101
|
Holloman WK, Schirawski J, Holliday R. The homologous recombination system of Ustilago maydis. Fungal Genet Biol 2008; 45 Suppl 1:S31-9. [PMID: 18502156 PMCID: PMC2583931 DOI: 10.1016/j.fgb.2008.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 04/09/2008] [Accepted: 04/11/2008] [Indexed: 12/26/2022]
Abstract
Homologous recombination is a high fidelity, template-dependent process that is used in repair of damaged DNA, recovery of broken replication forks, and disjunction of homologous chromosomes in meiosis. Much of what is known about recombination genes and mechanisms comes from studies on baker's yeast. Ustilago maydis, a basidiomycete fungus, is distant evolutionarily from baker's yeast and so offers the possibility of gaining insight into recombination from an alternative perspective. Here we have surveyed the genome of U. maydis to determine the composition of its homologous recombination system. Compared to baker's yeast, there are fundamental differences in the function as well as in the repertoire of dedicated components. These include the use of a BRCA2 homolog and its modifier Dss1 rather than Rad52 as a mediator of Rad51, the presence of only a single Rad51 paralog, and the absence of Dmc1 and auxiliary meiotic proteins.
Collapse
Affiliation(s)
- William K Holloman
- Cornell University Weill Medical College, Department of Microbiology and Immunology, NY 10021, USA.
| | | | | |
Collapse
|
102
|
Abstract
In recent years, it has become increasingly clear that epigenetic regulation of gene expression is critical during spermatogenesis. In this review, the epigenetic regulation and the consequences of its aberrant regulation during mitosis, meiosis and spermiogenesis are described. The current knowledge on epigenetic modifications that occur during male meiosis is discussed, with special attention on events that define meiotic sex chromosome inactivation. Finally, the recent studies focused on transgenerational and paternal effects in mice and humans are discussed. In many cases, these epigenetic effects resulted in impaired fertility and potentially long-ranging affects underlining the importance of research in this area.
Collapse
|
103
|
Abstract
The Saccharomyces cerevisiae RAD54 gene has critical roles in DNA double-strand break repair, homologous recombination, and gene targeting. Previous results show that the yeast gene enhances gene targeting when expressed in Arabidopsis thaliana. In this work we address the trans-species compatibility of Rad54 functions. We show that overexpression of yeast RAD54 in Arabidopsis enhances DNA damage resistance severalfold. Thus, the yeast gene is active in the Arabidopsis homologous-recombination repair system. Moreover, we have identified an A. thaliana ortholog of yeast RAD54, named AtRAD54. This gene, with close sequence similarity to RAD54, complements methylmethane sulfonate (MMS) sensitivity but not UV sensitivity or gene targeting defects of rad54Delta mutant yeast cells. Overexpression of AtRAD54 in Arabidopsis leads to enhanced resistance to DNA damage. This gene's assignment as a RAD54 ortholog is further supported by the interaction of AtRad54 with AtRad51 and the interactions between alien proteins (i.e., yeast Rad54 with AtRAD51 and yeast Rad51 with AtRad54) in a yeast two-hybrid experiment. These interactions hint at the molecular nature of this interkingdom complementation, although the stronger effect of the yeast Rad54 in plants than AtRad54 in yeast might be explained by an ability of the Rad54 protein to act alone, independently of its interaction with Rad51.
Collapse
|
104
|
Abstract
ERCC1-XPF endonuclease is required for nucleotide excision repair (NER) of helix-distorting DNA lesions. However, mutations in ERCC1 or XPF in humans or mice cause a more severe phenotype than absence of NER, prompting a search for novel repair activities of the nuclease. In Saccharomyces cerevisiae, orthologs of ERCC1-XPF (Rad10-Rad1) participate in the repair of double-strand breaks (DSBs). Rad10-Rad1 contributes to two error-prone DSB repair pathways: microhomology-mediated end joining (a Ku86-independent mechanism) and single-strand annealing. To determine if ERCC1-XPF participates in DSB repair in mammals, mutant cells and mice were screened for sensitivity to gamma irradiation. ERCC1-XPF-deficient fibroblasts were hypersensitive to gamma irradiation, and gammaH2AX foci, a marker of DSBs, persisted in irradiated mutant cells, consistent with a defect in DSB repair. Mutant mice were also hypersensitive to irradiation, establishing an essential role for ERCC1-XPF in protecting against DSBs in vivo. Mice defective in both ERCC1-XPF and Ku86 were not viable. However, Ercc1(-/-) Ku86(-/-) fibroblasts were hypersensitive to gamma irradiation compared to single mutants and accumulated significantly greater chromosomal aberrations. Finally, in vitro repair of DSBs with 3' overhangs led to large deletions in the absence of ERCC1-XPF. These data support the conclusion that, as in yeast, ERCC1-XPF facilitates DSB repair via an end-joining mechanism that is Ku86 independent.
Collapse
|
105
|
Zhang Y, Zhou J, Held KD, Redmond RW, Prise KM, Liber HL. Deficiencies of double-strand break repair factors and effects on mutagenesis in directly gamma-irradiated and medium-mediated bystander human lymphoblastoid cells. Radiat Res 2008; 169:197-206. [PMID: 18220473 DOI: 10.1667/rr1189.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 10/02/2007] [Indexed: 11/03/2022]
Abstract
Using RNA interference techniques to knock down key proteins in two major double-strand break (DSB) repair pathways (DNA-PKcs for nonhomologous end joining, NHEJ, and Rad54 for homologous recombination, HR), we investigated the influence of DSB repair factors on radiation mutagenesis at the autosomal thymidine kinase (TK) locus both in directly irradiated cells and in unirradiated bystander cells. We also examined the role of p53 (TP53) in these processes by using cells of three human lymphoblastoid cell lines from the same donor but with differing p53 status (TK6 is p53 wild-type, NH32 is p53 null, and WTK1 is p53 mutant). Our results indicated that p53 status did not affect either the production of radiation bystander mutagenic signals or the response to these signals. In directly irradiated cells, knockdown of DNA-PKcs led to an increased mutant fraction in WTK1 cells and decreased mutant fractions in TK6 and NH32 cells. In contrast, knockdown of DNA-PKcs led to increased mutagenesis in bystander cells regardless of p53 status. In directly irradiated cells, knockdown of Rad54 led to increased induced mutant fractions in WTK1 and NH32 cells, but the knockdown did not affect mutagenesis in p53 wild-type TK6 cells. In all cell lines, Rad54 knockdown had no effect on the magnitude of bystander mutagenesis. Studies with extracellular catalase confirmed the involvement of H2O2 in bystander signaling. Our results demonstrate that DSB repair factors have different roles in mediating mutagenesis in irradiated and bystander cells.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA.
| | | | | | | | | | | |
Collapse
|
106
|
Sanderson ML, Hassold TJ, Carrell DT. Proteins involved in meiotic recombination: a role in male infertility? Syst Biol Reprod Med 2008; 54:57-74. [PMID: 18446647 DOI: 10.1080/19396360701881922] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Meiotic recombination results in the formation of crossovers, by which genetic information is exchanged between homologous chromosomes during prophase I of meiosis. Recombination is a complex process involving many proteins. Alterations in the genes involved in recombination may result in infertility. Molecular studies have improved our understanding of the roles and mechanisms of the proteins and protein complexes involved in recombination, some of which have function in mitotic cells as well as meiotic cells. Human gene sequencing studies have been performed for some of these genes and have provided further information on the phenotypes observed in some infertile individuals. However, further studies are needed to help elucidate the particular role(s) of a given protein and to increase our understanding of these protein systems. This review will focus on our current understanding of proteins involved in meiotic recombination from a genomic perspective, summarizing our current understanding of known mutations and single nucleotide polymorphisms that may affect male fertility by altering meiotic recombination.
Collapse
Affiliation(s)
- Matthew L Sanderson
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | |
Collapse
|
107
|
Hakem R. DNA-damage repair; the good, the bad, and the ugly. EMBO J 2008; 27:589-605. [PMID: 18285820 PMCID: PMC2262034 DOI: 10.1038/emboj.2008.15] [Citation(s) in RCA: 344] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 01/16/2008] [Indexed: 12/12/2022] Open
Abstract
Organisms have developed several DNA-repair pathways as well as DNA-damage checkpoints to cope with the frequent challenge of endogenous and exogenous DNA insults. In the absence or impairment of such repair or checkpoint mechanisms, the genomic integrity of the organism is often compromised. This review will focus on the functional consequences of impaired DNA-repair pathways. Although each pathway is addressed individually, it is essential to note that cross talk exists between repair pathways, and that there are instances in which a DNA-repair protein is involved in more than one pathway. It is also important to integrate DNA-repair process with DNA-damage checkpoints and cell survival, to gain a better understanding of the consequences of compromised DNA repair at both cellular and organismic levels. Functional consequences associated with impaired DNA repair include embryonic lethality, shortened life span, rapid ageing, impaired growth, and a variety of syndromes, including a pronounced manifestation of cancer.
Collapse
Affiliation(s)
- Razqallah Hakem
- Department of Medical Biophysics, Ontario Cancer Institute/UHN, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
108
|
Xue Y, Li Y, Guo R, Ling C, Wang W. FANCM of the Fanconi anemia core complex is required for both monoubiquitination and DNA repair. Hum Mol Genet 2008; 17:1641-52. [PMID: 18285517 DOI: 10.1093/hmg/ddn054] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In response to DNA damage, the Fanconi anemia (FA) core complex functions as a signaling machine for monoubiquitination of FANCD2 and FANCI. It remains unclear whether this complex can also participate in subsequent DNA repair. We have shown previously that the FANCM constituent of the complex contains a highly conserved helicase domain and an associated ATP-dependent DNA translocase activity. Here we show that FANCM also possesses an ATP-independent binding activity and an ATP-dependent bi-directional branch-point translocation activity on a synthetic four-way junction DNA, which mimics intermediates generated during homologous recombination or at stalled replication forks. Using an siRNA-based complementation system, we found that the ATP-dependent activities of FANCM are required for cellular resistance to a DNA-crosslinking drug, mitomycin C, but not for the monoubiquitination of FANCD2 and FANCI. In contrast, monoubiquitination requires the entire helicase domain of FANCM, which has both ATP dependent and independent activities. These data are consistent with participation of FANCM and its associated FA core complex in the FA pathway at both signaling through monoubiquitination and the ensuing DNA repair.
Collapse
Affiliation(s)
- Yutong Xue
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, 333 Cassell Drive, TRIAD Center Room 3000, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
109
|
Shrivastav M, De Haro LP, Nickoloff JA. Regulation of DNA double-strand break repair pathway choice. Cell Res 2008; 18:134-47. [PMID: 18157161 DOI: 10.1038/cr.2007.111] [Citation(s) in RCA: 958] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
DNA double-strand breaks (DSBs) are critical lesions that can result in cell death or a wide variety of genetic alterations including large- or small-scale deletions, loss of heterozygosity, translocations, and chromosome loss. DSBs are repaired by non-homologous end-joining (NHEJ) and homologous recombination (HR), and defects in these pathways cause genome instability and promote tumorigenesis. DSBs arise from endogenous sources including reactive oxygen species generated during cellular metabolism, collapsed replication forks, and nucleases, and from exogenous sources including ionizing radiation and chemicals that directly or indirectly damage DNA and are commonly used in cancer therapy. The DSB repair pathways appear to compete for DSBs, but the balance between them differs widely among species, between different cell types of a single species, and during different cell cycle phases of a single cell type. Here we review the regulatory factors that regulate DSB repair by NHEJ and HR in yeast and higher eukaryotes. These factors include regulated expression and phosphorylation of repair proteins, chromatin modulation of repair factor accessibility, and the availability of homologous repair templates. While most DSB repair proteins appear to function exclusively in NHEJ or HR, a number of proteins influence both pathways, including the MRE11/RAD50/NBS1(XRS2) complex, BRCA1, histone H2AX, PARP-1, RAD18, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and ATM. DNA-PKcs plays a role in mammalian NHEJ, but it also influences HR through a complex regulatory network that may involve crosstalk with ATM, and the regulation of at least 12 proteins involved in HR that are phosphorylated by DNA-PKcs and/or ATM.
Collapse
Affiliation(s)
- Meena Shrivastav
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine and Cancer Center, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
110
|
Wu W, Wang M, Wu W, Singh SK, Mussfeldt T, Iliakis G. Repair of radiation induced DNA double strand breaks by backup NHEJ is enhanced in G2. DNA Repair (Amst) 2008; 7:329-38. [DOI: 10.1016/j.dnarep.2007.11.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 11/08/2007] [Accepted: 11/09/2007] [Indexed: 01/20/2023]
|
111
|
Interstrand crosslink repair: can XPF-ERCC1 be let off the hook? Trends Genet 2008; 24:70-6. [PMID: 18192062 DOI: 10.1016/j.tig.2007.11.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 11/16/2007] [Accepted: 11/19/2007] [Indexed: 11/21/2022]
Abstract
The interstrand crosslink (ICL) presents a challenge to both the cell and the scientist. From a clinical standpoint, these lesions are particularly intriguing: ICL-inducing agents are powerful tools in cancer chemotherapy, and spontaneous ICLs have recently been linked with accelerated aging phenotypes. Nevertheless, the ICL repair process has proven difficult to elucidate. Here we discuss recent additions to the current model and argue that the endonuclease xeroderma pigmentosum complementation group F-excision repair cross-complementing rodent repair deficiency complementation group 1 (XPF-ERCC1) has been heretofore misplaced. During nucleotide excision repair, XPF-ERCC1 makes a single-strand nick adjacent to the lesion. XPF-ERCC1 has been thought to play an analogous role in ICL repair. However, recent data has implicated XPF-ERCC1 in homologous recombination. We suggest that this role, rather than its function in nucleotide excision repair, defines its importance to ICL repair.
Collapse
|
112
|
Abstract
Homologous recombination (HR) comprises a series of interrelated pathways that function in the repair of DNA double-stranded breaks (DSBs) and interstrand crosslinks (ICLs). In addition, recombination provides critical support for DNA replication in the recovery of stalled or broken replication forks, contributing to tolerance of DNA damage. A central core of proteins, most critically the RecA homolog Rad51, catalyzes the key reactions that typify HR: homology search and DNA strand invasion. The diverse functions of recombination are reflected in the need for context-specific factors that perform supplemental functions in conjunction with the core proteins. The inability to properly repair complex DNA damage and resolve DNA replication stress leads to genomic instability and contributes to cancer etiology. Mutations in the BRCA2 recombination gene cause predisposition to breast and ovarian cancer as well as Fanconi anemia, a cancer predisposition syndrome characterized by a defect in the repair of DNA interstrand crosslinks. The cellular functions of recombination are also germane to DNA-based treatment modalities of cancer, which target replicating cells by the direct or indirect induction of DNA lesions that are substrates for recombination pathways. This review focuses on mechanistic aspects of HR relating to DSB and ICL repair as well as replication fork support.
Collapse
Affiliation(s)
- Xuan Li
- Section of Microbiology University of California, Davis, Davis CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Section of Microbiology University of California, Davis, Davis CA 95616-8665, USA
- Section of Molecular and Cellular Biology, University of California, Davis, Davis CA 95616-8665, USA
| |
Collapse
|
113
|
Disruption of maternal DNA repair increases sperm-derived chromosomal aberrations. Proc Natl Acad Sci U S A 2007; 104:17725-9. [PMID: 17978187 DOI: 10.1073/pnas.0705257104] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Male and female germ cells can transmit genetic defects that lead to pregnancy loss, infant mortality, birth defects, and genetic diseases in offspring; however, the parental origins of transmitted defects are not random, with de novo mutations and chromosomal structural aberrations transmitted predominantly by sperm. We tested the hypotheses that paternal mutagenic exposure during late spermatogenesis can induce damage that persists in the fertilizing sperm and that the risk of embryos with paternally transmitted chromosomal aberrations depends on the efficiency of maternal DNA repair during the first cycle after fertilization. We show that female mice with defective DNA double-strand break repair had significantly increased frequencies of zygotes with sperm-derived chromosomal aberrations after matings with wild-type males irradiated 7 days earlier with 4 Gy of ionizing radiation. These findings demonstrate that mutagenic exposures during late spermatogenesis can induce damage that persists for at least 7 days in the fertilizing sperm and that maternal genotype plays a major role in determining the risks for pregnancy loss and frequencies of offspring with chromosomal defects of paternal origin.
Collapse
|
114
|
Hanada K, Budzowska M, Davies SL, van Drunen E, Onizawa H, Beverloo HB, Maas A, Essers J, Hickson ID, Kanaar R. The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks. Nat Struct Mol Biol 2007; 14:1096-104. [PMID: 17934473 DOI: 10.1038/nsmb1313] [Citation(s) in RCA: 312] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 09/11/2007] [Indexed: 11/09/2022]
Abstract
Faithful duplication of the genome requires structure-specific endonucleases such as the RuvABC complex in Escherichia coli. These enzymes help to resolve problems at replication forks that have been disrupted by DNA damage in the template. Much less is known about the identities of these enzymes in mammalian cells. Mus81 is the catalytic component of a eukaryotic structure-specific endonuclease that preferentially cleaves branched DNA substrates reminiscent of replication and recombination intermediates. Here we explore the mechanisms by which Mus81 maintains chromosomal stability. We found that Mus81 is involved in the formation of double-strand DNA breaks in response to the inhibition of replication. Moreover, in the absence of chromosome processing by Mus81, recovery of stalled DNA replication forks is attenuated and chromosomal aberrations arise. We suggest that Mus81 suppresses chromosomal instability by converting potentially detrimental replication-associated DNA structures into intermediates that are more amenable to DNA repair.
Collapse
Affiliation(s)
- Katsuhiro Hanada
- Department of Cell Biology & Genetics, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Kwon Y, Chi P, Roh DH, Klein H, Sung P. Synergistic action of the Saccharomyces cerevisiae homologous recombination factors Rad54 and Rad51 in chromatin remodeling. DNA Repair (Amst) 2007; 6:1496-506. [PMID: 17544928 PMCID: PMC2045070 DOI: 10.1016/j.dnarep.2007.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 03/27/2007] [Accepted: 04/23/2007] [Indexed: 01/10/2023]
Abstract
Rad54, a member of the Swi2/Snf2 protein family, works in concert with the RecA-like recombinase Rad51 during the early and late stages of homologous recombination. Rad51 markedly enhances the activities of Rad54, including the induction of topological changes in DNA and the remodeling of chromatin structure. Reciprocally, Rad54 promotes Rad51-mediated DNA strand invasion with either naked or chromatinized DNA. Here, using various Saccharomyces cerevisiae rad51 and rad54 mutant proteins, mechanistic aspects of Rad54/Rad51-mediated chromatin remodeling are defined. Disruption of the Rad51-Rad54 complex leads to a marked attenuation of chromatin remodeling activity. Moreover, we present evidence that assembly of the Rad51 presynaptic filament represents an obligatory step in the enhancement of the chromatin remodeling reaction. Interestingly, we find a specific interaction of the N-terminal tail of histone H3 with Rad54 and show that the H3 tail interaction domain resides within the amino terminus of Rad54. These results suggest that Rad54-mediated chromatin remodeling coincides with DNA homology search by the Rad51 presynaptic filament and that this process is facilitated by an interaction of Rad54 with histone H3.
Collapse
Affiliation(s)
- Youngho Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
116
|
Zhang FP, Domanskyi A, Palvimo JJ, Sariola H, Partanen J, Jänne OA. An adenosine triphosphatase of the sucrose nonfermenting 2 family, androgen receptor-interacting protein 4, is essential for mouse embryonic development and cell proliferation. Mol Endocrinol 2007; 21:1430-42. [PMID: 17374848 DOI: 10.1210/me.2007-0052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An adenosine triphosphatase of the sucrose nonfermenting 2 protein family, androgen receptor-interacting protein 4 (ARIP4), modulates androgen receptor activity. To elucidate receptor-dependent and -independent functions of ARIP4, we have analyzed Arip4 gene-targeted mice. Heterozygous Arip4 mutants were normal. Arip4 is expressed mainly in the neural tube and limb buds during early embryonic development. Arip4-/- embryos were abnormal already at embryonic d 9.5 (E9.5) and died by E11.5. At E9.5 and E10.5, almost all major tissues of Arip4-null embryos were proportionally smaller than those of wild-type embryos, and the neural tube was shrunk in some Arip4-/- embryos. Dramatically reduced cell proliferation and increased apoptosis were observed in E9.5 and E10.5 Arip4-null embryos. Mouse embryonic fibroblasts (MEFs) isolated from Arip4-/- embryos ceased to grow after two to three passages and exhibited increased apoptosis and decreased DNA synthesis compared with wild-type MEFs. Comparison of gene expression profiles of Arip4-/- and wild-type MEFs at E9.5 revealed that putative ARIP4 target genes are involved in cell growth and proliferation, apoptosis, cell death, DNA replication and repair, and development. Collectively, ARIP4 plays an essential role in mouse embryonic development and cell proliferation, and it appears to coordinate multiple essential biological processes, possibly through a complex chromatin remodeling system.
Collapse
Affiliation(s)
- Fu-Ping Zhang
- Biomedicum Helsinki, Institute of Biomedicine, University of Helsinki, Haartmaninkatu 8, FI-00014, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
117
|
Akiyama K, Yusa K, Hashimoto H, Poonepalli A, Hande MP, Kakazu N, Takeda J, Tachibana M, Shinkai Y. Rad54 is dispensable for the ALT pathway. Genes Cells 2007; 11:1305-15. [PMID: 17054727 DOI: 10.1111/j.1365-2443.2006.01020.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Some immortal cells use the alternative lengthening of telomeres (ALT) pathway to maintain their telomeres instead of telomerase. Previous studies revealed that homologous recombination (HR) contributes to the ALT pathway. To further elucidate molecular mechanisms, we inactivated Rad54 involved in HR, in mouse ALT embryonic stem (ES) cells. Although Rad54-deficient ALT ES cells showed radiosensitivity in line with expectation, cell growth and telomeres were maintained for more than 200 cell divisions. Furthermore, although MMC-stimulated sister chromatid exchange (SCE) was suppressed in the Rad54-deficient ALT ES cells, ALT-associated telomere SCE was not affected. This is the first genetic evidence that mouse Rad54 is dispensable for the ALT pathway.
Collapse
Affiliation(s)
- Koichi Akiyama
- Department of Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Russo J, Balogh GA, Heulings R, Mailo DA, Moral R, Russo PA, Sheriff F, Vanegas J, Russo IH. Molecular basis of pregnancy-induced breast cancer protection. Eur J Cancer Prev 2007; 15:306-42. [PMID: 16835503 DOI: 10.1097/00008469-200608000-00006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We have postulated that the lifetime protective effect of an early pregnancy against breast cancer is due to the complete differentiation of the mammary gland characterized by a specific genomic signature imprinted by the physiological process of pregnancy. In the present work, we show evidence that the breast tissue of postmenopausal parous women has had a shifting of stem cell 1 to stem cell 2 with a genomic signature different from similar structures derived from postmenopausal nulliparous women that have stem cell 1. Those genes that are significantly different are grouped in major categories on the basis of their putative functional significance. Among them are those gene transcripts related to immune surveillance, DNA repair, transcription, chromatin structure/activators/co-activators, growth factor and signal transduction pathway, transport and cell trafficking, cell proliferation, differentiation, cell adhesion, protein synthesis and cell metabolism. From these data, it was concluded that during pregnancy there are significant genomic changes that reflect profound alterations in the basic physiology of the mammary gland that explain the protective effect against carcinogenesis. The implication of this knowledge is that when the genomic signature of protection or refractoriness to carcinogenesis is acquired by the shifting of stem cell 1 to stem cell 2, the hormonal milieu induced by pregnancy or pregnancy-like conditions is no longer required. This is a novel concept that challenges the current knowledge that a chemopreventive agent needs to be given for a long period to suppress a metabolic pathway or abrogate the function of an organ.
Collapse
Affiliation(s)
- Jose Russo
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Jaroudi S, SenGupta S. DNA repair in mammalian embryos. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2007; 635:53-77. [PMID: 17141556 DOI: 10.1016/j.mrrev.2006.09.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 09/21/2006] [Accepted: 09/25/2006] [Indexed: 11/15/2022]
Abstract
Mammalian cells have developed complex mechanisms to identify DNA damage and activate the required response to maintain genome integrity. Those mechanisms include DNA damage detection, DNA repair, cell cycle arrest and apoptosis which operate together to protect the conceptus from DNA damage originating either in parental gametes or in the embryo's somatic cells. DNA repair in the newly fertilized preimplantation embryo is believed to rely entirely on the oocyte's machinery (mRNAs and proteins deposited and stored prior to ovulation). DNA repair genes have been shown to be expressed in the early stages of mammalian development. The survival of the embryo necessitates that the oocyte be sufficiently equipped with maternal stored products and that embryonic gene expression commences at the correct time. A Medline based literature search was performed using the keywords 'DNA repair' and 'embryo development' or 'gametogenesis' (publication dates between 1995 and 2006). Mammalian studies which investigated gene expression were selected. Further articles were acquired from the citations in the articles obtained from the preliminary Medline search. This paper reviews mammalian DNA repair from gametogenesis to preimplantation embryos to late gestational stages.
Collapse
Affiliation(s)
- Souraya Jaroudi
- Department of Obstetrics and Gynaecology, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| | - Sioban SenGupta
- Department of Obstetrics and Gynaecology, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK.
| |
Collapse
|
120
|
Pan-Hammarström Q, Zhao Y, Hammarström L. Class switch recombination: a comparison between mouse and human. Adv Immunol 2007; 93:1-61. [PMID: 17383538 DOI: 10.1016/s0065-2776(06)93001-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Humans and mice separated more than 60 million years ago. Since then, evolution has led to a multitude of changes in their genomic sequences. The divergence of genes has resulted in differences both in the innate and adaptive immune systems. In this chapter, we focus on species difference with regard to immunoglobulin class switch recombination (CSR). We have compared the immunoglobulin constant region gene loci from human and mouse, with an emphasis on the switch regions, germ line transcription promoters, and 3' enhancers. We have also compared pathways/factors that are involved in CSR. Although there are remarkable similarities in the cellular machinery involved in CSR, there are also a number of unique features in each species.
Collapse
Affiliation(s)
- Qiang Pan-Hammarström
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | | | | |
Collapse
|
121
|
|
122
|
Russo J, Balogh G, Mailo D, Russo PA, Heulings R, Russo IH. The genomic signature of breast cancer prevention. Recent Results Cancer Res 2007; 174:131-50. [PMID: 17302192 DOI: 10.1007/978-3-540-37696-5_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Early pregnancy imprints in the breast permanent genomic changes or a signature that reduces the susceptibility of this organ to cancer. The breast attains its maximum development during pregnancy and lactation. After menopause, the breast regresses in both nulliparous and parous women containing lobular structures designated Lob.1. The Lob 1 found in the breast of nulliparous women and of parous women with breast cancer never went through the process of differentiation, retaining a high concentration of epithelial cells that are targets for carcinogens and therefore susceptible to undergoing neoplastic transformation, these cell are called Stem cells 1, whereas Lob 1 structures found in the breast of early parous postmenopausal women free of mammary pathology, on the other hand, are composed of an epithelial cell population that is refractory to transformation called Stem cells 2. The degree of differentiation acquired through early pregnancy has changed the genomic signature that differentiates the Lob 1 from the early parous women from that of the nulliparous women by shifting the Stem cell 1 to a Stem cell 2, making this the postulated mechanism of protection conferred by early full-term pregnancy. The identification of a putative breast stem cell (Stem cell 1) has reached in the last decade a significant impulse and several markers also reported for other tissues have been found in the mammary epithelial cells of both rodents and humans. The data obtained thus far is supporting the concept that the lifetime protective effect of an early pregnancy against breast cancer is due to the complete differentiation of the mammary gland, which results in the replacement of the Stem cell 1 that is a component of the nulliparous breast epithelium with a new stem cell, called Stem cell 2, which is characterized by a specific genomic signature. The pattern of gene expression of the stem cell 2 could potentially be used as useful intermediate end points for evaluating the degree of mammary gland differentiation and for evaluating preventive agents such as human chorionic gonadotropin.
Collapse
Affiliation(s)
- Jose Russo
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | |
Collapse
|
123
|
Otterlei M, Bruheim P, Ahn B, Bussen W, Karmakar P, Baynton K, Bohr VA. Werner syndrome protein participates in a complex with RAD51, RAD54, RAD54B and ATR in response to ICL-induced replication arrest. J Cell Sci 2006; 119:5137-46. [PMID: 17118963 DOI: 10.1242/jcs.03291] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Werner syndrome (WS) is a rare genetic disorder characterized by genomic instability caused by defects in the WRN gene encoding a member of the human RecQ helicase family. RecQ helicases are involved in several DNA metabolic pathways including homologous recombination (HR) processes during repair of stalled replication forks. Following introduction of interstrand DNA crosslinks (ICL), WRN relocated from nucleoli to arrested replication forks in the nucleoplasm where it interacted with the HR protein RAD52. In this study, we use fluorescence resonance energy transfer (FRET) and immune-precipitation experiments to demonstrate that WRN participates in a multiprotein complex including RAD51, RAD54, RAD54B and ATR in cells where replication has been arrested by ICL. We verify the WRN-RAD51 and WRN-RAD54B direct interaction in vitro. Our data support a role for WRN also in the recombination step of ICL repair.
Collapse
Affiliation(s)
- Marit Otterlei
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Dr., Baltimore, MD 21224, USA.
| | | | | | | | | | | | | |
Collapse
|
124
|
Shiomi N, Mori M, Tsuji H, Imai T, Inoue H, Tateishi S, Yamaizumi M, Shiomi T. Human RAD18 is involved in S phase-specific single-strand break repair without PCNA monoubiquitination. Nucleic Acids Res 2006; 35:e9. [PMID: 17158148 PMCID: PMC1802632 DOI: 10.1093/nar/gkl979] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Switching from a replicative to a translesion polymerase is an important step to further continue on replication at the site of DNA lesion. Recently, RAD18 (a ubiquitin ligase) was shown to monoubiquitinate proliferating cell nuclear antigen (PCNA) in cooperation with RAD6 (a ubiquitin-conjugating enzyme) at the replication-stalled sites, causing the polymerase switch. Analyzing RAD18-knockout (RAD18−/−) cells generated from human HCT116 cells, in addition to the polymerase switch, we found a new function of RAD18 for S phase-specific DNA single-strand break repair (SSBR). Unlike the case with polymerase switching, PCNA monoubiquitination was not necessary for the SSBR. When compared with wild-type HCT116 cells, RAD18−/− cells, defective in the repair of X-ray-induced chromosomal aberrations, were significantly hypersensitive to X-ray-irradiation and also to the topoisomerase I inhibitor camptothecin (CPT) capable of inducing single-strand breaks but were not so sensitive to the topoisomerase II inhibitor etoposide capable of inducing double-strand breaks. However, such hypersensitivity to CPT observed with RAD18−/− cells was limited to only the S phase due to the absence of the RAD18 S phase-specific function. Furthermore, the defective SSBR observed in S phase of RAD18−/− cells was also demonstrated by alkaline comet assay.
Collapse
Affiliation(s)
- Naoko Shiomi
- Radgenomics Research Group, Research Center for Charged Particle TherapyChiba 263-8555, Japan
| | - Masahiko Mori
- Radiation Effect Mechanisms Research Group, Research Center for Radiation ProtectionChiba 263-8555, Japan
| | - Hideo Tsuji
- Radiation Effect Mechanisms Research Group, Research Center for Radiation ProtectionChiba 263-8555, Japan
| | - Takashi Imai
- Radgenomics Research Group, Research Center for Charged Particle TherapyChiba 263-8555, Japan
| | - Hirokazu Inoue
- Department of Regulation Biology, Faculty of Science, Saitama UniversitySaitama 338-8570, Japan
| | - Satoshi Tateishi
- Institute of Molecular Embryogenesis and Genetics, Kumamoto UniversityKumamoto 862-0976, Japan
| | - Masaru Yamaizumi
- Institute of Molecular Embryogenesis and Genetics, Kumamoto UniversityKumamoto 862-0976, Japan
| | - Tadahiro Shiomi
- Radgenomics Research Group, Research Center for Charged Particle TherapyChiba 263-8555, Japan
- National Institute of Radiological SciencesChiba 263-8555, Japan
- To whom correspondence should be addressed. Tel: +81 43 206 3136; Fax: +81 43 251 9818;
| |
Collapse
|
125
|
Osakabe K, Abe K, Yoshioka T, Osakabe Y, Todoriki S, Ichikawa H, Hohn B, Toki S. Isolation and characterization of the RAD54 gene from Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:827-42. [PMID: 17227544 DOI: 10.1111/j.1365-313x.2006.02927.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Homologous recombination (HR) is an essential process in maintaining genome integrity and variability. In eukaryotes, the Rad52 epistasis group proteins are involved in meiotic recombination and/or HR repair. One member of this group, Rad54, belongs to the SWI2/SNF2 family of DNA-stimulated ATPases. Recent studies indicate that Rad54 has important functions in HR, both as a chromatin remodelling factor and as a mediator of the Rad51 nucleoprotein filament. Despite the importance of Rad54 in HR, no study of Rad54 from plants has yet been performed. Here, we cloned the full-length AtRAD54 cDNA sequence; an open reading frame of 910 amino acids encodes a protein with a predicted molecular mass of 101.9 kDa. Western blotting analysis showed that the AtRad54 protein was indeed expressed as a protein of approximately 110 kDa in Arabidopsis. The predicted protein sequence of AtRAD54 contains seven helicase domains, which are conserved in all other Rad54s. Yeast two-hybrid analysis revealed an interaction between Arabidopsis Rad51 and Rad54. AtRAD54 transcripts were found in all tissues examined, with the highest levels of expression in flower buds. Expression of AtRAD54 was induced by gamma-irradiation. A T-DNA insertion mutant of AtRAD54 devoid of full-length AtRAD54 expression was viable and fertile; however, it showed increased sensitivity to gamma-irradiation and the cross-linking reagent cisplatin. In addition, the efficiency of somatic HR in the mutant plants was reduced relative to that in wild-type plants. Our findings point to an important role for Rad54 in HR repair in higher plants.
Collapse
Affiliation(s)
- Keishi Osakabe
- Plant Genetic Engineering Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Noguchi M, Yu D, Hirayama R, Ninomiya Y, Sekine E, Kubota N, Ando K, Okayasu R. Inhibition of homologous recombination repair in irradiated tumor cells pretreated with Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Biochem Biophys Res Commun 2006; 351:658-63. [PMID: 17083915 DOI: 10.1016/j.bbrc.2006.10.094] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 10/17/2006] [Indexed: 12/16/2022]
Abstract
In order to investigate the mechanism of radio-sensitization by an Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG), we studied repair of DNA double strand breaks (DSBs) in irradiated human cells pre-treated with 17-AAG. DSBs are thought to be the critical target for radiation-induced cell death. Two human tumor cell lines DU145 and SQ-5 which showed clear radio-sensitization by 17-AAG revealed a significant inhibition of DSB repair, while normal human cells which did not show radio-sensitization by the drug indicated no change in the DSB repair kinetics with 17-AAG. We further demonstrated that BRCA2 was a novel client protein for Hsp90, and 17-AAG caused the degradation of BRCA2 and in turn altered the behavior of Rad51, a critical protein for homologous recombination (HR) pathway of DSB repair. Our data demonstrate for the first time that 17-AAG inhibits the HR repair process and could provide a new therapeutic strategy to selectively result in higher tumor cell killing.
Collapse
Affiliation(s)
- Miho Noguchi
- Graduate School of Science and Technology, Chiba University, Inage-ku, Chiba 263-8522, Japan
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Hanada K, Budzowska M, Modesti M, Maas A, Wyman C, Essers J, Kanaar R. The structure-specific endonuclease Mus81-Eme1 promotes conversion of interstrand DNA crosslinks into double-strands breaks. EMBO J 2006; 25:4921-32. [PMID: 17036055 PMCID: PMC1618088 DOI: 10.1038/sj.emboj.7601344] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 08/16/2006] [Indexed: 01/02/2023] Open
Abstract
Repair of interstrand crosslinks (ICLs) requires multiple-strand incisions to separate the two covalently attached strands of DNA. It is unclear how these incisions are generated. DNA double-strand breaks (DSBs) have been identified as intermediates in ICL repair, but enzymes responsible for producing these intermediates are unknown. Here we show that Mus81, a component of the Mus81-Eme1 structure-specific endonuclease, is involved in generating the ICL-induced DSBs in mouse embryonic stem (ES) cells in S phase. Given the DNA junction cleavage specificity of Mus81-Eme1 in vitro, DNA damage-stalled replication forks are suitable in vivo substrates. Interestingly, generation of DSBs from replication forks stalled due to DNA damage that affects only one of the two DNA strands did not require Mus81. Furthermore, in addition to a physical interaction between Mus81 and the homologous recombination protein Rad54, we show that Mus81(-/-) Rad54(-/-) ES cells were as hypersensitive to ICL agents as Mus81(-/-) cells. We propose that Mus81-Eme1- and Rad54-mediated homologous recombination are involved in the same DNA replication-dependent ICL repair pathway.
Collapse
Affiliation(s)
- Katsuhiro Hanada
- Department of Cell Biology & Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Magda Budzowska
- Department of Cell Biology & Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Mauro Modesti
- Department of Cell Biology & Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Alex Maas
- Department of Cell Biology & Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Claire Wyman
- Department of Cell Biology & Genetics, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - Jeroen Essers
- Department of Cell Biology & Genetics, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Cell Biology & Genetics, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
128
|
Marple T, Kim TM, Hasty P. Embryonic stem cells deficient for Brca2 or Blm exhibit divergent genotoxic profiles that support opposing activities during homologous recombination. Mutat Res 2006; 602:110-20. [PMID: 16997331 DOI: 10.1016/j.mrfmmm.2006.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 08/11/2006] [Accepted: 08/12/2006] [Indexed: 11/21/2022]
Abstract
The breast cancer susceptibility protein, Brca2 and the RecQ helicase, Blm (Bloom syndrome mutated) are tumor suppressors that maintain genome integrity, at least in part, through homologous recombination (HR). Brca2 facilitates HR by interacting with Rad51 in multiple regions, the BRC motifs encoded by exon 11 and a single domain encoded by exon 27; however, the exact importance of these regions is not fully understood. Blm also interacts with Rad51 and appears to suppress HR in most circumstances; however, its yeast homologue Sgs1 facilitates HR in response to some genotoxins. To better understand the biological importance of these two proteins, we performed a genotoxic screen on mouse embryonic stem (ES) cells impaired for either Brca2 or Blm to establish their genotoxic profiles (a cellular dose-response to a wide range of agents). This is the first side-by-side comparison of these two proteins in an identical genetic background. We compared cells deleted for Brca2 exon 27 to cells reduced for Blm expression and find that the Brca2- and Blm-impaired cells exhibit genotoxic profiles that reflect opposing activities during HR. Cells deleted for Brca2 exon 27 are hypersensitive to gamma-radiation, streptonigrin, mitomycin C and camptothecin and mildly resistant to ICRF-193 which is similar to HR defective cells null for Rad54. By contrast, Blm-impaired cells are hypersensitive to ICRF-193, mildly resistant to camptothecin and mitomycin C and more strongly resistant to hydroxyurea. These divergent profiles support the notion that Brca2 and Blm perform opposing functions during HR in mouse ES cells.
Collapse
Affiliation(s)
- Teresa Marple
- The Department of Molecular Medicine and Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, 15355 Lambda Drive San Antonio, TX 78245-3207, USA
| | | | | |
Collapse
|
129
|
Sarai N, Kagawa W, Kinebuchi T, Kagawa A, Tanaka K, Miyagawa K, Ikawa S, Shibata T, Kurumizaka H, Yokoyama S. Stimulation of Dmc1-mediated DNA strand exchange by the human Rad54B protein. Nucleic Acids Res 2006; 34:4429-37. [PMID: 16945962 PMCID: PMC1636354 DOI: 10.1093/nar/gkl562] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The process of homologous recombination is indispensable for both meiotic and mitotic cell division, and is one of the major pathways for double-strand break (DSB) repair. The human Rad54B protein, which belongs to the SWI2/SNF2 protein family, plays a role in homologous recombination, and may function with the Dmc1 recombinase, a meiosis-specific Rad51 homolog. In the present study, we found that Rad54B enhanced the DNA strand-exchange activity of Dmc1 by stabilizing the Dmc1–single-stranded DNA (ssDNA) complex. Therefore, Rad54B may stimulate the Dmc1-mediated DNA strand exchange by stabilizing the nucleoprotein filament, which is formed on the ssDNA tails produced at DSB sites during homologous recombination.
Collapse
Affiliation(s)
- Naoyuki Sarai
- RIKEN Genomic Sciences Center1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Wataru Kagawa
- RIKEN Genomic Sciences Center1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Takashi Kinebuchi
- RIKEN Genomic Sciences Center1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Ako Kagawa
- RIKEN Genomic Sciences Center1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Kozo Tanaka
- School of Life Sciences, University of Dundee, Wellcome Trust BiocentreDundee DD1 5EH, UK
| | - Kiyoshi Miyagawa
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shukuko Ikawa
- RIKEN Discovery Research Institute, Wako-shiSaitama 351-0198, Japan
| | - Takehiko Shibata
- RIKEN Discovery Research Institute, Wako-shiSaitama 351-0198, Japan
| | - Hitoshi Kurumizaka
- RIKEN Genomic Sciences Center1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- Graduate School of Science and Engineering, Waseda University3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- To whom correspondence should be addressed. Tel: +81 3 5286 8189; Fax: +81 3 5292 9211;
| | - Shigeyuki Yokoyama
- RIKEN Genomic Sciences Center1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- RIKEN Harima Institute at SPring-8, 1-1-1 KohtoMikazuki-cho, Sayo, Hyogo 679-5148, Japan
- Correspondence may also be addressed to Shigeyuki Yokoyama. Tel: +81 3 5841 4413; Fax: +81 3 5841 8057;
| |
Collapse
|
130
|
Abstract
Homologous recombination (HR) is a ubiquitous cellular pathway that mediates transfer of genetic information between homologous or near homologous (homeologous) DNA sequences. During meiosis it ensures proper chromosome segregation in the first division. Moreover, HR is critical for the tolerance and repair of DNA damage, as well as in the recovery of stalled and broken replication forks. Together these functions preserve genomic stability and assure high fidelity transmission of the genetic material in the mitotic and meiotic cell divisions. This review will focus on the Rad54 protein, a member of the Snf2-family of SF2 helicases, which translocates on dsDNA but does not display strand displacement activity typical for a helicase. A wealth of genetic, cytological, biochemical and structural data suggests that Rad54 is a core factor of HR, possibly acting at multiple stages during HR in concert with the central homologous pairing protein Rad51.
Collapse
Affiliation(s)
- Wolf-Dietrich Heyer
- Sections of Microbiology, University of California Davis, CA 95616-8665, USA.
| | | | | | | |
Collapse
|
131
|
McCabe N, Turner NC, Lord CJ, Kluzek K, Bialkowska A, Swift S, Giavara S, O'Connor MJ, Tutt AN, Zdzienicka MZ, Smith GCM, Ashworth A. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res 2006; 66:8109-15. [PMID: 16912188 DOI: 10.1158/0008-5472.can-06-0140] [Citation(s) in RCA: 1007] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Deficiency in either of the breast cancer susceptibility proteins BRCA1 or BRCA2 induces profound cellular sensitivity to the inhibition of poly(ADP-ribose) polymerase (PARP) activity. We hypothesized that the critical role of BRCA1 and BRCA2 in the repair of double-strand breaks by homologous recombination (HR) was the underlying reason for this sensitivity. Here, we examine the effects of deficiency of several proteins involved in HR on sensitivity to PARP inhibition. We show that deficiency of RAD51, RAD54, DSS1, RPA1, NBS1, ATR, ATM, CHK1, CHK2, FANCD2, FANCA, or FANCC induces such sensitivity. This suggests that BRCA-deficient cells are, at least in part, sensitive to PARP inhibition because of HR deficiency. These results indicate that PARP inhibition might be a useful therapeutic strategy not only for the treatment of BRCA mutation-associated tumors but also for the treatment of a wider range of tumors bearing a variety of deficiencies in the HR pathway or displaying properties of 'BRCAness.'
Collapse
Affiliation(s)
- Nuala McCabe
- Cancer Research UK Gene Function and Regulation Group and The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Vasileva A, Linden RM, Jessberger R. Homologous recombination is required for AAV-mediated gene targeting. Nucleic Acids Res 2006; 34:3345-60. [PMID: 16822856 PMCID: PMC1488886 DOI: 10.1093/nar/gkl455] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
High frequencies of gene targeting can be achieved by infection of mammalian cells with recombinant adeno-associated virus (rAAV) vectors [D. W. Russell and R. K. Hirata (1998) Nature Genet., 18, 325–330; D. W. Russell and R. K. Hirata (2000) J. Virol., 74, 4612–4620; R. Hirata et al. (2002) Nat. Biotechnol., 20, 735–738], but the mechanism of targeting is unclear and random integration often occurs in parallel. We assessed the role of specific DNA repair and recombination pathways in rAAV gene targeting by measuring correction of a mutated enhanced green fluorescent protein (EGFP) gene in cells where homologous recombination (HR) or non-homologous end-joining (NHEJ) had been suppressed by RNAi. EGFP-negative cells were transduced with rAAV vectors carrying a different inactivating deletion in the EGFP, and in parallel with rAAV vectors carrying red fluorescent protein (RFP). Expression of RFP accounted for viral transduction efficiency and long-term random integration. Approximately 0.02% of the infected GFP-negative cells were stably converted to GFP positive cells. Silencing of the essential NHEJ component DNA-PK had no significant effect on the frequency of targeting at any time point examined. Silencing of the SNF2/SWI2 family members RAD54L or RAD54B, which are important for HR, reduced the rate of stable rAAV gene targeting ∼5-fold. Further, partial silencing of the Rad51 paralogue XRCC3 completely abolished stable long-term EGFP expression. These results show that rAAV gene targeting requires the Rad51/Rad54 pathway of HR.
Collapse
Affiliation(s)
- Ana Vasileva
- Department of Gene and Cell Medicine, Mount Sinai School of MedicineNew York, NY 10029, USA
| | - R. Michael Linden
- Department of Gene and Cell Medicine, Mount Sinai School of MedicineNew York, NY 10029, USA
| | - Rolf Jessberger
- Department of Gene and Cell Medicine, Mount Sinai School of MedicineNew York, NY 10029, USA
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Dresden University of Technology01307 Dresden, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
133
|
Bugreev DV, Mazina OM, Mazin AV. Rad54 protein promotes branch migration of Holliday junctions. Nature 2006; 442:590-3. [PMID: 16862129 DOI: 10.1038/nature04889] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Accepted: 05/10/2006] [Indexed: 11/09/2022]
Abstract
Homologous recombination has a crucial function in the repair of DNA double-strand breaks and in faithful chromosome segregation. The mechanism of homologous recombination involves the search for homology and invasion of the ends of a broken DNA molecule into homologous duplex DNA to form a cross-stranded structure, a Holliday junction (HJ). A HJ is able to undergo branch migration along DNA, generating increasing or decreasing lengths of heteroduplex. In both prokaryotes and eukaryotes, the physical evidence for HJs, the key intermediate in homologous recombination, was provided by electron microscopy. In bacteria there are specialized enzymes that promote branch migration of HJs. However, in eukaryotes the identity of homologous recombination branch-migration protein(s) has remained elusive. Here we show that Rad54, a Swi2/Snf2 protein, binds HJ-like structures with high specificity and promotes their bidirectional branch migration in an ATPase-dependent manner. The activity seemed to be conserved in human and yeast Rad54 orthologues. In vitro, Rad54 has been shown to stimulate DNA pairing of Rad51, a key homologous recombination protein. However, genetic data indicate that Rad54 protein might also act at later stages of homologous recombination, after Rad51 (ref. 13). Novel DNA branch-migration activity is fully consistent with this late homologous recombination function of Rad54 protein.
Collapse
Affiliation(s)
- Dmitry V Bugreev
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102-1192, USA
| | | | | |
Collapse
|
134
|
Sonoda E, Hochegger H, Saberi A, Taniguchi Y, Takeda S. Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair (Amst) 2006; 5:1021-9. [PMID: 16807135 DOI: 10.1016/j.dnarep.2006.05.022] [Citation(s) in RCA: 370] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Repair of DNA double strand breaks (DSBs) plays a critical role in the maintenance of the genome. DSB arise frequently as a consequence of replication fork stalling and also due to the attack of exogenous agents. Repair of broken DNA is essential for survival. Two major pathways, homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to deal with these lesions, and are conserved from yeast to vertebrates. Despite the conservation of these pathways, their relative contribution to DSB repair varies greatly between these two species. HR plays a dominant role in any DSB repair in yeast, whereas NHEJ significantly contributes to DSB repair in vertebrates. This active NHEJ requires a regulatory mechanism to choose HR or NHEJ in vertebrate cells. In this review, we illustrate how HR and NHEJ are differentially regulated depending on the phase of cell cycle and on the nature of the DSB.
Collapse
Affiliation(s)
- Eiichiro Sonoda
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Konoe Yoshida, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
135
|
Brugmans L, Kanaar R, Essers J. Analysis of DNA double-strand break repair pathways in mice. Mutat Res 2006; 614:95-108. [PMID: 16797606 DOI: 10.1016/j.mrfmmm.2006.01.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 01/19/2006] [Accepted: 01/23/2006] [Indexed: 11/26/2022]
Abstract
During the last years significant new insights have been gained into the mechanism and biological relevance of DNA double-strand break (DSB) repair in relation to genome stability. DSBs are a highly toxic DNA lesion, because they can lead to chromosome fragmentation, loss and translocations, eventually resulting in cancer. DSBs can be induced by cellular processes such as V(D)J recombination or DNA replication. They can also be introduced by exogenous agents DNA damaging agents such as ionizing radiation or mitomycin C. During evolution several pathways have evolved for the repair of these DSBs. The most important DSB repair mechanisms in mammalian cells are nonhomologous end-joining and homologous recombination. By using an undamaged repair template, homologous recombination ensures accurate DSB repair, whereas the untemplated nonhomologous end-joining pathway does not. Although both pathways are active in mammals, the relative contribution of the two repair pathways to genome stability differs in the different cell types. Given the potential differences in repair fidelity, it is of interest to determine the relative contribution of homologous recombination and nonhomologous end-joining to DSB repair. In this review, we focus on the biological relevance of DSB repair in mammalian cells and the potential overlap between nonhomologous end-joining and homologous recombination in different tissues.
Collapse
Affiliation(s)
- Linda Brugmans
- Department of Cell Biology and Genetics, Erasmus MC, Dr. Molewaterplein 50, PO Box 1738, Rotterdam 3015GE, The Netherlands
| | | | | |
Collapse
|
136
|
Hussain S, Wilson JB, Blom E, Thompson LH, Sung P, Gordon SM, Kupfer GM, Joenje H, Mathew CG, Jones NJ. Tetratricopeptide-motif-mediated interaction of FANCG with recombination proteins XRCC3 and BRCA2. DNA Repair (Amst) 2006; 5:629-40. [PMID: 16621732 DOI: 10.1016/j.dnarep.2006.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 02/07/2006] [Accepted: 02/13/2006] [Indexed: 01/07/2023]
Abstract
Fanconi anaemia is an inherited chromosomal instability disorder characterised by cellular sensitivity to DNA interstrand crosslinkers, bone-marrow failure and a high risk of cancer. Eleven FA genes have been identified, one of which, FANCD1, is the breast cancer susceptibility gene BRCA2. At least eight FA proteins form a nuclear core complex required for monoubiquitination of FANCD2. The BRCA2/FANCD1 protein is connected to the FA pathway by interactions with the FANCG and FANCD2 proteins, both of which co-localise with the RAD51 recombinase, which is regulated by BRCA2. These connections raise the question of whether any of the FANC proteins of the core complex might also participate in other complexes involved in homologous recombination repair. We therefore tested known FA proteins for direct interaction with RAD51 and its paralogs XRCC2 and XRCC3. FANCG was found to interact with XRCC3, and this interaction was disrupted by the FA-G patient derived mutation L71P. FANCG was co-immunoprecipitated with both XRCC3 and BRCA2 from extracts of human and hamster cells. The FANCG-XRCC3 and FANCG-BRCA2 interactions did not require the presence of other FA proteins from the core complex, suggesting that FANCG also participates in a DNA repair complex that is downstream and independent of FANCD2 monoubiquitination. Additionally, XRCC3 and BRCA2 proteins co-precipitate in both human and hamster cells and this interaction requires FANCG. The FANCG protein contains multiple tetratricopeptide repeat motifs (TPRs), which function as scaffolds to mediate protein-protein interactions. Mutation of one or more of these motifs disrupted all of the known interactions of FANCG. We propose that FANCG, in addition to stabilising the FA core complex, may have a role in building multiprotein complexes that facilitate homologous recombination repair.
Collapse
Affiliation(s)
- Shobbir Hussain
- Department of Medical and Molecular Genetics, King's College London School of Medicine at Guy's Hospital, London SE1 9RT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Bekker-Jensen S, Lukas C, Kitagawa R, Melander F, Kastan MB, Bartek J, Lukas J. Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. ACTA ACUST UNITED AC 2006; 173:195-206. [PMID: 16618811 PMCID: PMC2063811 DOI: 10.1083/jcb.200510130] [Citation(s) in RCA: 489] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We show that DNA double-strand breaks (DSBs) induce complex subcompartmentalization of genome surveillance regulators. Chromatin marked by gamma-H2AX is occupied by ataxia telangiectasia-mutated (ATM) kinase, Mdc1, and 53BP1. In contrast, repair factors (Rad51, Rad52, BRCA2, and FANCD2), ATM and Rad-3-related (ATR) cascade (ATR, ATR interacting protein, and replication protein A), and the DNA clamp (Rad17 and -9) accumulate in subchromatin microcompartments delineated by single-stranded DNA (ssDNA). BRCA1 and the Mre11-Rad50-Nbs1 complex interact with both of these compartments. Importantly, some core DSB regulators do not form cytologically discernible foci. These are further subclassified to proteins that connect DSBs with the rest of the nucleus (Chk1 and -2), that assemble at unprocessed DSBs (DNA-PK/Ku70), and that exist on chromatin as preassembled complexes but become locally modified after DNA damage (Smc1/Smc3). Finally, checkpoint effectors such as p53 and Cdc25A do not accumulate at DSBs at all. We propose that subclassification of DSB regulators according to their residence sites provides a useful framework for understanding their involvement in diverse processes of genome surveillance.
Collapse
Affiliation(s)
- Simon Bekker-Jensen
- Institute of Cancer Biology and Centre for Genotoxic Stress Research, Danish Cancer Society, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
138
|
Shaked H, Avivi-Ragolsky N, Levy AA. Involvement of the Arabidopsis SWI2/SNF2 chromatin remodeling gene family in DNA damage response and recombination. Genetics 2006; 173:985-94. [PMID: 16547115 PMCID: PMC1526515 DOI: 10.1534/genetics.105.051664] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The genome of plants, like that of other eukaryotes, is organized into chromatin, a compact structure that reduces the accessibility of DNA to machineries such as transcription, replication, and DNA recombination and repair. Plant genes, which contain the characteristic ATPase/helicase motifs of the chromatin remodeling Swi2/Snf2 family of proteins, have been thoroughly studied, but their role in homologous recombination or DNA repair has received limited attention. We have searched for homologs of the yeast RAD54 gene, whose role in recombination and repair and in chromatin remodeling is well established. Forty Arabidopsis SWI2/SNF2 genes were identified and the function of a selected group of 14 was analyzed. Mutant analysis and/or RNAi-mediated silencing showed that 11 of the 14 genes tested played a role in response to DNA damage. Two of the 14 genes were involved in homologous recombination between inverted repeats. The putative ortholog of RAD54 and close homologs of ERCC6/RAD26 were involved in DNA damage response, suggesting functional conservation across kingdoms. In addition, genes known for their role in development, such as PICKLE/GYMNOS and PIE1, or in silencing, such as DDM1, turned out to also be involved in DNA damage response. A comparison of ddm1 and met1 mutants suggests that DNA damage response is affected essentially by chromatin structure and that cytosine methylation is less critical. These results emphasize the broad involvement of the SWI2/SNF2 family, and thus of chromatin remodeling, in genome maintenance and the link between epigenetic and genetic processes.
Collapse
Affiliation(s)
- Hezi Shaked
- Plant Sciences Department, Weizmann Institute of Science, Rehovot, 76100 Israel
| | | | | |
Collapse
|
139
|
Li D, Liu H, Jiao L, Chang DZ, Beinart G, Wolff RA, Evans DB, Hassan MM, Abbruzzese JL. Significant effect of homologous recombination DNA repair gene polymorphisms on pancreatic cancer survival. Cancer Res 2006; 66:3323-30. [PMID: 16540687 PMCID: PMC1462866 DOI: 10.1158/0008-5472.can-05-3032] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Genetic variation in DNA repair may affect the clinical response to cytotoxic therapies. We investigated the effect of six single nucleotide polymorphisms of the RecQ1, RAD54L, XRCC2, and XRCC3 genes on overall survival of 378 patients with pancreatic adenocarcinoma who were treated at University of Texas M.D. Anderson Cancer Center during February 1999 to October 2004 and were followed up to October 2005. Genotypes were determined using the MassCode method. Survival was determined from pathologic diagnosis to death. Patients who were alive at the last follow-up evaluation were censored at that time. Kaplan-Meier plot, log-rank test, and Cox regression were used to compare overall survival by genotypes. A significant effect on survival of all patients was observed for RecQ1 and RAD54L genes. The median survival time was 19.2, 14.7, and 13.2 months for the RecQ1 159 AA, AC, and CC genotypes, and 16.4, 13.3, and 10.3 months for RAD54L 157 CC, CT, and TT genotypes, respectively. A significantly reduced survival was associated with the variant alleles of XRCC2 R188H and XRCC3 A17893G in subgroup analysis. When the four genes were analyzed in combination, an increasing number of adverse alleles were associated with a significantly decreased survival. Subgroup analyses have shown that the genotype effect on survival was present among patients without metastatic disease or among patients who receive radiotherapy. These observations suggest that polymorphisms of genes involved in the repair of DNA double-strand breaks significantly affect the clinical outcome of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77230-1402, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Wesoly J, Agarwal S, Sigurdsson S, Bussen W, Van Komen S, Qin J, van Steeg H, van Benthem J, Wassenaar E, Baarends WM, Ghazvini M, Tafel AA, Heath H, Galjart N, Essers J, Grootegoed JA, Arnheim N, Bezzubova O, Buerstedde JM, Sung P, Kanaar R. Differential contributions of mammalian Rad54 paralogs to recombination, DNA damage repair, and meiosis. Mol Cell Biol 2006; 26:976-89. [PMID: 16428451 PMCID: PMC1347043 DOI: 10.1128/mcb.26.3.976-989.2006] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Homologous recombination is a versatile DNA damage repair pathway requiring Rad51 and Rad54. Here we show that a mammalian Rad54 paralog, Rad54B, displays physical and functional interactions with Rad51 and DNA that are similar to those of Rad54. While ablation of Rad54 in mouse embryonic stem (ES) cells leads to a mild reduction in homologous recombination efficiency, the absence of Rad54B has little effect. However, the absence of both Rad54 and Rad54B dramatically reduces homologous recombination efficiency. Furthermore, we show that Rad54B protects ES cells from ionizing radiation and the interstrand DNA cross-linking agent mitomycin C. Interestingly, at the ES cell level the paralogs do not display an additive or synergic interaction with respect to mitomycin C sensitivity, yet animals lacking both Rad54 and Rad54B are dramatically sensitized to mitomycin C compared to either single mutant. This suggests that the paralogs possibly function in a tissue-specific manner. Finally, we show that Rad54, but not Rad54B, is needed for a normal distribution of Rad51 on meiotic chromosomes. Thus, even though the paralogs have similar biochemical properties, genetic analysis in mice uncovered their nonoverlapping roles.
Collapse
Affiliation(s)
- Joanna Wesoly
- Department of Cell Biology and Genetics, Erasmus MC, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Morales M, Theunissen JWF, Kim CFB, Kitagawa R, Kastan MB, Petrini JHJ. The Rad50S allele promotes ATM-dependent DNA damage responses and suppresses ATM deficiency: implications for the Mre11 complex as a DNA damage sensor. Genes Dev 2006; 19:3043-54. [PMID: 16357220 PMCID: PMC1315407 DOI: 10.1101/gad.1373705] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Genetic and cytologic data from Saccharomyces cerevisiae and mammals implicate the Mre11 complex, consisting of Mre11, Rad50, and Nbs1, as a sensor of DNA damage, and indicate that the complex influences the activity of ataxia-telangiectasia mutated (ATM) in the DNA damage response. Rad50(S/S) mice exhibit precipitous apoptotic attrition of hematopoietic cells. We generated ATM- and Chk2-deficient Rad50(S/S) mice and found that Rad50(S/S) cellular attrition was strongly ATM and Chk2 dependent. The hypomorphic Mre11(ATLD1) and Nbs1(Delta)(B) alleles conferred similar rescue of Rad50(S/S)-dependent hematopoietic failure. These data indicate that the Mre11 complex activates an ATM-Chk2-dependent apoptotic pathway. We find that apoptosis and cell cycle checkpoint activation are parallel outcomes of the Mre11 complex-ATM pathway. Conversely, the Rad50(S) mutation mitigated several phenotypic features of ATM deficiency. We propose that the Rad50(S) allele is hypermorphic for DNA damage signaling, and that the resulting constitutive low-level activation of the DNA damage response accounts for the partial suppression of ATM deficiency in Rad50(S/S) Atm(-/-) mice.
Collapse
Affiliation(s)
- Monica Morales
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center and Cornell University Graduate School of Medical Sciences, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
142
|
Abstract
Vectors based on the adeno-associated virus (AAV) have attracted much attention as potent gene-delivery vehicles, mainly because of the persistence of this non-pathogenic virus in the host cell and its sustainable therapeutic gene expression. However, virus infection can be accompanied by potentially mutagenic random vector integration into the genome. A novel approach to AAV-mediated gene therapy based on gene targeting through homologous recombination allows efficient, high-fidelity, non-mutagenic gene repair in a host cell.
Collapse
Affiliation(s)
- Ana Vasileva
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, USA
| | | |
Collapse
|
143
|
Friedberg EC, Meira LB. Database of mouse strains carrying targeted mutations in genes affecting biological responses to DNA damage Version 7. DNA Repair (Amst) 2005; 5:189-209. [PMID: 16290067 DOI: 10.1016/j.dnarep.2005.09.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 09/13/2005] [Accepted: 09/13/2005] [Indexed: 01/23/2023]
Abstract
We present Version 7 of a database of mouse mutant strains that affect biological responses to DNA damage. This database is also electronically available at http://pathcuricl.swmed.edu/research/research.htm.
Collapse
Affiliation(s)
- Errol C Friedberg
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9072, USA.
| | | |
Collapse
|
144
|
Wachters FM, Wong LSM, Timens W, Kampinga HH, Groen HJM. ERCC1, hRad51, and BRCA1 protein expression in relation to tumour response and survival of stage III/IV NSCLC patients treated with chemotherapy. Lung Cancer 2005; 50:211-9. [PMID: 16169122 DOI: 10.1016/j.lungcan.2005.06.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 06/06/2005] [Accepted: 06/06/2005] [Indexed: 11/25/2022]
Abstract
Aim of this explorative study was to determine the prognostic value of protein expression of the DNA damage repair enzymes ERCC1, hRad51, and BRCA1 for tumour response and survival of non-small-cell lung cancer patients treated with chemotherapy. Patients with either a short or long overall survival were selected from a randomized phase III trial comparing cisplatin-gemcitabine and epirubicin-gemcitabine. Tumour biopsies were assessed for differences in immunohistochemical staining using antibodies against ERCC1, hRad51, and BRCA1. A total of 33 patients were included. A positive nuclear staining for ERCC1, hRad51, and BRCA1 was observed in 44, 12, and 90% of biopsies, respectively. In large cell carcinoma nuclear hRad51 staining was absent. In five biopsies stained for hRad51 an unexpected membrane-like staining was observed; these biopsies showed no nuclear staining. DNA damage repair protein expressions were not significantly different in responders versus non-responders, or in patients with a short or long overall survival. In conclusion, immunohistochemical staining of ERCC1, hRad51, and BRCA1, in tumour biopsies from non-small-cell lung cancer patients was not predictive for tumour response and survival after chemotherapy.
Collapse
Affiliation(s)
- F M Wachters
- Department of Pulmonary Diseases, University Hospital Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
145
|
Tzfira T, White C. Towards targeted mutagenesis and gene replacement in plants. Trends Biotechnol 2005; 23:567-9. [PMID: 16243407 DOI: 10.1016/j.tibtech.2005.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 09/01/2005] [Accepted: 10/07/2005] [Indexed: 10/25/2022]
Abstract
Advances in the development of biotechnological tools for plant gene disruption and repair have lagged behind the rapid progress made in whole-genome sequencing of many model and crop plant species. Plant DNA-repair machinery predominantly uses non-homologous end-joining (NHEJ), making the homologous recombination (HR)-based methods, which have proved fruitful for gene targeting in non-plant systems, unsuitable for use in plant systems. Two recent reports describe successful targeted mutagenesis and gene targeting in Arabidopsis by either harnessing the plant NHEJ machinery using site-specific induction of double-strand breaks (DSBs), or by activation of a HR pathway through overexpression of a yeast DNA recombination gene in transgenic plants. These reports provide a foundation from which new technologies for site-specific genome alterations in plant species can be developed.
Collapse
Affiliation(s)
- Tzvi Tzfira
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
146
|
Adachi N, Iiizumi S, Koyama H. Evidence for a role of vertebrate Rad52 in the repair of topoisomerase II-mediated DNA damage. DNA Cell Biol 2005; 24:388-93. [PMID: 15941391 DOI: 10.1089/dna.2005.24.388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
DNA topoisomerase II (Top2) inhibitors are useful as anticancer agents, mostly by virtue of their ability to induce DNA double-strand breaks (DSBs). These DSBs are repaired almost exclusively by Rad52-dependent homologous recombination (HR) in yeast. However, we have recently shown that in vertebrate cells such lesions are primarily repaired by nonhomologous end-joining, but not HR. This finding, taken together with previous observations that disruption of RAD52 does not severely affect HR in vertebrate cells, makes it highly unlikely that Rad52 contributes to the repair of Top2-mediated DNA damage. However, in this paper we show that chicken cells lacking Rad52 do exhibit increased sensitivity to the Top2 inhibitor VP-16. Remarkably, the level of hypersensitivity of RAD52-null cells was comparable to that of RAD54-null cells, albeit only at high doses. Our data thus provide the first demonstration of a major repair defect associated with loss of Rad52 in vertebrate cells.
Collapse
Affiliation(s)
- Noritaka Adachi
- Kihara Institute for Biological Research, Graduate School of Integrated Science, Yokohama City University, Yokohama, Japan.
| | | | | |
Collapse
|
147
|
de Vries FAT, Zonneveld JBM, van Duijn-Goedhart A, Roodbergen M, Boei J, van Buul PPW, Essers J, van Steeg H, van Zeeland AA, van Benthem J, Pastink A. Inactivation of RAD52 aggravates RAD54 defects in mice but not in Schizosaccharomyces pombe. DNA Repair (Amst) 2005; 4:1121-8. [PMID: 16009599 DOI: 10.1016/j.dnarep.2005.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 05/12/2005] [Accepted: 06/02/2005] [Indexed: 01/09/2023]
Abstract
RAD52 and RAD54 genes from Saccharomyces cerevisiae are required for double-strand break repair through homologous recombination and show epistatic interactions i.e., single and double mutant strains are equally sensitive to DNA damaging agents. In here we combined mutations in RAD52 and RAD54 homologs in Schizosaccharomyces pombe and mice. The analysis of mutant strains in S. pombe demonstrated nearly identical sensitivities of rhp54, rad22A and rad22B double and triple mutants to X-rays, cis-diamminedichloroplatinum and hydroxyurea. In this respect, the fission yeast homologs of RAD54 and RAD52 closely resemble their counterparts in S. cerevisiae. To verify if inactivation of RAD52 affects the DNA damage sensitivities of RAD54 deficient mice, several endpoints were studied in double mutant mice and in bone marrow cells derived from these animals. Haemopoietic depression in bone marrow and the formation of micronuclei after in vivo exposure to mitomycine C (MMC) was not increased in either single or double mutant mice in comparison to wildtype animals. The induction of sister chromatid exchanges in splenocytes was slightly reduced in the RAD54 mutant. A similar reduction was detected in the double mutant. However, a deficiency of RAD52 exacerbates the MMC survival of RAD54 mutant mice and also has a distinct effect on the survival of bone marrow cells after exposure to ionizing radiation. These findings may be explained by additive defects in HR in the double mutant but may also indicate a more prominent role for single-strand annealing in the absence of Rad54.
Collapse
Affiliation(s)
- Femke A T de Vries
- Department of Toxicogenetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Affiliation(s)
- Holger Puchta
- Botany II, University of Karlsruhe, D-76128 Karlsruhe, Germany
| | | |
Collapse
|
149
|
Shaked H, Melamed-Bessudo C, Levy AA. High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc Natl Acad Sci U S A 2005; 102:12265-9. [PMID: 16093317 PMCID: PMC1189313 DOI: 10.1073/pnas.0502601102] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gene targeting, which is homologous recombination-mediated integration of an extra-chromosomal DNA segment into a chromosomal target sequence, enables the precise disruption or replacement of any gene. Despite its value as a molecular genetic tool, gene targeting remains an inefficient technology in most species. We report that expression of the yeast RAD54 gene, a member of the SWI2/SNF2 chromatin remodeling gene family, enhances gene targeting in Arabidopsis by one to two orders of magnitude, from 10(-4) to 10(-3) in WT plants to 10(-2) to 10(-1). We show that integration events, detected with an assay based on the use of a fluorescent seed marker, are precise and germinally transmitted. These findings suggest that chromatin remodeling is rate-limiting for gene targeting in plants and improves the prospects for using gene targeting for the precise modification of plant genomes.
Collapse
Affiliation(s)
- Hezi Shaked
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
150
|
Mon H, Kusakabe T, Lee JM, Kawaguchi Y, Koga K. In vivo DNA double-strand breaks enhance gene targeting in cultured silkworm cells. Comp Biochem Physiol B Biochem Mol Biol 2005; 139:99-106. [PMID: 15364292 DOI: 10.1016/j.cbpc.2004.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2004] [Revised: 06/17/2004] [Accepted: 06/18/2004] [Indexed: 02/04/2023]
Abstract
Alteration of genomic information through homologous recombination (HR) is a powerful tool for reverse genetics in bacteria, yeast, and mice. The low frequency of HR is, however, a major obstacle to achieve efficient gene targeting. In this study, we have developed an assay system for investigating the frequency of gene targeting in cultured silkworm cells using a firefly luciferase gene as a reporter. The introduction of a DNA double-strand break (DSB) either in the chromosomal target locus or in the targeting construct drastically increased the frequency of gene targeting. Interestingly, the inhibition of poly(ADP-ribose) polymerase (PARP), a protein known to play an important role in overall suppression of the HR pathway, stimulated the targeting efficiency, whereas the overexpression of two silkworm RecA homologs, BmRad51 and BmDmc1, had no effect. The presently devised assay system may serve as a useful tool to improve the gene targeting efficiency in the silkworm (Bombyx mori).
Collapse
Affiliation(s)
- Hiroaki Mon
- Laboratory of Silkworm Science, Faculty of Agriculture, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|