101
|
Revalska M, Radkova M, Iantcheva A. Functional characterization of Medicago truncatula GRAS7, a member of the GRAS family transcription factors, in response to abiotic stress. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2074893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Miglena Revalska
- Department of Functional Genetics, Abiotic and Biotic Stress, AgroBioInstitute, Agricultural Academy, Sofia, Bulgaria
| | - Mariana Radkova
- Department of Functional Genetics, Abiotic and Biotic Stress, AgroBioInstitute, Agricultural Academy, Sofia, Bulgaria
| | - Anelia Iantcheva
- Department of Functional Genetics, Abiotic and Biotic Stress, AgroBioInstitute, Agricultural Academy, Sofia, Bulgaria
| |
Collapse
|
102
|
Hou S, Zhang Q, Chen J, Meng J, Wang C, Du J, Guo Y. Genome-Wide Identification and Analysis of the GRAS Transcription Factor Gene Family in Theobroma cacao. Genes (Basel) 2022; 14:57. [PMID: 36672798 PMCID: PMC9858872 DOI: 10.3390/genes14010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/28/2022] Open
Abstract
GRAS genes exist widely and play vital roles in various physiological processes in plants. In this study, to identify Theobroma cacao (T. cacao) GRAS genes involved in environmental stress and phytohormones, we conducted a genome-wide analysis of the GRAS gene family in T. cacao. A total of 46 GRAS genes of T. cacao were identified. Chromosomal distribution analysis showed that all the TcGRAS genes were evenly distributed on ten chromosomes. Phylogenetic relationships revealed that GRAS proteins could be divided into twelve subfamilies (HAM: 6, LISCL: 10, LAS: 1, SCL4/7: 1, SCR: 4, DLT: 1, SCL3: 3, DELLA: 4, SHR: 5, PAT1: 6, UN1: 1, UN2: 4). Of the T. cacao GRAS genes, all contained the GRAS domain or GRAS superfamily domain. Subcellular localization analysis predicted that TcGRAS proteins were located in the nucleus, chloroplast, and endomembrane system. Gene duplication analysis showed that there were two pairs of tandem repeats and six pairs of fragment duplications, which may account for the rapid expansion in T. cacao. In addition, we also predicted the physicochemical properties and cis-acting elements. The analysis of GO annotation predicted that the TcGRAS genes were involved in many biological processes. This study highlights the evolution, diversity, and characterization of the GRAS genes in T. cacao and provides the first comprehensive analysis of this gene family in the cacao genome.
Collapse
Affiliation(s)
- Sijia Hou
- Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qianqian Zhang
- Chinese Institute for Brain Research, Beijing 102206, China
- College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Jing Chen
- Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jianqiao Meng
- Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Cong Wang
- Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Junhong Du
- Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yunqian Guo
- Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
103
|
Transcriptomic Evidence Reveals Low Gelatinous Layer Biosynthesis in Neolamarckia cadamba after Gravistimulation. Int J Mol Sci 2022; 24:ijms24010268. [PMID: 36613711 PMCID: PMC9820806 DOI: 10.3390/ijms24010268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/28/2022] Open
Abstract
Trees can control their shape and resist gravity by producing tension wood (TW), which is a special wood that results from trees being put under stress. TW is characterized by the presence of a gelatinous layer (G layer) and the differential distribution of cell wall polymers. In this study, we investigated whether or not gravistimulation in N. cadamba resulted in TW with an obvious G layer. The results revealed an absence of an obvious G layer in samples of the upper side of a leaning stem (UW), as well as an accumulation of cellulose and a decrease in lignin content. A negligible change in the content of these polymers was recorded and compared to untreated plant (NW) samples, revealing the presence of a G layer either in much lower concentrations or in a lignified form. A transcriptomic investigation demonstrated a higher expression of cell wall esterase- and hydrolase-related genes in the UW, suggesting an accumulation of noncellulosic sugars in the UW, similar to the spectroscopy results. Furthermore, several G-layer-specific genes were also downregulated, including fasciclin-like arabinogalactan proteins (FLA), beta-galactosidase (BGAL) and chitinase-like proteins (CTL). The gene coexpression network revealed a strong correlation between cell-wall-synthesis-related genes and G-layer-synthesis-specific genes, suggesting their probable antagonistic role during G layer formation. In brief, the G layer in N. cadamba was either synthesized in a very low amount or was lignified during an early stage of growth; further experimental validation is required to understand the exact mechanism and stage of G layer formation in N. cadamba during gravistimulation.
Collapse
|
104
|
Bai Y, Liu H, Zhu K, Cheng ZM. Evolution and functional analysis of the GRAS family genes in six Rosaceae species. BMC PLANT BIOLOGY 2022; 22:569. [PMID: 36471247 PMCID: PMC9724429 DOI: 10.1186/s12870-022-03925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND GRAS genes formed one of the important transcription factor gene families in plants, had been identified in several plant species. The family genes were involved in plant growth, development, and stress resistance. However, the comparative analysis of GRAS genes in Rosaceae species was insufficient. RESULTS In this study, a total of 333 GRAS genes were identified in six Rosaceae species, including 51 in strawberry (Fragaria vesca), 78 in apple (Malus domestica), 41 in black raspberry (Rubus occidentalis), 59 in European pear (Pyrus communis), 56 in Chinese rose (Rosa chinensis), and 48 in peach (Prunus persica). Motif analysis showed the VHIID domain, SAW motif, LR I region, and PFYRE motif were considerably conserved in the six Rosaceae species. All GRAS genes were divided into 10 subgroups according to phylogenetic analysis. A total of 15 species-specific duplicated clades and 3 lineage-specific duplicated clades were identified in six Rosaceae species. Chromosomal localization presented the uneven distribution of GRAS genes in six Rosaceae species. Duplication events contributed to the expression of the GRAS genes, and Ka/Ks analysis suggested the purification selection as a major force during the evolution process in six Rosaceae species. Cis-acting elements and GO analysis revealed that most of the GRAS genes were associated with various environmental stress in six Rosaceae species. Coexpression network analysis showed the mutual regulatory relationship between GRAS and bZIP genes, suggesting the ability of the GRAS gene to regulate abiotic stress in woodland strawberry. The expression pattern elucidated the transcriptional levels of FvGRAS genes in various tissues and the drought and salt stress in woodland strawberry, which were verified by RT-qPCR analysis. CONCLUSIONS The evolution and functional analysis of GRAS genes provided insights into the further understanding of GRAS genes on the abiotic stress of Rosaceae species.
Collapse
Affiliation(s)
- Yibo Bai
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Hui Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Kaikai Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Zong-Ming Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
105
|
Üstüner S, Schäfer P, Eichmann R. Development specifies, diversifies and empowers root immunity. EMBO Rep 2022; 23:e55631. [PMID: 36330761 PMCID: PMC9724680 DOI: 10.15252/embr.202255631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 08/04/2023] Open
Abstract
Roots are a highly organised plant tissue consisting of different cell types with distinct developmental functions defined by cell identity networks. Roots are the target of some of the most devastating diseases and possess a highly effective immune system. The recognition of microbe- or plant-derived molecules released in response to microbial attack is highly important in the activation of complex immunity gene networks. Development and immunity are intertwined, and immunity activation can result in growth inhibition. In turn, by connecting immunity and cell identity regulators, cell types are able to launch a cell type-specific immunity based on the developmental function of each cell type. By this strategy, fundamental developmental processes of each cell type contribute their most basic functions to drive cost-effective but highly diverse and, thus, efficient immune responses. This review highlights the interdependence of root development and immunity and how the developmental age of root cells contributes to positive and negative outcomes of development-immunity cross-talk.
Collapse
Affiliation(s)
- Sim Üstüner
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Patrick Schäfer
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Ruth Eichmann
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| |
Collapse
|
106
|
Li C, Wang K, Chen S, Zhang X, Zhang X, Fan L, Dong J, Xu L, Wang Y, Li Y, Liu L. Genome-wide identification of RsGRAS gene family reveals positive role of RsSHRc gene in chilling stress response in radish (Raphanus sativus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:285-297. [PMID: 36283201 DOI: 10.1016/j.plaphy.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/06/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Radish (Raphanus sativus L.) is an important worldwide root vegetable crop. Little information of the GRAS gene family was available in radish. Herein, a total of 51 GRAS family members were firstly identified from radish genome, and unevenly located onto nine radish chromosomes. Expression analysis of RsGRAS genes in taproot displayed that RsSCL15a and RsSHRc were highly expressed in the radish cambium, and its expression level was increased with the taproot thickening. Comparative transcriptome analysis revealed that the expression patterns of RsGRAS genes varied upon exposure to different abiotic stresses including heavy metals, salt and heat. The expression level of six RsGRAS genes including RsSHRc was increased under chilling stress in two radish genotypes with different cold tolerance. Further analysis indicated that RsGRAS genes could respond to cold stress rapidly and the expression of RsSHRc was up-regulated at different development stages (cortex splitting and thickening stages) under long-term cold treatment. Transient expression of RsSHRc gene in radish showed that RsSHRc possessed the reliable function of eliminating reactive oxygen species (ROS), inhibiting the formation of malondialdehyde (MDA) and promoting to accumulate proline under cold stress. Together, these findings provided insights into the function of RsGRAS genes in taproot development and chilling stress response in radish.
Collapse
Affiliation(s)
- Cui Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Kai Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Sen Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Xiaoli Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Xinyu Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Lianxue Fan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Junhui Dong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Ying Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China; College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
107
|
Kawamoto N, Morita MT. Gravity sensing and responses in the coordination of the shoot gravitropic setpoint angle. THE NEW PHYTOLOGIST 2022; 236:1637-1654. [PMID: 36089891 PMCID: PMC9828789 DOI: 10.1111/nph.18474] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Gravity is one of the fundamental environmental cues that affect plant development. Indeed, the plant architecture in the shoots and roots is modulated by gravity. Stems grow vertically upward, whereas lateral organs, such as the lateral branches in shoots, tend to grow at a specific angle according to a gravity vector known as the gravitropic setpoint angle (GSA). During this process, gravity is sensed in specialised gravity-sensing cells named statocytes, which convert gravity information into biochemical signals, leading to asymmetric auxin distribution and driving asymmetric cell division/expansion in the organs to achieve gravitropism. As a hypothetical offset mechanism against gravitropism to determine the GSA, the anti-gravitropic offset (AGO) has been proposed. According to this concept, the GSA is a balance of two antagonistic growth components, that is gravitropism and the AGO. Although the nature of the AGO has not been clarified, studies have suggested that gravitropism and the AGO share a common gravity-sensing mechanism in statocytes. This review discusses the molecular mechanisms underlying gravitropism as well as the hypothetical AGO in the control of the GSA.
Collapse
Affiliation(s)
- Nozomi Kawamoto
- Division of Plant Environmental ResponsesNational Institute for Basic BiologyMyodaijiOkazaki444‐8556Japan
| | - Miyo Terao Morita
- Division of Plant Environmental ResponsesNational Institute for Basic BiologyMyodaijiOkazaki444‐8556Japan
| |
Collapse
|
108
|
Zhao X, Liu DK, Wang QQ, Ke S, Li Y, Zhang D, Zheng Q, Zhang C, Liu ZJ, Lan S. Genome-wide identification and expression analysis of the GRAS gene family in Dendrobium chrysotoxum. FRONTIERS IN PLANT SCIENCE 2022; 13:1058287. [PMID: 36518517 PMCID: PMC9742484 DOI: 10.3389/fpls.2022.1058287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
The GRAS gene family encodes transcription factors that participate in plant growth and development phases. They are crucial in regulating light signal transduction, plant hormone (e.g. gibberellin) signaling, meristem growth, root radial development, response to abiotic stress, etc. However, little is known about the features and functions of GRAS genes in Orchidaceae, the largest and most diverse angiosperm lineage. In this study, genome-wide analysis of the GRAS gene family was conducted in Dendrobium chrysotoxum (Epidendroideae, Orchidaceae) to investigate its physicochemical properties, phylogenetic relationships, gene structure, and expression patterns under abiotic stress in orchids. Forty-six DchGRAS genes were identified from the D. chrysotoxum genome and divided into ten subfamilies according to their phylogenetic relationships. Sequence analysis showed that most DchGRAS proteins contained conserved VHIID and SAW domains. Gene structure analysis showed that intronless genes accounted for approximately 70% of the DchGRAS genes, the gene structures of the same subfamily were the same, and the conserved motifs were also similar. The Ka/Ks ratios of 12 pairs of DchGRAS genes were all less than 1, indicating that DchGRAS genes underwent negative selection. The results of cis-acting element analysis showed that the 46 DchGRAS genes contained a large number of hormone-regulated and light-responsive elements as well as environmental stress-related elements. In addition, the real-time reverse transcription quantitative PCR (RT-qPCR) experimental results showed significant differences in the expression levels of 12 genes under high temperature, drought and salt treatment, among which two members of the LISCL subfamily (DchGRAS13 and DchGRAS15) were most sensitive to stress. Taken together, this paper provides insights into the regulatory roles of the GRAS gene family in orchids.
Collapse
Affiliation(s)
- Xuewei Zhao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ding-Kun Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian-Qian Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shijie Ke
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qinyao Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Cuili Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhong-Jian Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siren Lan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
109
|
Yoon EK, Oh J, Lim J. (Don't) Look Up!: Is short-root just a short-root plant? FRONTIERS IN PLANT SCIENCE 2022; 13:1069996. [PMID: 36466291 PMCID: PMC9712719 DOI: 10.3389/fpls.2022.1069996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
SHORT-ROOT (SHR) is a mobile transcription factor that plays important roles in ground tissue patterning, stem cell niche specification and maintenance, and vascular development in Arabidopsis roots. Although mRNA and protein of SHR are also found in hypocotyls, inflorescence stems, and leaves, its role in the above-ground organs has been less explored. In most developmental cases, SHR, together with its partner SCARECROW (SCR), regulates the expression of downstream target genes in controlling formative and proliferative cell divisions. Accumulating evidence on the regulatory role of SHR in shoots suggests that SHR may also play key roles in the above-ground organs. Interestingly, recent work has provided new evidence that SHR is also required for cell elongation in the hypocotyl of the etiolated seedling. This suggests that the novel roles of SHR and SHR-mediated regulatory networks can be found in shoots. Furthermore, comparative research on SHR function in roots and shoots will broaden and deepen our understanding of plant growth and development.
Collapse
|
110
|
García-Gómez ML, Reyes-Hernández BJ, Sahoo DP, Napsucialy-Mendivil S, Quintana-Armas AX, Pedroza-García JA, Shishkova S, Torres-Martínez HH, Pacheco-Escobedo MA, Dubrovsky JG. A mutation in THREONINE SYNTHASE 1 uncouples proliferation and transition domains of the root apical meristem: experimental evidence and in silico proposed mechanism. Development 2022; 149:278438. [PMID: 36278862 PMCID: PMC9796171 DOI: 10.1242/dev.200899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
Abstract
A continuum from stem to transit-amplifying to a differentiated cell state is a common theme in multicellular organisms. In the plant root apical meristem (RAM), transit-amplifying cells are organized into two domains: cells from the proliferation domain (PD) are displaced to the transition domain (TD), suggesting that both domains are necessarily coupled. Here, we show that in the Arabidopsis thaliana mto2-2 mutant, in which threonine (Thr) synthesis is affected, the RAM lacks the PD. Through a combination of cell length profile analysis, mathematical modeling and molecular markers, we establish that the PD and TD can be uncoupled. Remarkably, although the RAM of mto2-2 is represented solely by the TD, the known factors of RAM maintenance and auxin signaling are expressed in the mutant. Mathematical modeling predicts that the stem cell niche depends on Thr metabolism and that, when disturbed, the normal continuum of cell states becomes aborted.
Collapse
Affiliation(s)
- Monica L. García-Gómez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - Blanca J. Reyes-Hernández
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - Debee P. Sahoo
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - Selene Napsucialy-Mendivil
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - Aranza X. Quintana-Armas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - José A. Pedroza-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - Svetlana Shishkova
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - Héctor H. Torres-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico
| | - Mario A. Pacheco-Escobedo
- Facultad de Ciencias de la Salud, Universidad Tecnológica de México – UNITEC MÉXICO – Campus Atizapán, Av. Calacoaya 7, Atizapán de Zaragoza, Estado de México, 52970, Mexico
| | - Joseph G. Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca 62250, Mexico,Author for correspondence ()
| |
Collapse
|
111
|
Zhao Y, Liu Z, Wang L, Liu H. Fumonisin B1 as a Tool to Explore Sphingolipid Roles in Arabidopsis Primary Root Development. Int J Mol Sci 2022; 23:12925. [PMID: 36361715 PMCID: PMC9654530 DOI: 10.3390/ijms232112925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 03/28/2024] Open
Abstract
Fumonisin B1 is a mycotoxin that is structurally analogous to sphinganine and sphingosine and inhibits the biosynthesis of complex sphingolipids by repressing ceramide synthase. Based on the connection between FB1 and sphingolipid metabolism, FB1 has been widely used as a tool to explore the multiple functions of sphingolipids in mammalian and plant cells. The aim of this work was to determine the effect of sphingolipids on primary root development by exposing Arabidopsis (Arabidopsis thaliana) seedlings to FB1. We show that FB1 decreases the expression levels of several PIN-FORMED (PIN) genes and the key stem cell niche (SCN)-defining transcription factor genes WUSCHEL-LIKE HOMEOBOX5 (WOX5) and PLETHORAs (PLTs), resulting in the loss of quiescent center (QC) identity and SCN maintenance, as well as stunted root growth. In addition, FB1 induces cell death at the root apical meristem in a non-cell-type-specific manner. We propose that sphingolipids play a key role in primary root growth through the maintenance of the root SCN and the amelioration of cell death in Arabidopsis.
Collapse
Affiliation(s)
- Yanxue Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Zhongjie Liu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Lei Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Hao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475000, China
| |
Collapse
|
112
|
He Z, Tian Z, Zhang Q, Wang Z, Huang R, Xu X, Wang Y, Ji X. Genome-wide identification, expression and salt stress tolerance analysis of the GRAS transcription factor family in Betula platyphylla. FRONTIERS IN PLANT SCIENCE 2022; 13:1022076. [PMID: 36352865 PMCID: PMC9638169 DOI: 10.3389/fpls.2022.1022076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The GRAS gene family is a plant-specific family of transcription factors and play a vital role in many plant growth processes and abiotic stress responses. Nevertheless, the functions of the GRAS gene family in woody plants, especially in Betula platyphylla (birch), are hardly known. In this study, we performed a genome-wide analysis of 40 BpGRAS genes (BpGRASs) and identified typical GRAS domains of most BpGRASs. The BpGRASs were unevenly distributed on 14 chromosomes of birch and the phylogenetic analysis of six species facilitated the clustering of 265 GRAS proteins into 17 subfamilies. We observed that closely related GRAS homologs had similar conserved motifs according to motif analysis. Besides, an analysis of the expression patterns of 26 BpGRASs showed that most BpGRASs were highly expressed in the leaves and responded to salt stress. Six BpGRASs were selected for cis-acting element analysis because of their significant upregulation under salt treatment, indicating that many elements were involved in the response to abiotic stress. This result further confirmed that these BpGRASs might participate in response to abiotic stress. Transiently transfected birch plants with transiently overexpressed 6 BpGRASs and RNAi-silenced 6 BpGRASs were generated for gain- and loss-of-function analysis, respectively. In addition, overexpression of BpGRAS34 showed phenotype resistant to salt stress, decreased the cell death and enhanced the reactive oxygen species (ROS) scavenging capabilities and proline content under salt treatment, consistent with the results in transiently transformed birch plants. This study is a systematic analysis of the GRAS gene family in birch plants, and the results provide insight into the molecular mechanism of the GRAS gene family responding to abiotic stress in birch plants.
Collapse
Affiliation(s)
- Zihang He
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zengzhi Tian
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qun Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zhibo Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Ruikun Huang
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xin Xu
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yucheng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiaoyu Ji
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
113
|
Li J, Wang C, Zhou T, Jin H, Liu X. Identification and characterization of miRNAome and target genes in Pseudostellaria heterophylla. PLoS One 2022; 17:e0275566. [PMID: 36197881 PMCID: PMC9534447 DOI: 10.1371/journal.pone.0275566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
miRNAs play a crucial role in the development and growth of plants by inhibiting the function of targeted genes at the post-transcription level. However, no miRNAs in Pseudostellaria heterophylla have been reported and their function in the morphogenesis of organs is still unclear. In this study, a total of 159 conserved miRNAs (belonging to 64 families) and 303 level miRNAs were identified from P. heterophylla. Some of them showed specifically up or down-regulated expression in different tissues and numbers of unigenes involved in Plant-pathogen interaction and MAPK signaling pathway-plant were targeted. The significant negative correlation of expression profiles between 30 miRNAs and their target genes (37 unigenes) was observed, respectively. Further, a large number of genes involved with signal transduction of auxin, zeatin, abscisic acid and, jasmonic acid were targeted. Predicated targets of two miRNAs were validated by 5'RLM-RACE, respectively. A large number of mRNAs from four pathogens were targeted by miRNAs from P. heterophylla and some of them were targeted by miR414. In summary, we reported a population of miRNAs from four different vegetative tissues of P. heterophylla by high throughput sequencing, which was analyzed by combining with the constructed transcriptome. These results may help to explain the function of miRNAs in the morphogenesis of organs and defense of pathogens, and may provide theoretical basis for breeding and genetic improvement of P. heterophylla.
Collapse
Affiliation(s)
- Jun Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
- * E-mail:
| | - Chongmin Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Haijun Jin
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoqing Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
114
|
Qiao L, Zhang T, Yang H, Yang S, Wang J. Overexpression of a SHORT-ROOT transcriptional factor enhances the auxin mediated formation of adventitious roots and lateral roots in poplar trees. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111408. [PMID: 35932828 DOI: 10.1016/j.plantsci.2022.111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
SHORT-ROOT (SHR) defines root stem cells and maintains radial patterning, but its involvement in adventitious root (AR) formation has not been reported. In this study, we showed that PtSHR2 was transcriptionally upregulated by excision before the formation of AR and responded dynamically to auxin. PtSHR2 overexpression (SHR2BOE) in hybrid poplars resulted in an increased number of ARs with an initial delay. Despite a lower endogenous content in the stems than in wild-type plants, indole-3-acetic acid (IAA) content at the SHR2BOE basal stem increased rapidly after cutting and reached a higher maximum than in wild-type plants, which was accompanied by a more sustained and stronger induction of AR formation marker genes. In addition, the higher auxin content in SHR2BOE ARs resulted in more and longer lateral roots (LRs). Application of auxin abolished the early delay in the formation of AR and largely other AR phenotypes of SHR2BOE plants, whereas the polar auxin transport inhibitor N-1-naphthylphthalamic acid completely inhibited both AR and LR abnormalities. Since the enhanced rooting ability of SHR2BOE stem cuttings in hydroponics was clearly confirmed, our results suggest a novel role of poplar SHR2 as a positive regulator during the organogenesis of AR and LR by affecting local auxin homeostasis.
Collapse
Affiliation(s)
- Linxiang Qiao
- School of Environmental Science and Engineering, Tianjin University, Weijin Rd. 92, Nankai District, Tianjin 300072, China..
| | - Tianjiao Zhang
- School of Environmental Science and Engineering, Tianjin University, Weijin Rd. 92, Nankai District, Tianjin 300072, China..
| | - Heyu Yang
- School of Environmental Science and Engineering, Tianjin University, Weijin Rd. 92, Nankai District, Tianjin 300072, China..
| | - Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, Weijin Rd. 92, Nankai District, Tianjin 300072, China..
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Weijin Rd. 92, Nankai District, Tianjin 300072, China..
| |
Collapse
|
115
|
Li M, Li P, Wang C, Xu H, Wang M, Wang Y, Niu X, Xu M, Wang H, Qin Y, Tang W, Bai M, Wang W, Wu S. Brassinosteroid signaling restricts root lignification by antagonizing SHORT-ROOT function in Arabidopsis. PLANT PHYSIOLOGY 2022; 190:1182-1198. [PMID: 35809074 PMCID: PMC9516771 DOI: 10.1093/plphys/kiac327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/25/2022] [Indexed: 05/20/2023]
Abstract
Cell wall lignification is a key step in forming functional endodermis and protoxylem (PX) in plant roots. Lignified casparian strips (CS) in endodermis and tracheary elements of PX are essential for selective absorption and transport of water and nutrients. Although multiple key regulators of CS and PX have been identified, the spatial information that drives the developmental shift to root lignification remains unknown. Here, we found that brassinosteroid (BR) signaling plays a key role in inhibiting root lignification in the root elongation zone. The inhibitory activity of BR signaling occurs partially through the direct binding of BRASSINAZOLE-RESISTANT 1 (BZR1) to SHORT-ROOT (SHR), repressing the SHR-mediated activation of downstream genes that are involved in root lignification. Upon entering the mature root zone, BR signaling declines rapidly, which releases SHR activity and initiates root lignification. Our results provide a mechanistic view of the developmental transition to cell wall lignification in Arabidopsis thaliana roots.
Collapse
Affiliation(s)
| | | | | | - Huimin Xu
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengxue Wang
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanli Wang
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xufang Niu
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyuan Xu
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Wang
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaxin Qin
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenqiang Tang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Mingyi Bai
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Wenfei Wang
- College of Life Science & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | |
Collapse
|
116
|
Xu H, Liu P, Wang C, Wu S, Dong C, Lin Q, Sun W, Huang B, Xu M, Tauqeer A, Wu S. Transcriptional networks regulating suberin and lignin in endodermis link development and ABA response. PLANT PHYSIOLOGY 2022; 190:1165-1181. [PMID: 35781829 PMCID: PMC9516719 DOI: 10.1093/plphys/kiac298] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/14/2022] [Indexed: 05/05/2023]
Abstract
Vascular tissues are surrounded by an apoplastic barrier formed by endodermis that is vital for selective absorption of water and nutrients. Lignification and suberization of endodermal cell walls are fundamental processes in establishing the apoplastic barrier. Endodermal suberization in Arabidopsis (Arabidopsis thaliana) roots is presumed to be the integration of developmental regulation and stress responses. In root endodermis, the suberization level is enhanced when the Casparian strip, the lignified structure, is defective. However, it is not entirely clear how lignification and suberization interplay and how they interact with stress signaling. Here, in Arabidopsis, we constructed a hierarchical network mediated by SHORT-ROOT (SHR), a master regulator of endodermal development, and identified 13 key MYB transcription factors (TFs) that form multiple sub-networks. Combined with functional analyses, we further uncovered MYB TFs that mediate feedback or feed-forward loops, thus balancing lignification and suberization in Arabidopsis roots. In addition, sub-networks comprising nine MYB TFs were identified that interact with abscisic acid signaling to integrate stress response and root development. Our data provide insights into the mechanisms that enhance plant adaptation to changing environments.
Collapse
Affiliation(s)
| | | | | | - Shasha Wu
- College of Life Sciences, College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chaoqun Dong
- College of Life Sciences, College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qingyun Lin
- College of Life Sciences, College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenru Sun
- College of Life Sciences, College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Benben Huang
- College of Life Sciences, College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meizhi Xu
- College of Life Sciences, College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Arfa Tauqeer
- College of Life Sciences, College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | | |
Collapse
|
117
|
Kim H, Jang J, Seomun S, Yoon Y, Jang G. Division of cortical cells is regulated by auxin in Arabidopsis roots. FRONTIERS IN PLANT SCIENCE 2022; 13:953225. [PMID: 36186058 PMCID: PMC9515965 DOI: 10.3389/fpls.2022.953225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/06/2022] [Indexed: 06/16/2023]
Abstract
The root cortex transports water and nutrients absorbed by the root epidermis into the vasculature and stores substances such as starch, resins, and essential oils. The cortical cells are also deeply involved in determining epidermal cell fate. In Arabidopsis thaliana roots, the cortex is composed of a single cell layer generated by a single round of periclinal division of the cortex/endodermis initials. To further explore cortex development, we traced the development of the cortex by counting cortical cells. Unlike vascular cells, whose number increased during the development of root apical meristem (RAM), the number of cortical cells did not change, indicating that cortical cells do not divide during RAM development. However, auxin-induced cortical cell division, and this finding was confirmed by treatment with the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) and examining transgenic plants harboring CO2::ΔARF5, in which cortical expression of truncated AUXIN RESPONSE FACTOR5 (ΔARF5) induces auxin responses. NPA-induced cortical auxin accumulation and CO2::ΔARF5-mediated cortical auxin response induced anticlinal and periclinal cell divisions, thus increasing the number of cortical cells. These findings reveal a tight link between auxin and cortical cell division, suggesting that auxin is a key player in determining root cortical cell division.
Collapse
Affiliation(s)
- Huijin Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Jinwoo Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Subhin Seomun
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul, South Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
118
|
Cai T, Chen H, Yan L, Zhang C, Deng Y, Wu S, Yang Q, Pan R, Raza A, Chen S, Zhuang W. The root-specific NtR12 promoter-based expression of RIP increased the resistance against bacterial wilt disease in tobacco. Mol Biol Rep 2022; 49:11503-11514. [PMID: 36097128 DOI: 10.1007/s11033-022-07817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/21/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Tobacco is an important economic crop, but the quality and yield have been severely impaired by bacterial wilt disease (BWD) caused by Ralstonia solanacearum. METHODS AND RESULTS Here, we describe a transgenic approach to prevent BWD in tobacco plants. A new root-specific promoter of an NtR12 gene was successfully cloned. The NtR12 promoter drove GUS reporter gene expression to a high level in roots but to less extent in stems, and no significant expression was detected in leaves. The Ribosome-inactivating proteins (RIP) gene from Momordica charantia was also cloned, and its ability to inhibit Ralstonia solanacearum was evaluated using RIP protein produced by the prokaryotic expression system. The RIP gene was constructed downstream of the NtR12 promoter and transformed into the tobacco cultivar "Cuibi No. 1" (CB-1), resulting in many descendants. The resistance against BWD was significantly improved in transgenic tobacco lines expressing NtR12::RIP. CONCLUSION This study confirms that the RIP gene confers resistance to BWD and the NtR12 as a new promoter for its specific expression in root and stem. Our findings pave a novel avenue for transgenic engineering to prevent the harmful impact of diseases and pests in roots and stems.
Collapse
Affiliation(s)
- Tiecheng Cai
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liming Yan
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ye Deng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shengxin Wu
- Fujian Province Bureau of Tobacco, Tobacco Agriculture and Scientific Research Institute, Fuzhou, 350001, Fujian, China
| | - Qiang Yang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ronglong Pan
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsin Chu, 30013, Taiwan
| | - Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Shunhui Chen
- Fujian Province Bureau of Tobacco, Tobacco Agriculture and Scientific Research Institute, Fuzhou, 350001, Fujian, China.
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China. .,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
119
|
Glanc M. Plant cell division from the perspective of polarity. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5361-5371. [PMID: 35604840 DOI: 10.1093/jxb/erac227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The orientation of cell division is a major determinant of plant morphogenesis. In spite of considerable efforts over the past decades, the precise mechanism of division plane selection remains elusive. The majority of studies on the topic have addressed division orientation from either a predominantly developmental or a cell biological perspective. Thus, mechanistic insights into the links between developmental and cellular factors affecting division orientation are particularly lacking. Here, I review recent progress in the understanding of cell division orientation in the embryo and primary root meristem of Arabidopsis from both developmental and cell biological standpoints. I offer a view of multilevel polarity as a central aspect of cell division: on the one hand, the division plane is a readout of tissue- and organism-wide polarities; on the other hand, the cortical division zone can be seen as a transient polar subcellular plasma membrane domain. Finally, I argue that a polarity-focused conceptual framework and the integration of developmental and cell biological approaches hold great promise to unravel the mechanistic basis of plant cell division orientation in the near future.
Collapse
Affiliation(s)
- Matouš Glanc
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
120
|
Aragón-Raygoza A, Herrera-Estrella L, Cruz-Ramírez A. Transcriptional analysis of Ceratopteris richardii young sporophyte reveals conservation of stem cell factors in the root apical meristem. FRONTIERS IN PLANT SCIENCE 2022; 13:924660. [PMID: 36035690 PMCID: PMC9413220 DOI: 10.3389/fpls.2022.924660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Gene expression in roots has been assessed in different plant species in studies ranging from complete organs to specific cell layers, and more recently at the single cell level. While certain genes or functional categories are expressed in the root of all or most plant species, lineage-specific genes have also been discovered. An increasing amount of transcriptomic data is available for angiosperms, while a limited amount of data is available for ferns, and few studies have focused on fern roots. Here, we present a de novo transcriptome assembly from three different parts of the Ceratopteris richardii young sporophyte. Differential gene expression analysis of the root tip transcriptional program showed an enrichment of functional categories related to histogenesis and cell division, indicating an active apical meristem. Analysis of a diverse set of orthologous genes revealed conserved expression in the root meristem, suggesting a preserved role for different developmental roles in this tissue, including stem cell maintenance. The reconstruction of evolutionary trajectories for ground tissue specification genes suggests a high degree of conservation in vascular plants, but not for genes involved in root cap development, showing that certain genes are absent in Ceratopteris or have intricate evolutionary paths difficult to track. Overall, our results suggest different processes of conservation and divergence of genes involved in root development.
Collapse
Affiliation(s)
- Alejandro Aragón-Raygoza
- Molecular and Developmental Complexity Group, Unidad De Genómica Avanzada, Laboratorio Nacional De Genómica Para la Biodiversidad, Cinvestav Unidad Irapuato, Irapuato, Guanajuato, Mexico
- Metabolic Engineering Group, Unidad De Genómica Avanzada, Laboratorio Nacional De Genómica Para la Biodiversidad, Cinvestav Unidad Irapuato, Irapuato, Guanajuato, Mexico
| | - Luis Herrera-Estrella
- Metabolic Engineering Group, Unidad De Genómica Avanzada, Laboratorio Nacional De Genómica Para la Biodiversidad, Cinvestav Unidad Irapuato, Irapuato, Guanajuato, Mexico
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, United States
| | - Alfredo Cruz-Ramírez
- Molecular and Developmental Complexity Group, Unidad De Genómica Avanzada, Laboratorio Nacional De Genómica Para la Biodiversidad, Cinvestav Unidad Irapuato, Irapuato, Guanajuato, Mexico
| |
Collapse
|
121
|
Effects of the Rhizosphere Fungus Cunninghamella bertholletiae on the Solanum lycopersicum Response to Diverse Abiotic Stresses. Int J Mol Sci 2022; 23:ijms23168909. [PMID: 36012179 PMCID: PMC9408995 DOI: 10.3390/ijms23168909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 01/20/2023] Open
Abstract
This study examined the efficiency of fungal strain (Cunninghamella bertholletiae) isolated from the rhizosphere of Solanum lycopersicum to reduce symptoms of salinity, drought and heavy metal stresses in tomato plants. In vitro evaluation of C. bertholletiae demonstrated its ability to produce indole-3-Acetic Acid (IAA), ammonia and tolerate varied abiotic stresses on solid media. Tomato plants at 33 days’ old, inoculated with or without C. bertholletiae, were treated with 1.5% sodium chloride, 25% polyethylene glycol, 3 mM cadmium and 3 mM lead for 10 days, and the impact of C. bertholletiae on plant performance was investigated. Inoculation with C. bertholletiae enhanced plant biomass and growth attributes in stressed plants. In addition, C. bertholletiae modulated the physiochemical apparatus of stressed plants by raising chlorophyll, carotenoid, glucose, fructose, and sucrose contents, and reducing hydrogen peroxide, protein, lipid metabolism, amino acid, antioxidant activities, and abscisic acid. Gene expression analysis showed enhanced expression of SlCDF3 and SlICS genes and reduced expression of SlACCase, SlAOS, SlGRAS6, SlRBOHD, SlRING1, SlTAF1, and SlZH13 genes following C. bertholletiae application. In conclusion, our study supports the potential of C. bertholletiae as a biofertilizer to reduce plant damage, improve crop endurance and remediation under stress conditions.
Collapse
|
122
|
Jaiswal V, Kakkar M, Kumari P, Zinta G, Gahlaut V, Kumar S. Multifaceted Roles of GRAS Transcription Factors in Growth and Stress Responses in Plants. iScience 2022; 25:105026. [PMID: 36117995 PMCID: PMC9474926 DOI: 10.1016/j.isci.2022.105026] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Vandana Jaiswal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mrinalini Kakkar
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India
| | - Priya Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Gaurav Zinta
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Corresponding author
| | - Vijay Gahlaut
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India
- Corresponding author
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
123
|
Actinomucor elegans and Podospora bulbillosa Positively Improves Endurance to Water Deficit and Salinity Stresses in Tomato Plants. J Fungi (Basel) 2022; 8:jof8080785. [PMID: 36012774 PMCID: PMC9409863 DOI: 10.3390/jof8080785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/07/2022] Open
Abstract
Fungal strains isolated from the rhizosphere of healthy Solanum lycopersicum were examined to mitigate symptoms of drought and salinity stresses. The fungal strains were identified as Actinomucor elegans and Podospora bulbillosa based on their DNA sequencing and morphological analysis. Additionally, the fungal strains were assayed for a number of plant growth promoting traits and abiotic stresses on solid media. Moreover, a greenhouse experiment was conducted and tomato seedlings were treated with 25% PEG or 1.5% NaCl for 12 days, and the impact of plant growth promoting fungi (PGPF) on tomato seedling performance under these conditions was examined. PGPF application raised the survival of the stressed tomato plants, which was evidenced by higher physiological and biochemical processes. The PGPF-inoculated plants exhibited higher chlorophyll, carotenoid, protein, amino acid, antioxidant activities, salicylic acid, glucose, fructose, and sucrose contents, and showed lower hydrogen peroxide, and lipid metabolism relative to control plants under stress. Analysis using gene expression showed enhanced expression of SlF3H gene and reduced expression of SlNCED1, SlDEAD31, SlbZIP38, and SlGRAS10 genes following PGPFs application. Overall, the outcomes of this study elucidate the function of these fungal strains and present candidates with potential implementation as biofertilizers and in promoting plant stress endurance.
Collapse
|
124
|
Genome–Wide Identification of the GRAS Family Genes in Melilotus albus and Expression Analysis under Various Tissues and Abiotic Stresses. Int J Mol Sci 2022; 23:ijms23137403. [PMID: 35806414 PMCID: PMC9267034 DOI: 10.3390/ijms23137403] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
The GRAS gene family is a plant–specific family of transcription factors, which play an important role in many metabolic pathways, such as plant growth and development and stress response. However, there is no report on the comprehensive study of the GRAS gene family of Melilotus albus. Here, we identified 55 MaGRAS genes, which were classified into 8 subfamilies by phylogenetic analysis, and unevenly distributed on 8 chromosomes. The structural analysis indicated that 87% of MaGRAS genes have no intron, which is highly conservative in different species. MaGRAS proteins of the same subfamily have similar protein motifs, which are the source of functional differences of different genomes. Transcriptome and qRT–PCR data were combined to determine the expression of 12 MaGRAS genes in 6 tissues, including flower, seed, leaf, stem, root and nodule, which indicated the possible roles in plant growth and development. Five and seven MaGRAS genes were upregulated under ABA, drought, and salt stress treatments in the roots and shoots, respectively, indicating that they play vital roles in the response to ABA and abiotic stresses in M. albus. Furthermore, in yeast heterologous expression, MaGRAS12, MaGRAS34 and MaGRAS33 can enhance the drought or salt tolerance of yeast cells. Taken together, these results provide basic information for understanding the underlying molecular mechanisms of GRAS proteins and valuable information for further studies on the growth, development and stress responses of GRAS proteins in M. albus.
Collapse
|
125
|
Zhang H, Guo L, Li Y, Zhao D, Liu L, Chang W, Zhang K, Zheng Y, Hou J, Fu C, Zhang Y, Zhang B, Ma Y, Niu Y, Zhang K, Xing J, Cui S, Wang F, Tan K, Zheng S, Tang W, Dong J, Liu X. TOP1α fine-tunes TOR-PLT2 to maintain root tip homeostasis in response to sugars. NATURE PLANTS 2022; 8:792-801. [PMID: 35817819 DOI: 10.1038/s41477-022-01179-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Plant development is highly dependent on energy levels. TARGET OF RAPAMYCIN (TOR) activates the proximal root meristem to promote root development in response to photosynthesis-derived sugars during photomorphogenesis in Arabidopsis thaliana. However, the mechanisms of how root tip homeostasis is maintained to ensure proper root cap structure and gravitropism are unknown. PLETHORA (PLT) transcription factors are pivotal for the root apical meristem (RAM) identity by forming gradients, but how PLT gradients are established and maintained, and their roles in COL development are not well known. We demonstrate that endogenous sucrose induces TOPOISOMERASE1α (TOP1α) expression during the skotomorphogenesis-to-photomorphogenesis transition. TOP1α fine-tunes TOR expression in the root tip columella. TOR maintains columella stem cell identity correlating with reduced quiescent centre cell division in a WUSCHEL RELATED HOMEOBOX5-independent manner. Meanwhile, TOR promotes PLT2 expression and phosphorylates and stabilizes PLT2 to maintain its gradient consistent with TOR expression pattern. PLT2 controls cell division and amyloplast formation to regulate columella development and gravitropism. This elaborate mechanism helps maintain root tip homeostasis and gravitropism in response to energy changes during root development.
Collapse
Affiliation(s)
- Hao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Lin Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang, China.
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China.
| | - Yongpeng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang, China
| | - Dan Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
- College of Life Sciences, Hengshui University, Hengshui, China
| | - Luping Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang, China
| | - Wenwen Chang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang, China
| | - Ke Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Yichao Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Jiajie Hou
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Chenghao Fu
- Food Science College, Shenyang Agricultural University, ShenYang, China
| | - Ying Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Baowen Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Yuru Ma
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Yanxiao Niu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Kang Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Jihong Xing
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Sujuan Cui
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Fengru Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Ke Tan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Shuzhi Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Wenqiang Tang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China.
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang, China.
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China.
| |
Collapse
|
126
|
Waseem M, Nkurikiyimfura O, Niyitanga S, Jakada BH, Shaheen I, Aslam MM. GRAS transcription factors emerging regulator in plants growth, development, and multiple stresses. Mol Biol Rep 2022; 49:9673-9685. [PMID: 35713799 DOI: 10.1007/s11033-022-07425-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/23/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
GRAS transcription factors play multifunctional roles in plant growth, development, and resistance to various biotic and abiotic stresses. The structural and functional features of GRAS TFs have been unveiled in the last two decades. A typical GRAS protein contained a C-terminal GRAS domain with a highly variable N-terminal region. Studies on these TFs increase in numbers and are reported to be involved in various important developmental processes such as flowering, root formation, and stress responses. The GRAS TFs and hormone signaling crosstalk can be implicated in plant development and to stress responses. There are relatively few reports about GRAS TFs roles in plants, and no related reviews have been published. In this review, we summarized the features of GRAS TFs, their targets, and the roles these GRAS TFs playing in plant development and multiple stresses.
Collapse
Affiliation(s)
- Muhammad Waseem
- Department of Botany, University of Narowal, Narowal, Punjab, Pakistan. .,College of Life Science, Hainan University, Hainan, P.R. China.
| | - Oswald Nkurikiyimfura
- Key Lab for Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Sylvain Niyitanga
- Department of Plant Pathology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Bello Hassan Jakada
- College of Life Science, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Iffat Shaheen
- Faculty of Agriculture Science and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | | |
Collapse
|
127
|
BIG Modulates Stem Cell Niche and Meristem Development via SCR/SHR Pathway in Arabidopsis Roots. Int J Mol Sci 2022; 23:ijms23126784. [PMID: 35743225 PMCID: PMC9224481 DOI: 10.3390/ijms23126784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/18/2022] Open
Abstract
BIG, a regulator of polar auxin transport, is necessary to regulate the growth and development of Arabidopsis. Although mutations in the BIG gene cause severe root developmental defects, the exact mechanism remains unclear. Here, we report that disruption of the BIG gene resulted in decreased quiescent center (QC) activity and columella cell numbers, which was accompanied by the downregulation of WUSCHEL-RELATED HOMEOBOX5 (WOX5) gene expression. BIG affected auxin distribution by regulating the expression of PIN-FORMED proteins (PINs), but the root morphological defects of big mutants could not be rescued solely by increasing auxin transport. Although the loss of BIG gene function resulted in decreased expression of the PLT1 and PLT2 genes, genetic interaction assays indicate that this is not the main reason for the root morphological defects of big mutants. Furthermore, genetic interaction assays suggest that BIG affects the stem cell niche (SCN) activity through the SCRSCARECROW (SCR)/SHORT ROOT (SHR) pathway and BIG disruption reduces the expression of SCR and SHR genes. In conclusion, our findings reveal that the BIG gene maintains root meristem activity and SCN integrity mainly through the SCR/SHR pathway.
Collapse
|
128
|
Lavagi-Craddock I, Dang T, Comstock S, Osman F, Bodaghi S, Vidalakis G. Transcriptome Analysis of Citrus Dwarfing Viroid Induced Dwarfing Phenotype of Sweet Orange on Trifoliate Orange Rootstock. Microorganisms 2022; 10:microorganisms10061144. [PMID: 35744662 PMCID: PMC9228058 DOI: 10.3390/microorganisms10061144] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
Dwarfed citrus trees for high-density plantings or mechanized production systems will be key for future sustainable citrus production. Citrus trees consist of two different species of scion and rootstock. Therefore, any observed phenotype results from gene expression in both species. Dwarfed sweet orange trees on trifoliate rootstock have been produced using citrus dwarfing viroid (CDVd). We performed RNA-seq transcriptome analysis of CDVd-infected stems and roots and compared them to non-infected controls. The identified differentially expressed genes validated with RT-qPCR corresponded to various physiological and developmental processes that could be associated with the dwarfing phenotype. For example, the transcription factors MYB13 and MADS-box, which regulate meristem functions and activate stress responses, were upregulated in the stems. Conversely, a calcium-dependent lipid-binding protein that regulates membrane transporters was downregulated in the roots. Most transcriptome reprogramming occurred in the scion rather than in the rootstock; this agrees with previous observations of CDVd affecting the growth of sweet orange stems while not affecting the trifoliate rootstock. Furthermore, the lack of alterations in the pathogen defense transcriptome supports the term “Transmissible small nuclear ribonucleic acid,” which describes CDVd as a modifying agent of tree performance with desirable agronomic traits rather than a disease-causing pathogen.
Collapse
Affiliation(s)
- Irene Lavagi-Craddock
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA; (I.L.-C.); (T.D.); (S.C.); (S.B.)
| | - Tyler Dang
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA; (I.L.-C.); (T.D.); (S.C.); (S.B.)
| | - Stacey Comstock
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA; (I.L.-C.); (T.D.); (S.C.); (S.B.)
| | - Fatima Osman
- Department of Plant Pathology, University of California, Davis, CA 95616, USA;
| | - Sohrab Bodaghi
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA; (I.L.-C.); (T.D.); (S.C.); (S.B.)
| | - Georgios Vidalakis
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA; (I.L.-C.); (T.D.); (S.C.); (S.B.)
- Correspondence:
| |
Collapse
|
129
|
Bossi F, Jin B, Lazarus E, Cartwright H, Dorone Y, Rhee SY. CHIQUITA1 maintains the temporal transition between proliferation and differentiation in Arabidopsis thaliana. Development 2022; 149:275423. [DOI: 10.1242/dev.200565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/29/2022] [Indexed: 01/17/2023]
Abstract
ABSTRACT
Body size varies widely among species, populations and individuals, depending on the environment. Transitioning between proliferation and differentiation is a crucial determinant of final organ size, but how the timing of this transition is established and maintained remains unknown. Using cell proliferation markers and genetic analysis, we show that CHIQUITA1 (CHIQ1) is required to maintain the timing of the transition from proliferation to differentiation in Arabidopsis thaliana. Combining kinematic and cell lineage-tracking studies, we found that the number of actively dividing cells in chiquita1-1 plants decreases prematurely compared with wild-type plants, suggesting CHIQ1 maintains the proliferative capacity in dividing cells and ensures that cells divide a specific number of times. CHIQ1 belongs to a plant-specific gene family of unknown molecular function and genetically interacts with three close members of its family to control the timing of proliferation exit. Our work reveals the interdependency between cellular and organ-level processes underlying final organ size determination.
Collapse
Affiliation(s)
- Flavia Bossi
- Carnegie Institution for Science 1 Department of Plant Biology , , Stanford, CA 94305, USA
| | - Benjamin Jin
- Carnegie Institution for Science 1 Department of Plant Biology , , Stanford, CA 94305, USA
| | - Elena Lazarus
- Carnegie Institution for Science 1 Department of Plant Biology , , Stanford, CA 94305, USA
| | - Heather Cartwright
- Carnegie Institution for Science 1 Department of Plant Biology , , Stanford, CA 94305, USA
| | - Yanniv Dorone
- Carnegie Institution for Science 1 Department of Plant Biology , , Stanford, CA 94305, USA
- Stanford University 2 Department of Biology , , Stanford, CA 94305, USA
| | - Seung Y. Rhee
- Carnegie Institution for Science 1 Department of Plant Biology , , Stanford, CA 94305, USA
| |
Collapse
|
130
|
Serra O, Mähönen AP, Hetherington AJ, Ragni L. The Making of Plant Armor: The Periderm. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:405-432. [PMID: 34985930 DOI: 10.1146/annurev-arplant-102720-031405] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The periderm acts as armor protecting the plant's inner tissues from biotic and abiotic stress. It forms during the radial thickening of plant organs such as stems and roots and replaces the function of primary protective tissues such as the epidermis and the endodermis. A wound periderm also forms to heal and protect injured tissues. The periderm comprises a meristematic tissue called the phellogen, or cork cambium, and its derivatives: the lignosuberized phellem and the phelloderm. Research on the periderm has mainly focused on the chemical composition of the phellem due to its relevance as a raw material for industrial processes. Today, there is increasing interest in the regulatory network underlying periderm development as a novel breeding trait to improve plant resilience and to sequester CO2. Here, we discuss our current understanding of periderm formation, focusing on aspects of periderm evolution, mechanisms of periderm ontogenesis, regulatory networks underlying phellogen initiation and cork differentiation, and future challenges of periderm research.
Collapse
Affiliation(s)
- Olga Serra
- University of Girona, Department of Biology, Girona, Spain;
| | - Ari Pekka Mähönen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland;
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | | | - Laura Ragni
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany;
| |
Collapse
|
131
|
Ou Y, Tao B, Wu Y, Cai Z, Li H, Li M, He K, Gou X, Li J. Essential roles of SERKs in the ROOT MERISTEM GROWTH FACTOR-mediated signaling pathway. PLANT PHYSIOLOGY 2022; 189:165-177. [PMID: 35134233 PMCID: PMC9070818 DOI: 10.1093/plphys/kiac036] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/05/2022] [Indexed: 05/08/2023]
Abstract
ROOT MERISTEM GROWTH FACTORs (RGFs), a group of peptide hormones, play key roles in root apical meristem development. In Arabidopsis (Arabidopsis thaliana), there are 11 members of RGFs, in which at least RGF1, RGF2, and RGF3 are expressed at the root tip and are involved in root stem cell niche maintenance. RGFs are perceived by five functionally redundant receptor-like protein kinases, RGF1 INSENSITIVE 1 (RGI1) to RGI5, to maintain the expression of two downstream APETALA 2 (AP2) transcription factor genes, PLETHORA 1 (PLT1) and PLT2, and to stabilize PLT2. RGI1 to RGI3 were also named RGF RECEPTOR 1 (RGFR1) to RGFR3, respectively. Although previous studies have suggested that BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) and its paralogs, SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASEs (SERKs), may act as coreceptors of RGIs, comprehensive genetic and biochemical analyses have not been well documented. Here, we report that single, double, and triple mutants of SERKs show various degrees of short root phenotypes and insensitivity to exogenously applied RGF1. The interaction between RGIs and BAK1 and their mutual phosphorylation are RGF1 dependent. We also found that RGF1-induced MAPK activation relies on both RGIs and SERKs. We demonstrate that RGIs play redundant roles in regulating root apical meristem development. Therefore, we genetically and biochemically substantiated that SERKs, as coreceptors, play essential roles in the RGF1-mediated signaling pathway.
Collapse
Affiliation(s)
| | | | - Yujun Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zeping Cai
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Huiqiang Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Meizhen Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Kai He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Author for correspondence:
| |
Collapse
|
132
|
Dhar S, Kim J, Yoon EK, Jang S, Ko K, Lim J. SHORT-ROOT Controls Cell Elongation in the Etiolated Arabidopsis Hypocotyl. Mol Cells 2022; 45:243-256. [PMID: 35249891 PMCID: PMC9001151 DOI: 10.14348/molcells.2021.5008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 11/27/2022] Open
Abstract
Transcriptional regulation, a core component of gene regulatory networks, plays a key role in controlling individual organism's growth and development. To understand how plants modulate cellular processes for growth and development, the identification and characterization of gene regulatory networks are of importance. The SHORT-ROOT (SHR) transcription factor is known for its role in cell divisions in Arabidopsis (Arabidopsis thaliana). However, whether SHR is involved in hypocotyl cell elongation remains unknown. Here, we reveal that SHR controls hypocotyl cell elongation via the transcriptional regulation of XTH18, XTH22, and XTH24, which encode cell wall remodeling enzymes called xyloglucan endotransglucosylase/hydrolases (XTHs). Interestingly, SHR activates transcription of the XTH genes, independently of its partner SCARECROW (SCR), which is different from the known mode of action. In addition, overexpression of the XTH genes can promote cell elongation in the etiolated hypocotyl. Moreover, confinement of SHR protein in the stele still induces cell elongation, despite the aberrant organization in the hypocotyl ground tissue. Therefore, it is likely that SHR-mediated growth is uncoupled from SHR-mediated radial patterning in the etiolated hypocotyl. Our findings also suggest that intertissue communication between stele and endodermis plays a role in coordinating hypocotyl cell elongation of the Arabidopsis seedling. Taken together, our study identifies SHR as a new crucial regulator that is necessary for cell elongation in the etiolated hypocotyl.
Collapse
Affiliation(s)
- Souvik Dhar
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
- Present address: School of Biological Sciences, College of Natural Science, Seoul National University, Seoul 08826, Korea
| | - Jinkwon Kim
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Eun Kyung Yoon
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
- Present address: Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Sejeong Jang
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Kangseok Ko
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Jun Lim
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
133
|
Yi M, Yang H, Yang S, Wang J. Overexpression of SHORT-ROOT2 transcription factor enhances the outgrowth of mature axillary buds in poplar trees. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2469-2486. [PMID: 35107566 DOI: 10.1093/jxb/erac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
SHORT-ROOT (SHR) transcription factors play important roles in asymmetric cell division and radial patterning of Arabidopsis roots. In hybrid poplar (P. tremula × P. alba clone INRA 717-1B4), PtaSHR2 was preferentially expressed in axillary buds (AXBs) and transcriptionally up-regulated during AXB maturation and activation. Overexpression of SHR2 (PtSHR2OE) induced an enhanced outgrowth of AXBs below the bud maturation point, with a simultaneous transition of an active shoot apex into an arrested terminal bud. The larger and more mature AXBs of PtSHR2OE trees revealed altered expression of genes involved in axillary meristem initiation and bud activation, as well as a higher ratio of cytokinin to auxin. To elucidate the underlying mechanism of PtSHR2OE-induced high branching, subsequent molecular and biochemical studies showed that compared with wild-type trees, decapitation induced a quicker bud outburst in PtSHR2OE trees, which could be fully inhibited by exogenous application of auxin or cytokinin biosynthesis inhibitor, but not by N-1-naphthylphthalamic acid. Our results indicated that overexpression of PtSHR2B disturbed the internal hormonal balance in AXBs by interfering with the basipetal transport of auxin, rather than causing auxin biosynthesis deficiency or auxin insensitivity, thereby releasing mature AXBs from apical dominance and promoting their outgrowth.
Collapse
Affiliation(s)
- Minglei Yi
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Heyu Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
134
|
Zhang X, Yang X, He Q, Wang Y, Liang G, Liu T. Genome-wide Identification and Characterization of the GRAS Transcription Factors in Garlic ( Allium sativum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:890052. [PMID: 35498719 PMCID: PMC9039536 DOI: 10.3389/fpls.2022.890052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
GRAS transcription factors play crucial roles in plant growth and development and have been widely explored in many plant species. Garlic (Allium sativum L.) is an important crop owing to its edible and medicinal properties. However, no GRAS transcription factors have been identified in this crop. In this study, 46 garlic GRAS genes were identified and assigned to 16 subfamilies using the GRAS members of Arabidopsis thaliana, Oryza sativa, and Amborella trichopoda as reference queries. Expression analysis revealed that garlic GRAS genes showed distinct differences in various garlic tissues, as well as during different growth stages of the bulbs. Five of these 46 genes were identified as DELLA-like protein-encoding genes and three of which, Asa2G00237.1/Asa2G00240.1 and Asa4G02090.1, responded to exogenous GA3 treatment, and showed a significant association between their transcription abundance and bulb traits in 102 garlic accessions, thereby indicating their role in regulating the growth of garlic bulbs. These results will lay a useful foundation for further investigation of the biological functions of GRAS genes and guiding the genetic breeding of garlic in the future.
Collapse
Affiliation(s)
- Xueyu Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Xiai Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Qiaoyun He
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yanzhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Guolu Liang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Touming Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
135
|
Khan Y, Xiong Z, Zhang H, Liu S, Yaseen T, Hui T. Expression and roles of GRAS gene family in plant growth, signal transduction, biotic and abiotic stress resistance and symbiosis formation-a review. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:404-416. [PMID: 34854195 DOI: 10.1111/plb.13364] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
The GRAS (derived from GAI, RGA and SCR) gene family consists of plant-specific genes, works as a transcriptional regulator and plays a key part in the regulation of plant growth and development. The past decade has witnessed significant progress in understanding and advances on GRAS transcription factors in various plants. A notable concern is to what extent the mechanisms found in plants, particularly crops, are shared by other species, and what other characteristics are dependent on GRAS transcription factor (TFS)-mediated gene expression. GRAS are involved in many processes that are intimately linked to plant growth regulation. However, GRAS also perform additional roles against environmental stresses, allowing plants to function more efficiently. GRAS increase plant growth and development by improving several physiological processes, such as phytohormone, biosynthetic and signalling pathways. Furthermore, the GRAS gene family plays an important role in response to abiotic stresses, e.g. photooxidative stress. Moreover, evidence shows the involvement of GRAS in arbuscule development during plant-mycorrhiza associations. In this review, the diverse roles of GRAS in plant systems are highlighted that could be useful in enhancing crop productivity through genetic modification, especially of crops. This is the first review to report the role and function of the GRAS gene family in plant systems. Furthermore, a large number of studies are reviewed, and several limitations and research gaps identified that must be addressed in future studies.
Collapse
Affiliation(s)
- Y Khan
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Z Xiong
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - H Zhang
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - S Liu
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - T Yaseen
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - T Hui
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
136
|
Cai B, Wang T, Sun H, Liu C, Chu J, Ren Z, Li Q. Gibberellins regulate lateral root development that is associated with auxin and cell wall metabolisms in cucumber. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:110995. [PMID: 35193752 DOI: 10.1016/j.plantsci.2021.110995] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 06/14/2023]
Abstract
Cucumber is an economically important crop cultivated worldwide. Gibberellins (GAs) play important roles in the development of lateral roots (LRs), which are critical for plant stress tolerance and productivity. Therefore, it is of great importance for cucumber production to study the role of GAs in LR development. Here, the results showed that GAs regulated cucumber LR development in a concentration-dependent manner. Treatment with 1, 10, 50 and 100 μM GA3 significantly increased secondary root length, tertiary root number and length. Of these, 50 μM GA3 treatment had strong effects on increasing root dry weight and the root/shoot dry weight ratio. Pairwise comparisons identified 417 down-regulated genes enriched for GA metabolism-related processes and 447 up-regulated genes enriched for cell wall metabolism-related processes in GA3-treated roots. A total of 3523 non-redundant DEGs were identified in our RNA-Seq data through pairwise comparisons and linear factorial modeling. Of these, most of the genes involved in auxin and cell wall metabolisms were up-regulated in GA3-treated roots. Our findings not only shed light on LR regulation mediated by GA but also offer an important resource for functional studies of candidate genes putatively involved in the regulation of LR development in cucumber and other crops.
Collapse
Affiliation(s)
- Bingbing Cai
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China.
| | - Ting Wang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China.
| | - Hong Sun
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China.
| | - Cuimei Liu
- National Centre for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.
| | - Zhonghai Ren
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, Tai'an, Shandong, 271018, China.
| | - Qiang Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
137
|
Lube V, Noyan MA, Przybysz A, Salama K, Blilou I. MultipleXLab: A high-throughput portable live-imaging root phenotyping platform using deep learning and computer vision. PLANT METHODS 2022; 18:38. [PMID: 35346267 PMCID: PMC8958799 DOI: 10.1186/s13007-022-00864-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Profiling the plant root architecture is vital for selecting resilient crops that can efficiently take up water and nutrients. The high-performance imaging tools available to study root-growth dynamics with the optimal resolution are costly and stationary. In addition, performing nondestructive high-throughput phenotyping to extract the structural and morphological features of roots remains challenging. RESULTS We developed the MultipleXLab: a modular, mobile, and cost-effective setup to tackle these limitations. The system can continuously monitor thousands of seeds from germination to root development based on a conventional camera attached to a motorized multiaxis-rotational stage and custom-built 3D-printed plate holder with integrated light-emitting diode lighting. We also developed an image segmentation model based on deep learning that allows the users to analyze the data automatically. We tested the MultipleXLab to monitor seed germination and root growth of Arabidopsis developmental, cell cycle, and auxin transport mutants non-invasively at high-throughput and showed that the system provides robust data and allows precise evaluation of germination index and hourly growth rate between mutants. CONCLUSION MultipleXLab provides a flexible and user-friendly root phenotyping platform that is an attractive mobile alternative to high-end imaging platforms and stationary growth chambers. It can be used in numerous applications by plant biologists, the seed industry, crop scientists, and breeding companies.
Collapse
Affiliation(s)
- Vinicius Lube
- Laboratory of Plant Cell and Developmental Biology (LPCDB), Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | | | - Alexander Przybysz
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical and Mathematical Science and Engineering (CEMSE), KAUST, Thuwal, Saudi Arabia
| | - Khaled Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical and Mathematical Science and Engineering (CEMSE), KAUST, Thuwal, Saudi Arabia
| | - Ikram Blilou
- Laboratory of Plant Cell and Developmental Biology (LPCDB), Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
138
|
Verma S, Attuluri VPS, Robert HS. Transcriptional control of Arabidopsis seed development. PLANTA 2022; 255:90. [PMID: 35318532 PMCID: PMC8940821 DOI: 10.1007/s00425-022-03870-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/04/2022] [Indexed: 05/04/2023]
Abstract
The entire process of embryo development is under the tight control of various transcription factors. Together with other proteins, they act in a combinatorial manner and control distinct events during embryo development. Seed development is a complex process that proceeds through sequences of events regulated by the interplay of various genes, prominent among them being the transcription factors (TFs). The members of WOX, HD-ZIP III, ARF, and CUC families have a preferential role in embryonic patterning. While WOX TFs are required for initiating body axis, HD-ZIP III TFs and CUCs establish bilateral symmetry and SAM. And ARF5 performs a major role during embryonic root, ground tissue, and vasculature development. TFs such as LEC1, ABI3, FUS3, and LEC2 (LAFL) are considered the master regulators of seed maturation. Furthermore, several new TFs involved in seed storage reserves and dormancy have been identified in the last few years. Their association with those master regulators has been established in the model plant Arabidopsis. Also, using chromatin immunoprecipitation (ChIP) assay coupled with transcriptomics, genome-wide target genes of these master regulators have recently been proposed. Many seed-specific genes, including those encoding oleosins and albumins, have appeared as the direct target of LAFL. Also, several other TFs act downstream of LAFL TFs and perform their function during maturation. In this review, the function of different TFs in different phases of early embryogenesis and maturation is discussed in detail, including information about their genetic and molecular interactors and target genes. Such knowledge can further be leveraged to understand and manipulate the regulatory mechanisms involved in seed development. In addition, the genomics approaches and their utilization to identify TFs aiming to study embryo development are discussed.
Collapse
Affiliation(s)
- Subodh Verma
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Venkata Pardha Saradhi Attuluri
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Hélène S. Robert
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
139
|
Ranjan A, Sinha R, Singla-Pareek SL, Pareek A, Singh AK. Shaping the root system architecture in plants for adaptation to drought stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13651. [PMID: 35174506 DOI: 10.1111/ppl.13651] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Root system architecture plays an important role in plant adaptation to drought stress. The root system architecture (RSA) consists of several structural features, which includes number and length of main and lateral roots along with the density and length of root hairs. These features exhibit plasticity under water-limited environments and could be critical to developing crops with efficient root systems for adaptation under drought. Recent advances in the omics approaches have significantly improved our understanding of the regulatory mechanisms of RSA remodeling under drought and the identification of genes and other regulatory elements. Plant response to drought stress at physiological, morphological, biochemical, and molecular levels in root cells is regulated by various phytohormones and their crosstalk. Stress-induced reactive oxygen species play a significant role in regulating root growth and development under drought stress. Several transcription factors responsible for the regulation of RSA under drought have proven to be beneficial for developing drought tolerant crops. Molecular breeding programs for developing drought-tolerant crops have been greatly benefitted by the availability of quantitative trait loci (QTLs) associated with the RSA regulation. In the present review, we have discussed the role of various QTLs, signaling components, transcription factors, microRNAs and crosstalk among various phytohormones in shaping RSA and present future research directions to better understand various factors involved in RSA remodeling for adaptation to drought stress. We believe that the information provided herein may be helpful in devising strategies to develop crops with better RSA for efficient uptake and utilization of water and nutrients under drought conditions.
Collapse
Affiliation(s)
- Alok Ranjan
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Ragini Sinha
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Anil Kumar Singh
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, India
| |
Collapse
|
140
|
Ortigosa F, Lobato-Fernández C, Shikano H, Ávila C, Taira S, Cánovas FM, Cañas RA. Ammonium regulates the development of pine roots through hormonal crosstalk and differential expression of transcription factors in the apex. PLANT, CELL & ENVIRONMENT 2022; 45:915-935. [PMID: 34724238 DOI: 10.1111/pce.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Ammonium is a prominent source of inorganic nitrogen for plant nutrition, but excessive amounts can be toxic for many species. However, most conifers are tolerant to ammonium, a relevant physiological feature of this ancient evolutionary lineage. For a better understanding of the molecular basis of this trait, ammonium-induced changes in the transcriptome of maritime pine (Pinus pinaster Ait.) root apex have been determined by laser capture microdissection and RNA sequencing. Ammonium promoted changes in the transcriptional profiles of multiple transcription factors, such as SHORT-ROOT, and phytohormone-related transcripts, such as ACO, involved in the development of the root meristem. Nano-PALDI-MSI and transcriptomic analyses showed that the distributions of IAA and CKs were altered in the root apex in response to ammonium nutrition. Taken together, the data suggest that this early response is involved in the increased lateral root branching and principal root growth, which characterize the long-term response to ammonium supply in pine. All these results suggest that ammonium induces changes in the root system architecture through the IAA-CK-ET phytohormone crosstalk and transcriptional regulation.
Collapse
Affiliation(s)
- Francisco Ortigosa
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - César Lobato-Fernández
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Hitomi Shikano
- Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima, Japan
| | - Concepción Ávila
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Shu Taira
- Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima, Japan
| | - Francisco M Cánovas
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Rafael A Cañas
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
- Integrative Molecular Biology Lab, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| |
Collapse
|
141
|
Ginanjar EF, Teh OK, Fujita T. Characterisation of rapid alkalinisation factors in Physcomitrium patens reveals functional conservation in tip growth. THE NEW PHYTOLOGIST 2022; 233:2442-2457. [PMID: 34954833 DOI: 10.1111/nph.17942] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Small signalling peptides are key molecules for cell-to-cell communications in plants. The cysteine-rich signalling peptide, rapid alkalinisation factors (RALFs) family are involved in diverse developmental and stress responses and have expanded considerably during land plant evolution, implying neofunctionalisations in the RALF family. However, the ancestral roles of RALFs when land plant first acquired them remain unknown. Here, we functionally characterised two of the three RALFs in bryophyte Physcomitrium patens using loss-of-function mutants, overexpressors, as well as fluorescent proteins tagged reporter lines. We showed that PpRALF1 and PpRALF2 have overlapping functions in promoting protonema tip growth and elongation, showing a homologous function as the Arabidopsis RALF1 in promoting root hair tip growth. Although both PpRALFs are secreted to the plasma membrane on which PpRALF1 symmetrically localised, PpRALF2 showed a polarised localisation at the growing tip. Notably, proteolytic cleavage of PpRALF1 is necessary for its function. Our data reveal a possible evolutionary origin of the RALF functions and suggest that functional divergence of RALFs is essential to drive complex morphogenesis and to facilitate other novel processes in land plants.
Collapse
Affiliation(s)
| | - Ooi-Kock Teh
- Faculty of Science, Hokkaido University, Hokkaido, 060-0810, Japan
- Institute for the Advancement of Higher Education, Hokkaihdo University, Sapporo, 060-0817, Japan
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec.2, Academia Rd, Nankang, Taipei, Taiwan
| | - Tomomichi Fujita
- Faculty of Science, Hokkaido University, Hokkaido, 060-0810, Japan
| |
Collapse
|
142
|
Shahan R, Hsu CW, Nolan TM, Cole BJ, Taylor IW, Greenstreet L, Zhang S, Afanassiev A, Vlot AHC, Schiebinger G, Benfey PN, Ohler U. A single-cell Arabidopsis root atlas reveals developmental trajectories in wild-type and cell identity mutants. Dev Cell 2022; 57:543-560.e9. [PMID: 35134336 DOI: 10.1101/2020.06.29.178863] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/27/2021] [Accepted: 01/13/2022] [Indexed: 05/22/2023]
Abstract
In all multicellular organisms, transcriptional networks orchestrate organ development. The Arabidopsis root, with its simple structure and indeterminate growth, is an ideal model for investigating the spatiotemporal transcriptional signatures underlying developmental trajectories. To map gene expression dynamics across root cell types and developmental time, we built a comprehensive, organ-scale atlas at single-cell resolution. In addition to estimating developmental progressions in pseudotime, we employed the mathematical concept of optimal transport to infer developmental trajectories and identify their underlying regulators. To demonstrate the utility of the atlas to interpret new datasets, we profiled mutants for two key transcriptional regulators at single-cell resolution, shortroot and scarecrow. We report transcriptomic and in vivo evidence for tissue trans-differentiation underlying a mixed cell identity phenotype in scarecrow. Our results support the atlas as a rich community resource for unraveling the transcriptional programs that specify and maintain cell identity to regulate spatiotemporal organ development.
Collapse
Affiliation(s)
- Rachel Shahan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Che-Wei Hsu
- Department of Biology, Humboldt Universität zu Berlin, 10117 Berlin, Germany; The Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Trevor M Nolan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Benjamin J Cole
- Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Isaiah W Taylor
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Laura Greenstreet
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Stephen Zhang
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Anton Afanassiev
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Anna Hendrika Cornelia Vlot
- The Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany; Department of Computer Science, Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Philip N Benfey
- Department of Biology, Duke University, Durham, NC 27708, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA.
| | - Uwe Ohler
- Department of Biology, Humboldt Universität zu Berlin, 10117 Berlin, Germany; The Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany; Department of Computer Science, Humboldt Universität zu Berlin, 10117 Berlin, Germany.
| |
Collapse
|
143
|
Tabassum N, Blilou I. Cell-to-Cell Communication During Plant-Pathogen Interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:98-108. [PMID: 34664986 DOI: 10.1094/mpmi-09-21-0221-cr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Being sessile, plants are continuously challenged by changes in their surrounding environment and must survive and defend themselves against a multitude of pathogens. Plants have evolved a mode for pathogen recognition that activates signaling cascades such as reactive oxygen species, mitogen-activated protein kinase, and Ca2+ pathways, in coordination with hormone signaling, to execute the defense response at the local and systemic levels. Phytopathogens have evolved to manipulate cellular and hormonal signaling and exploit hosts' cell-to-cell connections in many ways at multiple levels. Overall, triumph over pathogens depends on how efficiently the pathogens are recognized and how rapidly the plant response is initiated through efficient intercellular communication via apoplastic and symplastic routes. Here, we review how intercellular communication in plants is mediated, manipulated, and maneuvered during plant-pathogen interaction.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2022.
Collapse
Affiliation(s)
- Naheed Tabassum
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ikram Blilou
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
144
|
Spatiotemporal analysis identifies ABF2 and ABF3 as key hubs of endodermal response to nitrate. Proc Natl Acad Sci U S A 2022; 119:2107879119. [PMID: 35046022 PMCID: PMC8794810 DOI: 10.1073/pnas.2107879119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Nitrate is a nutrient and a potent signal that impacts global gene expression in plants. However, the regulatory factors controlling temporal and cell type-specific nitrate responses remain largely unknown. We assayed nitrate-responsive transcriptome changes in five major root cell types of the Arabidopsis thaliana root as a function of time. We found that gene-expression response to nitrate is dynamic and highly localized and predicted cell type-specific transcription factor (TF)-target interactions. Among cell types, the endodermis stands out as having the largest and most connected nitrate-regulatory gene network. ABF2 and ABF3 are major hubs for transcriptional responses in the endodermis cell layer. We experimentally validated TF-target interactions for ABF2 and ABF3 by chromatin immunoprecipitation followed by sequencing and a cell-based system to detect TF regulation genome-wide. Validated targets of ABF2 and ABF3 account for more than 50% of the nitrate-responsive transcriptome in the endodermis. Moreover, ABF2 and ABF3 are involved in nitrate-induced lateral root growth. Our approach offers an unprecedented spatiotemporal resolution of the root response to nitrate and identifies important components of cell-specific gene regulatory networks.
Collapse
|
145
|
Sablowski R, Gutierrez C. Cycling in a crowd: Coordination of plant cell division, growth, and cell fate. THE PLANT CELL 2022; 34:193-208. [PMID: 34498091 PMCID: PMC8774096 DOI: 10.1093/plcell/koab222] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/31/2021] [Indexed: 05/25/2023]
Abstract
The reiterative organogenesis that drives plant growth relies on the constant production of new cells, which remain encased by interconnected cell walls. For these reasons, plant morphogenesis strictly depends on the rate and orientation of both cell division and cell growth. Important progress has been made in recent years in understanding how cell cycle progression and the orientation of cell divisions are coordinated with cell and organ growth and with the acquisition of specialized cell fates. We review basic concepts and players in plant cell cycle and division, and then focus on their links to growth-related cues, such as metabolic state, cell size, cell geometry, and cell mechanics, and on how cell cycle progression and cell division are linked to specific cell fates. The retinoblastoma pathway has emerged as a major player in the coordination of the cell cycle with both growth and cell identity, while microtubule dynamics are central in the coordination of oriented cell divisions. Future challenges include clarifying feedbacks between growth and cell cycle progression, revealing the molecular basis of cell division orientation in response to mechanical and chemical signals, and probing the links between cell fate changes and chromatin dynamics during the cell cycle.
Collapse
Affiliation(s)
| | - Crisanto Gutierrez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
146
|
Palakolanu SR, Gupta S, Yeshvekar RK, Chakravartty N, Kaliamoorthy S, Shankhapal AR, Vempati AS, Kuriakose B, Lekkala SP, Philip M, Perumal RC, Lachagari VBR, Bhatnagar-Mathur P. Genome-wide miRNAs profiles of pearl millet under contrasting high vapor pressure deficit reveal their functional roles in drought stress adaptations. PHYSIOLOGIA PLANTARUM 2022; 174:e13521. [PMID: 34392545 DOI: 10.1111/ppl.13521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Pearl millet (Pennisetum glaucum [L.] R. Br.) is an important crop capable of growing in harsh and marginal environments, with the highest degree of tolerance to drought and heat stresses among cereals. Diverse germplasm of pearl millet shows a significant phenotypic variation in response to abiotic stresses, making it a unique model to study the mechanisms responsible for stress mitigation. The present study focuses on identifying the physiological response of two pearl millet high-resolution cross (HRC) genotypes, ICMR 1122 and ICMR 1152, in response to low and high vapor pressure deficit (VPD). Under high VPD conditions, ICMR 1152 exhibited a lower transpiration rate (Tr), higher transpiration efficiency, and lower root sap exudation than ICMR 1122. Further, Pg-miRNAs expressed in the contrasting genotypes under low and high VPD conditions were identified by deep sequencing analysis. A total of 116 known and 61 novel Pg-miRNAs were identified from ICMR 1152, while 26 known and six novel Pg-miRNAs were identified from ICMR 1122 genotypes, respectively. While Pg-miR165, 168, 170, and 319 families exhibited significant differential expression under low and high VPD conditions in both genotypes, ICMR 1152 showed abundant expression of Pg-miR167, Pg-miR172, Pg-miR396 Pg-miR399, Pg-miR862, Pg-miR868, Pg-miR950, Pg-miR5054, and Pg-miR7527 indicating their direct and indirect role in root physiology and abiotic stress responses. Drought responsive Pg-miRNA targets showed upregulation in response to high VPD stress, further narrowing down the miRNAs involved in regulation of drought tolerance in pearl millet.
Collapse
Affiliation(s)
- Sudhakar Reddy Palakolanu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Saurabh Gupta
- AgriGenome Labs Pvt. Ltd, Hyderabad, Telangana, India
| | - Richa K Yeshvekar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds, UK
| | | | - Sivasakthi Kaliamoorthy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | | | - Ashwini Soumya Vempati
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | | | | | | | | | | | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| |
Collapse
|
147
|
Seemann C, Heck C, Voß S, Schmoll J, Enderle E, Schwarz D, Requena N. Root cortex development is fine-tuned by the interplay of MIGs, SCL3 and DELLAs during arbuscular mycorrhizal symbiosis. THE NEW PHYTOLOGIST 2022; 233:948-965. [PMID: 34693526 DOI: 10.1111/nph.17823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Root development is a crucial process that determines the ability of plants to acquire nutrients, adapt to the substrate and withstand changing environmental conditions. Root plasticity is controlled by a plethora of transcriptional regulators that allow, in contrast to tissue development in animals, post-embryonic changes that give rise to new tissue and specialized cells. One of these changes is the accommodation in the cortex of hyperbranched hyphae of symbiotic arbuscular mycorrhizal (AM) fungi, called arbuscules. Arbuscule-containing cells undergo massive reprogramming to coordinate developmental changes with transport processes. Here we describe a novel negative regulator of arbuscule development, MIG3. MIG3 induces and interacts with SCL3, both of which modulate the activity of the central regulator DELLA, restraining cortical cell growth. As in a tug-of-war, MIG3-SCL3 antagonizes the function of the complex MIG1-DELLA, which promotes the cell expansion required for arbuscule development, adjusting cell size during the dynamic processes of the arbuscule life cycle. Our results in the legume plant Medicago truncatula advance the knowledge of root development in dicot plants, showing the existence of additional regulatory elements not present in Arabidopsis that fine-tune the activity of conserved central modules.
Collapse
Affiliation(s)
- Christine Seemann
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Carolin Heck
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Stefanie Voß
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Jana Schmoll
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Eileen Enderle
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Diana Schwarz
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Natalia Requena
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| |
Collapse
|
148
|
Tian Y, Zhao N, Wang M, Zhou W, Guo J, Han C, Zhou C, Wang W, Wu S, Tang W, Fan M, Bai MY. Integrated regulation of periclinal cell division by transcriptional module of BZR1-SHR in Arabidopsis roots. THE NEW PHYTOLOGIST 2022; 233:795-808. [PMID: 34693527 DOI: 10.1111/nph.17824] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
The timing and extent of cell division are crucial for the correct patterning of multicellular organism. In Arabidopsis, root ground tissue maturation involves the periclinal cell division of the endodermis to generate two cell layers: endodermis and middle cortex. However, the molecular mechanism underlying this pattern formation remains unclear. Here, we report that phytohormone brassinosteroid (BR) and redox signal hydrogen peroxide (H2 O2 ) interdependently promote periclinal division during root ground tissue maturation by regulating the activity of SHORT-ROOT (SHR), a master regulator of root growth and development. BR-activated transcription factor BRASSINAZOLE RESISTANT1 (BZR1) directly binds to the promoter of SHR to induce its expression, and physically interacts with SHR to increase the transcripts of RESPIRATORY BURST OXIDASE HOMOLOGs (RBOHs) and elevate the levels of H2 O2 , which feedback enhances the interaction between BZR1 and SHR. Additionally, genetic analysis shows that SHR is required for BZR1-promoted periclinal division, and BZR1 enhances the promoting effects of SHR on periclinal division. Together, our finding reveals that the transcriptional module of BZR1-SHR fine-tunes periclinal division during root ground tissue maturation in response to hormone and redox signals.
Collapse
Affiliation(s)
- Yanchen Tian
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Na Zhao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Minmin Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Wenying Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Jieqiong Guo
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Wenfei Wang
- College of Horticulture, College of Life Sciences, Hai xia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuang Wu
- College of Horticulture, College of Life Sciences, Hai xia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenqiang Tang
- The Key Laboratory of Molecular and Cellular Biology, Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Min Fan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| |
Collapse
|
149
|
Huang C, Heinlein M. Function of Plasmodesmata in the Interaction of Plants with Microbes and Viruses. Methods Mol Biol 2022; 2457:23-54. [PMID: 35349131 DOI: 10.1007/978-1-0716-2132-5_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasmodesmata (PD) are gated plant cell wall channels that allow the trafficking of molecules between cells and play important roles during plant development and in the orchestration of cellular and systemic signaling responses during interactions of plants with the biotic and abiotic environment. To allow gating, PD are equipped with signaling platforms and enzymes that regulate the size exclusion limit (SEL) of the pore. Plant-interacting microbes and viruses target PD with specific effectors to enhance their virulence and are useful probes to study PD functions.
Collapse
Affiliation(s)
- Caiping Huang
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
150
|
Ortiz-Ramírez C, Guillotin B, Xu X, Rahni R, Zhang S, Yan Z, Coqueiro Dias Araujo P, Demesa-Arevalo E, Lee L, Van Eck J, Gingeras TR, Jackson D, Gallagher KL, Birnbaum KD. Ground tissue circuitry regulates organ complexity in maize and Setaria. Science 2021; 374:1247-1252. [PMID: 34855479 DOI: 10.1126/science.abj2327] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Carlos Ortiz-Ramírez
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA.,UGA Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Irapuato, Guanajuato 36821, México
| | - Bruno Guillotin
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Xiaosa Xu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ramin Rahni
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Sanqiang Zhang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Zhe Yan
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 1904, USA
| | | | | | - Laura Lee
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Joyce Van Eck
- Boyce Thompson Institute, Ithaca, NY 14853, USA.,Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | | | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kimberly L Gallagher
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 1904, USA
| | - Kenneth D Birnbaum
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| |
Collapse
|