101
|
Abstract
Formation of heteromeric complexes between voltage-gated K(+) (Kv) channels and accessory (beta) subunits is a widespread means to generate heterogeneity of K(+) current in the nervous system. Here we investigate the principles that determine the interactions of Caenorhabditis elegans MPS-1, a bifunctional beta-subunit that possesses kinase activity, with Kv channels. MPS-1 belongs to the evolutionarily conserved family of KCNE beta-subunits that modulate the functional properties of a variety of Kv channels and that, when defective, can cause congenital and acquired disease in Homo sapiens. In Chinese hamster ovary cells, MPS-1 forms stable complexes with different alpha-subunits. The transmembrane domain of MPS-1 is necessary and sufficient for MPS-1 complex formation. The hydropathicity of the transmembrane domain is an important factor controlling MPS-1 assembly. A highly hydrophobic MPS-1 mutant fails to interact with its endogenous channel partners when transgenically expressed in living worms. The hydropathic mechanism does not require specific points of contact between interacting proteins. This may allow MPS-1 to assemble with various Kv channels, presumably modifying the electrical properties of each.
Collapse
Affiliation(s)
- Yi Wang
- University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Department of Physiology and Biophysics, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
102
|
Abstract
In this issue of Molecular Pharmacology (p. 665), Pannacione et al. provide evidence of a role for the voltage-gated potassium channel alpha subunit Kv3.4 and its ancillary subunit MiRP2 in beta-amyloid (Abeta) peptide-mediated neuronal death. The MiRP2-Kv3.4 channel complex-previously found to be important in skeletal myocyte physiology-is now argued to be a molecular correlate of the transient outward potassium current up-regulated by Abeta peptide, considered a significant step in the etiology of Alzheimer's disease. The authors conclude that MiRP2 and Kv3.4 are up-regulated by Abeta peptide in a nuclear factor kappaB-dependent fashion at the transcriptional level, and the sea anemone toxin BDS-I is shown to protect against Abeta peptide-mediated cell death by specific blockade of Kv3.4-generated current. The findings lend weight to the premise that specific channels, such as MiRP2-Kv3.4, could hold promise as future therapeutic targets in Alzheimer's disease and potentially other neurodegenerative disorders.
Collapse
Affiliation(s)
- Eun Choi
- Greenberg Division of Cardiology, Department of Medicine, Cornell University, Weill Medical College, New York, NY 10021, USA
| | | |
Collapse
|
103
|
Pannaccione A, Boscia F, Scorziello A, Adornetto A, Castaldo P, Sirabella R, Taglialatela M, Di Renzo GF, Annunziato L. Up-regulation and increased activity of KV3.4 channels and their accessory subunit MinK-related peptide 2 induced by amyloid peptide are involved in apoptotic neuronal death. Mol Pharmacol 2007; 72:665-73. [PMID: 17495071 DOI: 10.1124/mol.107.034868] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The aim of the present study was to investigate whether K(V)3.4 channel subunits are involved in neuronal death induced by neurotoxic beta-amyloid peptides (Abeta). In particular, to test this hypothesis, three main questions were addressed: 1) whether the Abeta peptide can up-regulate both the transcription/translation and activity of K(V)3.4 channel subunit and its accessory subunit, MinK-related peptide 2 (MIRP2); 2) whether the increase in K(V)3.4 expression and activity can be mediated by the nuclear factor-kappaB (NF-kappaB) family of transcriptional factors; and 3) whether the specific inhibition of K(V)3.4 channel subunit reverts the Abeta peptide-induced neurodegeneration in hippocampal neurons and nerve growth factor (NGF)-differentiated PC-12 cells. We found that Abeta(1-42) treatment induced an increase in K(V)3.4 and MIRP2 transcripts and proteins, detected by reverse transcription-polymerase chain reaction and Western blot analysis, respectively, in NGF-differentiated PC-12 cells and hippocampal neurons. Patch-clamp experiments performed in whole-cell configuration revealed that the Abeta peptide caused an increase in I(A) current amplitude carried by K(V)3.4 channel subunits, as revealed by their specific blockade with blood depressing substance-I (BDS-I) in both hippocampal neurons and NGF-differentiated PC-12 cells. The inhibition of NF-kappaB nuclear translocation with the cell membrane-permeable peptide SN-50 prevented the increase in K(V)3.4 protein and transcript expression. In addition, the SN-50 peptide was able to block Abeta(1-42)-induced increase in K(V)3.4 K(+) currents and to prevent cell death caused by Abeta(1-42) exposure. Finally, BDS-I produced a similar neuroprotective effect by inhibiting the increase in K(V)3.4 expression. As a whole, our data indicate that K(V)3.4 channels could be a novel target for Alzheimer's disease pharmacological therapy.
Collapse
Affiliation(s)
- A Pannaccione
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Abstract
kcne are evolutionarily conserved genes that encode accessory subunits of voltage-gated K(+) (Kv) channels. Missense mutations in kcne1, kcne2, and kcne3 are linked to congenital and acquired channelopathies in Homo sapiens. Here we show an unique example of conservation of kcne activities at genetic, physiological, functional, and pathophysiological level in Caenorhabditis elegans. Thus, mps-4 is the homologue of kcne1 that operates in human heart and inner ear. Like its KCNE relatives, MPS-4 assembles with a Kv channel, EXP-2, to form a complex that controls pharyngeal muscle contractility. MPS-4 modulates EXP-2 function in a similar fashion as KCNE proteins endow human channels. When defective, MPS-4, can induce abnormal repolarization by mechanisms that resemble the way KCNE proteins are thought to provoke arrhythmia in human heart. Mutation of a conserved aspartate residue associated with human disease (MPS-4-D74N) alters the functional attributes of the C. elegans current. Taken together these data underscore a significant conservation of KCNE activities in different pumps. This implies that C. elegans can develop into a system to study the molecular and genetic basis of KCNE-mediated muscle contractility and disease states.
Collapse
Affiliation(s)
- Ki Ho Park
- University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Department of Physiology and Biophysics, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
105
|
Fontaine B, Fournier E, Sternberg D, Vicart S, Tabti N. Hypokalemic periodic paralysis: a model for a clinical and research approach to a rare disorder. Neurotherapeutics 2007; 4:225-32. [PMID: 17395132 DOI: 10.1016/j.nurt.2007.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Rare diseases have attracted little attention in the past from physicians and researchers. The situation has recently changed for several reasons. First, patient associations have successfully advocated their cause to institutions and governments. They were able to argue that, taken together, rare diseases affect approximately 10% of the population in developed countries. Second, almost 80% of rare diseases are of genetic origin. Advances in genetics have enabled the identification of the causative genes. Unprecedented financial support has been dedicated to research on rare diseases, as well as to the development of referral centers aimed at improving the quality of care. This expenditure of resources is justified by the experience in cystic fibrosis, which demonstrated that improved care delivered by specialized referral centers resulted in a dramatic increase of life expectancy. Moreover, clinical referral centers offer the unique possibility of developing high quality clinical research studies, not otherwise possible because of the geographic dispersion of patients. This is the case in France where national referral centers for rare diseases were created, including one for muscle channelopathies. The aim of this center is to develop appropriate care, clinical research, and teaching on periodic paralysis and myotonia. In this review, we plan to demonstrate how research has improved our knowledge of hypokalemic periodic paralysis and the way we evaluate, advise, and treat patients. We also advocate for the establishment of international collaborations, which are mandatory for the follow-up of cohorts and conduct of definitive therapeutic trials in rare diseases.
Collapse
Affiliation(s)
- Bertrand Fontaine
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S546, Paris, France.
| | | | | | | | | |
Collapse
|
106
|
Jurkat-Rott K, Lehmann-Horn F. Genotype-phenotype correlation and therapeutic rationale in hyperkalemic periodic paralysis. Neurotherapeutics 2007; 4:216-24. [PMID: 17395131 DOI: 10.1016/j.nurt.2007.02.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Familial hyperkalemic periodic paralysis (PP) is a dominantly inherited muscle disease characterized by attacks of flaccid weakness and intermittent myotonia. Some patients experience muscle stiffness that is aggravated by cold and exercise, bordering on the diagnosis of paramyotonia congenita. Hyperkalemic PP and paramyotonia congenita are allelic diseases caused by gain-of-function mutations of the skeletal muscle sodium channel, Nav1.4, which is essential for the generation of skeletal muscle action potentials. In this review, the functional and clinical consequences of the mutations and therapeutic strategies are reported and the differential diagnoses discussed. Also, the question is addressed of whether hyperkalemic PP is truly a different entity than normokalemic PP. Additionally, the differential diagnosis of Andersen-Tawil syndrome in which hyperkalemic PP attacks may occur will be briefly introduced. Last, because hyperkalemic PP has been described to be associated with an R83H mutation of a MiRP2 potassium channel subunit, evidence refuting disease-causality in this case will be discussed.
Collapse
|
107
|
Abstract
Type I transmembrane KCNE peptides contain a conserved C-terminal cytoplasmic domain that abuts the transmembrane segment. In KCNE1, this region is required for modulation of KCNQ1 K(+) channels to afford the slowly activating cardiac I(Ks) current. We utilized alanine/leucine scanning to determine whether this region possesses any secondary structure and to identify the KCNE1 residues that face the KCNQ1 channel complex. Helical periodicity analysis of the mutation-induced perturbations in voltage activation and deactivation kinetics of KCNQ1-KCNE1 complexes defined that the KCNE1 C terminus is alpha-helical when split in half at a conserved proline residue. This helical rendering assigns all known long QT mutations in the KCNE1 C-terminal domain as protein facing. The identification of a secondary structure within the KCNE1 C-terminal domain provides a structural scaffold to map protein-protein interactions with the pore-forming KCNQ1 subunit as well as the cytoplasmic regulatory proteins anchored to KCNQ1-KCNE complexes.
Collapse
Affiliation(s)
- Jessica M Rocheleau
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|
108
|
Catterall WA, Cestèle S, Yarov-Yarovoy V, Yu FH, Konoki K, Scheuer T. Voltage-gated ion channels and gating modifier toxins. Toxicon 2007; 49:124-41. [PMID: 17239913 DOI: 10.1016/j.toxicon.2006.09.022] [Citation(s) in RCA: 462] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Voltage-gated sodium, calcium, and potassium channels generate electrical signals required for action potential generation and conduction and are the molecular targets for a broad range of potent neurotoxins. These channels are built on a common structural motif containing six transmembrane segments and a pore loop. Their pores are formed by the S5/S6 segments and the pore loop between them, and they are gated by bending of the S6 segments at a hinge glycine or proline residue. The voltage sensor domain consists of the S1-S4 segments, with positively charged residues in the S4 segment serving as gating charges. The diversity of toxin action on these channels is illustrated by sodium channels, which are the molecular targets for toxins that act at six or more distinct receptor sites on the channel protein. Both hydrophilic low molecular weight toxins and larger polypeptide toxins physically block the pore and prevent sodium conductance. Hydrophobic alkaloid toxins and related lipid-soluble toxins act at intramembrane sites and alter voltage-dependent gating of sodium channels via an allosteric mechanism. In contrast, polypeptide toxins alter channel gating by voltage-sensor trapping through binding to extracellular receptor sites, and this toxin interaction has now been modeled at the atomic level for a beta-scorpion toxin. The voltage-sensor trapping mechanism may be a common mode of action for polypeptide gating modifier toxins acting on all of the voltage-gated ion channels.
Collapse
Affiliation(s)
- William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA.
| | | | | | | | | | | |
Collapse
|
109
|
Heitzmann D, Koren V, Wagner M, Sterner C, Reichold M, Tegtmeier I, Volk T, Warth R. KCNE Beta Subunits Determine pH Sensitivity of KCNQ1 Potassium Channels. Cell Physiol Biochem 2007; 19:21-32. [PMID: 17310097 DOI: 10.1159/000099189] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Heteromeric KCNEx/KCNQ1 (=KvLQT1, Kv7.1) K(+) channels are important for repolarization of cardiac myocytes, endolymph secretion in the inner ear, gastric acid secretion, and transport across epithelia. They are modulated by pH in a complex way: homomeric KCNQ1 is inhibited by external acidification (low pH(e)); KCNE2/KCNQ1 is activated; and for KCNE1/KCNQ1, variable effects have been reported. METHODS The role of KCNE subunits for the effect of pH(e) on KCNQ1 was analyzed in transfected COS cells and cardiac myocytes by the patch-clamp technique. RESULTS In outside-out patches of transfected cells, hKCNE2/hKCNQ1 current was increased by acidification down to pH 4.5. Chimeras with the acid-insensitive hKCNE3 revealed that the extracellular N-terminus and at least part of the transmembrane domain of hKCNE2 are needed for activation by low pH(e). hKCNE1/hKCNQ1 heteromeric channels exhibited marked changes of biophysical properties at low pH(e): The slowly activating hKCNE1/hKCNQ1 channels were converted into constitutively open, non-deactivating channels. Experiments on guinea pig and mouse cardiac myocytes pointed to an important role of KCNQ1 during acidosis implicating a significant contribution to cardiac repolarization under acidic conditions. CONCLUSION External pH can modify current amplitude and biophysical properties of KCNQ1. KCNE subunits work as molecular switches by modulating the pH sensitivity of human KCNQ1.
Collapse
|
110
|
Panaghie G, Abbott GW. The role of S4 charges in voltage-dependent and voltage-independent KCNQ1 potassium channel complexes. ACTA ACUST UNITED AC 2007; 129:121-33. [PMID: 17227916 PMCID: PMC2154355 DOI: 10.1085/jgp.200609612] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Voltage-gated potassium (Kv) channels extend their functional repertoire by coassembling with MinK-related peptides (MiRPs). MinK slows the activation of channels formed with KCNQ1 α subunits to generate the voltage-dependent IKs channel in human heart; MiRP1 and MiRP2 remove the voltage dependence of KCNQ1 to generate potassium “leak” currents in gastrointestinal epithelia. Other Kv α subunits interact with MiRP1 and MiRP2 but without loss of voltage dependence; the mechanism for this disparity is unknown. Here, sequence alignments revealed that the voltage-sensing S4 domain of KCNQ1 bears lower net charge (+3) than that of any other eukaryotic voltage-gated ion channel. We therefore examined the role of KCNQ1 S4 charges in channel activation using alanine-scanning mutagenesis and two-electrode voltage clamp. Alanine replacement of R231, at the N-terminal side of S4, produced constitutive activation in homomeric KCNQ1 channels, a phenomenon not observed with previous single amino acid substitutions in S4 of other channels. Homomeric KCNQ4 channels were also made constitutively active by mutagenesis to mimic the S4 charge balance of R231A-KCNQ1. Loss of single S4 charges at positions R231 or R237 produced constitutively active MinK-KCNQ1 channels and increased the constitutively active component of MiRP2-KCNQ1 currents. Charge addition to the CO2H-terminal half of S4 eliminated constitutive activation in MiRP2-KCNQ1 channels, whereas removal of homologous charges from KCNQ4 S4 produced constitutively active MiRP2-KCNQ4 channels. The results demonstrate that the unique S4 charge paucity of KCNQ1 facilitates its unique conversion to a leak channel by ancillary subunits such as MiRP2.
Collapse
Affiliation(s)
- Gianina Panaghie
- Greenberg Division of Cardiology, Department of Medicine, Cornell University, Weill Medical College, New York, NY 10021, USA
| | | |
Collapse
|
111
|
Jurkat-Rott K, Lehmann-Horn F. Paroxysmal muscle weakness: the familial periodic paralyses. J Neurol 2006; 253:1391-8. [PMID: 17139526 DOI: 10.1007/s00415-006-0339-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 06/26/2006] [Indexed: 11/28/2022]
Abstract
The familial periodic paralyses (PP) were commonly considered to be benign diseases since frequency and severity of the paralytic attacks decrease in adulthood. However, with increasing age, a third of the patients develop permanent weakness and muscle degeneration with fatty replacement. Another complication, cardiac arrhythmia, can result from the dyskalemia during paralytic attacks. The familial PP are typical dominant ion channelopathies: the function of the mutant muscular channel is compensated in the interictal state but defective under certain conditions which then cause flaccid weakness. A triggering factor is the level of serum potassium, the extracellular ion decisive for membrane excitability. In hyper- and hypokalemic periodic paralysis, the mutations are specifically located in the voltage-gated sodium and calcium channels which are essential for action potential generation or excitation-contraction coupling. The common mechanism for the membrane inexcitability during paralytic attacks is a transient membrane depolarization that inactivates the sodium channels which are then no longer available for action potential generation. For the third PP type, the Andersen syndrome, the responsible gene is also expressed in cardiac muscle, and, independently of paralytic attacks, the hazard of ventricular arrhythmias is inherent. The gene product, an inwardly rectifying potassium channel, is responsible for maintaining the resting membrane potential, and all known mutations cause dominant-negative effects on the tetrameric channel complexes. In this article the clinical consequences of the mutations and the therapeutic strategies for all three types of PP are reported.
Collapse
Affiliation(s)
- Karin Jurkat-Rott
- Dept of Applied Physiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | | |
Collapse
|
112
|
Burtey S, Vacher-Coponat H, Berland Y, Dussol B. À propos de deux cas de paralysie périodique hypokaliémique. Nephrol Ther 2006; 2:379-86. [PMID: 17081960 DOI: 10.1016/j.nephro.2006.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Accepted: 07/24/2006] [Indexed: 10/24/2022]
Abstract
We report on two cases of hypokaliemic periodic paralysis due to a potassium shift from the extracellular to the intracellular compartment of skeletal muscle cells. The first case occurred in a 15-year-old boy who experienced rapid onset flaccid tetraplegia without neurological abnormalities. Physical exam revealed facial dysmorphy, and EKG a long QT. Biology evidenced shift hypokalemia that was quickly reversible after administration of intravenous potassium. After exclusion of Andersen-Tawil syndrom, hypokalemic familial paralysis (Westphall disease) was diagnosed by molecular genetic testing (disease-causing mutation in CACNA1S) in the proband and in three other family members. The second case occurred in a 24-year-old male who experienced rapid onset flaccid tetraplegia due to intracellular potassium shift that was quickly reversible after administration of intravenous potassium. Biology revealed thyrotoxicosis due to Grave's disease. To the best of our knowledge, this is the first case described in a people from pacific origin. The clinical, biological, and electromyographic findings of the most frequent causes of periodic paralysis are underlined as well as the molecular genetic diagnosis in familial forms.
Collapse
Affiliation(s)
- Stéphane Burtey
- Service de néphrologie-hémodialyse-transplantation rénale, hôpital de La Conception, 147, boulevard Baille, 13385 Marseille cedex 05, France
| | | | | | | |
Collapse
|
113
|
Kageyama K, Terui K, Tsutaya S, Matsuda E, Shoji M, Sakihara S, Nigawara T, Takayasu S, Moriyama T, Yasujima M, Suda T. Gene analysis of the calcium channel 1 subunit and clinical studies for two patients with hypokalemic periodic paralysis. J Endocrinol Invest 2006; 29:928-33. [PMID: 17185904 DOI: 10.1007/bf03349199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hypokalemic periodic paralysis (HypoPP) is a skeletal muscle disorder in which episodic attacks of muscle weakness occur; they are associated with decreased serum potassium (K+) levels. Recent molecular approaches have clarified that the condition is caused by mutations in the skeletal muscle voltage-gated calcium channel 1 subunit (CACNA1S). We describe two unrelated patients with HypoPP, followed by their relevant clinical studies and gene analysis. Clinical studies included an oral glucose tolerance test (OGTT), food-loading and insulin tolerance tests (ITT). For Case 1, serum K+ levels were extremely decreased following insulin tolerance testing compared with levels for controls. These results support the hypothesis that no efflux of K+ ion occurs in patients because of low activity of adenosine triphosphate (ATP)-sensitive K+ channel (KATP) channels. Mutational analysis of the CACNA1S gene showed a duplicate insertion of 14 base pairs (bp) from 52 to 65 in intron 26, present in the heterozygous state in both patients. No other mutations were detected in the CACNA1S gene, the muscle sodium channel gene (SCN4A) or the voltage-gated K+ channel gene (KCN3) of either patient. Further analysis showed that this duplicate insertion of 14 bp in intron 26 of the CACNA1S gene was found in 23.7% of healthy subjects. K+ dynamics studies are useful for confirming this syndrome, while further gene analysis for various ion channels using amplification and direct sequencing are required to evaluate the molecular basis of the disorder in the individual patient.
Collapse
Affiliation(s)
- K Kageyama
- Department of Endocrinology, Metabolism and Infectious Diseases, Hirosaki University School of Medicine, Hirosaki, Aomori 036-8562, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Abstract
One of the functional roles of the corneal epithelial layer is to protect the cornea, lens and other underlying ocular structures from damages caused by environmental insults. It is important for corneal epithelial cells to maintain this function by undergoing continuous renewal through a dynamic process of wound healing. Previous studies in corneal epithelial cells have provided substantial evidence showing that environmental insults, such as ultraviolet (UV) irradiation and other biohazards, can induce stress-related cellular responses resulting in apoptosis and thus interrupt the dynamic process of wound healing. We found that UV irradiation-induced apoptotic effects in corneal epithelial cells are started by the hyperactivation of K+ channels in the cell membrane resulting in a fast loss of intracellular K+ ions. Recent studies provide further evidence indicating that these complex responses in corneal epithelial cells are resulted from the activation of stress-related signaling pathways mediated by K+ channel activity. The effect of UV irradiation on corneal epithelial cell fate shares common signaling mechanisms involving the activation of intracellular responses that are often activated by the stimulation of various cytokines. One piece of evidence for making this distinction is that at early times UV irradiation activates a Kv3.4 channel in corneal epithelial cells to elicit activation of c-Jun N-terminal kinase cascades and p53 activation leading to cell cycle arrest and apoptosis. The hypothetic model is that UV-induced potassium channel hyperactivity as an early event initiates fast cell shrinkages due to the loss of intracellular potassium, resulting in the activation of scaffolding protein kinases and cytoskeleton reorganizations. This review article presents important control mechanisms that determine Kv channel activity-mediated cellular responses in corneal epithelial cells, involving activation of stress-induced signaling pathways, arrests of cell cycle progression and/or induction of apoptosis.
Collapse
Affiliation(s)
- Luo Lu
- Department of Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles, Harbor-UCLA Medical Center, CA 90502, USA.
| |
Collapse
|
115
|
Abstract
Voltage-gated potassium channels regulate cell membrane potential and excitability in neurons and other cell types. A precise control of neuronal action potential patterns underlies the basic functioning of the central and peripheral nervous system. This control relies on the adaptability of potassium channel activities. The functional diversity of potassium currents, however, far exceeds the considerable molecular diversity of this class of genes. Potassium current diversity contributes to the specificity of neuronal firing patterns and may be achieved by regulated transcription, RNA splicing, and posttranslational modifications. Another mechanism for regulation of potassium channel activity is through association with interacting proteins and accessory subunits. Here the authors highlight recent work that addresses this growing area of exploration and discuss areas of future investigation.
Collapse
Affiliation(s)
- Yan Li
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
116
|
Lundby A, Olesen SP. KCNE3 is an inhibitory subunit of the Kv4.3 potassium channel. Biochem Biophys Res Commun 2006; 346:958-67. [PMID: 16782062 DOI: 10.1016/j.bbrc.2006.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2006] [Accepted: 06/01/2006] [Indexed: 11/26/2022]
Abstract
The mammalian Kv4.3 potassium channel is a fast activating and inactivating K+ channel widely distributed in mammalian tissues. Kv4.3 is the major component of various physiologically important currents ranging from A-type currents in the CNS to the transient outward potassium conductance in the heart (I(to)). Here we show that the KCNE3 beta-subunit has a strong inhibitory effect on current conducted by heterologously expressed Kv4.3 channels. KCNE3 reduces the Kv4.3 current amplitude, and it slows down the channel activation and inactivation as well as the recovery from inactivation. KCNE3 also inhibits currents generated by Kv4.3 in complex with the accessory subunit KChIP2. We find the inhibitory effect of KCNE3 to be specific for Kv4.3 within the Kv4 channel family. Kv4.3 has previously been shown to interact with a number of beta-subunits, but none of the described subunit-interactions exert an inhibitory effect on the Kv4.3 current.
Collapse
Affiliation(s)
- Alicia Lundby
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Medical Physiology, University of Copenhagen, The Panum Institute, 3 Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | | |
Collapse
|
117
|
Diedrich DA, Wedel DJ. Thyrotoxic periodic paralysis and anesthesia report of a case and literature review. J Clin Anesth 2006; 18:286-92. [PMID: 16797431 DOI: 10.1016/j.jclinane.2005.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 08/17/2005] [Indexed: 10/24/2022]
Abstract
Thyrotoxic periodic paralysis (TPP) is a disease characterized by recurrent episodes of paralysis and hypokalemia during a thyrotoxic state. The disease primarily affects people of Asian descent, but can affect other ethnic groups. In Asians, the symptoms of thyrotoxicosis are distinct and usually precede the first paralytic episode, whereas in non-Asian populations, paralysis is the presenting symptom. If TPP has not been diagnosed and the patient has a surgical procedure during general or regional anesthesia, symptoms of the disease may be confused with other adverse perioperative events such as delayed recovery from neuromuscular paralysis. No specific anesthetic regimen is superior. Current TTP treatment recommendations involve treating the underlying hyperthyroid state. Other modalities such as beta-blockade and potassium replacement are also important in the acute paralytic state. Future diagnostic and treatment innovations may lie in the genetic and molecular understanding of this disease. We present a case of an Asian male with known TPP undergoing general anesthesia, a brief case series involving 5 patients, and a review of the literature.
Collapse
Affiliation(s)
- Daniel A Diedrich
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
118
|
Wang W, Jiang L, Ye L, Zhu N, Su T, Guan L, Li X, Ning G. Mutation screening in Chinese hypokalemic periodic paralysis patients. Mol Genet Metab 2006; 87:359-63. [PMID: 16386935 DOI: 10.1016/j.ymgme.2005.10.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2005] [Revised: 10/29/2005] [Accepted: 10/31/2005] [Indexed: 11/26/2022]
Abstract
Thyrotoxic periodic paralysis (TPP), familial periodic paralysis (FPP), and sporadic periodic paralysis (SPP) are the most common causes of hypokalemic periodic paralysis (hypoKPP). The patients present with similar clinical features characterized by episodic attacks of muscle weakness and a decrease in blood potassium. Mutations in the gene encoding the voltage-sensor coding regions of the skeletal muscle sodium channel gene (SCN4A) and the alpha-1 subunit of the skeletal muscle calcium channel gene were analyzed in 23 Chinese hypoKPP patients, including 1 FPP pedigree, 14 TPP patients, and 8 SPP patients. In addition, R83H mutation of the potassium channel subunit gene which was originally published as periodic paralysis mutation was also analyzed. A heterozygous CGT-TGT mutation at codon 672 in SCN4A gene was identified to segregate with the disease in the FPP family. Mutations in these regions were excluded in those patients with SPP and TPP. The results suggest that a likely genetic basis for FPP does not contribute to TPP and SPP, despite close similarities among FPP, TPP, and SPP.
Collapse
Affiliation(s)
- Weiqing Wang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiaotong University, Medical School, PR China
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Abbott GW, Butler MH, Goldstein SAN. Phosphorylation and protonation of neighboring MiRP2 sites: function and pathophysiology of MiRP2-Kv3.4 potassium channels in periodic paralysis. FASEB J 2006; 20:293-301. [PMID: 16449802 DOI: 10.1096/fj.05-5070com] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MinK-related peptide 2 (MiRP2) and Kv3.4 subunits assemble in skeletal muscle to create subthreshold, voltage-gated potassium channels. MiRP2 acts on Kv3.4 to shift the voltage dependence of activation, speed recovery from inactivation, suppress cumulative inactivation and increase unitary conductance. We previously found an R83H missense mutation in MiRP2 that segregated with periodic paralysis in two families and diminished the effects of MiRP2 on Kv3.4. Here we show that MiRP2 has a single, functional PKC phosphorylation site at serine 82 and that normal MiRP2-Kv3.4 function requires phosphorylation of the site. The R83H variant does not prevent PKC phosphorylation of neighboring S82; rather, the change shifts the voltage dependence of activation and endows MiRP2-Kv3.4 channels with sensitivity to changes in intracellular pH across the physiological range. Thus, current passed by single R83H channels decreases as internal pH is lowered (pK(a) approximately 7.3, consistent with histidine protonation) whereas wild-type channels are largely insensitive. These findings identify a key regulatory domain in MiRP2 and suggest a mechanistic link between acidosis and episodes of periodic paralysis.
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Greenberg Division of Cardiology, Department of Medicine and Department of Pharmacology, Cornell University, Weill Medical College, New York, New York, USA
| | | | | |
Collapse
|
120
|
Yeung SYM, Thompson D, Wang Z, Fedida D, Robertson B. Modulation of Kv3 subfamily potassium currents by the sea anemone toxin BDS: significance for CNS and biophysical studies. J Neurosci 2006; 25:8735-45. [PMID: 16177043 PMCID: PMC1314979 DOI: 10.1523/jneurosci.2119-05.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Kv3 potassium channels, with their ultra-rapid gating and high activation threshold, are essential for high-frequency firing in many CNS neurons. Significantly, the Kv3.4 subunit has been implicated in the major CNS disorders Parkinson's and Alzheimer's diseases, and it is claimed that selectively targeting this subunit will have therapeutic utility. Previous work suggested that BDS toxins ("blood depressing substance," from the sea anemone Anemonia sulcata) were specific blockers for rapidly inactivating Kv3.4 channels, and consequently these toxins are increasingly used as diagnostic agents for Kv3.4 subunits in central neurons. However, precisely how selective are these toxins for this important CNS protein? We show that BDS is not selective for Kv3.4 but markedly inhibits current through Kv3.1 and Kv3.2 channels. Inhibition comes about not by "pore block" but by striking modification of Kv3 gating kinetics and voltage dependence. Activation and inactivation kinetics are slowed by BDS-I and BDS-II, and V(1/2) for activation is shifted to more positive voltages. Alanine substitution mutagenesis around the S3b and S4 segments of Kv3.2 reveals that BDS acts via voltage-sensing domains, and, consistent with this, ON gating currents from nonconducting Kv3.2 are markedly inhibited. The altered kinetics and gating properties, combined with lack of subunit selectivity with Kv3 subunits, seriously affects the usefulness of BDS toxins in CNS studies. Furthermore, our results do not easily fit with the voltage sensor "paddle" structure proposed recently for Kv channels. Our data will be informative for experiments designed to dissect out the roles of Kv3 subunits in CNS function and dysfunction.
Collapse
Affiliation(s)
- Shuk Yin M Yeung
- Neuroscience Group, School of Biomedical Sciences, University of Leeds, Leeds LS2 9NQ, United Kingdom
| | | | | | | | | |
Collapse
|
121
|
Jespersen T, Grunnet M, Rasmussen HB, Jørgensen NB, Jensen HS, Angelo K, Olesen SP, Klaerke DA. The corticosteroid hormone induced factor: a new modulator of KCNQ1 channels? Biochem Biophys Res Commun 2006; 341:979-88. [PMID: 16476578 DOI: 10.1016/j.bbrc.2006.01.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 01/11/2006] [Indexed: 10/25/2022]
Abstract
The corticosteroid hormone induced factor (CHIF) is a member of the one-transmembrane segment protein family named FXYD, which also counts phospholemman and the Na,K-pump gamma-subunit. Originally it was suggested that CHIF could induce the expression of the I(Ks) current when expressed in Xenopus laevis oocytes, but recently CHIF has attracted attention as a modulatory subunit of the Na,K-pump. In renal and intestinal epithelia, the expression of CHIF is dramatically up-regulated in response to aldosterone stimulation, and regulation of epithelial ion channels by CHIF is an attractive hypothesis. To study a potential regulatory effect of the CHIF subunit on KCNQ1 channels, co-expression experiments were performed in Xenopus laevis oocytes and mammalian CHO-K1 cells. Electrophysiological characterization was obtained by two-electrode voltage-clamp and patch-clamp, respectively. In both expression systems, we find that CHIF drastically modulates the KCNQ1 current; in the presence of CHIF, the KCNQ1 channels open at all membrane potentials. Thereby, CHIF is the first accessory subunit shown to be capable of modulating both the Na,K-pump and an ion channel. To find a possible physiological function of the constitutively open KCNQ1/CHIF complex, the precise localization of KCNQ1 and CHIF in distal colon and kidney from control and salt-depleted rats was determined by confocal microscopy. However, in these tissues, we did not detect an obvious overlap in expression between KCNQ1 and CHIF. In conclusion, the hormone-regulated subunit CHIF modulates the voltage sensitivity of the KCNQ channels, but so far evidence for an actual co-localization of CHIF and KCNQ1 channels in native tissue is lacking.
Collapse
Affiliation(s)
- Thomas Jespersen
- Department of Medical Physiology and Danish Arrhythmia Research Centre, The Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Lundquist AL, Turner CL, Ballester LY, George AL. Expression and transcriptional control of human KCNE genes. Genomics 2006; 87:119-28. [PMID: 16303284 DOI: 10.1016/j.ygeno.2005.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 09/06/2005] [Accepted: 09/07/2005] [Indexed: 11/26/2022]
Abstract
Potassium channels are essential for a variety of cellular processes ranging from membrane excitability to cellular proliferation. The KCNE genes (KCNE1-5) encode a family of single-transmembrane-domain proteins that modulate the properties of several potassium channels, suggesting a physiologic role for these accessory subunits in many human tissues. To investigate the expression and transcriptional control of KCNE genes we mapped transcription start sites, delineated 5' genomic structure, and characterized functional promoter elements for each gene. We identified alternatively spliced transcripts for both KCNE1 and KCNE3, including a cardiac-specific KCNE1 transcript. Analysis of relative expression levels of KCNE1-5 in a panel of human tissues revealed distinct, but overlapping, expression patterns. The coexpression of multiple functionally distinct KCNE genes in some tissues infers complex accessory subunit modification of potassium channels. Identification of the core promoter elements necessary for transcriptional control of the KCNE genes facilitates future work investigating factors responsible for tissue-specific expression as well as the discovery of promoter variants associated with disease.
Collapse
Affiliation(s)
- Andrew L Lundquist
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
123
|
Yu FH, Yarov-Yarovoy V, Gutman GA, Catterall WA. Overview of Molecular Relationships in the Voltage-Gated Ion Channel Superfamily. Pharmacol Rev 2005; 57:387-95. [PMID: 16382097 DOI: 10.1124/pr.57.4.13] [Citation(s) in RCA: 313] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Frank H Yu
- Department of Pharmacology, Campus Box 357280, University of Washington, Seattle, WA 98195-7280, USA
| | | | | | | |
Collapse
|
124
|
Gordon E, Roepke TK, Abbott GW. Endogenous KCNE subunits govern Kv2.1 K+ channel activation kinetics in Xenopus oocyte studies. Biophys J 2005; 90:1223-31. [PMID: 16326911 PMCID: PMC1367273 DOI: 10.1529/biophysj.105.072504] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kv2.1 is a voltage-gated potassium (Kv) channel that generates delayed rectifier currents in mammalian heart and brain. The biophysical properties of Kv2.1 and other ion channels have been characterized by functional expression in heterologous systems, and most commonly in Xenopus laevis oocytes. A number of previous oocyte-based studies of mammalian potassium channels have revealed expression-level-dependent changes in channel properties, leading to the suggestion that endogenous oocyte factors regulate channel gating. Here, we show that endogenous oocyte potassium channel KCNE ancillary subunits xMinK and xMiRP2 slow the activation of oocyte-expressed mammalian Kv2.1 channels two-to-fourfold. This produces a sigmoidal relationship between Kv2.1 current density and activation rate in oocyte-based two-electrode voltage clamp studies. The effect of endogenous xMiRP2 and xMinK on Kv2.1 activation is diluted at high Kv2.1 expression levels, or by RNAi knockdown of either endogenous subunit. RNAi knockdown of both xMiRP2 and xMinK eliminates the correlation between Kv2.1 expression level and activation kinetics. The data demonstrate a molecular basis for expression-level-dependent changes in Kv channel gating observed in heterologous expression studies.
Collapse
Affiliation(s)
- Earl Gordon
- Greenberg Division of Cardiology, Department of Medicine, Cornell University, Weill Medical College, New York 10021, USA
| | | | | |
Collapse
|
125
|
Gordon E, Cohen JL, Engel R, Abbott GW. 1,4-Diazabicyclo[2.2.2]octane derivatives: a novel class of voltage-gated potassium channel blockers. Mol Pharmacol 2005; 69:718-26. [PMID: 16317109 DOI: 10.1124/mol.105.018663] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Voltage-gated potassium (Kv) channels are targets for therapeutic drugs in the treatment of pathologic conditions including cardiac arrhythmia and epilepsy. In this study, we synthesized three classes of novel polyammonium compounds incorporating the bicyclic unit 1,4-diazabicyclo[2.2.2]octane (DABCO) and tested their action on three representative mammalian Kv channels (Kv2.1, Kv3.4, and Kv4.2) expressed in Xenopus laevis oocytes. Nonsubstituted DABCO did not block the Kv channels tested. Simple DABCO monostrings and diDABCO strings inhibited Kv2.1 and Kv3.4 channels, with potency increasing with string length for both these DABCO classes. Both Kv2.1 and Kv3.4 were most sensitive to C16 monostrings, with IC50 values of 1.9 and 0.6 microM, respectively. For compounds comprising two DABCO groups separated by an aromatic ring, inhibition depended upon relative positioning of the two DABCO groups, and only the para form (JC638.2alpha) was active, blocking Kv2.1 with an IC50 of 186 microM. Kv4.2 channels were relatively insensitive to all compounds tested. Unlike the tetraethylammonium ion (TEA), neither JC638.2alpha nor C16 monostring TA279 produced block when applied intracellularly via the recording electrode to Kv2.1 channels expressed in Chinese hamster ovary cells, suggesting against an internal site of action. However, JC638.2alpha protected an introduced cysteine (K356C) in the Kv2.1 outer pore from permanent modification by methanethiosulfonate ethyltrimethylammonium (MTSET). These data suggest that JC638.2alpha occupies an external binding site similar to that of TEA in the Kv2.1 outer pore, but with much higher affinity than TEA. These DABCO salts represent a new class of Kv channel blockers, some with higher potencies than any previously described quaternary ammonium ions. The potential for synthesis of an array of modular derivatives suggests that DABCO compounds hold promise as probes of Kv channel structure and identity and as potential therapeutic agents.
Collapse
Affiliation(s)
- Earl Gordon
- Greenberg Division of Cardiology, Department of Medicine, Weill Medical College of Cornell University, 520 East 70th Street, New York, NY 10021, USA
| | | | | | | |
Collapse
|
126
|
Abstract
The heart is a rhythmic electromechanical pump, the functioning of which depends on action potential generation and propagation, followed by relaxation and a period of refractoriness until the next impulse is generated. Myocardial action potentials reflect the sequential activation and inactivation of inward (Na(+) and Ca(2+)) and outward (K(+)) current carrying ion channels. In different regions of the heart, action potential waveforms are distinct, owing to differences in Na(+), Ca(2+), and K(+) channel expression, and these differences contribute to the normal, unidirectional propagation of activity and to the generation of normal cardiac rhythms. Changes in channel functioning, resulting from inherited or acquired disease, affect action potential repolarization and can lead to the generation of life-threatening arrhythmias. There is, therefore, considerable interest in understanding the mechanisms that control cardiac repolarization and rhythm generation. Electrophysiological studies have detailed the properties of the Na(+), Ca(2+), and K(+) currents that generate cardiac action potentials, and molecular cloning has revealed a large number of pore forming (alpha) and accessory (beta, delta, and gamma) subunits thought to contribute to the formation of these channels. Considerable progress has been made in defining the functional roles of the various channels and in identifying the alpha-subunits encoding these channels. Much less is known, however, about the functioning of channel accessory subunits and/or posttranslational processing of the channel proteins. It has also become clear that cardiac ion channels function as components of macromolecular complexes, comprising the alpha-subunits, one or more accessory subunit, and a variety of other regulatory proteins. In addition, these macromolecular channel protein complexes appear to interact with the actin cytoskeleton and/or the extracellular matrix, suggesting important functional links between channel complexes, as well as between cardiac structure and electrical functioning. Important areas of future research will be the identification of (all of) the molecular components of functional cardiac ion channels and delineation of the molecular mechanisms involved in regulating the expression and the functioning of these channels in the normal and the diseased myocardium.
Collapse
Affiliation(s)
- Jeanne M Nerbonne
- Dept. of Molecular Biology and Pharmacology, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | |
Collapse
|
127
|
Cai SQ, Hernandez L, Wang Y, Park KH, Sesti F. MPS-1 is a K+ channel β-subunit and a serine/threonine kinase. Nat Neurosci 2005; 8:1503-9. [PMID: 16222231 DOI: 10.1038/nn1557] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 09/02/2005] [Indexed: 11/09/2022]
Abstract
We report the first example of a K+ channel beta-subunit that is also a serine/threonine kinase. MPS-1 is a single-transmembrane domain protein that coassembles with voltage-gated K+ channel KVS-1 in the nervous system of the nematode Caenorhabditis elegans. Biochemical analysis shows that MPS-1 can phosphorylate KVS-1 and other substrates. Electrophysiological analysis in Chinese hamster ovary (CHO) cells demonstrates that MPS-1 activity leads to a significant decrease in the macroscopic current. Single-channel analysis and biotinylation assays indicate that MPS-1 reduces the macroscopic current by lowering the open probability of the channel. These data are consistent with a model that predicts that the MPS-1-dependent phosphorylation of KVS-1 sustains cell excitability by controlling K+ flux.
Collapse
Affiliation(s)
- Shi-Qing Cai
- University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Department of Physiology and Biophysics, 683 Hoes Lane, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
128
|
Jurkat-Rott K, Lehmann-Horn F. Muscle channelopathies and critical points in functional and genetic studies. J Clin Invest 2005; 115:2000-9. [PMID: 16075040 PMCID: PMC1180551 DOI: 10.1172/jci25525] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Muscle channelopathies are caused by mutations in ion channel genes, by antibodies directed against ion channel proteins, or by changes of cell homeostasis leading to aberrant splicing of ion channel RNA or to disturbances of modification and localization of channel proteins. As ion channels constitute one of the only protein families that allow functional examination on the molecular level, expression studies of putative mutations have become standard in confirming that the mutations cause disease. Functional changes may not necessarily prove disease causality of a putative mutation but could be brought about by a polymorphism instead. These problems are addressed, and a more critical evaluation of the underlying genetic data is proposed.
Collapse
|
129
|
Venance SL, Cannon SC, Fialho D, Fontaine B, Hanna MG, Ptacek LJ, Tristani-Firouzi M, Tawil R, Griggs RC. The primary periodic paralyses: diagnosis, pathogenesis and treatment. ACTA ACUST UNITED AC 2005; 129:8-17. [PMID: 16195244 DOI: 10.1093/brain/awh639] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Periodic paralyses (PPs) are rare inherited channelopathies that manifest as abnormal, often potassium (K)-sensitive, muscle membrane excitability leading to episodic flaccid paralysis. Hypokalaemic (HypoPP) and hyperkalaemic PP and Andersen-Tawil syndrome are genetically heterogeneous. Over the past decade mutations in genes encoding three ion channels, CACN1AS, SCN4A and KCNJ2, have been identified and account for at least 70% of the identified cases of PP and several allelic disorders. No prospective clinical studies have followed sufficiently large cohorts with characterized molecular lesions to draw precise conclusions. We summarize current knowledge of the clinical diagnosis, molecular genetics, genotype-phenotype correlations, pathophysiology and treatment in the PPs. We focus on unresolved issues including (i) Are there additional ion channel defects in cases without defined mutations? (ii) What is the mechanism for depolarization-induced weakness in Hypo PP? and finally (iii) Will detailed electrophysiological studies be able to correctly identify specific channel mutations? Understanding the pathophysiology of the potassium-sensitive PPs ought to reduce genetic complexity, allow subjects to be stratified during future clinical trials and increase the likelihood of observing true clinical effects. Ideally, therapy for the PPs will prevent attacks, avoid permanent weakness and improve quality of life. Moreover, understanding the skeletal muscle channelopathies will hopefully lead to insights into the more common central nervous system channel diseases such as migraine and epilepsy.
Collapse
Affiliation(s)
- S L Venance
- Department of Clinical Neurological Sciences, London Health Sciences Centre, London, ON, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Ravn LS, Hofman-Bang J, Dixen U, Larsen SO, Jensen G, Haunsø S, Svendsen JH, Christiansen M. Relation of 97T polymorphism in KCNE5 to risk of atrial fibrillation. Am J Cardiol 2005; 96:405-7. [PMID: 16054468 DOI: 10.1016/j.amjcard.2005.03.086] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 03/23/2005] [Accepted: 03/23/2005] [Indexed: 10/25/2022]
Abstract
The 97T polymorphism of the KCNE5 gene, coding for an inhibitory beta-subunit, MiRP4, of the repolarizing cardiac potassium ion channel KCNQ1, was significantly more frequent in 96 controls than in 158 patients with atrial fibrillation (AF). KCNQ1 is involved in cardiac action potential, and increased function has been associated with AF. Because the KCNE5 gene is located on the X chromosome, the protection conferred by the 97T polymorphism may help explain the gender-related difference in the risk of AF.
Collapse
Affiliation(s)
- Lasse S Ravn
- Department of Medicine B2142, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Abstract
Potassium channels are integral membrane proteins that selectively transport K+ across the cell membrane. They are present in all mammalian cells and have a wide variety of roles in both excitable and nonexcitable cells. The phenotypic diversity required to accomplish their various roles is created by differences in conductance, the timecourse and mechanisms of different gating events, and the interaction of channels with a variety of accessory proteins. Through the integration of biophysical, molecular, structural, and theoretical studies, significant progress has been made toward understanding the structural basis of K+ channel function, and diseases associated with K+ channel dysfunction.
Collapse
Affiliation(s)
- Stephen J Korn
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA.
| | | |
Collapse
|
132
|
Pannaccione A, Secondo A, Scorziello A, Calì G, Taglialatela M, Annunziato L. Nuclear factor-κB activation by reactive oxygen species mediates voltage-gated K+ current enhancement by neurotoxic β-amyloid peptides in nerve growth factor-differentiated PC-12 cells and hippocampal neurones. J Neurochem 2005; 94:572-86. [PMID: 15969743 DOI: 10.1111/j.1471-4159.2005.03075.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Increased activity of plasma membrane K+ channels, leading to decreased cytoplasmic K+ concentrations, occurs during neuronal cell death. In the present study, we showed that the neurotoxic beta-amyloid peptide Abeta(25-35) caused a dose-dependent (0.1-10 microm) and time-dependent (> 12 h) enhancement of both inactivating and non-inactivating components of voltage-dependent K+ (VGK) currents in nerve growth factor-differentiated rat phaeochromocytoma (PC-12) cells and primary rat hippocampal neurones. Similar effects were exerted by Abeta(1-42), but not by the non-neurotoxic Abeta(35-25) peptide. Abeta(25-35) and Abeta(1-42) caused an early (15-20 min) increase in intracellular Ca(2+) concentration. This led to an increased production of reactive oxygen species (ROS), which peaked at 3 h and lasted for 24 h; ROS production seemed to trigger the VGK current increase as vitamin E (50 microm) blocked both the Abeta(25-35)- and Abeta(1-42)-induced ROS increase and VGK current enhancement. Inhibition of protein synthesis (cycloheximide, 1 microg/mL) and transcription (actinomycin D, 50 ng/mL) blocked Abeta(25-35)-induced VGK current enhancement, suggesting that this potentiation is mediated by transcriptional activation induced by ROS. Interestingly, the specific nuclear factor-kappaB inhibitor SN-50 (5 microm), but not its inactive analogue SN-50M (5 microm), fully counteracted Abeta(1-42)- or Abeta(25-35)-induced enhancement of VGK currents, providing evidence for a role of this family of transcription factors in regulating neuronal K+ channel function during exposure to Abeta.
Collapse
Affiliation(s)
- Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, School of Medicine, Federico II University of Naples, Naples, Italy
| | | | | | | | | | | |
Collapse
|
133
|
Abstract
The five KCNE genes encode a family of type I transmembrane peptides that assemble with KCNQ1 and other voltage-gated K+ channels, resulting in potassium conducting complexes with varied channel-gating properties. It has been recently proposed that a triplet of amino acids within the transmembrane domain of KCNE1 and KCNE3 confers modulation specificity to the peptide, since swapping of these three residues essentially converts the recipient KCNE into the donor (Melman, Y.F., A. Domenech, S. de la Luna, and T.V. McDonald. 2001. J. Biol. Chem. 276:6439–6444). However, these results are in stark contrast with earlier KCNE1 deletion studies, which demonstrated that a COOH-terminal region, highly conserved between KCNE1 and KCNE3, was responsible for KCNE1 modulation of KCNQ1 (Tapper, A.R., and A.L. George. 2000 J. Gen. Physiol. 116:379–389.). To ascertain whether KCNE3 peptides behave similarly to KCNE1, we examined a panel of NH2- and COOH-terminal KCNE3 truncation mutants to directly determine the regions required for assembly with and modulation of KCNQ1 channels. Truncations lacking the majority of their NH2 terminus, COOH terminus, or mutants harboring both truncations gave rise to KCNQ1 channel complexes with basal activation, a hallmark of KCNE3 modulation. These results demonstrate that the KCNE3 transmembrane domain is sufficient for assembly with and modulation of KCNQ1 channels and suggests a bipartite model for KCNQ1 modulation by KCNE1 and KCNE3 subunits. In this model, the KCNE3 transmembrane domain is active in modulation and overrides the COOH terminus' contribution, whereas the KCNE1 transmembrane domain is passive and reveals COOH-terminal modulation of KCNQ1 channels. We furthermore test the validity of this model by using the active KCNE3 transmembrane domain to functionally rescue a nonconducting, yet assembly and trafficking competent, long QT mutation located in the conserved COOH-terminal region of KCNE1.
Collapse
Affiliation(s)
- Steven D Gage
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605-2324, USA
| | | |
Collapse
|
134
|
Abstract
Ion channels are membrane-bound proteins that perform key functions in virtually all human cells. Such channels are critically important for the normal function of the excitable tissues of the nervous system, such as muscle and brain. Until relatively recently it was considered that dysfunction of ion channels in the nervous system would be incompatible with life. However, an increasing number of human diseases associated with dysfunctional ion channels are now recognised. Such neurological channelopathies are frequently genetically determined but may also arise through autoimmune mechanisms. In this article clinical, genetic, immunological, and electrophysiological aspects of this expanding group of neurological disorders are reviewed. Clinical situations in which a neurological channelopathy should enter into the differential diagnosis are highlighted. Some practical guidance on how to investigate and treat this complex group of disorders is also included.
Collapse
Affiliation(s)
- T D Graves
- Department of Molecular Neuroscience and Centre for Neuromuscular Disease, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK.
| | | |
Collapse
|
135
|
Park KH, Hernandez L, Cai SQ, Wang Y, Sesti F. A family of K+ channel ancillary subunits regulate taste sensitivity in Caenorhabditis elegans. J Biol Chem 2005; 280:21893-9. [PMID: 15799965 DOI: 10.1074/jbc.m502732200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified a family of ancillary subunits of K(+) channels in Caenorhabditis elegans. MPS-1 and its related members MPS-2, MPS-3, and MPS-4 are detected in the nervous system of the nematode. Electrophysiological analysis in ASE neurons and mammalian cells and epigenetic inactivation by double-stranded RNA interference (RNAi) in vivo show that each MPS can associate with and functionally endow the voltage-gated K(+) channel KVS-1. In the chemosensory neuron ADF, three different MPS subunits combine with KVS-1 to form both binary (MPS-1.KVS-1) and ternary (MPS-2.MPS-3.KVS-1) complexes. RNAi of mps-2, mps-3, or both, enhance the taste of the animal for sodium without altering the susceptibility to other attractants. When sodium is introduced in the test plate as background or as antagonist attractant, the nematode loses the ability to recognize a second attractant. Thus, it appears that the chemosensory apparatus of C. elegans uses sensory thresholds and that a voltage-gated K(+) channel is specifically required for this mechanism.
Collapse
Affiliation(s)
- Ki Ho Park
- Department of Physiology & Biophysics, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 683 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
136
|
Schalin-Jantti C, Laine T, Valli-Jaakola K, Lonnqvist T, Kontula K, Valimaki MJ. Manifestation, management and molecular analysis of candidate genes in two rare cases of thyrotoxic hypokalemic periodic paralysis. HORMONE RESEARCH 2005; 63:139-44. [PMID: 15795511 DOI: 10.1159/000084689] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Accepted: 02/01/2005] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hypokalemic periodic paralysis as a complication of thyrotoxicosis (THypoKPP) is common in Asians but not well recognized in Western countries or pediatric patients, where most cases are due to the familial variant (FHypoKPP). Ion channel gene mutations may underlie these diseases. We describe the first pediatric and a rare adult Caucasian case of THypoKPP in Finland. METHODS Manifestation and management of two THypoKPP cases. We studied for possible mutations in KCNE3, KCNJ2, SCN4A and CACNA1S genes. RESULTS A 15-year-old Vietnamese boy presented with sudden-onset paralysis and severe hypokalemia, 1.8 mmol/l. The case was first regarded as FHypoKPP, but thyroid function testing revealed a suppressed TSH and highly elevated FT4. A 37-year-old Caucasian male presented with acute tetraparesis. His plasma potassium was only 1.4 mmol/l. Treatment with carbimazole had been initiated two weeks earlier, but FT4 was still elevated. No mutations in KCNE3, KCNJ2, SCN4A or CACNA1S genes were detected. CONCLUSIONS THypoKPP is a potentially life-threatening condition which bares many similarities with FHypoKPP. THypoKPP is rare in Western countries but should be considered in sudden-onset paralysis, independently of age and especially in males. Mutations in ion channel candidate genes did not underlie the disease in the present cases.
Collapse
|
137
|
Lin SH, Hsu YD, Cheng NL, Kao MC. Skeletal muscle dihydropyridine-sensitive calcium channel (CACNA1S) gene mutations in chinese patients with hypokalemic periodic paralysis. Am J Med Sci 2005; 329:66-70. [PMID: 15711422 DOI: 10.1097/00000441-200502000-00003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Thyrotoxic periodic paralysis (TPP), familial periodic paralysis (FPP), and sporadic periodic paralysis (SPP) are common causes of hypokalemic periodic paralysis and have similar clinical presentations, thus possibly sharing the identical mutations. METHODS We analyzed the role of the three known CACNA1S gene mutations (R528H, R1239H, and R1239G) in Chinese patients, including two FPP families, 36 TPP patients, 12 SPP patients, and their relatives. Fifty unrelated healthy subjects were also studied. Genomic DNA was prepared from the peripheral blood of all patients, their family members, and healthy subjects. Mutations of the CACNA1S gene were screened using polymerase chain reaction-based restriction analysis. RESULTS Two FPP families had the R528H point mutation, but with incomplete penetrance occurring more commonly in men than in women. Only one SPP patient had a de novo mutation (R528H). None of the TPP patients had mutations in the three hot spots. CONCLUSION Patients with FPP have R528H mutations in the CACNA1S gene. Only a few patients with SPP may share similar mutations with FPP. TPP patients do not carry any of the three known gene mutations.
Collapse
Affiliation(s)
- Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, 114 Taipei, Taiwan
| | | | | | | |
Collapse
|
138
|
Grunnet M, Olesen SP, Klaerke DA, Jespersen T. hKCNE4 inhibits the hKCNQ1 potassium current without affecting the activation kinetics. Biochem Biophys Res Commun 2005; 328:1146-53. [PMID: 15707997 DOI: 10.1016/j.bbrc.2005.01.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Indexed: 10/25/2022]
Abstract
All five members of the KCNE beta-subunit family are capable of modulating the KCNQ1 potassium current. We have previously published that the murine variant of KCNE4 inhibits the human KCNQ1 current [J. Physiol. 542 (2002) 119]. Recently, this finding has been challenged by Teng et al., stating that the human variant of KCNE4 does not attenuate the KCNQ1 current but does slightly modulate the activation kinetics of the channel after expression in Xenopus laevis oocytes [Biochem. Biophys. Res. Commun. 303 (2003) 808]. In the present study, a detailed investigation on the ability of human and murine KCNE4 to affect either human or murine KCNQ1 currents has been performed. We find that the hKCNE4 subunit drastically inhibits the hKCNQ1 current after expression in X. laevis oocytes. This inhibitory effect is also observed for both hKCNE4 and mKCNE4 when either of these subunits is co-expressed with mKCNQ1. Analyses of the current properties of hKCNQ1 revealed that activation kinetics are independent of the presence of hKCNE4. hKCNE4 has, however, the ability to prevent the inactivation observed for the KCNQ1 current. Based upon previous studies and the present results, it is concluded that both hKCNE4 and mKCNE4 have a drastic inhibitory impact on both hKCNQ1 and mKCNQ1 currents.
Collapse
Affiliation(s)
- Morten Grunnet
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | | | | | |
Collapse
|
139
|
Luft FC. Abrupt hypokalemia with paralysis from a clinician?s perspective. J Mol Med (Berl) 2005; 83:167-9. [PMID: 15726307 DOI: 10.1007/s00109-005-0636-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Friedrich C Luft
- Franz Volhard Clinic, HELIOS Kliniken Berlin, Medical Faculty of the Charité, Humboldt University, Wiltbergstrasse 50, 13125, Berlin-Buch, Germany.
| |
Collapse
|
140
|
Wang Q, Liu M, Xu C, Tang Z, Liao Y, Du R, Li W, Wu X, Wang X, Liu P, Zhang X, Zhu J, Ren X, Ke T, Wang Q, Yang J. Novel CACNA1S mutation causes autosomal dominant hypokalemic periodic paralysis in a Chinese family. J Mol Med (Berl) 2005; 83:203-8. [PMID: 15726306 PMCID: PMC1579762 DOI: 10.1007/s00109-005-0638-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2004] [Accepted: 12/06/2004] [Indexed: 10/25/2022]
Abstract
Hypokalemic periodic paralysis (HypoPP) is an autosomal dominant disorder which is characterized by periodic attacks of muscle weakness associated with a decrease in the serum potassium level. The skeletal muscle calcium channel alpha-subunit gene CACNA1S is a major disease-causing gene for HypoPP, however, only three specific HypoPP-causing mutations, Arg528His, Arg1,239His and Arg1,239Gly, have been identified in CACNA1S to date. In this study, we studied a four-generation Chinese family with HypoPP with 43 living members and 19 affected individuals. Linkage analysis showed that the causative mutation in the family is linked to the CACNA1S gene with a LOD score of 6.7. DNA sequence analysis revealed a heterozygous C to G transition at nucleotide 1,582, resulting in a novel 1,582C-->G (Arg528Gly) mutation. The Arg528Gly mutation co-segregated with all affected individuals in the family, and was not present in 200 matched normal controls. The penetrance of the Arg528Gly mutation was complete in male mutation carriers, however, a reduced penetrance of 83% (10/12) was observed in female carriers. No differences were detected for age-at-onset and severity of the disease (frequency of symptomatic attacks per year) between male and female patients. Oral intake of KCl is effective in blocking the symptomatic attacks. This study identifies a novel Arg528Gly mutation in the CACNA1S gene that causes HypoPP in a Chinese family, expands the spectrum of mutations causing HypoPP, and demonstrates a gender difference in the penetrance of the disease.
Collapse
Affiliation(s)
- Qiufen Wang
- Center for Human Genome Research Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Center for Molecular Genetics, Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic Foundation, and Department of Molecular Medicine and Department of Pathology, Case Western Reserve University, Cleveland, OH, 44195, USA
- e-mail:
| | - Mugen Liu
- Center for Human Genome Research Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Chunsheng Xu
- Neurology, Binzhou Medical College Hospital, Binzhou, Shandong, 256603, China
| | - Zhaohui Tang
- Center for Human Genome Research Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yuhua Liao
- Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Rong Du
- Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Wei Li
- Center for Human Genome Research Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiaoyan Wu
- Center for Human Genome Research Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xu Wang
- Center for Human Genome Research Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ping Liu
- Center for Human Genome Research Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xianqin Zhang
- Center for Human Genome Research Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jianfang Zhu
- Center for Human Genome Research Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiang Ren
- Center for Human Genome Research Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Tie Ke
- Center for Human Genome Research Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Qing Wang
- Center for Molecular Genetics, Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic Foundation, and Department of Molecular Medicine and Department of Pathology, Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Junguo Yang
- Center for Human Genome Research Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- e-mail:
| |
Collapse
|
141
|
Kim MK, Lee SH, Park MS, Kim BC, Cho KH, Lee MC, Kim JH, Kim SM. Mutation screening in Korean hypokalemic periodic paralysis patients: a novel SCN4A Arg672Cys mutation. Neuromuscul Disord 2005; 14:727-31. [PMID: 15482957 DOI: 10.1016/j.nmd.2004.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Revised: 05/12/2004] [Accepted: 07/01/2004] [Indexed: 11/20/2022]
Abstract
Familial hypokalemic periodic paralysis is an autosomal-dominant disorder with features of both genetic and phenotypic heterogeneity. Mutation screening was performed on Korean hypokalemic periodic paralysis patients to locate the corresponding mutations and to specify the clinical features associated with the mutations. Target-exon PCR, direct sequencing, and restriction fragment length polymorphism analysis were used. A novel SCN4A Arg672Cys mutation and a known CACNL1A3 Arg528His mutation were identified. Incomplete penetrance in women with Arg672Cys mutation was evident. A comparison of the present study with previous studies raises the possibility that hypokalemic periodic paralysis is an allelic-specific or mulfactorial, rather than a gene-specific, disorder. Reported herein are two Korean hypokalemic periodic paralysis families, one carrying a novel SCN4A Arg672Cys mutation with incomplete penetrance in women, and the other carrying a CACNL1A3 Arg528His mutation, with the onset of characteristics of hypoPP developing at an earlier age, as well as a higher penetrance rate in women.
Collapse
Affiliation(s)
- Myeong-Kyu Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju 501-190, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Hebert SC, Desir G, Giebisch G, Wang W. Molecular diversity and regulation of renal potassium channels. Physiol Rev 2005; 85:319-71. [PMID: 15618483 PMCID: PMC2838721 DOI: 10.1152/physrev.00051.2003] [Citation(s) in RCA: 236] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
K(+) channels are widely distributed in both plant and animal cells where they serve many distinct functions. K(+) channels set the membrane potential, generate electrical signals in excitable cells, and regulate cell volume and cell movement. In renal tubule epithelial cells, K(+) channels are not only involved in basic functions such as the generation of the cell-negative potential and the control of cell volume, but also play a uniquely important role in K(+) secretion. Moreover, K(+) channels participate in the regulation of vascular tone in the glomerular circulation, and they are involved in the mechanisms mediating tubuloglomerular feedback. Significant progress has been made in defining the properties of renal K(+) channels, including their location within tubule cells, their biophysical properties, regulation, and molecular structure. Such progress has been made possible by the application of single-channel analysis and the successful cloning of K(+) channels of renal origin.
Collapse
Affiliation(s)
- Steven C Hebert
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520-8026, USA.
| | | | | | | |
Collapse
|
143
|
Jurkat-Rott K, Lehmann-Horn F. Reviewing in science requires quality criteria and professional reviewers. Eur J Cell Biol 2004; 83:93-5. [PMID: 15202567 DOI: 10.1078/0171-9335-00367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
144
|
Abstract
Ion channels allow the passage of specific ions and electrical charge. Plasma membrane channels are, for example, important for electrical excitability and transepithelial transport, whereas intracellular channels have roles in acidifying endosomes or in releasing Ca(2+) from stores. The function of several channels emerged from mutations in humans or mice. The resulting phenotypes include kidney stones resulting from impaired endocytosis, hypertension, defective insulin secretion, cardiac arrhythmias, neurological diseases like epilepsy or deafness and even 'developmental' defects such as osteopetrosis.
Collapse
|
145
|
Lane AH, Markarian K, Braziunene I. Thyrotoxic periodic paralysis associated with a mutation in the sodium channel gene SCN4A. J Pediatr Endocrinol Metab 2004; 17:1679-82. [PMID: 15645704 DOI: 10.1515/jpem.2004.17.12.1679] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Thyrotoxic hypokalemic periodic paralysis (THypoKPP) is an uncommon disorder with an unknown etiology. We describe a family in which the proband presented with paralysis and thyrotoxicosis. Because of similarities between familial hypokalemic periodic paralysis (FHypoKPP) and THypoKPP, we sequenced exon 12 of the SCN4A gene, which is known to be mutated in FHypoKPP. We identified an Arg672Ser mutation in the proband and his affected father, as well as the proband's brother. As the brother has paralysis without thyrotoxicosis, our finding suggests that the genetic spectrum of FHypoKPP and THypoKPP overlap. We speculate that thyroid hormone may exert a threshold or permissive effect in hypokalemic periodic paralysis. Non-thyrotoxic family members of individuals with THypoKPP may have an unrecognized risk for paralysis.
Collapse
Affiliation(s)
- Andrew H Lane
- Department of Pediatrics, State University of New York, Stony Brook, NY, USA.
| | | | | |
Collapse
|
146
|
Dias JCA, Moura BSD, Gomes EF, Mirachi GB, Metzger Filho O, Dias CBC. Paralisia periódica hipocalêmica tireotóxica: relato de 3 casos. ACTA ACUST UNITED AC 2004; 48:897-902. [PMID: 15761566 DOI: 10.1590/s0004-27302004000600018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Paralisia Periódica Hipocalêmica Tireotóxica (PPHT) é uma complicação rara do hipertireoidismo, mais freqüente em orientais que brancos. Apresentamos três pacientes do sexo masculino, brasileiros, cujas idades eram de 28 anos (caso 1), 29 anos (caso 2) e 60 anos (caso 3) com diagnóstico de PPHT. Foram admitidos com tetraparesia das extremidades, tendo o caso 1 relatado crises recorrentes de paralisia e os casos 2 e 3, apenas um episódio. No caso 1, estavam presentes sinais e sintomas de hipertireoidismo como emagrecimento, sudorese, tremor de extremidades, palpitação e bócio difuso discreto, enquanto no caso 2 manifestou-se apenas oftalmopatia, e o terceiro paciente referia diagnóstico de fibrilação atrial pregressa sem avaliação da função tireoidiana. Exames laboratoriais mostraram hipocalemia, TSH suprimido e T4 livre elevado em todos os pacientes. Foram tratados com potássio intravenoso, propranolol e tiamazol via oral, com remissão dos sintomas. O relato dos casos destaca a freqüente dificuldade diagnóstica desta enfermidade que apresenta evolução favorável quando diagnosticada e tratada adequadamente.
Collapse
Affiliation(s)
- José Côdo Albino Dias
- Serviço de Endocrinologia e Metabologia, Hospital Belo Horizonte, Belo Horizonte, MG
| | | | | | | | | | | |
Collapse
|
147
|
Brooke RE, Moores TS, Morris NP, Parson SH, Deuchars J. Kv3 voltage-gated potassium channels regulate neurotransmitter release from mouse motor nerve terminals. Eur J Neurosci 2004; 20:3313-21. [PMID: 15610163 DOI: 10.1111/j.1460-9568.2004.03730.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Voltage-gated potassium (Kv) channels are critical to regulation of neurotransmitter release throughout the nervous system but the roles and identity of the subtypes involved remain unclear. Here we show that Kv3 channels regulate transmitter release at the mouse neuromuscular junction (NMJ). Light- and electron-microscopic immunohistochemistry revealed Kv3.3 and Kv3.4 subunits within all motor nerve terminals of muscles examined [transversus abdominus, lumbrical and flexor digitorum brevis (FDB)]. To determine the roles of these Kv3 subunits, intracellular recordings were made of end-plate potentials (EPPs) in FDB muscle fibres evoked by electrical stimulation of tibial nerve. Tetraethylammonium (TEA) applied at low concentrations (0.05-0.5 mM), which blocks only a few known potassium channels including Kv3 channels, did not affect muscle fibre resting potential but significantly increased the amplitude of all EPPs tested. Significantly, this effect of TEA was still observed in the presence of the large-conductance calcium-activated potassium channel blockers iberiotoxin (25-150 nM) and Penitrem A (100 nM), suggesting a selective action on Kv3 subunits. Consistent with this, 15-microM 4-aminopyridine, which blocks Kv3 but not large-conductance calcium-activated potassium channels, enhanced evoked EPP amplitude. Unexpectedly, blood-depressing substance-I, a toxin selective for Kv3.4 subunits, had no effect at 0.05-1 microM. The combined presynaptic localization of Kv3 subunits and pharmacological enhancement of EPP amplitude indicate that Kv3 channels regulate neurotransmitter release from presynaptic terminals at the NMJ.
Collapse
Affiliation(s)
- Ruth E Brooke
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9NQ, United Kingdom
| | | | | | | | | |
Collapse
|
148
|
McCrossan ZA, Abbott GW. The MinK-related peptides. Neuropharmacology 2004; 47:787-821. [PMID: 15527815 DOI: 10.1016/j.neuropharm.2004.06.018] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2004] [Revised: 06/04/2004] [Accepted: 06/18/2004] [Indexed: 11/20/2022]
Abstract
Voltage-gated potassium (Kv) channels mediate rapid, selective diffusion of K+ ions through the plasma membrane, controlling cell excitability, secretion and signal transduction. KCNE genes encode a family of single transmembrane domain proteins called MinK-related peptides (MiRPs) that function as ancillary or beta subunits of Kv channels. When co-expressed in heterologous systems, MiRPs confer changes in Kv channel conductance, gating kinetics and pharmacology, and are fundamental to recapitulation of the properties of some native currents. Inherited mutations in KCNE genes are associated with diseases of cardiac and skeletal muscle, and the inner ear. This article reviews our current understanding of MiRPs--their functional roles, the mechanisms underlying their association with Kv alpha subunits, their patterns of native expression and emerging evidence of the potential roles of MiRPs in the brain. The ubiquity of MiRP expression and their promiscuous association with Kv alpha subunits suggest a prominent role for MiRPs in channel dependent systems.
Collapse
Affiliation(s)
- Zoe A McCrossan
- Greenberg Division of Cardiology, Department of Medicine, Department of Pharmacology, Weill Medical College of Cornell University, Starr 463, 520 East 70th Street, New York, NY 10021, USA
| | | |
Collapse
|
149
|
Brooke RE, Atkinson L, Batten TFC, Deuchars SA, Deuchars J. Association of potassium channel Kv3.4 subunits with pre- and post-synaptic structures in brainstem and spinal cord. Neuroscience 2004; 126:1001-10. [PMID: 15207333 DOI: 10.1016/j.neuroscience.2004.03.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2004] [Indexed: 11/22/2022]
Abstract
Voltage-gated K+ channels (Kv) are divided into eight subfamilies (Kv1-8) and play a major role in determining the excitability of neurones. Members of the Kv3 subfamily are highly abundant in the CNS, with each Kv3 gene (Kv3.1-Kv3.4) exhibiting a unique pattern of expression, although single neurones can express more than one subtype. Of the Kv3 subunits relatively little is known of the Kv3.4 subunit distribution in the nervous system, particularly in the brainstem and spinal cord of the rat. We performed immunohistochemistry to determine both the cellular and sub-cellular distribution of the Kv3.4 subunit in these areas. Kv3.4 subunit immunoreactivity (Kv3.4-IR) was widespread, with dense, punctate staining in many regions including the intermediolateral cell column (IML) and the dorsal vagal nucleus (DVN), nucleus ambiguus (NA) and nucleus tractus solitarius (NTS). In the ventral horn a presynaptic location was confirmed by co-localization of Kv3.4-IR with the synaptic vesicle protein, SV2 and also with the glutamate vesicle markers vesicular glutamate transporter (VGluT) 1, VGluT2 or the glycine transporter GlyT2, suggesting a role for the channel in both excitatory and inhibitory neurotransmission. Electron microscopy confirmed a presynaptic terminal location of Kv3.4-IR in the VH, IML, DVN, NA and NTS. Interestingly however, patches of Kv3.4-IR were also revealed postsynaptically in dendritic and somatic structures throughout these areas. This staining was striking due to its localization at synaptic junctions at terminals with morphological features consistent with excitatory functions, suggesting an association with the postsynaptic density. Therefore the pre and postsynaptic localization of Kv3.4-IR suggests a role both in the control of transmitter release and in regulating neuronal excitability.
Collapse
Affiliation(s)
- R E Brooke
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9NQ, UK
| | | | | | | | | |
Collapse
|
150
|
Yu FH, Catterall WA. The VGL-Chanome: A Protein Superfamily Specialized for Electrical Signaling and Ionic Homeostasis. Sci Signal 2004; 2004:re15. [PMID: 15467096 DOI: 10.1126/stke.2532004re15] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Complex multicellular organisms require rapid and accurate transmission of information among cells and tissues and tight coordination of distant functions. Electrical signals and resulting intracellular calcium transients, in vertebrates, control contraction of muscle, secretion of hormones, sensation of the environment, processing of information in the brain, and output from the brain to peripheral tissues. In nonexcitable cells, calcium transients signal many key cellular events, including secretion, gene expression, and cell division. In epithelial cells, huge ion fluxes are conducted across tissue boundaries. All of these physiological processes are mediated in part by members of the voltage-gated ion channel protein superfamily. This protein superfamily of 143 members is one of the largest groups of signal transduction proteins, ranking third after the G protein-coupled receptors and the protein kinases in number. Each member of this superfamily contains a similar pore structure, usually covalently attached to regulatory domains that respond to changes in membrane voltage, intracellular signaling molecules, or both. Eight families are included in this protein superfamily-voltage-gated sodium, calcium, and potassium channels; calcium-activated potassium channels; cyclic nucleotide-modulated ion channels; transient receptor potential (TRP) channels; inwardly rectifying potassium channels; and two-pore potassium channels. This article identifies all of the members of this protein superfamily in the human genome, reviews the molecular and evolutionary relations among these ion channels, and describes their functional roles in cell physiology.
Collapse
Affiliation(s)
- Frank H Yu
- Department of Pharmacology, Mailstop 357280, University of Washington, Seattle, WA 98195-7280, USA
| | | |
Collapse
|