101
|
Younts TJ, Monday HR, Dudok B, Klein ME, Jordan BA, Katona I, Castillo PE. Presynaptic Protein Synthesis Is Required for Long-Term Plasticity of GABA Release. Neuron 2016. [PMID: 27764673 DOI: 10.1016/j.neuron.2016.09.040.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Long-term changes of neurotransmitter release are critical for proper brain function. However, the molecular mechanisms underlying these changes are poorly understood. While protein synthesis is crucial for the consolidation of postsynaptic plasticity, whether and how protein synthesis regulates presynaptic plasticity in the mature mammalian brain remain unclear. Here, using paired whole-cell recordings in rodent hippocampal slices, we report that presynaptic protein synthesis is required for long-term, but not short-term, plasticity of GABA release from type 1 cannabinoid receptor (CB1)-expressing axons. This long-term depression of inhibitory transmission (iLTD) involves cap-dependent protein synthesis in presynaptic interneuron axons, but not somata. Translation is required during the induction, but not maintenance, of iLTD. Mechanistically, CB1 activation enhances protein synthesis via the mTOR pathway. Furthermore, using super-resolution STORM microscopy, we revealed eukaryotic ribosomes in CB1-expressing axon terminals. These findings suggest that presynaptic local protein synthesis controls neurotransmitter release during long-term plasticity in the mature mammalian brain.
Collapse
Affiliation(s)
- Thomas J Younts
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA.
| | - Hannah R Monday
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Barna Dudok
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest 1051, Hungary; School of Ph.D. Studies, Semmelweis University, Budapest 1085, Hungary
| | - Matthew E Klein
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Bryen A Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - István Katona
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest 1051, Hungary
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA.
| |
Collapse
|
102
|
Szabó EC, Manguinhas R, Fonseca R. The interplay between neuronal activity and actin dynamics mimic the setting of an LTD synaptic tag. Sci Rep 2016; 6:33685. [PMID: 27650071 PMCID: PMC5030642 DOI: 10.1038/srep33685] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/31/2016] [Indexed: 02/07/2023] Open
Abstract
Persistent forms of plasticity, such as long-term depression (LTD), are dependent on the interplay between activity-dependent synaptic tags and the capture of plasticity-related proteins. We propose that the synaptic tag represents a structural alteration that turns synapses permissive to change. We found that modulation of actin dynamics has different roles in the induction and maintenance of LTD. Inhibition of either actin depolymerisation or polymerization blocks LTD induction whereas only the inhibition of actin depolymerisation blocks LTD maintenance. Interestingly, we found that actin depolymerisation and CaMKII activation are involved in LTD synaptic-tagging and capture. Moreover, inhibition of actin polymerisation mimics the setting of a synaptic tag, in an activity-dependent manner, allowing the expression of LTD in non-stimulated synapses. Suspending synaptic activation also restricts the time window of synaptic capture, which can be restored by inhibiting actin polymerization. Our results support our hypothesis that modulation of the actin cytoskeleton provides an input-specific signal for synaptic protein capture.
Collapse
Affiliation(s)
- Eszter C Szabó
- Cellular and Systems Neurobiology, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras Portugal
| | - Rita Manguinhas
- Cellular and Systems Neurobiology, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras Portugal
| | - Rosalina Fonseca
- Cellular and Systems Neurobiology, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras Portugal
| |
Collapse
|
103
|
Gao J, Wu H, Cao Y, Liang S, Sun C, Wang P, Wang J, Sun H, Wu L. Maternal DHA supplementation protects rat offspring against impairment of learning and memory following prenatal exposure to valproic acid. J Nutr Biochem 2016; 35:87-95. [PMID: 27469996 DOI: 10.1016/j.jnutbio.2016.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 01/09/2023]
Abstract
Docosahexaenoic acid (22:6n-3; DHA) is known to play a critical role in postnatal brain development. However, there have been no studies investigating the preventive effect of DHA on prenatal valproic acid (VPA)-induced behavioral and molecular alterations in offspring. The present study was to evaluate the neuroprotective effects in offspring using maternal feeding of DHA to rats exposed to VPA in pregnancy. In the present study, rats were exposed to VPA on day 12.5 of pregnancy; DHA was administered at the dosages of 100, 300 and 500 mg/kg/day for 3 weeks from day 1 to 21 of pregnancy. The results showed that maternal feeding of DHA to the prenatal exposed to VPA (1) prevented VPA-induced learning and memory impairment but did not change social-related behavior, (2) increased total DHA content in offspring plasma and hippocampus, (3) rescued VPA-induced neuronal loss and apoptosis of pyramidal cells in hippocampal CA1, (4) influenced the content of malondialdehyde and glutathione and the activities of superoxide dismutase and glutathione in the hippocampus, (5) altered levels of apoptosis-related proteins (Bcl-2, Bax and caspase-3) and inhibited the activity of caspase-3 in offspring hippocampus and (6) enhanced relative levels of p-CaMKII and p-CREB proteins in the hippocampus. These findings suggest that maternal feeding with DHA may prevent prenatal VPA-induced impairment of learning and memory, normalize several different molecules associated with oxidative stress and apoptosis in the hippocampus of offspring, and exert preventive effects on prenatal VPA-induced brain dysfunction.
Collapse
Affiliation(s)
- Jingquan Gao
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang, China; Department of Nursing, Daqing campus of Harbin Medical University, Daqing, Heilongjiang, China
| | - Hongmei Wu
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yonggang Cao
- Department of Pharmacology, Daqing campus of Harbin Medical University, Daqing, Heilongjiang, China
| | - Shuang Liang
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Caihong Sun
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Peng Wang
- Department of Physiology, Daqing campus of Harbin Medical University, Daqing, Heilongjiang, China
| | - Ji Wang
- Department of Child Health Care, Harbin children's hospital, Harbin, Heilongjiang, China
| | - Hongli Sun
- Department of Pharmacology, Daqing campus of Harbin Medical University, Daqing, Heilongjiang, China.
| | - Lijie Wu
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
104
|
Alaqeel AM, Abou Al-Shaar H, Shariff RK, Albakr A. The role of RNA metabolism in neurological diseases. Balkan J Med Genet 2016; 18:5-14. [PMID: 27785391 PMCID: PMC5026263 DOI: 10.1515/bjmg-2015-0080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neurodegenerative disorders are commonly encountered in medical practices. Such diseases can lead to major morbidity and mortality among the affected individuals. The molecular pathogenesis of these disorders is not yet clear. Recent literature has revealed that mutations in RNA-binding proteins are a key cause of several human neuronal-based diseases. This review discusses the role of RNA metabolism in neurological diseases with specific emphasis on roles of RNA translation and microRNAs in neurodegeneration, RNA-mediated toxicity, repeat expansion diseases and RNA metabolism, molecular pathogenesis of amyotrophic lateral sclerosis and frontotemporal dementia, and neurobiology of survival motor neuron (SMN) and spinal muscular atrophy.
Collapse
Affiliation(s)
- A M Alaqeel
- Department of Neurosurgery, University of Calgary, Calgary, Alberta, Canada; Division of Neurosurgery, Department of Surgery, King Saud University, Riyadh, Saudi Arabia
| | - H Abou Al-Shaar
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - R K Shariff
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - A Albakr
- Division of Neurosurgery, Department of Surgery, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
105
|
Korte M, Schmitz D. Cellular and System Biology of Memory: Timing, Molecules, and Beyond. Physiol Rev 2016; 96:647-93. [PMID: 26960344 DOI: 10.1152/physrev.00010.2015] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The storage of information in the mammalian nervous systems is dependent on a delicate balance between change and stability of neuronal networks. The induction and maintenance of processes that lead to changes in synaptic strength to a multistep process which can lead to long-lasting changes, which starts and ends with a highly choreographed and perfectly timed dance of molecules in different cell types of the central nervous system. This is accompanied by synchronization of specific networks, resulting in the generation of characteristic "macroscopic" rhythmic electrical fields, whose characteristic frequencies correspond to certain activity and information-processing states of the brain. Molecular events and macroscopic fields influence each other reciprocally. We review here cellular processes of synaptic plasticity, particularly functional and structural changes, and focus on timing events that are important for the initial memory acquisition, as well as mechanisms of short- and long-term memory storage. Then, we cover the importance of epigenetic events on the long-time range. Furthermore, we consider how brain rhythms at the network level participate in processes of information storage and by what means they participating in it. Finally, we examine memory consolidation at the system level during processes of sleep.
Collapse
Affiliation(s)
- Martin Korte
- Zoological Institute, Division of Cellular Neurobiology, Braunschweig, Germany; Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany; and Neuroscience Research Centre, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Dietmar Schmitz
- Zoological Institute, Division of Cellular Neurobiology, Braunschweig, Germany; Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany; and Neuroscience Research Centre, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
106
|
Poo MM, Pignatelli M, Ryan TJ, Tonegawa S, Bonhoeffer T, Martin KC, Rudenko A, Tsai LH, Tsien RW, Fishell G, Mullins C, Gonçalves JT, Shtrahman M, Johnston ST, Gage FH, Dan Y, Long J, Buzsáki G, Stevens C. What is memory? The present state of the engram. BMC Biol 2016; 14:40. [PMID: 27197636 PMCID: PMC4874022 DOI: 10.1186/s12915-016-0261-6] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The mechanism of memory remains one of the great unsolved problems of biology. Grappling with the question more than a hundred years ago, the German zoologist Richard Semon formulated the concept of the engram, lasting connections in the brain that result from simultaneous “excitations”, whose precise physical nature and consequences were out of reach of the biology of his day. Neuroscientists now have the knowledge and tools to tackle this question, however, and this Forum brings together leading contemporary views on the mechanisms of memory and what the engram means today.
Collapse
Affiliation(s)
- Mu-Ming Poo
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China.
| | - Michele Pignatelli
- RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tomás J Ryan
- RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Susumu Tonegawa
- RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | - Kelsey C Martin
- Department of Biological Chemistry and Department of Psychiatry and Biobehavioral Studies, David Geffen School of Medicine, BSRB 390B, 615 Charles E. Young Dr. South, University of California, Los Angeles, CA, 90095, USA
| | - Andrii Rudenko
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Richard W Tsien
- The Neuroscience Institute, School of Medicine and Center for Neural Science, New York University, New York, NY, 10016, USA
| | - Gord Fishell
- The Neuroscience Institute, School of Medicine and Center for Neural Science, New York University, New York, NY, 10016, USA
| | - Caitlin Mullins
- The Neuroscience Institute, School of Medicine and Center for Neural Science, New York University, New York, NY, 10016, USA
| | - J Tiago Gonçalves
- Salk Institute for Biological Studies, Laboratory of Genetics, 10010 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Matthew Shtrahman
- Salk Institute for Biological Studies, Laboratory of Genetics, 10010 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Stephen T Johnston
- Salk Institute for Biological Studies, Laboratory of Genetics, 10010 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Fred H Gage
- Salk Institute for Biological Studies, Laboratory of Genetics, 10010 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Yang Dan
- HHMI, Department of Molecular and Cell Biology, University of California, Berkeley, USA
| | - John Long
- The Neuroscience Institute, School of Medicine and Center for Neural Science, New York University, New York, NY, 10016, USA
| | - György Buzsáki
- The Neuroscience Institute, School of Medicine and Center for Neural Science, New York University, New York, NY, 10016, USA
| | - Charles Stevens
- Salk Institute for Biological Studies, Laboratory of Genetics, 10010 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
107
|
Si K, Kandel ER. The Role of Functional Prion-Like Proteins in the Persistence of Memory. Cold Spring Harb Perspect Biol 2016; 8:a021774. [PMID: 27037416 DOI: 10.1101/cshperspect.a021774] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Prions are a self-templating amyloidogenic state of normal cellular proteins, such as prion protein (PrP). They have been identified as the pathogenic agents, contributing to a number of diseases of the nervous system. However, the discovery that the neuronal RNA-binding protein, cytoplasmic polyadenylation element-binding protein (CPEB), has a prion-like state that is involved in the stabilization of memory raised the possibility that prion-like proteins can serve normal physiological functions in the nervous system. Here, we review recent experimental evidence of prion-like properties of neuronal CPEB in various organisms and propose a model of how the prion-like state may stabilize memory.
Collapse
Affiliation(s)
- Kausik Si
- Stowers Institute for Medical Research, Kansas City, Missouri 64113 Department of Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Eric R Kandel
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815-6789 Departments of Neuroscience and Psychiatry, College of Physicians and Surgeons of Columbia University, New York, New York 10027 Zuckerman Mind Brain Behavior Institute, New York State Psychiatric Institute, New York, New York 10032 Kavli Institute for Brain Sciences, New York, New York 10032
| |
Collapse
|
108
|
Abstract
RNA is a key player in the process of gene expression. Whereas fluorescence in situ hybridization allows single mRNA imaging in fixed cells, the MS2-GFP labeling technique enables the observation of mRNA dynamics in living cells. Recently, two genetically engineered mouse models have been developed for the application of the MS2-GFP system in live animals. First, the Actb-MBS mouse was generated by knocking in 24 repeats of the MS2 stem-loop sequence in the 3' untranslated region of the β-actin gene. Second, the MCP mouse was made to express the NLS-HA-MCP-GFP transgene in all cell types. By crossing Actb-MBS and MCP mice, a double homozygous mouse line, MCP×MBS, was established to visualize endogenous β-actin mRNA labeled with multiple green fluorescent proteins. By imaging hippocampal neurons or brain slices from MCP×MBS mice, the dynamics of mRNA, such as transcription, transport, and localization, can be studied at single mRNA resolution. In this chapter, we explain the basics of MCP×MBS mice and describe methods for utilizing these animals.
Collapse
Affiliation(s)
- H C Moon
- Seoul National University, Seoul, South Korea
| | - H Y Park
- Seoul National University, Seoul, South Korea.
| |
Collapse
|
109
|
Sweatt JD. Neural plasticity and behavior - sixty years of conceptual advances. J Neurochem 2016; 139 Suppl 2:179-199. [PMID: 26875778 DOI: 10.1111/jnc.13580] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/19/2016] [Accepted: 02/09/2016] [Indexed: 02/06/2023]
Abstract
This brief review summarizes 60 years of conceptual advances that have demonstrated a role for active changes in neuronal connectivity as a controller of behavior and behavioral change. Seminal studies in the first phase of the six-decade span of this review firmly established the cellular basis of behavior - a concept that we take for granted now, but which was an open question at the time. Hebbian plasticity, including long-term potentiation and long-term depression, was then discovered as being important for local circuit refinement in the context of memory formation and behavioral change and stabilization in the mammalian central nervous system. Direct demonstration of plasticity of neuronal circuit function in vivo, for example, hippocampal neurons forming place cell firing patterns, extended this concept. However, additional neurophysiologic and computational studies demonstrated that circuit development and stabilization additionally relies on non-Hebbian, homoeostatic, forms of plasticity, such as synaptic scaling and control of membrane intrinsic properties. Activity-dependent neurodevelopment was found to be associated with cell-wide adjustments in post-synaptic receptor density, and found to occur in conjunction with synaptic pruning. Pioneering cellular neurophysiologic studies demonstrated the critical roles of transmembrane signal transduction, NMDA receptor regulation, regulation of neural membrane biophysical properties, and back-propagating action potential in critical time-dependent coincidence detection in behavior-modifying circuits. Concerning the molecular mechanisms underlying these processes, regulation of gene transcription was found to serve as a bridge between experience and behavioral change, closing the 'nature versus nurture' divide. Both active DNA (de)methylation and regulation of chromatin structure have been validated as crucial regulators of gene transcription during learning. The discovery of protein synthesis dependence on the acquisition of behavioral change was an influential discovery in the neurochemistry of behavioral modification. Higher order cognitive functions such as decision making and spatial and language learning were also discovered to hinge on neural plasticity mechanisms. The role of disruption of these processes in intellectual disabilities, memory disorders, and drug addiction has recently been clarified based on modern genetic techniques, including in the human. The area of neural plasticity and behavior has seen tremendous advances over the last six decades, with many of those advances being specifically in the neurochemistry domain. This review provides an overview of the progress in the area of neuroplasticity and behavior over the life-span of the Journal of Neurochemistry. To organize the broad literature base, the review collates progress into fifteen broad categories identified as 'conceptual advances', as viewed by the author. The fifteen areas are delineated in the figure above. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- J David Sweatt
- Department of Neurobiology, Evelyn F. McKnight Brain Institute and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
110
|
Intra-axonal protein synthesis in development and beyond. Int J Dev Neurosci 2016; 55:140-149. [PMID: 26970010 DOI: 10.1016/j.ijdevneu.2016.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 12/15/2022] Open
Abstract
Proteins can be locally produced in the periphery of a cell, allowing a rapid and spatially precise response to the changes in its environment. This process is especially relevant in highly polarized and morphologically complex cells such as neurons. The study of local translation in axons has evolved from being primarily focused on developing axons, to the notion that also mature axons can produce proteins. Axonal translation has been implied in several physiological and pathological conditions, and in all cases it shares common molecular actors and pathways as well as regulatory mechanisms. Here, we review the main findings in these fields, and attempt to highlight shared principles.
Collapse
|
111
|
A Serotonin Circuit Acts as an Environmental Sensor to Mediate Midline Axon Crossing through EphrinB2. J Neurosci 2016; 35:14794-808. [PMID: 26538650 DOI: 10.1523/jneurosci.1295-15.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Modulation of connectivity formation in the developing brain in response to external stimuli is poorly understood. Here, we show that the raphe nucleus and its serotonergic projections regulate pathfinding of commissural axons in zebrafish. We found that the raphe neurons extend projections toward midline-crossing axons and that when serotonergic signaling is blocked by pharmacological inhibition or by raphe neuron ablation, commissural pathfinding is disrupted. We demonstrate that the serotonin receptor htr2a is expressed on these commissural axons and that genetic knock-down of htr2a disrupts crossing. We further show that knock-down of htr2a or ablation of the raphe neurons increases ephrinB2a protein levels in commissural axons. An ephrinB2a mutant can rescue midline crossing when serotonergic signaling is blocked. Furthermore, we found that regulation of serotonin expression in the raphe neurons is modulated in response to the developmental environment. Hypoxia causes the raphe to decrease serotonin levels, leading to a reduction in midline crossing. Increasing serotonin in the setting of hypoxia restored midline crossing. Our findings demonstrate an instructive role for serotonin in axon guidance acting through ephrinB2a and reveal a novel mechanism for developmental interpretation of the environmental milieu in the generation of mature neural circuitry. SIGNIFICANCE STATEMENT We show here that serotonin has a novel role in regulating connectivity in response to the developmental environment. We demonstrate that serotonergic projections from raphe neurons regulate pathfinding of crossing axons. The neurons modulate their serotonin levels, and thus alter crossing, in response to the developmental environment including hypoxia. The findings suggest that modification of the serotonergic system by early exposures may contribute to permanent CNS connectivity alterations. This has important ramifications because of the association between premature birth and accompanying hypoxia, and increased risk of autism and evidence associating in utero exposure to some antidepressants and neurodevelopmental disorders. Finally, this work demonstrates that the vertebrate CNS can modulate its connectivity in response to the external environment.
Collapse
|
112
|
Korsak LIT, Mitchell ME, Shepard KA, Akins MR. Regulation of neuronal gene expression by local axonal translation. CURRENT GENETIC MEDICINE REPORTS 2016; 4:16-25. [PMID: 27722035 DOI: 10.1007/s40142-016-0085-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
RNA localization is a key mechanism in the regulation of protein expression. In neurons, this includes the axonal transport of select mRNAs based on the recognition of axonal localization motifs in these RNAs by RNA binding proteins. Bioinformatic analyses of axonal RNAs suggest that selective inclusion of such localization motifs in mature mRNAs is one mechanism controlling the composition of the axonal transcriptome. The subsequent translation of axonal transcripts in response to specific stimuli provides precise spatiotemporal control of the axonal proteome. This axonal translation supports local phenomena including axon pathfinding, mitochondrial function, and synapse-specific plasticity. Axonal protein synthesis also provides transport machinery and signals for retrograde trafficking to the cell body to effect somatic changes including altering the transcriptional program. Here we review the remarkable progress made in recent years to identify and characterize these phenomena.
Collapse
Affiliation(s)
- Lulu I T Korsak
- Drexel University, PISB 312; 3245 Chestnut St, Philadelphia, PA 19104,
| | - Molly E Mitchell
- Drexel University, PISB 312; 3245 Chestnut St, Philadelphia, PA 19104,
| | | | - Michael R Akins
- Assistant Professor, Department of Biology, Department of Neurobiology & Anatomy, Drexel University, PISB 319; 3245 Chestnut St, Philadelphia, PA 19104,
| |
Collapse
|
113
|
Pausing on Polyribosomes: Make Way for Elongation in Translational Control. Cell 2016; 163:292-300. [PMID: 26451481 DOI: 10.1016/j.cell.2015.09.041] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Indexed: 11/21/2022]
Abstract
Among the three phases of mRNA translation-initiation, elongation, and termination-initiation has traditionally been considered to be rate limiting and thus the focus of regulation. Emerging evidence, however, demonstrates that control of ribosome translocation (polypeptide elongation) can also be regulatory and indeed exerts a profound influence on development, neurologic disease, and cell stress. The correspondence of mRNA codon usage and the relative abundance of their cognate tRNAs is equally important for mediating the rate of polypeptide elongation. Here, we discuss recent results showing that ribosome pausing is a widely used mechanism for controlling translation and, as a result, biological transitions in health and disease.
Collapse
|
114
|
Mayford M, Reijmers L. Exploring Memory Representations with Activity-Based Genetics. Cold Spring Harb Perspect Biol 2015; 8:a021832. [PMID: 26684182 DOI: 10.1101/cshperspect.a021832] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The brain is thought to represent specific memories through the activity of sparse and distributed neural ensembles. In this review, we examine the use of immediate early genes (IEGs), genes that are induced by neural activity, to specifically identify and genetically modify neurons activated naturally by environmental experience. Recent studies using this approach have identified cellular and molecular changes specific to neurons activated during learning relative to their inactive neighbors. By using opto- and chemogenetic regulators of neural activity, the neurons naturally recruited during learning can be artificially reactivated to directly test their role in coding external information. In contextual fear conditioning, artificial reactivation of learning-induced neural ensembles in the hippocampus or neocortex can substitute for the context itself. That is, artificial stimulation of these neurons can apparently cause the animals to "think" they are in the context. This represents a powerful approach to testing the principles by which the brain codes for the external world and how these circuits are modified with learning.
Collapse
Affiliation(s)
- Mark Mayford
- Molecular and Cellular Neurosciences Department, The Scripps Research Institute, La Jolla, California 92037
| | - Leon Reijmers
- Department of Neuroscience, School of Medicine, Tufts University, Boston, Massachusetts 02111
| |
Collapse
|
115
|
Transition-Metal-Catalyzed Bioorthogonal Cycloaddition Reactions. Top Curr Chem (Cham) 2015; 374:2. [DOI: 10.1007/s41061-015-0001-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/11/2015] [Indexed: 01/20/2023]
|
116
|
Borovok N, Nesher E, Levin Y, Reichenstein M, Pinhasov A, Michaelevski I. Dynamics of Hippocampal Protein Expression During Long-term Spatial Memory Formation. Mol Cell Proteomics 2015; 15:523-41. [PMID: 26598641 DOI: 10.1074/mcp.m115.051318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Indexed: 01/08/2023] Open
Abstract
Spatial memory depends on the hippocampus, which is particularly vulnerable to aging. This vulnerability has implications for the impairment of navigation capacities in older people, who may show a marked drop in performance of spatial tasks with advancing age. Contemporary understanding of long-term memory formation relies on molecular mechanisms underlying long-term synaptic plasticity. With memory acquisition, activity-dependent changes occurring in synapses initiate multiple signal transduction pathways enhancing protein turnover. This enhancement facilitates de novo synthesis of plasticity related proteins, crucial factors for establishing persistent long-term synaptic plasticity and forming memory engrams. Extensive studies have been performed to elucidate molecular mechanisms of memory traces formation; however, the identity of plasticity related proteins is still evasive. In this study, we investigated protein turnover in mouse hippocampus during long-term spatial memory formation using the reference memory version of radial arm maze (RAM) paradigm. We identified 1592 proteins, which exhibited a complex picture of expression changes during spatial memory formation. Variable linear decomposition reduced significantly data dimensionality and enriched three principal factors responsible for variance of memory-related protein levels at (1) the initial phase of memory acquisition (165 proteins), (2) during the steep learning improvement (148 proteins), and (3) the final phase of the learning curve (123 proteins). Gene ontology and signaling pathways analysis revealed a clear correlation between memory improvement and learning phase-curbed expression profiles of proteins belonging to specific functional categories. We found differential enrichment of (1) neurotrophic factors signaling pathways, proteins regulating synaptic transmission, and actin microfilament during the first day of the learning curve; (2) transcription and translation machinery, protein trafficking, enhancement of metabolic activity, and Wnt signaling pathway during the steep phase of memory formation; and (3) cytoskeleton organization proteins. Taken together, this study clearly demonstrates dynamic assembly and disassembly of protein-protein interaction networks depending on the stage of memory formation engrams.
Collapse
Affiliation(s)
- Natalia Borovok
- From the ‡Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Elimelech Nesher
- §Department of Molecular Biology, Ariel University, Ariel 4070000, Israel
| | - Yishai Levin
- ¶de Botton Institute for Protein Profiling, The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Reichenstein
- From the ‡Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Albert Pinhasov
- §Department of Molecular Biology, Ariel University, Ariel 4070000, Israel
| | - Izhak Michaelevski
- From the ‡Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv 6997801, Israel; ‖Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
117
|
Stough S, Kopec AM, Carew TJ. Synaptic generation of an intracellular retrograde signal requires activation of the tyrosine kinase and mitogen-activated protein kinase signaling cascades in Aplysia. Neurobiol Learn Mem 2015; 125:47-54. [PMID: 26238564 PMCID: PMC4648669 DOI: 10.1016/j.nlm.2015.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
Cellular changes underlying memory formation can be generated in an activity-dependent manner at specific synapses. Thus an important question concerns the mechanisms by which synaptic signals communicate with the cell body to mediate these cellular changes. A monosynaptic circuit that is enhanced by sensitization in Aplysia is well-suited to study this question because three different subcellular compartments: (i) the sensorimotor SN-MN synapses, (ii) the SN projections to MNs via axonal connections, (iii) the SN cell bodies, can all be manipulated and studied independently. Here, we report that activity-dependent (AD) training in either the entire SN-MN circuit or in only the synaptic compartment, activates MAPK in a temporally and spatially specific pattern. Specifically, we find (i) MAPK activation is first transiently generated at SN-MN synapses during training, (ii) immediately after training MAPK is transiently activated in SN-MN axonal connections and persistently activated in SN cell bodies, and finally, (iii) MAPK is activated in SN cell bodies and SN-MN synapses 1h after training. These data suggest that there is an intracellularly transported retrograde signal generated at the synapse which is later responsible for delayed MAPK activation at SN somata. Finally, we find that this retrograde signal requires activation of tyrosine kinase (TK) and MEK signaling cascades at the synapses.
Collapse
Affiliation(s)
- Shara Stough
- Department of Psychology, Augustana College, Rock Island, IL, United States; Program in Neuroscience, Augustana College, Rock Island, IL, United States
| | - Ashley M Kopec
- Center for Neural Science, New York University, NY, United States
| | - Thomas J Carew
- Center for Neural Science, New York University, NY, United States.
| |
Collapse
|
118
|
Abstract
Emerging evidence indicates that protein synthesis and degradation are necessary for the remodeling of synapses. These two processes govern cellular protein turnover, are tightly regulated, and are modulated by neuronal activity in time and space. The anisotropic anatomy of the neurons presents a challenge for the study of protein turnover, but the understanding of protein turnover in neurons and its modulation in response to activity can help us to unravel the fine-tuned changes that occur at synapses in response to activity. Here we review the key experimental evidence demonstrating the role of protein synthesis and degradation in synaptic plasticity, as well as the turnover rates of specific neuronal proteins.
Collapse
Affiliation(s)
- Beatriz Alvarez-Castelao
- From the Department of Synaptic Plasticity, Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Erin M Schuman
- From the Department of Synaptic Plasticity, Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| |
Collapse
|
119
|
|
120
|
Hou K, Yang S, Liu K. Extrinsic sound stimulations and development of periphery auditory synapses. J Otol 2015; 10:47-50. [PMID: 29937781 PMCID: PMC6002572 DOI: 10.1016/j.joto.2015.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of auditory synapses is a key process for the maturation of hearing function. However, it is still on debate regarding whether the development of auditory synapses is dominated by acquired sound stimulations. In this review, we summarize relevant publications in recent decades to address this issue. Most reported data suggest that extrinsic sound stimulations do affect, but not govern the development of periphery auditory synapses. Overall, periphery auditory synapses develop and mature according to its intrinsic mechanism to build up the synaptic connections between sensory neurons and/or interneurons.
Collapse
Affiliation(s)
- Kun Hou
- Department of Otolaryngology-Head and Neck Surgery, General Hospital of PLA/PLA Institute of Otolaryngology, 28 Fuxing Road, Beijing 100853, China
| | - Shiming Yang
- Department of Otolaryngology-Head and Neck Surgery, General Hospital of PLA/PLA Institute of Otolaryngology, 28 Fuxing Road, Beijing 100853, China
| | - Ke Liu
- Department of Otolaryngology-Head and Neck Surgery, General Hospital of PLA/PLA Institute of Otolaryngology, 28 Fuxing Road, Beijing 100853, China
| |
Collapse
|
121
|
Behavioral Tagging: A Translation of the Synaptic Tagging and Capture Hypothesis. Neural Plast 2015; 2015:650780. [PMID: 26380117 PMCID: PMC4562088 DOI: 10.1155/2015/650780] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/12/2015] [Indexed: 11/18/2022] Open
Abstract
Similar molecular machinery is activated in neurons following an electrical stimulus that induces synaptic changes and after learning sessions that trigger memory formation. Then, to achieve perdurability of these processes protein synthesis is required for the reinforcement of the changes induced in the network. The synaptic tagging and capture theory provided a strong framework to explain synaptic specificity and persistence of electrophysiological induced plastic changes. Ten years later, the behavioral tagging hypothesis (BT) made use of the same argument, applying it to learning and memory models. The hypothesis postulates that the formation of lasting memories relies on at least two processes: the setting of a learning tag and the synthesis of plasticity related proteins, which once captured at tagged sites allow memory consolidation. BT explains how weak events, only capable of inducing transient forms of memories, can result in lasting memories when occurring close in time with other behaviorally relevant experiences that provide proteins. In this review, we detail the findings supporting the existence of BT process in rodents, leading to the consolidation, persistence, and interference of a memory. We focus on the molecular machinery taking place in these processes and describe the experimental data supporting the BT in humans.
Collapse
|
122
|
Abstract
Synthesizing, localizing, and stabilizing new protein copies at synapses are crucial factors in maintaining the synaptic changes required for storing long-term memories. PKMζ recently emerged as a molecule putatively responsible for maintaining encoded memories over time because its presence correlates with late LTP and because its inhibition disrupts LTP in vitro and long-term memory storage in vivo. Here we investigated PKMζ stability in rat neurons to better understand its role during information encoding and storage. We used TimeSTAMP reporters to track the synthesis and degradation of PKMζ as well as a related atypical PKC, PKCλ. These reporters revealed that both PKMζ and PKCλ were upregulated after chemical LTP induction; however, these new PKMζ copies exhibited more rapid turnover than basally produced PKMζ, particularly in dendritic spines. In contrast to PKMζ, new PKCλ copies exhibited elevated stability. Stable information storage over long periods of time is more challenging the shorter the metabolic lifetime of the candidate molecules.
Collapse
|
123
|
Structural Components of Synaptic Plasticity and Memory Consolidation. Cold Spring Harb Perspect Biol 2015; 7:a021758. [PMID: 26134321 DOI: 10.1101/cshperspect.a021758] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Consolidation of implicit memory in the invertebrate Aplysia and explicit memory in the mammalian hippocampus are associated with remodeling and growth of preexisting synapses and the formation of new synapses. Here, we compare and contrast structural components of the synaptic plasticity that underlies these two distinct forms of memory. In both cases, the structural changes involve time-dependent processes. Thus, some modifications are transient and may contribute to early formative stages of long-term memory, whereas others are more stable, longer lasting, and likely to confer persistence to memory storage. In addition, we explore the possibility that trans-synaptic signaling mechanisms governing de novo synapse formation during development can be reused in the adult for the purposes of structural synaptic plasticity and memory storage. Finally, we discuss how these mechanisms set in motion structural rearrangements that prepare a synapse to strengthen the same memory and, perhaps, to allow it to take part in other memories as a basis for understanding how their anatomical representation results in the enhanced expression and storage of memories in the brain.
Collapse
|
124
|
Buxbaum AR, Yoon YJ, Singer RH, Park HY. Single-molecule insights into mRNA dynamics in neurons. Trends Cell Biol 2015; 25:468-75. [PMID: 26052005 DOI: 10.1016/j.tcb.2015.05.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 10/23/2022]
Abstract
Targeting of mRNAs to neuronal dendrites and axons plays an integral role in intracellular signaling, development, and synaptic plasticity. Single-molecule imaging of mRNAs in neurons and brain tissue has led to enhanced understanding of mRNA dynamics. Here we discuss aspects of mRNA regulation as revealed by single-molecule detection, which has led to quantitative analyses of mRNA diversity, localization, transport, and translation. These exciting new discoveries propel our understanding of the life of an mRNA in a neuron and how its activity is regulated at the single-molecule level.
Collapse
Affiliation(s)
- Adina R Buxbaum
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Young J Yoon
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Hye Yoon Park
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Korea.
| |
Collapse
|
125
|
Stephan J, Fioriti L, Lamba N, Colnaghi L, Karl K, Derkatch I, Kandel E. The CPEB3 Protein Is a Functional Prion that Interacts with the Actin Cytoskeleton. Cell Rep 2015; 11:1772-85. [DOI: 10.1016/j.celrep.2015.04.060] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/10/2015] [Accepted: 04/28/2015] [Indexed: 11/24/2022] Open
|
126
|
GABAB receptor upregulates fragile X mental retardation protein expression in neurons. Sci Rep 2015; 5:10468. [PMID: 26020477 PMCID: PMC4447080 DOI: 10.1038/srep10468] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/15/2015] [Indexed: 12/17/2022] Open
Abstract
Fragile X mental retardation protein (FMRP) is an RNA-binding protein important for the control of translation and synaptic function. The mutation or silencing of FMRP causes Fragile X syndrome (FXS), which leads to intellectual disability and social impairment. γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter of the mammalian central nervous system, and its metabotropic GABAB receptor has been implicated in various mental disorders. The GABAB receptor agonist baclofen has been shown to improve FXS symptoms in a mouse model and in human patients, but the signaling events linking the GABAB receptor and FMRP are unknown. In this study, we found that GABAB receptor activation upregulated cAMP response element binding protein-dependent Fmrp expression in cultured mouse cerebellar granule neurons via two distinct mechanisms: the transactivation of insulin-like growth factor-1 receptor and activation of protein kinase C. In addition, a positive allosteric modulator of the GABAB receptor, CGP7930, stimulated Fmrp expression in neurons. These results suggest a role for GABAB receptor in Fmrp regulation and a potential interest of GABAB receptor signaling in FXS improvement.
Collapse
|
127
|
Buffington SA, Huang W, Costa-Mattioli M. Translational control in synaptic plasticity and cognitive dysfunction. Annu Rev Neurosci 2015; 37:17-38. [PMID: 25032491 DOI: 10.1146/annurev-neuro-071013-014100] [Citation(s) in RCA: 268] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Activity-dependent changes in the strength of synaptic connections are fundamental to the formation and maintenance of memory. The mechanisms underlying persistent changes in synaptic strength in the hippocampus, specifically long-term potentiation and depression, depend on new protein synthesis. Such changes are thought to be orchestrated by engaging the signaling pathways that regulate mRNA translation in neurons. In this review, we discuss the key regulatory pathways that govern translational control in response to synaptic activity and the mRNA populations that are specifically targeted by these pathways. The critical contribution of regulatory control over new protein synthesis to proper cognitive function is underscored by human disorders associated with either silencing or mutation of genes encoding proteins that directly regulate translation. In light of these clinical implications, we also consider the therapeutic potential of targeting dysregulated translational control to treat cognitive disorders of synaptic dysfunction.
Collapse
Affiliation(s)
- Shelly A Buffington
- Department of Neuroscience, Memory and Brain Research Center, Baylor College of Medicine, Houston, Texas 77030; , ,
| | | | | |
Collapse
|
128
|
Abstract
Decades of research has shown that long-term changes in synaptic function ultimately require changes in gene expression.Recent work has focused on nuclear signaling by calcium and protein messengers initiated at postsynaptic sites. In this issue of The EMBO Journal, Ivanova and colleagues show that shuttling of CtBP-1 between presynaptic areas and nuclei regulates gene expression, which reminds us that presynaptic zones should not be ignored when considering synapse-to nucleus signaling.
Collapse
Affiliation(s)
- Dana O Kravchick
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bryen A Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
129
|
Kim S, Martin KC. Neuron-wide RNA transport combines with netrin-mediated local translation to spatially regulate the synaptic proteome. eLife 2015; 4. [PMID: 25569157 PMCID: PMC4337609 DOI: 10.7554/elife.04158] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/08/2015] [Indexed: 11/13/2022] Open
Abstract
The persistence of experience-dependent changes in brain connectivity requires RNA localization and protein synthesis. Previous studies have demonstrated a role for local translation in altering the structure and function of synapses during synapse formation and experience-dependent synaptic plasticity. In this study, we ask whether in addition to promoting local translation, local stimulation also triggers directed trafficking of RNAs from nucleus to stimulated synapses. Imaging of RNA localization and translation in cultured Aplysia sensory-motor neurons revealed that RNAs were delivered throughout the arbor of the sensory neuron, but that translation was enriched only at sites of synaptic contact and/or synaptic stimulation. Investigation of the mechanisms that trigger local translation revealed a role for calcium-dependent retrograde netrin-1/DCC receptor signaling. Spatially restricting gene expression by regulating local translation rather than by directing the delivery of mRNAs from nucleus to stimulated synapses maximizes the readiness of the entire neuronal arbor to respond to local cues.
Collapse
Affiliation(s)
- Sangmok Kim
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
| | - Kelsey C Martin
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
130
|
Distinct dopamine neurons mediate reward signals for short- and long-term memories. Proc Natl Acad Sci U S A 2014; 112:578-83. [PMID: 25548178 DOI: 10.1073/pnas.1421930112] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drosophila melanogaster can acquire a stable appetitive olfactory memory when the presentation of a sugar reward and an odor are paired. However, the neuronal mechanisms by which a single training induces long-term memory are poorly understood. Here we show that two distinct subsets of dopamine neurons in the fly brain signal reward for short-term (STM) and long-term memories (LTM). One subset induces memory that decays within several hours, whereas the other induces memory that gradually develops after training. They convey reward signals to spatially segregated synaptic domains of the mushroom body (MB), a potential site for convergence. Furthermore, we identified a single type of dopamine neuron that conveys the reward signal to restricted subdomains of the mushroom body lobes and induces long-term memory. Constant appetitive memory retention after a single training session thus comprises two memory components triggered by distinct dopamine neurons.
Collapse
|
131
|
Farah CA, Naqib F, Weatherill DB, Pack CC, Sossin WS. Synapse formation changes the rules for desensitization of PKC translocation in Aplysia. Eur J Neurosci 2014; 41:328-40. [PMID: 25401305 DOI: 10.1111/ejn.12794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 10/15/2014] [Accepted: 10/23/2014] [Indexed: 11/29/2022]
Abstract
Protein kinase Cs (PKCs) are activated by translocating from the cytoplasm to the membrane. We have previously shown that serotonin-mediated translocation of PKC to the plasma membrane in Aplysia sensory neurons was subject to desensitization, a decrease in the ability of serotonin to induce translocation after previous application of serotonin. In Aplysia, changes in the strength of the sensory-motor neuron synapse are important for behavioral sensitization and PKC regulates a number of important aspects of this form of synaptic plasticity. We have previously suggested that the desensitization of PKC translocation in Aplysia sensory neurons may partially explain the differences between spaced and massed training, as spaced applications of serotonin, a cellular analog of spaced training, cause greater desensitization of PKC translocation than one massed application of serotonin, a cellular analog of massed training. Our previous studies were performed in isolated sensory neurons. In the present study, we monitored translocation of fluorescently-tagged PKC to the plasma membrane in living sensory neurons that were co-cultured with motor neurons to allow for synapse formation. We show that desensitization now becomes similar during spaced and massed applications of serotonin. We had previously modeled the signaling pathways that govern desensitization in isolated sensory neurons. We now modify this mathematical model to account for the changes observed in desensitization dynamics following synapse formation. Our study shows that synapse formation leads to significant changes in the molecular signaling networks that underlie desensitization of PKC translocation.
Collapse
Affiliation(s)
- Carole A Farah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
132
|
Chen S, Cai D, Pearce K, Sun PYW, Roberts AC, Glanzman DL. Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia. eLife 2014; 3:e03896. [PMID: 25402831 PMCID: PMC4270066 DOI: 10.7554/elife.03896] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 11/13/2014] [Indexed: 12/29/2022] Open
Abstract
Long-term memory (LTM) is believed to be stored in the brain as changes in synaptic connections. Here, we show that LTM storage and synaptic change can be dissociated. Cocultures of Aplysia sensory and motor neurons were trained with spaced pulses of serotonin, which induces long-term facilitation. Serotonin (5HT) triggered growth of new presynaptic varicosities, a synaptic mechanism of long-term sensitization. Following 5HT training, two antimnemonic treatments-reconsolidation blockade and inhibition of PKM--caused the number of presynaptic varicosities to revert to the original, pretraining value. Surprisingly, the final synaptic structure was not achieved by targeted retraction of the 5HT-induced varicosities but, rather, by an apparently arbitrary retraction of both 5HT-induced and original synapses. In addition, we find evidence that the LTM for sensitization persists covertly after its apparent elimination by the same antimnemonic treatments that erase learning-related synaptic growth. These results challenge the idea that stable synapses store long-term memories.
Collapse
Affiliation(s)
- Shanping Chen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
| | - Diancai Cai
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
| | - Kaycey Pearce
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
| | - Philip Y-W Sun
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
| | - Adam C Roberts
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
| | - David L Glanzman
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, United States
- Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
133
|
Lim S, Moon M, Oh H, Kim HG, Kim SY, Oh MS. Ginger improves cognitive function via NGF-induced ERK/CREB activation in the hippocampus of the mouse. J Nutr Biochem 2014; 25:1058-65. [PMID: 25049196 DOI: 10.1016/j.jnutbio.2014.05.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/30/2014] [Accepted: 05/13/2014] [Indexed: 12/27/2022]
Abstract
Ginger (the rhizome of Zingiber officinale Roscoe) has been used worldwide for many centuries in cooking and for treatment of several diseases. The main pharmacological properties of ginger include anti-inflammatory, antihyperglycemic, antiarthritic, antiemetic and neuroprotective actions. Recent studies demonstrated that ginger significantly enhances cognitive function in various cognitive disorders as well as in healthy brain. However, the biochemical mechanisms underlying the ginger-mediated enhancement of cognition have not yet been studied in normal or diseased brain. In the present study, we assessed the memory-enhancing effects of dried ginger extract (GE) in a model of scopolamine-induced memory deficits and in normal animals by performing a novel object recognition test. We found that GE administration significantly improved the ability of mice to recognize novel objects, indicating improvements in learning and memory. Furthermore, to elucidate the mechanisms of GE-mediated cognitive enhancement, we focused on nerve growth factor (NGF)-induced signaling pathways. NGF enzyme-linked immunosorbent assay analysis revealed that GE administration led to elevated NGF levels in both the mouse hippocampus and rat glioma C6 cells. GE administration also resulted in phosphorylation of extracellular-signal-regulated kinase (ERK) and cyclic AMP response element-binding protein (CREB), as revealed by Western blotting analysis. Neutralization of NGF with a specific NGF antibody inhibited GE-triggered activation of ERK and CREB in the hippocampus. Also, GE treatment significantly increased pre- and postsynaptic markers, synaptophysin and PSD-95, which are related to synapse formation in the brain. These data suggest that GE has a synaptogenic effect via NGF-induced ERK/CREB activation, resulting in memory enhancement.
Collapse
Affiliation(s)
- Soonmin Lim
- Department of Life and Nanopharmaceutical Science, Graduates school and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Minho Moon
- School of Medicine, Kyung Hee University, #1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Hyein Oh
- Department of Life and Nanopharmaceutical Science, Graduates school and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Hyo Geun Kim
- Department of Life and Nanopharmaceutical Science, Graduates school and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, 191, Hambangmoe-ro, Yeonsu-gu, Incheon 406-799, Republic of Korea
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Science, Graduates school and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea.
| |
Collapse
|
134
|
Allen KD, Gourov AV, Harte C, Gao P, Lee C, Sylvain D, Splett JM, Oxberry WC, van de Nes PS, Troy-Regier MJ, Wolk J, Alarcon JM, Hernández AI. Nucleolar integrity is required for the maintenance of long-term synaptic plasticity. PLoS One 2014; 9:e104364. [PMID: 25089620 PMCID: PMC4121280 DOI: 10.1371/journal.pone.0104364] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 07/10/2014] [Indexed: 01/10/2023] Open
Abstract
Long-term memory (LTM) formation requires new protein synthesis and new gene expression. Based on our work in Aplysia, we hypothesized that the rRNA genes, stimulation-dependent targets of the enzyme Poly(ADP-ribose) polymerase-1 (PARP-1), are primary effectors of the activity-dependent changes in synaptic function that maintain synaptic plasticity and memory. Using electrophysiology, immunohistochemistry, pharmacology and molecular biology techniques, we show here, for the first time, that the maintenance of forskolin-induced late-phase long-term potentiation (L-LTP) in mouse hippocampal slices requires nucleolar integrity and the expression of new rRNAs. The activity-dependent upregulation of rRNA, as well as L-LTP expression, are poly(ADP-ribosyl)ation (PAR) dependent and accompanied by an increase in nuclear PARP-1 and Poly(ADP) ribose molecules (pADPr) after forskolin stimulation. The upregulation of PARP-1 and pADPr is regulated by Protein kinase A (PKA) and extracellular signal-regulated kinase (ERK)--two kinases strongly associated with long-term plasticity and learning and memory. Selective inhibition of RNA Polymerase I (Pol I), responsible for the synthesis of precursor rRNA, results in the segmentation of nucleoli, the exclusion of PARP-1 from functional nucleolar compartments and disrupted L-LTP maintenance. Taken as a whole, these results suggest that new rRNAs (28S, 18S, and 5.8S ribosomal components)--hence, new ribosomes and nucleoli integrity--are required for the maintenance of long-term synaptic plasticity. This provides a mechanistic link between stimulation-dependent gene expression and the new protein synthesis known to be required for memory consolidation.
Collapse
Affiliation(s)
- Kim D. Allen
- Department of Pathology, State University of New York, Downstate Medical Center, Brooklyn, New York, United States of America
- Department of Biology, School of Science, Health and Technology, City University of New York, Medgar Evers College, Brooklyn, New York, United States of America
| | - Andrei V. Gourov
- Department of Pathology, State University of New York, Downstate Medical Center, Brooklyn, New York, United States of America
| | - Christopher Harte
- Department of Pathology, State University of New York, Downstate Medical Center, Brooklyn, New York, United States of America
| | - Peng Gao
- Department of Pathology, State University of New York, Downstate Medical Center, Brooklyn, New York, United States of America
| | - Clarice Lee
- Department of Pathology, State University of New York, Downstate Medical Center, Brooklyn, New York, United States of America
| | - Darlene Sylvain
- Department of Pathology, State University of New York, Downstate Medical Center, Brooklyn, New York, United States of America
| | - Joshua M. Splett
- Department of Pathology, State University of New York, Downstate Medical Center, Brooklyn, New York, United States of America
| | - William C. Oxberry
- Department of Pathology, State University of New York, Downstate Medical Center, Brooklyn, New York, United States of America
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York, Downstate Medical Center, Brooklyn, New York, United States of America
| | - Paula S. van de Nes
- Departments of Physiology and Pharmacology, State University of New York, Downstate Medical Center, Brooklyn, New York, United States of America
| | - Matthew J. Troy-Regier
- Departments of Physiology and Pharmacology, State University of New York, Downstate Medical Center, Brooklyn, New York, United States of America
| | - Jason Wolk
- Department of Pathology, State University of New York, Downstate Medical Center, Brooklyn, New York, United States of America
| | - Juan M. Alarcon
- Department of Pathology, State University of New York, Downstate Medical Center, Brooklyn, New York, United States of America
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York, Downstate Medical Center, Brooklyn, New York, United States of America
- * E-mail: (JMA); (AIH)
| | - A. Iván Hernández
- Department of Pathology, State University of New York, Downstate Medical Center, Brooklyn, New York, United States of America
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York, Downstate Medical Center, Brooklyn, New York, United States of America
- * E-mail: (JMA); (AIH)
| |
Collapse
|
135
|
Kimura S, Sakakibara Y, Sato K, Ote M, Ito H, Koganezawa M, Yamamoto D. TheDrosophilalingerer protein cooperates with Orb2 in long-term memory formation. J Neurogenet 2014; 29:8-17. [DOI: 10.3109/01677063.2014.917644] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
136
|
Sim SE, Bakes J, Kaang BK. Neuronal activity-dependent regulation of MicroRNAs. Mol Cells 2014; 37:511-7. [PMID: 24957213 PMCID: PMC4132302 DOI: 10.14348/molcells.2014.0132] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 05/25/2014] [Accepted: 05/26/2014] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs are non-coding short (~23 nucleotides) RNAs that mediate post-transcriptional regulation through sequence-specific gene silencing. The role of miRNAs in neuronal development, synapse formation and synaptic plasticity has been highlighted. However, the role of neuronal activity on miRNA regulation has been less focused. Neuronal activity-dependent regulation of miRNA may fine-tune gene expression in response to synaptic plasticity and memory formation. Here, we provide an overview of miRNA regulation by neuronal activity including high-throughput screening studies. We also discuss the possible molecular mechanisms of activity-dependent induction and turnover of miRNAs.
Collapse
Affiliation(s)
- Su-Eon Sim
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 151-747, Korea
| | - Joseph Bakes
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 151-747, Korea
| | - Bong-Kiun Kaang
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 151-747, Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea
| |
Collapse
|
137
|
Cefaliello C, Eyman M, Melck D, De Stefano R, Ferrara E, Crispino M, Giuditta A. Brain synaptosomes harbor more than one cytoplasmic system of protein synthesis. J Neurosci Res 2014; 92:1573-80. [DOI: 10.1002/jnr.23435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/30/2014] [Accepted: 05/21/2014] [Indexed: 11/10/2022]
Affiliation(s)
| | - Maria Eyman
- Department of Biology; University of Naples Federico II; Naples Italy
| | - Dominique Melck
- Department of Biology; University of Naples Federico II; Naples Italy
| | | | - Eugenia Ferrara
- Department of Biology; University of Naples Federico II; Naples Italy
| | - Marianna Crispino
- Department of Biology; University of Naples Federico II; Naples Italy
| | - Antonio Giuditta
- Department of Biology; University of Naples Federico II; Naples Italy
| |
Collapse
|
138
|
Solntseva SV, Nikitin VP. Induction of Latent Memory for Conditioned Food Aversion and Its Transformation into “Active” State Depend on Translation and Transcription Processes. Bull Exp Biol Med 2014; 157:1-4. [DOI: 10.1007/s10517-014-2477-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Indexed: 01/02/2023]
|
139
|
O'Donnell C, Sejnowski TJ. Selective memory generalization by spatial patterning of protein synthesis. Neuron 2014; 82:398-412. [PMID: 24742462 DOI: 10.1016/j.neuron.2014.02.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2014] [Indexed: 02/07/2023]
Abstract
Protein synthesis is crucial for both persistent synaptic plasticity and long-term memory. De novo protein expression can be restricted to specific neurons within a population, and to specific dendrites within a single neuron. Despite its ubiquity, the functional benefits of spatial protein regulation for learning are unknown. We used computational modeling to study this problem. We found that spatially patterned protein synthesis can enable selective consolidation of some memories but forgetting of others, even for simultaneous events that are represented by the same neural population. Key factors regulating selectivity include the functional clustering of synapses on dendrites, and the sparsity and overlap of neural activity patterns at the circuit level. Based on these findings, we proposed a two-step model for selective memory generalization during REM and slow-wave sleep. The pattern-matching framework we propose may be broadly applicable to spatial protein signaling throughout cortex and hippocampus.
Collapse
Affiliation(s)
- Cian O'Donnell
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Terrence J Sejnowski
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
140
|
Wenqiang C, Lonskaya I, Hebron ML, Ibrahim Z, Olszewski RT, Neale JH, Moussa CEH. Parkin-mediated reduction of nuclear and soluble TDP-43 reverses behavioral decline in symptomatic mice. Hum Mol Genet 2014; 23:4960-9. [PMID: 24847002 DOI: 10.1093/hmg/ddu211] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The transactivation DNA-binding protein (TDP)-43 binds to thousands of mRNAs, but the functional outcomes of this binding remain largely unknown. TDP-43 binds to Park2 mRNA, which expresses the E3 ubiquitin ligase parkin. We previously demonstrated that parkin ubiquitinates TDP-43 and facilitates its translocation from the nucleus to the cytoplasm. Here we used brain penetrant tyrosine kinase inhibitors (TKIs), including nilotinib and bosutinib and showed that they reduce the level of nuclear TDP-43, abrogate its effects on neuronal loss, and reverse cognitive and motor decline. Nilotinib decreased soluble and insoluble TDP-43, while bosutinib did not affect the insoluble level. Parkin knockout mice exhibited high levels of endogenous TDP-43, while nilotinib and bosutinib did not alter TDP-43, underscoring an indispensable role for parkin in TDP-43 sub-cellular localization. These data demonstrate a novel functional relationship between parkin and TDP-43 and provide evidence that TKIs are potential therapeutic candidates for TDP-43 pathologies.
Collapse
Affiliation(s)
- Chen Wenqiang
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China Department of Neuroscience
| | - Irina Lonskaya
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Michaeline L Hebron
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zainab Ibrahim
- School of Nursing and Health Sciences, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | - Charbel E-H Moussa
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
141
|
Kenney JW, Moore CE, Wang X, Proud CG. Eukaryotic elongation factor 2 kinase, an unusual enzyme with multiple roles. Adv Biol Regul 2014; 55:15-27. [PMID: 24853390 DOI: 10.1016/j.jbior.2014.04.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/15/2014] [Indexed: 12/27/2022]
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K) is a member of the small group of atypical 'α-kinases'. It phosphorylates and inhibits eukaryotic elongation factor 2, to slow down the elongation stage of protein synthesis, which normally consumes a great deal of energy and amino acids. The activity of eEF2K is normally dependent on calcium ions and calmodulin. eEF2K is also regulated by a plethora of other inputs, including inhibition by signalling downstream of anabolic signalling pathways such as the mammalian target of rapamycin complex 1. Recent data show that eEF2K helps to protect cancer cells against nutrient starvation and is also cytoprotective in other settings, including hypoxia. Growing evidence points to roles for eEF2K in neurological processes such as learning and memory and perhaps in depression.
Collapse
Affiliation(s)
- Justin W Kenney
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton, SO16 7LB, UK
| | - Claire E Moore
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton, SO16 7LB, UK
| | - Xuemin Wang
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton, SO16 7LB, UK
| | - Christopher G Proud
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton, SO16 7LB, UK.
| |
Collapse
|
142
|
NeuroArray: a universal interface for patterning and interrogating neural circuitry with single cell resolution. Sci Rep 2014; 4:4784. [PMID: 24759264 PMCID: PMC3998032 DOI: 10.1038/srep04784] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/08/2014] [Indexed: 11/08/2022] Open
Abstract
Recreation of neural network in vitro with designed topology is a valuable tool to decipher how neurons behave when interacting in hierarchical networks. In this study, we developed a simple and effective platform to pattern primary neurons in array formats for interrogation of neural circuitry with single cell resolution. Unlike many surface-chemistry-based patterning methods, our NeuroArray technique is specially designed to accommodate neuron's polarized morphologies to make regular arrays of cells without restricting their neurite outgrowth, and thus allows formation of freely designed, well-connected, and spontaneously active neural network. The NeuroArray device was based on a stencil design fabricated using a novel sacrificial-layer-protected PDMS molding method that enables production of through-structures in a thin layer of PDMS with feature sizes as small as 3 µm. Using the NeuroArray along with calcium imaging, we have successfully demonstrated large-scale tracking and recording of neuronal activities, and used such data to characterize the spiking dynamics and transmission within a diode-like neural network. Essentially, the NeuroArray is a universal patterning platform designed for, but not limited to neuron cells. With little adaption, it can be readily interfaced with other interrogation modalities for high-throughput drug testing, and for building neuron culture based live computational devices.
Collapse
|
143
|
Gershman SJ. The penumbra of learning: a statistical theory of synaptic tagging and capture. NETWORK (BRISTOL, ENGLAND) 2014; 25:97-115. [PMID: 24679103 DOI: 10.3109/0954898x.2013.862749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Learning in humans and animals is accompanied by a penumbra: Learning one task benefits from learning an unrelated task shortly before or after. At the cellular level, the penumbra of learning appears when weak potentiation of one synapse is amplified by strong potentiation of another synapse on the same neuron during a critical time window. Weak potentiation sets a molecular tag that enables the synapse to capture plasticity-related proteins synthesized in response to strong potentiation at another synapse. This paper describes a computational model which formalizes synaptic tagging and capture in terms of statistical learning mechanisms. According to this model, synaptic strength encodes a probabilistic inference about the dynamically changing association between pre- and post-synaptic firing rates. The rate of change is itself inferred, coupling together different synapses on the same neuron. When the inputs to one synapse change rapidly, the inferred rate of change increases, amplifying learning at other synapses.
Collapse
Affiliation(s)
- Samuel J Gershman
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology , Cambridge, MA , USA
| |
Collapse
|
144
|
BDNF local translation in viable synaptosomes: implication in spine maturation. Neurochem Int 2014; 69:28-34. [PMID: 24632004 DOI: 10.1016/j.neuint.2014.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/17/2014] [Accepted: 02/24/2014] [Indexed: 12/11/2022]
Abstract
The neurotrophic factor, BDNF, is encoded by two transcripts, one short and another long 3' untranslated region containing mRNA. Long BDNF mRNA was found to transport to the dendrites; however report about its translation or regulation of translation in the dendrite remains unknown. Using synaptosomes, to isolate from the nucleus and other subcellular fractions involved in translation, we demonstrate that depolarization by KCl or excitation by glutamate can induce translation of BDNF. Such translation at the synaptosomes was also observed for mRNAs of CaMKllα, Homer and Arc, which are known to travel to dendrite. This synaptosomal translation system is critically dependent on glucose concentration. Other than glucose, BDNF translation in synaptosome is dependent on its own receptor TrkB function as well as on the rise in intra-synaptosomal Ca(2+), both of which are elevated during to depolarization or excitation. As BDNF-TrkB signaling causes maturation of spines by inducing LTP, this study also investigated the possibility of induction of spine maturation signaling in the isolated synaptosomes. Increased phospho-cofilin and phospho-PAK is detected in KCl or glutamate treated synaptosomes compared to control by Western blotting, suggesting a possibility of induction of spine maturation signaling.
Collapse
|
145
|
Novac A, Bota RG. Transprocessing: a proposed neurobiological mechanism of psychotherapeutic processing. Ment Illn 2014; 6:5077. [PMID: 25478135 PMCID: PMC4253399 DOI: 10.4081/mi.2014.5077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 09/19/2013] [Indexed: 12/22/2022] Open
Abstract
How does the human brain absorb information and turn it into skills of its own in psychotherapy? In an attempt to answer this question, the authors will review the intricacies of processing channels in psychotherapy and propose the term transprocessing (as in transduction and processing combined) for the underlying mechanisms. Through transprocessing the brain processes multimodal memories and creates reparative solutions in the course of psychotherapy. Transprocessing is proposed as a stage-sequenced mechanism of deconstruction of engrained patterns of response. Through psychotherapy, emotional-cognitive reintegration and its consolidation is accomplished. This process is mediated by cellular and neural plasticity changes.
Collapse
Affiliation(s)
- Andrei Novac
- University of California, Irvine, CA; Kaiser Permanente, Riverside, CA, USA
| | | |
Collapse
|
146
|
Kandel E, Dudai Y, Mayford M. The Molecular and Systems Biology of Memory. Cell 2014; 157:163-86. [DOI: 10.1016/j.cell.2014.03.001] [Citation(s) in RCA: 668] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Indexed: 01/04/2023]
|
147
|
Schacher S, Hu JY. The less things change, the more they are different: contributions of long-term synaptic plasticity and homeostasis to memory. Learn Mem 2014; 21:128-34. [PMID: 24532836 PMCID: PMC3929853 DOI: 10.1101/lm.027326.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An important cellular mechanism contributing to the strength and duration of memories is activity-dependent alterations in the strength of synaptic connections within the neural circuit encoding the memory. Reversal of the memory is typically correlated with a reversal of the cellular changes to levels expressed prior to the stimulation. Thus, for stimulus-induced changes in synapse strength and their reversals to be functionally relevant, cellular mechanisms must regulate and maintain synapse strength both prior to and after the stimuli inducing learning and memory. The strengths of synapses within a neural circuit at any given moment are determined by cellular and molecular processes initiated during development and those subsequently regulated by the history of direct activation of the neural circuit and system-wide stimuli such as stress or motivational state. The cumulative actions of stimuli and other factors on an already modified neural circuit are attenuated by homeostatic mechanisms that prevent changes in overall synaptic inputs and excitability above or below specific set points (synaptic scaling). The mechanisms mediating synaptic scaling prevent potential excitotoxic alterations in the circuit but also may attenuate additional cellular changes required for learning and memory, thereby apparently limiting information storage. What cellular and molecular processes control synaptic strengths before and after experience/activity and its reversals? In this review we will explore the synapse-, whole cell-, and circuit level-specific processes that contribute to an overall zero sum-like set of changes and long-term maintenance of synapse strengths as a consequence of the accommodative interactions between long-term synaptic plasticity and homeostasis.
Collapse
Affiliation(s)
- Samuel Schacher
- Department of Neuroscience, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, New York, New York 10032, USA
| | | |
Collapse
|
148
|
Rogerson T, Cai DJ, Frank A, Sano Y, Shobe J, Lopez-Aranda MF, Silva AJ. Synaptic tagging during memory allocation. Nat Rev Neurosci 2014; 15:157-69. [PMID: 24496410 DOI: 10.1038/nrn3667] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is now compelling evidence that the allocation of memory to specific neurons (neuronal allocation) and synapses (synaptic allocation) in a neurocircuit is not random and that instead specific mechanisms, such as increases in neuronal excitability and synaptic tagging and capture, determine the exact sites where memories are stored. We propose an integrated view of these processes, such that neuronal allocation, synaptic tagging and capture, spine clustering and metaplasticity reflect related aspects of memory allocation mechanisms. Importantly, the properties of these mechanisms suggest a set of rules that profoundly affect how memories are stored and recalled.
Collapse
Affiliation(s)
- Thomas Rogerson
- Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, California 90095-1761, USA
| | - Denise J Cai
- Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, California 90095-1761, USA
| | - Adam Frank
- Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, California 90095-1761, USA
| | - Yoshitake Sano
- Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, California 90095-1761, USA
| | - Justin Shobe
- Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, California 90095-1761, USA
| | - Manuel F Lopez-Aranda
- Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, California 90095-1761, USA
| | - Alcino J Silva
- Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, California 90095-1761, USA
| |
Collapse
|
149
|
Hebron M, Chen W, Miessau MJ, Lonskaya I, Moussa CEH. Parkin reverses TDP-43-induced cell death and failure of amino acid homeostasis. J Neurochem 2013; 129:350-61. [PMID: 24298989 DOI: 10.1111/jnc.12630] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/27/2013] [Accepted: 11/27/2013] [Indexed: 12/13/2022]
Abstract
The E3 ubiquitin ligase Parkin plays a central role in the pathogenesis of many neurodegenerative diseases. Parkin promotes specific ubiquitination and affects the localization of transactivation response DNA-binding protein 43 (TDP-43), which controls the translation of thousands of mRNAs. Here we tested the effects of lentiviral Parkin and TDP-43 expression on amino acid metabolism in the rat motor cortex using high frequency ¹³C NMR spectroscopy. TDP-43 expression increased glutamate levels, decreased the levels of other amino acids, including glutamine, aspartate, leucine and isoleucine, and impaired mitochondrial tricarboxylic acid cycle. TDP-43 induced lactate accumulation and altered the balance between excitatory (glutamate) and inhibitory (GABA) neurotransmitters. Parkin restored amino acid levels, neurotransmitter balance and tricarboxylic acid cycle metabolism, rescuing neurons from TDP-43-induced apoptotic death. Furthermore, TDP-43 expression led to an increase in 4E-BP levels, perhaps altering translational control and deregulating amino acid synthesis; while Parkin reversed the effects of TDP-43 on the 4E-BP signaling pathway. Taken together, these data suggest that Parkin may affect TDP-43 localization and mitigate its effects on 4E-BP signaling and loss of amino acid homeostasis.
Collapse
Affiliation(s)
- Michaeline Hebron
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
| | | | | | | | | |
Collapse
|
150
|
Garza-Manero S, Pichardo-Casas I, Arias C, Vaca L, Zepeda A. Selective distribution and dynamic modulation of miRNAs in the synapse and its possible role in Alzheimer's Disease. Brain Res 2013; 1584:80-93. [PMID: 24355599 DOI: 10.1016/j.brainres.2013.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/30/2013] [Accepted: 12/07/2013] [Indexed: 11/25/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that control a wide range of functions in the cell. They act as post-transcriptional gene regulators throughout in development and in adulthood, although recent evidence suggests their potential role in the onset and development of various diseases and neuropathologies. In neurons miRNAs seem to play a key role as regulators of synaptic function. Synapses are vulnerable structures in neurodegenerative diseases. In particular, synaptic loss has been described as an early event in the pathogenesis of Alzheimer's Disease (AD). MicroRNA-mediated gene silencing represents a candidate event for the repression of specific mRNAs and protein synthesis that could account for synaptic dysfunction. In this work, we review the participation of miRNAs in synaptic function and consider their possible role in synaptic alterations in AD. First we review the biogenesis of miRNAs and their role as post-transcriptional regulators. Then we discuss recently published data on the distribution of miRNAs in the brain as well as their role in dynamic regulation at the synapse. In the second part, we briefly introduce the reader to AD, focusing on synaptic alterations in the progression of the pathology. Then we discuss possible implications of miRNAs in the associated synaptic dysfunction.
Collapse
Affiliation(s)
- Sylvia Garza-Manero
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510, México, DF, Mexico.
| | - Israel Pichardo-Casas
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510 México, DF, Mexico.
| | - Clorinda Arias
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510, México, DF, Mexico.
| | - Luis Vaca
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510 México, DF, Mexico.
| | - Angélica Zepeda
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510, México, DF, Mexico.
| |
Collapse
|