101
|
Wilks TA, Rodger J, Harvey AR. A role for ephrin-As in maintaining topographic organization in register across interconnected central visual pathways. Eur J Neurosci 2010; 31:613-22. [DOI: 10.1111/j.1460-9568.2010.07111.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
102
|
Josten NJ, Huberman AD. Milestones and Mechanisms for Generating Specific Synaptic Connections between the Eyes and the Brain. Curr Top Dev Biol 2010; 93:229-59. [DOI: 10.1016/b978-0-12-385044-7.00008-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
103
|
A multi-component model of the developing retinocollicular pathway incorporating axonal and synaptic growth. PLoS Comput Biol 2009; 5:e1000600. [PMID: 20011124 PMCID: PMC2782179 DOI: 10.1371/journal.pcbi.1000600] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 11/05/2009] [Indexed: 11/19/2022] Open
Abstract
During development, neurons extend axons to different brain areas and produce stereotypical patterns of connections. The mechanisms underlying this process have been intensively studied in the visual system, where retinal neurons form retinotopic maps in the thalamus and superior colliculus. The mechanisms active in map formation include molecular guidance cues, trophic factor release, spontaneous neural activity, spike-timing dependent plasticity (STDP), synapse creation and retraction, and axon growth, branching and retraction. To investigate how these mechanisms interact, a multi-component model of the developing retinocollicular pathway was produced based on phenomenological approximations of each of these mechanisms. Core assumptions of the model were that the probabilities of axonal branching and synaptic growth are highest where the combined influences of chemoaffinity and trophic factor cues are highest, and that activity-dependent release of trophic factors acts to stabilize synapses. Based on these behaviors, model axons produced morphologically realistic growth patterns and projected to retinotopically correct locations in the colliculus. Findings of the model include that STDP, gradient detection by axonal growth cones and lateral connectivity among collicular neurons were not necessary for refinement, and that the instructive cues for axonal growth appear to be mediated first by molecular guidance and then by neural activity. Although complex, the model appears to be insensitive to variations in how the component developmental mechanisms are implemented. Activity, molecular guidance and the growth and retraction of axons and synapses are common features of neural development, and the findings of this study may have relevance beyond organization in the retinocollicular pathway. Neural development is a process that involves a wide range of behaviors. As a result of these behaviors, neurons are able to extend axons to different brain areas and produce stereotypical patterns of innervation. One of the most commonly studied of these projections is in the visual system, where retinal axons project to multiple brain regions and produce retinotopic maps. This study examines the relative roles and interactions of different neural mechanisms in guiding axon growth and generating retinotopic order. We did this by producing a computational model of retinotopic development that represented many of the neural mechanisms thought to be involved, including axon and synapse growth, molecular guidance and synapse plasticity. Our results suggest that synaptic plasticity is realized by variation in the number of synapses between neurons, not through alteration of individual synaptic weights; that lateral connectivity between collicular neurons is not required for organization; and that axon arbor development does not require the gradient tracking abilities of growth cones. The mechanisms underlying neuronal development in the visual system are also observed in many other brain areas, so the findings here should apply more generally.
Collapse
|
104
|
Abstract
Retinotopic maps form prior to the development of vision, when retinal waves serve as a robust source of correlated neural activity. Two recent studies provide critical insights into the features of retinal waves that may be instructive for the formation of retinotopic maps.
Collapse
|
105
|
Triplett JW, Owens MT, Yamada J, Lemke G, Cang J, Stryker MP, Feldheim DA. Retinal input instructs alignment of visual topographic maps. Cell 2009; 139:175-85. [PMID: 19804762 DOI: 10.1016/j.cell.2009.08.028] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/23/2009] [Accepted: 08/05/2009] [Indexed: 10/20/2022]
Abstract
Sensory information is represented in the brain in the form of topographic maps, in which neighboring neurons respond to adjacent external stimuli. In the visual system, the superior colliculus receives topographic projections from the retina and primary visual cortex (V1) that are aligned. Alignment may be achieved through the use of a gradient of shared axon guidance molecules, or through a retinal-matching mechanism in which axons that monitor identical regions of visual space align. To distinguish between these possibilities, we take advantage of genetically engineered mice that we show have a duplicated functional retinocollicular map but only a single map in V1. Anatomical tracing revealed that the corticocollicular projection bifurcates to align with the duplicated retinocollicular map in a manner dependent on the normal pattern of spontaneous activity during development. These data suggest a general model in which convergent maps use coincident activity patterns to achieve alignment.
Collapse
Affiliation(s)
- Jason W Triplett
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | | | |
Collapse
|
106
|
Imai T, Yamazaki T, Kobayakawa R, Kobayakawa K, Abe T, Suzuki M, Sakano H. Pre-target axon sorting establishes the neural map topography. Science 2009; 325:585-90. [PMID: 19589963 DOI: 10.1126/science.1173596] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Sensory information detected by the peripheral nervous system is represented as a topographic map in the brain. It has long been thought that the topography of the map is determined by graded positional cues that are expressed by the target. Here, we analyzed the pre-target axon sorting for olfactory map formation in mice. In olfactory sensory neurons, an axon guidance receptor, Neuropilin-1, and its repulsive ligand, Semaphorin-3A, are expressed in a complementary manner. We found that expression levels of Neuropilin-1 determined both pre-target sorting and projection sites of axons. Olfactory sensory neuron-specific knockout of Semaphorin-3A perturbed axon sorting and altered the olfactory map topography. Thus, pre-target axon sorting plays an important role in establishing the topographic order based on the relative levels of guidance molecules expressed by axons.
Collapse
Affiliation(s)
- Takeshi Imai
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0032, Japan
| | | | | | | | | | | | | |
Collapse
|
107
|
Abstract
Proper wiring up of the nervous system is critical to the development of organisms capable of complex and adaptable behaviors. Besides the many experimental advances in determining the cellular and molecular machinery that carries out this remarkable task precisely and robustly, theoretical approaches have also proven to be useful tools in analyzing this machinery. A quantitative understanding of these processes can allow us to make predictions, test hypotheses, and appraise established concepts in a new light. Three areas that have been fruitful in this regard are axon guidance, retinotectal mapping, and activity-dependent development. This chapter reviews some of the contributions made by mathematical modeling in these areas, illustrated by important examples of models in each section. For axon guidance, we discuss models of how growth cones respond to their environment, and how this environment can place constraints on growth cone behavior. Retinotectal mapping looks at computational models for how topography can be generated in populations of neurons based on molecular gradients and other mechanisms such as competition. In activity-dependent development, we discuss theoretical approaches largely based on Hebbian synaptic plasticity rules, and how they can generate maps in the visual cortex very similar to those seen in vivo. We show how theoretical approaches have substantially contributed to the advancement of developmental neuroscience, and discuss future directions for mathematical modeling in the field.
Collapse
|
108
|
Functional mode of FoxD1/CBF2 for the establishment of temporal retinal specificity in the developing chick retina. Dev Biol 2009; 331:300-10. [PMID: 19450575 DOI: 10.1016/j.ydbio.2009.05.549] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 05/12/2009] [Accepted: 05/12/2009] [Indexed: 12/13/2022]
Abstract
Two winged-helix transcription factors, FoxG1 (previously called chick brain factor1, CBF1) and FoxD1 (chick brain factor2, CBF2), are expressed specifically in the nasal and temporal regions of the developing chick retina, respectively. We previously demonstrated that FoxG1 controls the expression of topographic molecules including FoxD1, and determines the regional specificity of the nasal retina. FoxD1 is known to prescribe temporal specificity, however, molecular mechanisms and downstream targets have not been elucidated. Here we addressed the genetic mechanisms for establishing temporal specificity in the developing retina using an in ovo electroporation technique. Fibroblast growth factor (Fgf) and Wnt first play pivotal roles in inducing the region-specific expression of FoxG1 and FoxD1 in the optic vesicle. Misexpression of FoxD1 represses the expression of FoxG1, GH6, SOHo1, and ephrin-A5, and induces that of EphA3 in the retina. GH6 and SOHo1 repress the expression of FoxD1. In contrast to the inhibitory effect of FoxG1 on bone morphogenic protein (BMP) signaling, FoxD1 does not alter the expression of BMP4 or BMP2. Studies with chimeric mutants of FoxD1 showed that FoxD1 acts as a transcription repressor in controlling its downstream targets in the retina. Taken together with previous findings, our data suggest that FoxG1 and FoxD1 are located at the top of the gene cascade for regional specification along the nasotemporal (anteroposterior) axis in the retina, and FoxD1 determines temporal specificity.
Collapse
|
109
|
Scalia F, Currie JR, Feldheim DA. Eph/ephrin gradients in the retinotectal system of Rana pipiens: developmental and adult expression patterns. J Comp Neurol 2009; 514:30-48. [PMID: 19260054 DOI: 10.1002/cne.21968] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Eph/ephrin-receptor/ligand A and B families play a variety of roles during CNS development, including patterning the retinotectal projection. However, the alignment of their expression gradients with developing retinotectal maps and gradients of cellular development is not well understood in species whose midbrain tecta undergo a protracted anterior to posterior development. By using anatomical tracing methods and (3)H-thymidine neuronography, we have mapped the retinotectal projection and the spatiotemporal progression of tectal cellular development onto Eph/ephrin expression patterns in the tectum of larval Rana pipiens, as studied by means of in situ affinity analysis with fusion proteins. EphA expression is maximal in anterior tectum (and temporal retina); ephrin-A expression is maximal at the posterior pole (and nasal retina). EphB expression is graded in the early larva, where it is maximal in the posterior tectum just anterior to the posterior pole (and in the ventral retina). Tectal EphB expression becomes uniform at later stages and remains so in the adult, although its retinal expression remains maximal ventrally. In the early larva, EphA, EphB, and ephrin-A protein gradients are parallel to each other and align with the temporonasal axis of the retinal projection. The early EphB expression maximum overlaps the boundary between the mantle layer of newly postmitotic cells and the posterior, epithelial region of cell proliferation, suggesting that the expression maximum is associated with the initial migrations of the postmitotic cells. Ephrin-B expression was detected in the olfactory bulb and dorsal retina at all ages, but not in the tectum.
Collapse
Affiliation(s)
- Frank Scalia
- Department of Anatomy and Cell Biology, State University of New York, Downstate Medical Center, Brooklyn, New York 11203, USA.
| | | | | |
Collapse
|
110
|
Clandinin TR, Feldheim DA. Making a visual map: mechanisms and molecules. Curr Opin Neurobiol 2009; 19:174-80. [PMID: 19481440 PMCID: PMC2726114 DOI: 10.1016/j.conb.2009.04.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 04/29/2009] [Accepted: 04/29/2009] [Indexed: 10/20/2022]
Abstract
Visual system development utilizes global and local cues to assemble a topographic map of the visual world, arranging synaptic connections into columns and layers. Recent genetic studies have provided new insights into the mechanisms that underlie these processes. In flies, a precise temporal sequence of neural differentiation provides a global organizing cue; in vertebrates, gradients of ephrin-mediated signals, acting with neurotrophin co-receptors and neural activity, play crucial roles. In flies and mice, neural processes tile into precise arrays through homotypic, repulsive interactions, autocrine signals, and cell-intrinsic mechanisms. Laminar targeting specificity is achieved through temporally regulated cell-cell adhesion, as well as combinatorial expression of specific adhesion molecules. Future studies will define the interactions between these global and local cues.
Collapse
Affiliation(s)
- Thomas R Clandinin
- Department of Neurobiology, Fairchild D200, 299W. Campus Drive, Stanford University, Stanford, CA 94305, United States.
| | | |
Collapse
|
111
|
Scicolone G, Ortalli AL, Carri NG. Key roles of Ephs and ephrins in retinotectal topographic map formation. Brain Res Bull 2009; 79:227-47. [PMID: 19480983 DOI: 10.1016/j.brainresbull.2009.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 02/16/2009] [Accepted: 03/24/2009] [Indexed: 01/06/2023]
Abstract
Cellular and molecular mechanisms involved in the development of topographic ordered connections in the central nervous system (CNS) constitute a key issue in neurobiology because neural connectivities are the base of the CNS normal function. We discuss the roles of the Eph/ephrin system in the establishment of retinotopic projections onto the tectum/colliculus, the most detailed studied model of topographic mapping. The expression patterns of Ephs and ephrins in opposing gradients both in the retina and the tectum/colliculus, label the local addresses on the target and give specific sensitivities to growth cones according to their topographic origin in the retina. We postulate that the highest levels of these gradients could signal both the entry as well as the limiting boundaries of the target. Since Ephs and ephrins are membrane-bound molecules, they may function as both receptors and ligands producing repulsive or attractant responses according to their microenvironment and play central roles in a variety of developmental events such as axon guidance, synapse formation and remodeling. Due to different experimental approaches and the inherent species-specific differences, some results appear contradictory and should be reanalyzed. Nevertheless, these studies about the roles of the Eph/ephrin system in retinotectal/collicular mapping support general principles in order to understand CNS development and could be useful to design regeneration therapies.
Collapse
Affiliation(s)
- Gabriel Scicolone
- Institute of Cell Biology and Neuroscience "Prof. E. De Robertis", School of Medicine, University of Buenos Aires, 1121 Buenos Aires, Argentina.
| | | | | |
Collapse
|
112
|
Petros TJ, Shrestha BR, Mason C. Specificity and sufficiency of EphB1 in driving the ipsilateral retinal projection. J Neurosci 2009; 29:3463-74. [PMID: 19295152 PMCID: PMC2725437 DOI: 10.1523/jneurosci.5655-08.2009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 02/03/2009] [Accepted: 02/09/2009] [Indexed: 01/02/2023] Open
Abstract
At the optic chiasm, retinal ganglion cell (RGC) axons make the decision to either avoid or traverse the midline, a maneuver that establishes the binocular pathways. In mice, the ipsilateral retinal projection arises from RGCs in the peripheral ventrotemporal (VT) crescent of the retina. These RGCs express the guidance receptor EphB1, which interacts with ephrin-B2 on radial glia cells at the optic chiasm to repulse VT axons away from the midline and into the ipsilateral optic tract. However, because VT RGCs express more than one EphB receptor, the sufficiency and specificity of the EphB1 receptor in directing the ipsilateral projection is unclear. In this study, we use in utero retinal electroporation to demonstrate that ectopic EphB1 expression can redirect RGCs with a normally crossed projection to an ipsilateral trajectory. Moreover, EphB1 is specifically required for rerouting RGC projections ipsilaterally, because introduction of the highly similar EphB2 receptor is much less efficient in redirecting RGC fibers, even when expressed at higher surface levels. Introduction of EphB1-EphB2 chimeric receptors into RGCs reveals that both extracellular and juxtamembrane domains of EphB1 are required to efficiently convert RGC projections ipsilaterally. Together, these data describe for the first time functional differences between two highly similar Eph receptors at a decision point in vivo, with EphB1 displaying unique properties that efficiently drives the uncrossed retinal projection.
Collapse
Affiliation(s)
- Timothy J Petros
- Departments of Neuroscience, Pathology and Cell Biology, and Ophthalmology, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | |
Collapse
|
113
|
Claudepierre T, Koncina E, Pfrieger FW, Bagnard D, Aunis D, Reber M. Implication of neuropilin 2/semaphorin 3F in retinocollicular map formation. Dev Dyn 2009; 237:3394-403. [PMID: 18942144 DOI: 10.1002/dvdy.21759] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Neural representations of the environment within the brain take the form of topographic maps whose formation relies on graded expression of axon guidance molecules. Retinocollicular map formation, from retinal ganglion cells (RGCs) to the superior colliculus (SC) in the midbrain, is mainly driven by Eph receptors and their ligands ephrins. However, other guidance molecules participate in the formation of this map. Here we demonstrate that the receptor Neuropilin-2 is expressed in an increasing nasal-temporal gradient in RGCs, whereas one of its ligands, Semaphorin3F, but not other Sema3 molecules, presents a graded low-rostral to high-caudal expression in the SC when mapping is underway. Neuropilin-2 and its coreceptor Plexin A1 are present on RGC growth cones. Collapse assays demonstrate that Semaphorin3F induces significant growth cone collapse of temporal, but not nasal, RGCs expressing high levels of Neuropilin-2. Our results suggest that Neuropilin-2/Semaphorin3F are new candidates involved in retinotopy formation within the SC.
Collapse
Affiliation(s)
- T Claudepierre
- Department of Neurotransmission/Neuroendocrine Secretion, Inst. Cell. Integ. Neurosci. (INCI) UMR 7168/L2 CNRS/ULP, Centre de Neurochimie, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
114
|
Bureau I. The development of cortical columns: role of Fragile X mental retardation protein. J Physiol 2009; 587:1897-901. [PMID: 19139042 DOI: 10.1113/jphysiol.2008.167155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuronal circuits in the brain are complex and precise. Here, I review aspects of the development of cortical columns in the rodent barrel cortex, focusing on the anatomical and functional data describing the maturation of ascending glutamatergic circuits. Projections from layer 4 to layer 3 develop into cortical columns with little macroscopic refinement. Depriving animals of normal sensory experience induces long-term synaptic depression but does not perturb this pattern of development. Mouse models of mental retardation can help us understand the mechanisms of development of cortical columns. Fmr1 knock-out (ko) mice, a model for Fragile X syndrome, lack Fragile X mental retardation protein (FMRP), a suppressor of translation present in synapses. Because FMRP expression is stimulated by neuronal activity, Fmr1-ko mice provide a model to survey the role of sensory input in brain development. Layer 4 to layer 3 projections are altered in multiple ways in the young mutant mice: connection rate is low and layer 4 cell axons are spatially diffuse. Sensory deprivation rescues the connection rate phenotype. The interaction of FMRP and neuronal activity in the development of cortical circuits is discussed.
Collapse
|
115
|
Benuskova L, Kasabov N. Modeling brain dynamics using computational neurogenetic approach. Cogn Neurodyn 2008; 2:319-34. [PMID: 19003458 PMCID: PMC2585617 DOI: 10.1007/s11571-008-9061-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 08/19/2008] [Accepted: 08/19/2008] [Indexed: 01/10/2023] Open
Abstract
The paper introduces a novel computational approach to brain dynamics modeling that integrates dynamic gene-protein regulatory networks with a neural network model. Interaction of genes and proteins in neurons affects the dynamics of the whole neural network. Through tuning the gene-protein interaction network and the initial gene/protein expression values, different states of the neural network dynamics can be achieved. A generic computational neurogenetic model is introduced that implements this approach. It is illustrated by means of a simple neurogenetic model of a spiking neural network of the generation of local field potential. Our approach allows for investigation of how deleted or mutated genes can alter the dynamics of a model neural network. We conclude with the proposal how to extend this approach to model cognitive neurodynamics.
Collapse
Affiliation(s)
- Lubica Benuskova
- Department of Computer Science, University of Otago, 90 Union Place East, Dunedin, 9016 New Zealand
| | - Nikola Kasabov
- Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, AUT Technology Park, 583-585 Great South Road, Penrose, Auckland, 1135 New Zealand
| |
Collapse
|
116
|
Marler KJM, Becker-Barroso E, Martínez A, Llovera M, Wentzel C, Poopalasundaram S, Hindges R, Soriano E, Comella J, Drescher U. A TrkB/EphrinA interaction controls retinal axon branching and synaptogenesis. J Neurosci 2008; 28:12700-12. [PMID: 19036963 PMCID: PMC3844751 DOI: 10.1523/jneurosci.1915-08.2008] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 10/02/2008] [Accepted: 10/06/2008] [Indexed: 11/21/2022] Open
Abstract
Toward understanding topographically specific branching of retinal axons in their target area, we have studied the interaction between neurotrophin receptors and members of the Eph family. TrkB and its ligand BDNF are uniformly expressed in the retina and tectum, respectively, and exert a branch-promoting activity, whereas EphAs and ephrinAs are expressed in gradients in retina and tectum and can mediate a suppression of axonal branching. We have identified a novel cis interaction between ephrinA5 and TrkB on retinal ganglion cell axons. TrkB interacts with ephrinA5 via its second cysteine-rich domain (CC2), which is necessary and sufficient for binding to ephrinA5. Their functional interaction is twofold: ephrinA5 augments BDNF-promoted retinal axon branching in the absence of its activator EphA7-Fc, whereas EphA7-Fc application abolishes branching in a local and concentration-dependent manner. The importance of TrkB in this process is shown by the fact that overexpression of an isolated TrkB-CC2 domain interfering with the ephrinA/TrkB interaction abolishes this regulatory interplay, whereas knockdown of TrkB via RNA interference diminishes the ephrinA5-evoked increase in branching. The ephrinA/Trk interaction is neurotrophin induced and specifically augments the PI-3 kinase/Akt pathway generally known to be involved in the promotion of branching. In addition, ephrinAs/TrkB modulate axon branching and also synapse formation of hippocampal neurons. Our findings uncover molecular mechanisms of how spatially restricted axon branching can be achieved by linking globally expressed branch-promoting with differentially expressed branch-suppressing activities. In addition, our data suggest that growth factors and the EphA-ephrinA system interact in a way that affects axon branching and synapse development.
Collapse
Affiliation(s)
- Katharine J. M. Marler
- Medical Research Council Centre for Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - Elena Becker-Barroso
- Medical Research Council Centre for Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - Albert Martínez
- Institute for Research in Biomedicine, Parc Científic de Barcelona, Department of Cell Biology, Faculty of Biology, University of Barcelona, and Centro de Investigación en Red de Enfermedades Neurodegenerativas (Instituto de Salud Carlos III), 08028 Barcelona, Spain, and
| | - Marta Llovera
- Cell Signalling and Apoptosis Group, Departament de Ciències Mèdiques Bàsiques, Laboratori d'Investigació, Universitat de Lleida–Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomédica de Lleida, 25198 Lleida, Spain
| | - Corinna Wentzel
- Medical Research Council Centre for Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - Subathra Poopalasundaram
- Medical Research Council Centre for Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - Robert Hindges
- Medical Research Council Centre for Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - Eduardo Soriano
- Institute for Research in Biomedicine, Parc Científic de Barcelona, Department of Cell Biology, Faculty of Biology, University of Barcelona, and Centro de Investigación en Red de Enfermedades Neurodegenerativas (Instituto de Salud Carlos III), 08028 Barcelona, Spain, and
| | - Joan Comella
- Cell Signalling and Apoptosis Group, Departament de Ciències Mèdiques Bàsiques, Laboratori d'Investigació, Universitat de Lleida–Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomédica de Lleida, 25198 Lleida, Spain
| | - Uwe Drescher
- Medical Research Council Centre for Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| |
Collapse
|
117
|
Cang J, Wang L, Stryker MP, Feldheim DA. Roles of ephrin-as and structured activity in the development of functional maps in the superior colliculus. J Neurosci 2008; 28:11015-23. [PMID: 18945909 PMCID: PMC2588436 DOI: 10.1523/jneurosci.2478-08.2008] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 08/15/2008] [Accepted: 09/10/2008] [Indexed: 11/21/2022] Open
Abstract
The orderly projections from retina to superior colliculus (SC) preserve a continuous retinotopic representation of the visual world. The development of retinocollicular maps depend on a combination of molecular guidance cues and patterned neural activity. Here, we characterize the functional retinocollicular maps in mice lacking the guidance molecules ephrin-A2, -A3, and -A5 and in mice deficient in both ephrin-As and structured spontaneous retinal activity, using a method of Fourier imaging of intrinsic signals. We find that the SC of ephrin-A2/A3/A5 triple knock-out mice contains functional maps that are disrupted selectively along the nasotemporal (azimuth) axis of the visual space. These maps are discontinuous, with patches of SC responding to topographically incorrect locations. The patches disappear in mice that are deficient in both ephrin-As and structured activity, resulting in a near-absence of azimuth map in the SC. These results indicate that ephrin-As guide the formation of functional topography in the SC, and patterned retinal activity clusters cells based on their correlated firing patterns. Comparison of the SC and visual cortical mapping defects in these mice suggests that although ephrin-As are required for mapping in both SC and visual cortex, ephrin-A-independent mapping mechanisms are more important in visual cortex than in the SC.
Collapse
Affiliation(s)
- Jianhua Cang
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | | | |
Collapse
|
118
|
Lim YS, McLaughlin T, Sung TC, Santiago A, Lee KF, O’Leary DD. p75(NTR) mediates ephrin-A reverse signaling required for axon repulsion and mapping. Neuron 2008; 59:746-58. [PMID: 18786358 PMCID: PMC2677386 DOI: 10.1016/j.neuron.2008.07.032] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 03/07/2008] [Accepted: 07/21/2008] [Indexed: 01/08/2023]
Abstract
Reverse signaling by ephrin-As upon binding EphAs controls axon guidance and mapping. Ephrin-As are GPI-anchored to the membrane, requiring that they complex with transmembrane proteins that transduce their signals. We show that the p75 neurotrophin receptor (NTR) serves this role in retinal axons. p75(NTR) and ephrin-A colocalize within caveolae along retinal axons and form a complex required for Fyn phosphorylation upon binding EphAs, activating a signaling pathway leading to cytoskeletal changes. In vitro, retinal axon repulsion to EphAs by ephrin-A reverse signaling requires p75(NTR), but repulsion to ephrin-As by EphA forward signaling does not. Constitutive and retina-specific p75(NTR) knockout mice have aberrant anterior shifts in retinal axon terminations in superior colliculus, consistent with diminished repellent activity mediated by graded ephrin-A reverse signaling induced by graded collicular EphAs. We conclude that p75(NTR) is a signaling partner for ephrin-As and the ephrin-A- p75(NTR) complex reverse signals to mediate axon repulsion required for guidance and mapping.
Collapse
Affiliation(s)
- Yoo-Shick Lim
- Molecular Neurobiology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Todd McLaughlin
- Molecular Neurobiology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tsung-Chang Sung
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alicia Santiago
- Molecular Neurobiology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kuo-Fen Lee
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Dennis D.M. O’Leary
- Molecular Neurobiology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
119
|
Abstract
LIM-homeodomain (HD) and POU-HD transcription factors play crucial roles in neurogenesis. However, it remains largely unknown how they cooperate in this process and what downstream target genes they regulate. Here, we show that ISL1, a LIM-HD protein, is co-expressed with BRN3B, a POU-HD factor, in nascent post-mitotic retinal ganglion cells (RGCs). Similar to the Brn3b-null retinas, retina-specific deletion of Isl1 results in the apoptosis of a majority of RGCs and in RGC axon guidance defects. The Isl1 and Brn3b double null mice display more severe retinal abnormalities with a near complete loss of RGCs, indicating the synergistic functions of these two factors. Furthermore, we show that both Isl1 and Brn3b function downstream of Math5 to regulate the expression of a common set of RGC-specific genes. Whole-retina chromatin immunoprecipitation and in vitro transactivation assays reveal that ISL1 and BRN3B concurrently bind to and synergistically regulate the expression of a common set of RGC-specific genes. Thus, our results uncover a novel regulatory mechanism of BRN3B and ISL1 in RGC differentiation.
Collapse
Affiliation(s)
- Ling Pan
- Department of Ophthalmology, University of Rochester, Rochester, NY 14642
| | - Min Deng
- Department of Ophthalmology, University of Rochester, Rochester, NY 14642
| | - Xiaoling Xie
- Department of Ophthalmology, University of Rochester, Rochester, NY 14642
| | - Lin Gan
- Department of Ophthalmology, University of Rochester, Rochester, NY 14642
- Center for Neural Development and Disease, University of Rochester, Rochester, NY 14642
- Department of Neurobiology and Anatomy, University of Rochester, Rochester, NY 14642
| |
Collapse
|
120
|
Lackmann M, Boyd AW. Eph, a protein family coming of age: more confusion, insight, or complexity? Sci Signal 2008; 1:re2. [PMID: 18413883 DOI: 10.1126/stke.115re2] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Since the mid-1980s, Eph receptors have evolved from being regarded as orphan receptors with unknown functions and ligands to becoming one of the most complex "global positioning systems" that regulates cell traffic in multicellular organisms. During this time, there has been an exponentially growing interest in Ephs and ephrin ligands, coinciding with important advances in the way biological function is interrogated through mapping of genomes and manipulation of genes. As a result, many of the original concepts that used to define Eph signaling and function went overboard. Clearly, the need for progress in understanding Eph-ephrin biology and the underlying molecular principles involved has been compelling. Many cell-positioning programs during normal and oncogenic development-in particular, the patterning of skeletal, vascular, and nervous systems-are modulated in some way by Eph-ephrin function. Undeniably, the complexity of the underlying signaling networks is considerable, and it seems probable that systems biology approaches are required to further improve our understanding of Eph function.
Collapse
Affiliation(s)
- Martin Lackmann
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
121
|
Gallarda BW, Bonanomi D, Müller D, Brown A, Alaynick WA, Andrews SE, Lemke G, Pfaff SL, Marquardt T. Segregation of axial motor and sensory pathways via heterotypic trans-axonal signaling. Science 2008; 320:233-6. [PMID: 18403711 PMCID: PMC3158657 DOI: 10.1126/science.1153758] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Execution of motor behaviors relies on circuitries effectively integrating immediate sensory feedback to efferent pathways controlling muscle activity. It remains unclear how, during neuromuscular circuit assembly, sensory and motor projections become incorporated into tightly coordinated, yet functionally separate pathways. We report that, within axial nerves, establishment of discrete afferent and efferent pathways depends on coordinate signaling between coextending sensory and motor projections. These heterotypic axon-axon interactions require motor axonal EphA3/EphA4 receptor tyrosine kinases activated by cognate sensory axonal ephrin-A ligands. Genetic elimination of trans-axonal ephrin-A --> EphA signaling in mice triggers drastic motor-sensory miswiring, culminating in functional efferents within proximal afferent pathways. Effective assembly of a key circuit underlying motor behaviors thus critically depends on trans-axonal signaling interactions resolving motor and sensory projections into discrete pathways.
Collapse
MESH Headings
- Afferent Pathways/physiology
- Animals
- Axons/physiology
- Cells, Cultured
- Coculture Techniques
- Efferent Pathways/physiology
- Electrophysiology
- Ephrins/metabolism
- Ganglia, Spinal/cytology
- Ganglia, Spinal/physiology
- Growth Cones/physiology
- Ligands
- Mice
- Mice, Transgenic
- Motor Activity
- Motor Neurons/physiology
- Muscle, Skeletal/innervation
- Mutation
- Neurons, Afferent/physiology
- Peripheral Nerves/cytology
- Peripheral Nerves/physiology
- Receptor, EphA3/genetics
- Receptor, EphA3/metabolism
- Receptor, EphA4/genetics
- Receptor, EphA4/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Benjamin W. Gallarda
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Dario Bonanomi
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Daniel Müller
- Developmental Neurobiology Laboratory, European Neuroscience Institute Göttingen, Max Planck Society/University Medical School Göttingen, Grisebachstrasse 5, 37077 Göttingen, Germany
- Deutsche Forschungsgemeinschaft Emmy Noether Group, European Neuroscience Institute Göttingen, Grisebachstrasse 5, 37077 Göttingen, Germany
| | - Arthur Brown
- Biotherapeutics Research Group, Robarts Research Institute, Department of Anatomy and Cell Biology, University of Western Ontario, 100 Perth Drive, London, Ontario N6A 5K8, Canada
| | - William A. Alaynick
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shane E. Andrews
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Greg Lemke
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Samuel L. Pfaff
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Till Marquardt
- Developmental Neurobiology Laboratory, European Neuroscience Institute Göttingen, Max Planck Society/University Medical School Göttingen, Grisebachstrasse 5, 37077 Göttingen, Germany
- Deutsche Forschungsgemeinschaft Emmy Noether Group, European Neuroscience Institute Göttingen, Grisebachstrasse 5, 37077 Göttingen, Germany
| |
Collapse
|
122
|
Tomasi T, Hakeda-Suzuki S, Ohler S, Schleiffer A, Suzuki T. The transmembrane protein Golden goal regulates R8 photoreceptor axon-axon and axon-target interactions. Neuron 2008; 57:691-704. [PMID: 18341990 DOI: 10.1016/j.neuron.2008.01.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 10/23/2007] [Accepted: 01/07/2008] [Indexed: 10/22/2022]
Abstract
During Drosophila visual system development, photoreceptor (R) axons choose their correct paths and targets in a step-wise fashion. R axons with different identities make specific pathfinding decisions at different stages during development. We show here that the transmembrane protein Golden goal (Gogo), which is dynamically expressed in all R neurons and localizes predominantly to growth cones, is required in two distinct steps of R8 photoreceptor axon pathfinding: Gogo regulates axon-axon interactions and axon-target interactions in R8 photoreceptor axons. gogo loss-of-function and gain-of-function phenotypes suggest that Gogo mediates repulsive axon-axon interaction between R8 axons to maintain their proper spacing, and it promotes axon-target recognition at the temporary layer to enable R8 axons to enter their correct target columns in the medulla. From detailed structure-function experiments, we propose that Gogo functions as a receptor that binds an unidentified ligand through its conserved extracellular domain.
Collapse
Affiliation(s)
- Tatiana Tomasi
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
123
|
Schulte D, Bumsted-O'Brien KM. Molecular mechanisms of vertebrate retina development: Implications for ganglion cell and photoreceptor patterning. Brain Res 2008; 1192:151-64. [PMID: 17553468 DOI: 10.1016/j.brainres.2007.04.079] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/05/2007] [Accepted: 04/20/2007] [Indexed: 12/20/2022]
Abstract
Although the neural retina appears as a relatively uniform tissue when viewed from its surface, it is in fact highly patterned along its anterior-posterior and dorso-ventral axes. The question of how and when such patterns arise has been the subject of intensive investigations over several decades. Most studies aimed at understanding retinal pattern formation have used the retinotectal map, the ordered projections of retinal ganglion cells to the brain, as a functional readout of the pattern. However, other cell types are also topographically organized in the retina. The most commonly recognized example of such a topographic cellular organization is the differential distribution of photoreceptor types across the retina. Photoreceptor patterns are highly species-specific and may represent an important adaptation to the visual niche a given species occupies. Nevertheless, few studies have addressed this functional readout of pattern to date and our understanding of its development has remained superficial. Here, we review recent advances in understanding the molecular cascades that control regionalization of the eye anlage, relate these findings to the development of photoreceptor patterns and discuss common and unique strategies involved in both aspects of retinal pattern formation.
Collapse
Affiliation(s)
- Dorothea Schulte
- Max Planck Institute for Brain Research, Department of Neuroanatomy, Deutschordenst. 46, D-60218 Frankfurt, Germany.
| | | |
Collapse
|
124
|
Lang S, von Philipsborn AC, Bernard A, Bonhoeffer F, Bastmeyer M. Growth cone response to ephrin gradients produced by microfluidic networks. Anal Bioanal Chem 2008; 390:809-16. [PMID: 17557153 PMCID: PMC2755754 DOI: 10.1007/s00216-007-1363-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 05/03/2007] [Accepted: 05/10/2007] [Indexed: 02/02/2023]
Abstract
A microfluidic network (microFN) etched into a silicon wafer was used to deliver protein solutions containing different concentrations of the axonal guidance molecule ephrinA5 onto a silicone stamp. In a subsequent microcontact printing (microCP) step, the protein was transferred onto a polystyrene culture dish. In this way, stepwise substrate-bound concentration gradients of ephrinA5 were fabricated spanning a total distance of 320 microm. We tested the response of chick retinal ganglion cell (RGC) axons, which are guided in vivo by ephrin gradients, to these in vitro gradients. Temporal, but not nasal axons stop at a distinct zone in the gradient, which is covered with a certain surface density of substrate-bound ephrinA5. Within the temporal RGC population, all axons respond uniformly to the gradients tested. The position of the stop zone depends on the slope of the gradient with axons growing further into the gradient in shallow gradients than in steep gradients. However, axons stop at lower ephrinA5 concentrations in shallow gradients than in steep gradients, indicating that the growth cone can adjust its sensitivity during the detection of a concentration gradient of ephrinA5.
Collapse
Affiliation(s)
- Susanne Lang
- Max-Planck-Institut für Entwicklungsbiologie, Spemannstraβe 35, 72076 Tübingen, Germany
| | - Anne C. von Philipsborn
- Zoologisches Institut I, Zell-und Neurobiologie, Universität Karlsruhe (TH), Haid-und-Neu-Straβe 9, 76131 Karlsruhe, Germany
| | - André Bernard
- Institut für Mikro-und Nanotechnologie, Interstaatliche Hochschule für Technik Buchs NTB, Werdenbergstraβe 4, 9471 Buchs, Switzerland
| | - Friedrich Bonhoeffer
- Max-Planck-Institut für Entwicklungsbiologie, Spemannstraβe 35, 72076 Tübingen, Germany
| | - Martin Bastmeyer
- Zoologisches Institut I, Zell-und Neurobiologie, Universität Karlsruhe (TH), Haid-und-Neu-Straβe 9, 76131 Karlsruhe, Germany
| |
Collapse
|
125
|
Leamey CA, Merlin S, Lattouf P, Sawatari A, Zhou X, Demel N, Glendining KA, Oohashi T, Sur M, Fässler R. Ten_m3 regulates eye-specific patterning in the mammalian visual pathway and is required for binocular vision. PLoS Biol 2007; 5:e241. [PMID: 17803360 PMCID: PMC1964777 DOI: 10.1371/journal.pbio.0050241] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 07/09/2007] [Indexed: 11/18/2022] Open
Abstract
Binocular vision requires an exquisite matching of projections from each eye to form a cohesive representation of the visual world. Eye-specific inputs are anatomically segregated, but in register in the visual thalamus, and overlap within the binocular region of primary visual cortex. Here, we show that the transmembrane protein Ten_m3 regulates the alignment of ipsilateral and contralateral projections. It is expressed in a gradient in the developing visual pathway, which is consistently highest in regions that represent dorsal visual field. Mice that lack Ten_m3 show profound abnormalities in mapping of ipsilateral, but not contralateral, projections, and exhibit pronounced deficits when performing visually mediated behavioural tasks. It is likely that the functional deficits arise from the interocular mismatch, because they are reversed by acute monocular inactivation. We conclude that Ten_m3 plays a key regulatory role in the development of aligned binocular maps, which are required for normal vision. The visual world is represented within the brain as a series of maps of visual space. In species with binocular vision, the inputs from the two eyes are aligned to form a cohesive map; little is known about how this organisation is achieved during development. We show that a transmembrane protein, Ten_m3, plays an important role. Ten_m3 is required for the guidance of uncrossed retinal axons: uncrossed projections from the eye to the brain map aberrantly in mice that lack Ten_m3, although crossed projections map normally. Consequently, projections from the two eyes are not aligned in these mice. We show that this mismatch has devastating consequences for vision. Mice lacking Ten_m3 perform very poorly in behavioural tests of visual function. The deficits are a direct result of the mismatch, because acutely silencing inputs from one eye restores visual behaviour. This remarkable and rapid recovery suggests the mismatch of the inputs from the two eyes leads to functional suppression in the brain. We conclude that Ten_m3 acts as an eye-specific guidance cue for retinal axons and is required to produce aligned projections from the two eyes, and further, that this is critical for normal visual function. Ten_m3, a transmembrane protein, has a newly discovered role in guiding retinal axons, aligning projections from the two eyes, and thereby mediating binocular vision.
Collapse
Affiliation(s)
- Catherine A Leamey
- Department of Physiology, Bosch Institute and School of Medical Sciences, University of Sydney, Sydney, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Abstract
Two qualitatively different kinds of neural map have been described: continuous maps exemplified by the visual retinotopic map, and discrete maps exemplified by the olfactory glomerular map. Here, we review developmental mechanisms of retinotopic and olfactory glomerular mapping and discuss underlying commonalities that have emerged from recent studies. These include the use of molecular gradients, axon-axon interactions, and the interplay between labeling molecules and neuronal activity in establishing these maps. Since visual retinotopic and olfactory glomerular maps represent two ends of a continuum that includes many other types of neural map in between, these emerging general principles may be widely applicable to map formation throughout the nervous system.
Collapse
|
127
|
Huffman KJ, Cramer KS. EphA4 misexpression alters tonotopic projections in the auditory brainstem. Dev Neurobiol 2007; 67:1655-68. [PMID: 17577206 DOI: 10.1002/dneu.20535] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Auditory pathways contain orderly representations of frequency selectivity, which begin at the cochlea and are transmitted to the brainstem via topographically ordered axonal pathways. The mechanisms that establish these tonotopic maps are not known. Eph receptor tyrosine kinases and their ligands, the ephrins, have a demonstrated role in establishing topographic projections elsewhere in the brain, including the visual pathway. Here, we have examined the function of these proteins in the formation of auditory frequency maps. In birds, the first central auditory nucleus, n. magnocellularis (NM), projects tonotopically to n. laminaris (NL) on both sides of the brain. We previously showed that the Eph receptor EphA4 is expressed in a tonotopic gradient in the chick NL, with higher frequency regions showing greater expression than lower frequency regions. Here we misexpressed EphA4 in the developing auditory brainstem from embryonic day 2 (E2) through E10, when NM axons make synaptic contact with NL. We then evaluated topography along the frequency axis using both anterograde and retrograde labeling in both the ipsilateral and contralateral NM-NL pathways. We found that after misexpression, NM regions project to a significantly broader proportion of NL than in control embryos, and that both the ipsilateral map and the contralateral map show this increased divergence. These results support a role for EphA4 in establishing tonotopic projections in the auditory system, and further suggest a general role for Eph family proteins in establishing topographic maps in the nervous system.
Collapse
Affiliation(s)
- Kelly J Huffman
- Department of Psychology, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
128
|
|
129
|
Yamada S, Uchimura E, Ueda T, Nomura T, Fujita S, Matsumoto K, Funeriu DP, Miyake M, Miyake J. Identification of twinfilin-2 as a factor involved in neurite outgrowth by RNAi-based screen. Biochem Biophys Res Commun 2007; 363:926-30. [PMID: 17910947 DOI: 10.1016/j.bbrc.2007.09.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 09/13/2007] [Indexed: 11/19/2022]
Abstract
Using RNA interference (RNAi) to suppress gene expression, we attempted to identify tyrosine kinases involved in the extension of neurites from SH-SY5Y cells. A comprehensive analysis of gene "knock-down" profiles with small interfering RNAs (siRNAs) revealed candidate proteins that might control neurite extension. Phenotype-based screening of differentiating SH-SY5Y cells following retinoic acid (RA) stimulation indicated that twinfilin-2 is a protein that is involved in neurite outgrowth, as confirmed by morphological analysis of twinfilin-2-overexpressing cells.
Collapse
Affiliation(s)
- Shigeru Yamada
- Research Institute for Cell Engineering (RICE), National Institute of Advanced Industrial Science and Technology (AIST), Aomi 2-41-6, Kohtoh-ku, Tokyo 135-0064, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Garcia-Frigola C, Carreres MI, Vegar C, Herrera E. Gene delivery into mouse retinal ganglion cells by in utero electroporation. BMC DEVELOPMENTAL BIOLOGY 2007; 7:103. [PMID: 17875204 PMCID: PMC2080638 DOI: 10.1186/1471-213x-7-103] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 09/17/2007] [Indexed: 12/29/2022]
Abstract
Background The neural retina is a highly structured tissue of the central nervous system that is formed by seven different cell types that are arranged in layers. Despite much effort, the genetic mechanisms that underlie retinal development are still poorly understood. In recent years, large-scale genomic analyses have identified candidate genes that may play a role in retinal neurogenesis, axon guidance and other key processes during the development of the visual system. Thus, new and rapid techniques are now required to carry out high-throughput analyses of all these candidate genes in mammals. Gene delivery techniques have been described to express exogenous proteins in the retina of newborn mice but these approaches do not efficiently introduce genes into the only retinal cell type that transmits visual information to the brain, the retinal ganglion cells (RGCs). Results Here we show that RGCs can be targeted for gene expression by in utero electroporation of the eye of mouse embryos. Accordingly, using this technique we have monitored the morphology of electroporated RGCs expressing reporter genes at different developmental stages, as well as their projection to higher visual targets. Conclusion Our method to deliver ectopic genes into mouse embryonic retinas enables us to follow the course of the entire retinofugal pathway by visualizing RGC bodies and axons. Thus, this technique will permit to perform functional studies in vivo focusing on neurogenesis, axon guidance, axon projection patterning or neural connectivity in mammals.
Collapse
Affiliation(s)
- Cristina Garcia-Frigola
- Instituto de Neurociencias de Alicante. Universidad Miguel Hernández-CSIC, Campus de San Juan, Apt 18, San Juan de Alicante, Alicante 03550, Spain
| | - Maria Isabel Carreres
- Instituto de Neurociencias de Alicante. Universidad Miguel Hernández-CSIC, Campus de San Juan, Apt 18, San Juan de Alicante, Alicante 03550, Spain
| | - Celia Vegar
- Instituto de Neurociencias de Alicante. Universidad Miguel Hernández-CSIC, Campus de San Juan, Apt 18, San Juan de Alicante, Alicante 03550, Spain
| | - Eloisa Herrera
- Instituto de Neurociencias de Alicante. Universidad Miguel Hernández-CSIC, Campus de San Juan, Apt 18, San Juan de Alicante, Alicante 03550, Spain
| |
Collapse
|
131
|
Numachi Y, Yoshida S, Yamashita M, Fujiyama K, Toda S, Matsuoka H, Kajii Y, Nishikawa T. Altered EphA5 mRNA expression in rat brain with a single methamphetamine treatment. Neurosci Lett 2007; 424:116-21. [PMID: 17714871 DOI: 10.1016/j.neulet.2007.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/08/2007] [Accepted: 07/23/2007] [Indexed: 11/25/2022]
Abstract
Methamphetamine is a potent and indirect dopaminergic agonist which can cause chronic brain dysfunctions including drug abuse, drug dependence and drug-induced psychosis. Methamphetamine is known to trigger molecular mechanisms involved in associative learning and memory, and thereby alter patterns of synaptic connectivity. The persistent risk of relapse in methamphetamine abuse, dependence and psychosis may be caused by such alterations in synaptic connectivity. EphA5 receptors constitute large families of tyrosine kinase receptor and are expressed almost exclusively in the nervous system, especially in the limbic structures. Recent studies suggest EphA5 to be important in the topographic projection, development, and plasticity of limbic structures, and to be involved in dopaminergic neurotransmission. We used in situ hybridization to examine whether methamphetamine alters EphA5 mRNA expression in the brains of adult male Wister rats. EphA5 mRNA was widely distributed in the medial frontal cortex, cingulate cortex, piriform cortex, hippocampus, habenular nucleus and amygdala. Compared to baseline expression at 0h, EphA5 mRNA was significantly decreased (by 20%) in the medial frontal cortex at 24h, significantly increased (by 30%) in the amygdala at 9 and 24h, significantly but transiently decreased (by 30%) in the habenular nucleus at 1h after a single injection of methamphetamine. Methamphetamine did not change EphA5 mRNA expression in the cingulate cortex, piriform cortex or hippocampus. Our results that methamphetamine altered EphA5 mRNA expression in rat brain suggest methamphetamine could affect patterns of synaptic connectivity, which might be responsible for methamphetamine-induced chronic brain dysfunctions.
Collapse
Affiliation(s)
- Yohtaro Numachi
- Musashi Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Shaut CA, Saneyoshi C, Morgan EA, Knosp WM, Sexton DR, Stadler HS. HOXA13 directly regulates EphA6 and EphA7 expression in the genital tubercle vascular endothelia. Dev Dyn 2007; 236:951-60. [PMID: 17304517 DOI: 10.1002/dvdy.21077] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hypospadias, a common defect affecting the growth and closure of the external genitalia, is often accompanied by gross enlargements of the genital tubercle (GT) vasculature. Because Hoxa13 homozygous mutant mice also exhibit hypospadias and GT vessel expansion, we examined whether genes playing a role in angiogenesis exhibit reduced expression in the GT. From this analysis, reductions in EphA6 and EphA7 were detected. Characterization of EphA6 and EphA7 expression in the GT confirmed colocalization with HOXA13 in the GT vascular endothelia. Analysis of the EphA6 and EphA7 promoter regions revealed a series of highly conserved cis-regulatory elements bound by HOXA13 with high affinity. GT chromatin immunoprecipitation confirmed that HOXA13 binds these gene-regulatory elements in vivo. In vitro, HOXA13 activates gene expression through the EphA6 and EphA7 gene-regulatory elements. Together these findings indicate that HOXA13 directly regulates EphA6 and EphA7 in the developing GT and identifies the GT vascular endothelia as a novel site for HOXA13-dependent expression of EphA6 and EphA7.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Cells, Cultured
- Endothelium, Vascular/embryology
- Endothelium, Vascular/metabolism
- Gene Expression Regulation, Developmental
- Genitalia/blood supply
- Genitalia/embryology
- Genitalia/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Homeodomain Proteins/physiology
- Mice
- Mice, Mutant Strains
- Molecular Sequence Data
- Promoter Regions, Genetic
- Receptor, EphA6/genetics
- Receptor, EphA6/metabolism
- Receptor, EphA7/genetics
- Receptor, EphA7/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Homology, Nucleic Acid
- Transfection
Collapse
Affiliation(s)
- Carley A Shaut
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| | | | | | | | | | | |
Collapse
|
133
|
Thivierge JP, Balaban E. Getting into shape: Optimal ligand gradients for axonal guidance. Biosystems 2007; 90:61-77. [PMID: 17187926 DOI: 10.1016/j.biosystems.2006.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 07/02/2006] [Accepted: 07/02/2006] [Indexed: 12/01/2022]
Abstract
During neural development, neurons from downstream, presynaptic regions of the nervous system (such as the retina) send spatially patterned axonal projections to upstream, target regions (the tectum or superior colliculus). A servomechanism model has been proposed to explain the pattern and time-course of axonal growth between these two regions [Honda, H., 1998. Topographic mapping in the retinotectal projection by means of complementary ligand and receptor gradients: a computer simulation study. J. Theor. Biol., 192, 235-246]. Here, we show that a modification of this model incorporating a different criterion for axonal decision-making, called the local optimum rule, is guaranteed to converge to a topographic map under a wide range of conditions encountered during neural development. A theoretical investigation of these conditions leads to new hypotheses regarding map formation.
Collapse
|
134
|
Erskine L, Herrera E. The retinal ganglion cell axon's journey: insights into molecular mechanisms of axon guidance. Dev Biol 2007; 308:1-14. [PMID: 17560562 DOI: 10.1016/j.ydbio.2007.05.013] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 05/02/2007] [Accepted: 05/10/2007] [Indexed: 02/02/2023]
Abstract
The developing visual system has proven to be one of the most informative models for studying axon guidance decisions. The pathway is composed of the axons of a single neuronal cell type, the retinal ganglion cell (RGC), that navigate through a series of intermediate targets on route to their final destination. The molecular basis of optic pathway development is beginning to be elucidated with cues such as netrins, Slits and ephrins playing a key role. Other factors best characterised for their role as morphogens in patterning developing tissues, such as sonic hedgehog (Shh) and Wnts, also act directly on RGC axons to influence guidance decisions. The transcriptional basis of the spatial-temporal expression of guidance cues and their cognate receptors within the developing optic pathway as well as mechanisms underlying the plasticity of guidance responses also are starting to be understood. This review will focus on our current understanding of the molecular mechanisms directing the early development of functional connections in the developing visual system and the insights these studies have provided into general mechanisms of axon guidance.
Collapse
Affiliation(s)
- Lynda Erskine
- Division of Visual Science, Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | | |
Collapse
|
135
|
Harada T, Harada C, Parada LF. Molecular regulation of visual system development: more than meets the eye. Genes Dev 2007; 21:367-78. [PMID: 17322396 DOI: 10.1101/gad.1504307] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Vertebrate eye development has been an excellent model system to investigate basic concepts of developmental biology ranging from mechanisms of tissue induction to the complex patterning and bidimensional orientation of the highly specialized retina. Recent advances have shed light on the interplay between numerous transcriptional networks and growth factors that are involved in the specific stages of retinogenesis, optic nerve formation, and topographic mapping. In this review, we summarize this recent progress on the molecular mechanisms underlying the development of the eye, visual system, and embryonic tumors that arise in the optic system.
Collapse
Affiliation(s)
- Takayuki Harada
- Department of Developmental Biology, Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | |
Collapse
|
136
|
Thivierge JP, Marcus GF. The topographic brain: from neural connectivity to cognition. Trends Neurosci 2007; 30:251-9. [PMID: 17462748 DOI: 10.1016/j.tins.2007.04.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 03/27/2007] [Accepted: 04/18/2007] [Indexed: 11/30/2022]
Abstract
A hallmark feature of vertebrate brain organization is ordered topography, wherein sets of neuronal connections preserve the relative organization of cells between two regions. Although topography is often found in projections from peripheral sense organs to the brain, it also seems to participate in the anatomical and functional organization of higher brain centers, for reasons that are poorly understood. We propose that a key function of topography might be to provide computational underpinnings for precise one-to-one correspondences between abstract cognitive representations. This perspective offers a novel conceptualization of how the brain approaches difficult problems, such as reasoning and analogy making, and suggests that a broader understanding of topographic maps could be pivotal in fostering strong links between genetics, neurophysiology and cognition.
Collapse
Affiliation(s)
- Jean-Philippe Thivierge
- Département de Physiologie, Université de Montréal, C.P.6128 Succ. Centre-ville, Montréal, Québec, Canada.
| | | |
Collapse
|
137
|
Komiyama T, Sweeney LB, Schuldiner O, Garcia KC, Luo L. Graded expression of semaphorin-1a cell-autonomously directs dendritic targeting of olfactory projection neurons. Cell 2007; 128:399-410. [PMID: 17254975 DOI: 10.1016/j.cell.2006.12.028] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2006] [Revised: 11/10/2006] [Accepted: 12/29/2006] [Indexed: 11/29/2022]
Abstract
Gradients of axon guidance molecules instruct the formation of continuous neural maps, such as the retinotopic map in the vertebrate visual system. Here we show that molecular gradients can also instruct the formation of a discrete neural map. In the fly olfactory system, axons of 50 classes of olfactory receptor neurons (ORNs) and dendrites of 50 classes of projection neurons (PNs) form one-to-one connections at discrete units called glomeruli. We provide expression, loss- and gain-of-function data to demonstrate that the levels of transmembrane Semaphorin-1a (Sema-1a), acting cell-autonomously as a receptor or part of a receptor complex, direct the dendritic targeting of PNs along the dorsolateral to ventromedial axis of the antennal lobe. Sema-1a also regulates PN axon targeting in higher olfactory centers. Thus, graded expression of Sema-1a contributes to connection specificity from ORNs to PNs and then to higher brain centers, ensuring proper representation of olfactory information in the brain.
Collapse
Affiliation(s)
- Takaki Komiyama
- Department of Biological Sciences and Neurosciences Program, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
138
|
Sweeney LB, Couto A, Chou YH, Berdnik D, Dickson BJ, Luo L, Komiyama T. Temporal target restriction of olfactory receptor neurons by Semaphorin-1a/PlexinA-mediated axon-axon interactions. Neuron 2007; 53:185-200. [PMID: 17224402 DOI: 10.1016/j.neuron.2006.12.022] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 09/19/2006] [Accepted: 12/01/2006] [Indexed: 11/24/2022]
Abstract
Axon-axon interactions have been implicated in neural circuit assembly, but the underlying mechanisms are poorly understood. Here, we show that in the Drosophila antennal lobe, early-arriving axons of olfactory receptor neurons (ORNs) from the antenna are required for the proper targeting of late-arriving ORN axons from the maxillary palp (MP). Semaphorin-1a is required for targeting of all MP but only half of the antennal ORN classes examined. Sema-1a acts nonautonomously to control ORN axon-axon interactions, in contrast to its cell-autonomous function in olfactory projection neurons. Phenotypic and genetic interaction analyses implicate PlexinA as the Sema-1a receptor in ORN targeting. Sema-1a on antennal ORN axons is required for correct targeting of MP axons within the antennal lobe, while interactions amongst MP axons facilitate their entry into the antennal lobe. We propose that Sema-1a/PlexinA-mediated repulsion provides a mechanism by which early-arriving ORN axons constrain the target choices of late-arriving axons.
Collapse
Affiliation(s)
- Lora B Sweeney
- Howard Hughes Medical Institute, Department of Biological Sciences and Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
139
|
Stephen LJ, Fawkes AL, Verhoeve A, Lemke G, Brown A. A critical role for the EphA3 receptor tyrosine kinase in heart development. Dev Biol 2007; 302:66-79. [PMID: 17046737 DOI: 10.1016/j.ydbio.2006.08.058] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 08/23/2006] [Accepted: 08/24/2006] [Indexed: 10/24/2022]
Abstract
Eph proteins are receptor tyrosine kinases that control changes in cell shape and migration during development. We now describe a critical role for EphA3 receptor signaling in heart development as revealed by the phenotype of EphA3 null mice. During heart development mesenchymal outgrowths, the atrioventricular endocardial cushions, form in the atrioventricular canal. This morphogenetic event requires endocardial cushion cells to undergo an epithelial to mesenchymal transformation (EMT), and results in the formation of the atrioventricular valves and membranous portions of the atrial and ventricular septa. We show that EphA3 knockouts have significant defects in the development of their atrial septa and atrioventricular endocardial cushions, and that these cardiac abnormalities lead to the death of approximately 75% of homozygous EphA3(-/-) mutants. We demonstrate that EphA3 and its ligand, ephrin-A1, are expressed in adjacent cells in the developing endocardial cushions. We further demonstrate that EphA3(-/-) atrioventricular endocardial cushions are hypoplastic compared to wildtype and that EphA3(-/-) endocardial cushion explants give rise to fewer migrating mesenchymal cells than wildtype explants. Thus our results indicate that EphA3 plays a crucial role in the development and morphogenesis of the cells that give rise to the atrioventricular valves and septa.
Collapse
Affiliation(s)
- Lesley J Stephen
- BioTherapeutics Research Group, The John P Robarts Research Institute, and The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
140
|
von Philipsborn AC, Lang S, Loeschinger J, Bernard A, David C, Lehnert D, Bonhoeffer F, Bastmeyer M. Growth cone navigation in substrate-bound ephrin gradients. Development 2007; 133:2487-95. [PMID: 16763203 DOI: 10.1242/dev.02412] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Graded distributions of ephrin ligands are involved in the formation of topographic maps. However, it is still poorly understood how growth cones read gradients of membrane-bound guidance molecules. We used microcontact printing to produce discontinuous gradients of substrate-bound ephrinA5. These consist of submicron-sized protein-covered spots, which vary with respect to their sizes and spacings. Growth cones of chick temporal retinal axons are able to integrate these discontinuous ephrin distributions and stop at a distinct zone in the gradient while still undergoing filopodial activity. The position of this stop zone depends on both the steepness of the gradient and on the amount of substrate-bound ephrin per unit surface area. Quantitative analysis of axon outgrowth shows that the stop reaction is controlled by a combination of the local ephrin concentration and the total amount of encountered ephrin, but cannot be attributed to one of these parameters alone.
Collapse
Affiliation(s)
- Anne C von Philipsborn
- Max-Planck-Institut für Entwicklungsbiologie, Spemannstrasse 35, 72076 Tuebingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Reber M, Hindges R, Lemke G. Eph receptors and ephrin ligands in axon guidance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 621:32-49. [PMID: 18269209 DOI: 10.1007/978-0-387-76715-4_3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Michael Reber
- INSERM U.575, Centre de Neurochimie, 5, rue Blaise Pascal, 67084 Strasbourg, France.
| | | | | |
Collapse
|
142
|
von Philipsborn A, Bastmeyer M. Mechanisms of Gradient Detection: A Comparison of Axon Pathfinding with Eukaryotic Cell Migration. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 263:1-62. [PMID: 17725964 DOI: 10.1016/s0074-7696(07)63001-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The detection of gradients of chemotactic cues is a common task for migrating cells and outgrowing axons. Eukaryotic gradient detection employs a spatial mechanism, meaning that the external gradient has to be translated into an intracellular signaling gradient, which affects cell polarization and directional movement. The sensitivity of gradient detection is governed by signal amplification and adaptation mechanisms. Comparison of the major signal transduction pathways underlying gradient detection in three exemplary chemotaxing cell types, Dictyostelium, neutrophils, and fibroblasts and in neuronal growth cones, reveals conserved mechanisms such as localized PI3 kinase/PIP3 signaling and a common output, the regulation of the cytoskeleton by Rho GTPases. Local protein translation plays a role in directional movement of both fibroblasts and neuronal growth cones. Ca(2+) signaling is prominently involved in growth cone gradient detection. The diversity of signaling between different cell types and its functional implications make sense in the biological context.
Collapse
Affiliation(s)
- Anne von Philipsborn
- Department of Cell Biology and Neurobiology, University of Karlsruhe, D-76131 Karlsruhe, Germany
| | | |
Collapse
|
143
|
Shim S, Kim Y, Shin J, Kim J, Park S. Regulation of EphA8 gene expression by TALE homeobox transcription factors during development of the mesencephalon. Mol Cell Biol 2006; 27:1614-30. [PMID: 17178831 PMCID: PMC1820445 DOI: 10.1128/mcb.01429-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The mouse ephA8 gene is expressed in a rostral-to-caudal gradient in the developing superior colliculus, and these EphA gradients may contribute to the proper development of the retinocollicular projection. Thus, it is of considerable interest to elucidate how the ephA8 gene expression is controlled by upstream regulators during the development of the mesencephalon. In this study, we employed in vivo expression analysis in transgenic mouse embryos to dissect the cis-acting DNA regulatory region, leading to the identification of a CGGTCA sequence critical for the ephA8 enhancer activity. Using this element as the target in a yeast one-hybrid system, we identified a Meis homeobox transcription factor. Significantly, DNA binding sites for Pbx, another TALE homeobox transcription factor, were also identified in the ephA8 enhancer region. Meis2 and Pbx1/2 are specifically expressed in the entire region of the dorsal mesencephalon, where specific colocalization of EphA8 and Meis is restricted to a subset of cells. Meis2 and Pbx2 synergistically bind the ephA8 regulatory sequence in vitro, and this interaction is critical for the transcriptional activation of a reporter construct bearing the ephA8 regulatory region in the presence of histone deacetylase inhibitor. More importantly, when expressed in the embryonic midbrain, the dominant-negative form of Meis down-regulates endogenous ephA8. Interestingly, we found that both Meis2 and Pbx2 are constitutively bound in the ephA8 regulatory region in the dorsal mesencephalon. These studies strongly suggest that Meis and Pbx homeobox transcription factors tightly associate with the ephA8 regulatory sequence and require an additional unidentified regulator to ensure the specific activation of ephA8.
Collapse
Affiliation(s)
- Sungbo Shim
- Department of Biological Science, Sookmyung Women's University, Chungpa-Dong 2-Ka, Yongsan-Ku, Seoul 140-742, South Korea
| | | | | | | | | |
Collapse
|
144
|
Serizawa S, Miyamichi K, Takeuchi H, Yamagishi Y, Suzuki M, Sakano H. A Neuronal Identity Code for the Odorant Receptor-Specific and Activity-Dependent Axon Sorting. Cell 2006; 127:1057-69. [PMID: 17129788 DOI: 10.1016/j.cell.2006.10.031] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 09/14/2006] [Accepted: 10/18/2006] [Indexed: 10/23/2022]
Abstract
In the mouse, olfactory sensory neurons (OSNs) expressing the same odorant receptor (OR) converge their axons to a specific set of glomeruli in the olfactory bulb. To study how OR-instructed axonal fasciculation is controlled, we searched for genes whose expression profiles are correlated with the expressed ORs. Using the transgenic mouse in which the majority of OSNs express a particular OR, we identified such genes coding for the homophilic adhesive molecules Kirrel2/Kirrel3 and repulsive molecules ephrin-A5/EphA5. In the CNGA2 knockout mouse, where the odor-evoked cation influx is disrupted, Kirrel2 and EphA5 were downregulated, while Kirrel3 and ephrin-A5 were upregulated, indicating that these genes are transcribed in an activity-dependent manner. Mosaic analysis demonstrated that gain of function of these genes generates duplicated glomeruli. We propose that a specific set of adhesive/repulsive molecules, whose expression levels are determined by OR molecules, regulate the axonal fasciculation of OSNs during the process of glomerular map formation.
Collapse
Affiliation(s)
- Shou Serizawa
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | | | | | | | | | | |
Collapse
|
145
|
Sakuta H, Takahashi H, Shintani T, Etani K, Aoshima A, Noda M. Role of bone morphogenic protein 2 in retinal patterning and retinotectal projection. J Neurosci 2006; 26:10868-78. [PMID: 17050724 PMCID: PMC6674735 DOI: 10.1523/jneurosci.3027-06.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It has been long believed that the anteroposterior (A-P) and dorsoventral (D-V) axes in the developing retina are determined independently and also that the retinotectal projection along the two axes is controlled independently. However, we recently demonstrated that misexpression of Ventroptin, a bone morphogenic protein (BMP) antagonist, in the developing chick retina alters the retinotectal projection not only along the D-V (or mediolateral) axis but also along the A-P axis. Moreover, the dorsal-high expression of BMP4 is relieved by the dorsotemporal-high expression of BMP2 at embryonic day 5 (E5) in the retina, during which Ventroptin continuously counteracts the two BMPs keeping on the countergradient expression pattern, respectively. Here, we show that the topographic molecules so far reported to have a gradient only along the D-V axis and ephrin-A2 so far only along the A-P axis are both controlled by the BMP signal, and that they are expressed in a gradient manner along the tilted axis from E6 on in the developing chick retina: the expression patterns of these oblique-gradient molecules are all changed, when BMP2 expression is manipulated in the developing retina. Furthermore, in both BMP2 knockdown embryos and ephrin-A2-misexpressed embryos, the retinotectal projection is altered along the two orthogonal axes. The expressional switching from BMP4 to BMP2 thus appears to play a key role in the retinal patterning and topographic retinotectal projection by tilting the D-V axis toward the posterior side during retinal development. Our results also indicate that BMP2 expression is essential for the maintenance of regional specificity along the revised D-V axis.
Collapse
Affiliation(s)
- Hiraki Sakuta
- Division of Molecular Neurobiology, National Institute for Basic Biology and School of Life Science, The Graduate University for Advanced Studies, Myodaiji-cho, Okazaki 444-8787, Japan
| | - Hiroo Takahashi
- Division of Molecular Neurobiology, National Institute for Basic Biology and School of Life Science, The Graduate University for Advanced Studies, Myodaiji-cho, Okazaki 444-8787, Japan
| | - Takafumi Shintani
- Division of Molecular Neurobiology, National Institute for Basic Biology and School of Life Science, The Graduate University for Advanced Studies, Myodaiji-cho, Okazaki 444-8787, Japan
| | - Kazuma Etani
- Division of Molecular Neurobiology, National Institute for Basic Biology and School of Life Science, The Graduate University for Advanced Studies, Myodaiji-cho, Okazaki 444-8787, Japan
| | - Akihiro Aoshima
- Division of Molecular Neurobiology, National Institute for Basic Biology and School of Life Science, The Graduate University for Advanced Studies, Myodaiji-cho, Okazaki 444-8787, Japan
| | - Masaharu Noda
- Division of Molecular Neurobiology, National Institute for Basic Biology and School of Life Science, The Graduate University for Advanced Studies, Myodaiji-cho, Okazaki 444-8787, Japan
| |
Collapse
|
146
|
Dufour A, Egea J, Kullander K, Klein R, Vanderhaeghen P. Genetic analysis of EphA-dependent signaling mechanisms controlling topographic mapping in vivo. Development 2006; 133:4415-20. [PMID: 17035292 DOI: 10.1242/dev.02623] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ephrin/Eph ligands and receptors are best known for their prominent role in topographic mapping of neural connectivity. Despite the large amount of work centered on ephrin/Eph-dependent signaling pathways in various cellular contexts, the molecular mechanisms of action of Eph receptors in neural mapping, requiring dynamic interactions between complementary gradients of ephrins and Eph receptors, remain largely unknown. Here, we investigated in vivo the signaling mechanisms of neural mapping mediated by the EphA4 receptor, previously shown to control topographic specificity of thalamocortical axons in the mouse somatosensory system. Using axon tracing analyses of knock-in mouse lines displaying selective mutations for the Epha4 gene, we determined for the first time which intracellular domains of an Eph receptor are required for topographic mapping. We provide direct in vivo evidence that the tyrosine kinase domain of EphA4, as well as a tight regulation of its activity, are required for topographic mapping of thalamocortical axons, whereas non-catalytic functional modules, such as the PDZ-binding motif (PBM) and the Sterile-alpha motif (SAM) domain, are dispensable. These data provide a novel insight into the molecular mechanisms of topographic mapping, and constitute a physiological framework for the dissection of the downstream signaling cascades involved.
Collapse
Affiliation(s)
- Audrey Dufour
- Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM University of Brussels (U.L.B.), Campus Erasme, 808 Route de Lennik, B-1070 Brussels, Belgium
| | | | | | | | | |
Collapse
|
147
|
Prasad D, Rothlin CV, Burrola P, Burstyn-Cohen T, Lu Q, Garcia de Frutos P, Lemke G. TAM receptor function in the retinal pigment epithelium. Mol Cell Neurosci 2006; 33:96-108. [PMID: 16901715 DOI: 10.1016/j.mcn.2006.06.011] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 06/27/2006] [Indexed: 12/12/2022] Open
Abstract
The TAM receptor tyrosine kinase Mer is expressed by cells of the retinal pigment epithelium (RPE), and genetic studies have demonstrated that Mer is essential for RPE function. RPE cells that lack Mer exhibit a severely compromised ability to phagocytose the distal ends of photoreceptor (PR) outer segments, which leads to the complete postnatal degeneration of photoreceptors and to blindness. Although in vitro experiments have implicated Gas6 as the critical TAM ligand for this process, we find that Gas6 mutant mice have a histologically intact retina with no photoreceptor degeneration. We further find that, in addition to Mer, RPE cells also express another TAM receptor--Tyro 3--and that both of these receptors are instead activated independently by the Gas6-related ligand Protein S. This protein is also expressed by RPE cells. Finally, we demonstrate that loss of Mer function is accompanied by a substantial down-regulation in Tyro 3 as well. These observations indicate that both Mer and Tyro 3 act in mouse RPE cells and suggest that their biologically relevant ligand in these cells is Protein S.
Collapse
Affiliation(s)
- Dipti Prasad
- Molecular Neurobiology Laboratory, The Salk Institute, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
148
|
Harel NY, Strittmatter SM. Can regenerating axons recapitulate developmental guidance during recovery from spinal cord injury? Nat Rev Neurosci 2006; 7:603-16. [PMID: 16858389 PMCID: PMC2288666 DOI: 10.1038/nrn1957] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The precise wiring of the adult mammalian CNS originates during a period of stunning growth, guidance and plasticity that occurs during and shortly after development. When injured in adults, this intricate system fails to regenerate. Even when the obstacles to regeneration are cleared, growing adult CNS fibres usually remain misdirected and fail to reform functional connections. Here, we attempt to fill an important niche related to the topics of nervous system development and regeneration. We specifically contrast the difficulties faced by growing fibres within the adult context to the precise circuit-forming capabilities of developing fibres. In addition to focusing on methods to stimulate growth in the adult, we also expand on approaches to recapitulate development itself.
Collapse
Affiliation(s)
- Noam Y Harel
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
149
|
Tsigankov DN, Koulakov AA. A unifying model for activity-dependent and activity-independent mechanisms predicts complete structure of topographic maps in ephrin-A deficient mice. J Comput Neurosci 2006; 21:101-14. [PMID: 16823525 DOI: 10.1007/s10827-006-9575-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 02/03/2006] [Accepted: 02/09/2006] [Indexed: 11/30/2022]
Abstract
Axons of retinal ganglion cells establish orderly projections to the superior colliculus of the midbrain. Axons of neighboring cells terminate proximally in the superior colliculus thus forming a topographically precise representation of the visual world. Coordinate axes are encoded in retina and in the target through graded expression of chemical labels. Additional sharpening of projections is provided by electric activity, which is correlated between neighboring axons. Here we propose a quantitative model, which allows combining the effects of chemical labels and correlated activity in a single approach. Using this model we study a complete structure of two-dimensional topographic maps in mutant mice, in which the label encoding the horizontal retinal coordinate ephrin-A is reduced/eliminated. We show that topographic maps in ephrin-A deficient mice display a granular structure, with the regions of smooth mapping separated by linear discontinuities reminiscent of fractures observed in the maps of preferred orientation.
Collapse
|
150
|
Willshaw D. Analysis of mouse EphA knockins and knockouts suggests that retinal axons programme target cells to form ordered retinotopic maps. Development 2006; 133:2705-17. [PMID: 16774998 DOI: 10.1242/dev.02430] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
I present a novel analysis of abnormal retinocollicular maps in mice in which the distribution of EphA receptors over the retina has been modified by knockin and/or knockout of these receptor types. My analysis shows that in all these cases, whereas the maps themselves are discontinuous, the graded distribution of EphA over the nasotemporal axis of the retina is recreated within the pattern of axonal terminations across rostrocaudal colliculus. This suggests that the guiding principle behind the formation of ordered maps of nerve connections between vertebrate retina and superior colliculus, or optic tectum, is that axons carrying similar amounts of Eph receptor terminate near to one another on the target structure. I show how the previously proposed marker induction model embodies this principle and predicts these results. I then describe a new version of the model in which the properties of the markers, or labels, are based on those of the Eph receptors and their associated ligands, the ephrins. I present new simulation results, showing the development of maps between two-dimensional structures, exploring the role of counter-gradients of labels across the target and confirming that the model reproduces the retinocollicular maps found in EphA knockin/knockout mice. I predict that abnormal distributions of label within the retina lead to abnormal distributions of label over the target, so that in each of the types of knockin/knockout mice analysed, there will be a different distribution of labels over the target structure. This mechanism could be responsible for the flexibility with which neurons reorganise their connections during development and the degree of precision in the final map. Activity-based mechanisms would play a role only at a later stage of development to remove the overlap between individual retinal projection fields, such as in the development of patterns of ocular dominance stripes.
Collapse
Affiliation(s)
- David Willshaw
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, 5 Forrest Hill, Edinburgh EH1 2QL, Scotland, UK.
| |
Collapse
|