstract
Development passes through sensitive periods, during which plasticity allows for genetic and environmental factors to exert indelible influence on the maturation of the organism. In the context of central nervous system development, such sensitive periods shape the formation of neurocircuits that mediate, regulate, and control behavior. This general mechanism allows for development to be guided by both the genetic blueprint as well as the environmental context. While allowing for adaptation, such sensitive periods are also vulnerability windows during which external and internal factors can confer risk to disorders by derailing otherwise resilient developmental programs. Here we review developmental periods that are sensitive to monoamine signaling and impact adult behaviors of relevance to psychiatry. Specifically, we review (1) a serotonin-sensitive period that impacts sensory system development, (2) a serotonin-sensitive period that impacts cognition, anxiety- and depression-related behaviors, and (3) a dopamine- and serotonin-sensitive period affecting aggression, impulsivity and behavioral response to psychostimulants. We discuss preclinical data to provide mechanistic insight, as well as epidemiological and clinical data to point out translational relevance. The field of translational developmental neuroscience has progressed exponentially providing solid conceptual advances and unprecedented mechanistic insight. With such knowledge at hand and important methodological innovation ongoing, the field is poised for breakthroughs elucidating the developmental origins of neuropsychiatric disorders, and thus understanding pathophysiology. Such knowledge of sensitive periods that determine the developmental trajectory of complex behaviors is a necessary step towards improving prevention and treatment approaches for neuropsychiatric disorders.
Collapse
|
144
|
Villavecchia P, Miserendino MJD. Neonatal Isolation Stress Inhibits Pre-Weaning Weight Gain and Mild-Stressor Induced Locomotor Activity in Early Adolescent Male and Female Rats. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jbbs.2015.57031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
145
|
Vetulani J. Early maternal separation: a rodent model of depression and a prevailing human condition. Pharmacol Rep 2014; 65:1451-61. [PMID: 24552992 DOI: 10.1016/s1734-1140(13)71505-6] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/16/2013] [Indexed: 01/28/2023]
Abstract
The early life of most mammals is spent in close contact with the mother, and for the neonate, early maternal separation is a traumatic event that, depending on various conditions, may shape its behavioral and neurochemical phenotype in adulthood. Studies on rodents demonstrated that a very brief separation followed by increased maternal care may positively affect the development of the offspring but that prolonged separation causes significant amounts of stress. The consequences of this stress (particularly the hyperreactivity of the HPA (hypothalamic-pituitary-adrenal) axis are expressed in adulthood and persist for life. Maternal separation in rodents, particularly rats, was used as a model for various psychotic conditions, especially depression. The most popular separation procedure of a 3-h daily separation from the second to the 12th postpartum day yields a depression model of high construct and predictive validity. The results of studies on maternal separation in rats and monkeys prompt a discussion of the consequences of traditional procedures in the maternity wards of developed countries where attention is focused on the hygiene of the neonates and not on their psychological needs. This alternate focus results in a drastic limitation of mother-infant contact and prolonged periods of separation. It is tempting to speculate that differences in the course and severity of various mental disorders, which are usually less prevalent in underdeveloped countries than in developed countries (as noted by Kraepelin), may be related to different modes of infant care. Only recently has so-called kangaroo mother care (establishing mother-infant skin-to-skin contact immediately after birth) become popular in developed countries. In addition to its instant benefits for the neonates, this procedure may also be beneficial for the mental health of the offspring in adulthood.
Collapse
Affiliation(s)
- Jerzy Vetulani
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland.
| |
Collapse
|
146
|
Maccari S, Krugers HJ, Morley-Fletcher S, Szyf M, Brunton PJ. The consequences of early-life adversity: neurobiological, behavioural and epigenetic adaptations. J Neuroendocrinol 2014; 26:707-23. [PMID: 25039443 DOI: 10.1111/jne.12175] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 12/12/2022]
Abstract
During the perinatal period, the brain is particularly sensitive to remodelling by environmental factors. Adverse early-life experiences, such as stress exposure or suboptimal maternal care, can have long-lasting detrimental consequences for an individual. This phenomenon is often referred to as 'early-life programming' and is associated with an increased risk of disease. Typically, rodents exposed to prenatal stress or postnatal maternal deprivation display enhanced neuroendocrine responses to stress, increased levels of anxiety and depressive-like behaviours, and cognitive impairments. Some of the phenotypes observed in these models of early-life adversity are likely to share common neurobiological mechanisms. For example, there is evidence for impaired glucocorticoid negative-feedback control of the hypothalamic-pituitary-adrenal axis, altered glutamate neurotransmission and reduced hippocampal neurogenesis in both prenatally stressed rats and rats that experienced deficient maternal care. The possible mechanisms through which maternal stress during pregnancy may be transmitted to the offspring are reviewed, with special consideration given to altered maternal behaviour postpartum. We also discuss what is known about the neurobiological and epigenetic mechanisms that underpin early-life programming of the neonatal brain in the first generation and subsequent generations, with a view to abrogating programming effects and potentially identifying new therapeutic targets for the treatment of stress-related disorders and cognitive impairment.
Collapse
Affiliation(s)
- S Maccari
- LIA, International Laboratory Associated, UMR 8576 CNRS Neural plasticity Team, University of Lille 1, France and Sapienza University of Rome, IRCCS NEUROMED, Italy
| | | | | | | | | |
Collapse
|
147
|
Haller J, Harold G, Sandi C, Neumann ID. Effects of adverse early-life events on aggression and anti-social behaviours in animals and humans. J Neuroendocrinol 2014; 26:724-38. [PMID: 25059307 DOI: 10.1111/jne.12182] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/21/2014] [Accepted: 07/21/2014] [Indexed: 12/12/2022]
Abstract
We review the impact of early adversities on the development of violence and antisocial behaviour in humans, and present three aetiological animal models of escalated rodent aggression, each disentangling the consequences of one particular adverse early-life factor. A review of the human data, as well as those obtained with the animal models of repeated maternal separation, post-weaning social isolation and peripubertal stress, clearly shows that adverse developmental conditions strongly affect aggressive behaviour displayed in adulthood, the emotional responses to social challenges and the neuronal mechanisms activated by conflict. Although similarities between models are evident, important differences were also noted, demonstrating that the behavioural, emotional and neuronal consequences of early adversities are to a large extent dependent on aetiological factors. These findings support recent theories on human aggression, which suggest that particular developmental trajectories lead to specific forms of aggressive behaviour and brain dysfunctions. However, dissecting the roles of particular aetiological factors in humans is difficult because these occur in various combinations; in addition, the neuroscientific tools employed in humans still lack the depth of analysis of those used in animal research. We suggest that the analytical approach of the rodent models presented here may be successfully used to complement human findings and to develop integrative models of the complex relationship between early adversity, brain development and aggressive behaviour.
Collapse
Affiliation(s)
- J Haller
- Institute of Experimental Medicine, Budapest, Hungary
| | | | | | | |
Collapse
|
148
|
Battaglia M, Ogliari A, D’Amato F, Kinkead R. Early-life risk factors for panic and separation anxiety disorder: Insights and outstanding questions arising from human and animal studies of CO2 sensitivity. Neurosci Biobehav Rev 2014; 46 Pt 3:455-64. [DOI: 10.1016/j.neubiorev.2014.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 03/20/2014] [Accepted: 04/10/2014] [Indexed: 10/25/2022]
|
149
|
Tsuda MC, Yamaguchi N, Nakata M, Ogawa S. Modification of female and male social behaviors in estrogen receptor beta knockout mice by neonatal maternal separation. Front Neurosci 2014; 8:274. [PMID: 25228857 PMCID: PMC4151037 DOI: 10.3389/fnins.2014.00274] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/14/2014] [Indexed: 01/20/2023] Open
Abstract
Maternal separation (MS) is an animal model mimicking the effects of early life stress on the development of emotional and social behaviors. Recent studies revealed that MS stress increased social anxiety levels in female mice and reduced peri-pubertal aggression in male mice. Estrogen receptor (ER) β plays a pivotal role in the regulation of stress responses and anxiety-related and social behaviors. Behavioral studies using ERβ knockout (βERKO) mice reported increased social investigation and decreased social anxiety in βERKO females, and elevated aggression levels in βERKO males compared to wild-type (WT) mice. In the present study, using βERKO and WT mice, we examined whether ERβ contributes to MS effects on anxiety and social behaviors. βERKO and WT mice were separated from their dam daily (4 h) from postnatal day 1–14 and control groups were left undisturbed. First, MS and ERβ gene deletion individually increased anxiety-related behaviors in the open field test, but only in female mice. Anxiety levels were not further modified in βERKO female mice subjected to MS stress. Second, βERKO female mice showed higher levels of social investigation compared with WT in the social investigation test and long-term social preference test. However, MS greatly reduced social investigation duration and elevated number of stretched approaches in WT and βERKO females in the social investigation test, suggesting elevated levels of social anxiety in both genotypes. Third, peri-pubertal and adult βERKO male mice were more aggressive than WT mice as indicated by heightened aggression duration. On the other hand, MS significantly decreased aggression duration in both genotypes, but only in peri-pubertal male mice. Altogether, these results suggest that βERKO mice are sensitive to the adverse effects of MS stress on subsequent female and male social behaviors, which could then have overrode the ERβ effects on female social anxiety and male aggression.
Collapse
Affiliation(s)
- Mumeko C Tsuda
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba Tsukuba, Japan
| | - Naoko Yamaguchi
- Department of Pharmacology, School of Medicine, Aichi Medical University Nagakute, Japan
| | - Mariko Nakata
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba Tsukuba, Japan
| | - Sonoko Ogawa
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba Tsukuba, Japan
| |
Collapse
|
150
|
Early deprivation reduced anxiety and enhanced memory in adult male rats. Brain Res Bull 2014; 108:44-50. [DOI: 10.1016/j.brainresbull.2014.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 07/14/2014] [Accepted: 08/14/2014] [Indexed: 11/23/2022]
|