101
|
Westman J, Plumb J, Licht A, Yang M, Allert S, Naglik JR, Hube B, Grinstein S, Maxson ME. Calcium-dependent ESCRT recruitment and lysosome exocytosis maintain epithelial integrity during Candida albicans invasion. Cell Rep 2022; 38:110187. [PMID: 34986345 PMCID: PMC8755444 DOI: 10.1016/j.celrep.2021.110187] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/21/2021] [Accepted: 12/07/2021] [Indexed: 01/12/2023] Open
Abstract
Candida albicans is both a commensal and an opportunistic fungal pathogen. Invading hyphae of C. albicans secrete candidalysin, a pore-forming peptide toxin. To prevent cell death, epithelial cells must protect themselves from direct damage induced by candidalysin and by the mechanical forces exerted by expanding hyphae. We identify two key Ca2+-dependent repair mechanisms employed by epithelial cells to withstand candidalysin-producing hyphae. Using camelid nanobodies, we demonstrate candidalysin secretion directly into the invasion pockets induced by elongating C. albicans hyphae. The toxin induces oscillatory increases in cytosolic [Ca2+], which cause hydrolysis of PtdIns(4,5)P2 and loss of cortical actin. Epithelial cells dispose of damaged membrane regions containing candidalysin by an Alg-2/Alix/ESCRT-III-dependent blebbing process. At later stages, plasmalemmal tears induced mechanically by invading hyphae are repaired by exocytic insertion of lysosomal membranes. These two repair mechanisms maintain epithelial integrity and prevent mucosal damage during both commensal growth and infection by C. albicans.
Collapse
Affiliation(s)
- Johannes Westman
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jonathan Plumb
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Anna Licht
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Mabel Yang
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), 07745 Jena, Germany; Institute of Microbiology, Friedrich Schiller University, 07745 Jena, Germany.
| | - Sergio Grinstein
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON M5C 1N8, Canada.
| | - Michelle E Maxson
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
102
|
Bouhamdani N, Comeau D, Turcotte S. A Compendium of Information on the Lysosome. Front Cell Dev Biol 2021; 9:798262. [PMID: 34977038 PMCID: PMC8714965 DOI: 10.3389/fcell.2021.798262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/02/2021] [Indexed: 12/16/2022] Open
Abstract
For a long time, lysosomes were considered as mere waste bags for cellular constituents. Thankfully, studies carried out in the past 15 years were brimming with elegant and crucial breakthroughs in lysosome research, uncovering their complex roles as nutrient sensors and characterizing them as crucial multifaceted signaling organelles. This review presents the scientific knowledge on lysosome physiology and functions, starting with their discovery and reviewing up to date ground-breaking discoveries highlighting their heterogeneous functions as well as pending questions that remain to be answered. We also review the roles of lysosomes in anti-cancer drug resistance and how they undergo a series of molecular and functional changes during malignant transformation which lead to tumor aggression, angiogenesis, and metastases. Finally, we discuss the strategy of targeting lysosomes in cancer which could lead to the development of new and effective targeted therapies.
Collapse
Affiliation(s)
- Nadia Bouhamdani
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
- Dr. Georges-L. Dumont University Hospital Centre, Clinical Research Sector, Vitalité Health Network, Moncton, NB, Canada
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Dominique Comeau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Sandra Turcotte
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| |
Collapse
|
103
|
Liu QN, Huang L, Wang SY, Li YT, Tang YY, Zhang DZ, Tang BP, Yang H, He JX, Ding F. Transcriptome analysis of differentially expressed genes in the red swamp crayfish Procambarus clarkii challenged with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2021; 119:280-288. [PMID: 34571158 DOI: 10.1016/j.fsi.2021.09.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/10/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
As an important economic species in China, aquaculture of the crayfish Procambarus clarkii has suffered huge losses due to infection by pathogenic bacteria, mainly by Aeromonas hydrophila, which leads to high mortality and huge economic loss. To better understand the immune response of crayfish against bacterial infection, we compared and analyzed transcriptome data of hepatopancreatic tissue from P. clarkii that were either challenged with A. hydrophila or treated with PBS. After assembly and annotation of the data, 32,041 unigenes with an average length of 1512 base pairs were identified. Compared to control group, Differential gene expression (DEG) analysis revealed 608 DEGs were obtained, of which 274 unigenes were upregulated and 334 were downregulated in the A. hydrophila group. Furthermore, the expression levels of eight selected immune-related DEGs were validated by qRT-PCR, substantiating the reliability of RNA-seq results. This study not only provides effective data support for immune defense strategies of P. clarkii in response to bacterial infections, but also provides new information about the P. clarkii immune system and defense mechanisms, and a valuable basis for further studies to elucidate the molecular immune mechanisms of this species.
Collapse
Affiliation(s)
- Qiu-Ning Liu
- Anhui Province Key Laboratory of Aquaculture ampersand Stock Enhancement, Fishery Institute of Anhui Academy of Agricultural Sciences, Hefei, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China; Department of Microbiology & Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Long Huang
- Anhui Province Key Laboratory of Aquaculture ampersand Stock Enhancement, Fishery Institute of Anhui Academy of Agricultural Sciences, Hefei, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Shu-Yu Wang
- Anhui Province Key Laboratory of Aquaculture ampersand Stock Enhancement, Fishery Institute of Anhui Academy of Agricultural Sciences, Hefei, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Yue-Tian Li
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai, China; College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ying-Yu Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China; College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China.
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
| | - Ji-Xiang He
- Anhui Province Key Laboratory of Aquaculture ampersand Stock Enhancement, Fishery Institute of Anhui Academy of Agricultural Sciences, Hefei, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China.
| | - Feng Ding
- Department of Microbiology & Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
104
|
Apoptosis, Pyroptosis, and Necroptosis-Oh My! The Many Ways a Cell Can Die. J Mol Biol 2021; 434:167378. [PMID: 34838807 DOI: 10.1016/j.jmb.2021.167378] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/12/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022]
Abstract
Cell death is an essential process in all living organisms and occurs through different mechanisms. The three main types of programmed cell death are apoptosis, pyroptosis, and necroptosis, and each of these pathways employs complex molecular and cellular mechanisms. Although there are mechanisms and outcomes specific to each pathway, they share common components and features. In this review, we discuss recent discoveries in these three best understood modes of cell death, highlighting their singularities, and examining the intriguing notion that common players shape different individual pathways in this highly interconnected and coordinated cell death system. Understanding the similarities and differences of these cell death processes is crucial to enable targeted strategies to manipulate these pathways for therapeutic benefit.
Collapse
|
105
|
Comparative assessment of antimicrobial, antiradical and cytotoxic activities of cannabidiol and its propyl analogue cannabidivarin. Sci Rep 2021; 11:22494. [PMID: 34795379 PMCID: PMC8602723 DOI: 10.1038/s41598-021-01975-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022] Open
Abstract
Cannabidiol and cannabidivarin are phytocannabinoids produced by Cannabis indica and Cannabis sativa. Cannabidiol has been studied more extensively than its propyl analogue cannabidivarin. Therefore, we performed a battery of in vitro biological assays to compare the cytotoxic, antiradical and antibacterial activities of both cannabinoids. Potential mitochondrial metabolism alterations, DNA synthesis inhibition, and plasma membrane damage were studied by MTT assay, BrdU-ELISA and LDH assay of cancer and normal human cells exposed to cannabinoids. ABTS and DPPH assays were performed to observe the effects of the cannabinoids on free radicals. Microbial susceptibility tests were performed to study the activity of the cannabinoids in two bacterial species implicated in human infections, Escherichia coli and Staphylococcus aureus. The results showed that the cannabinoids induced medium levels of cytotoxicity in cancer and normal cells at concentrations ranging from 15.80 to 48.63 and from 31.89 to 151.70 µM, respectively, after 72 h of exposure. Cannabinoids did not exhibit a strong antioxidant capacity in scavenging ABTS or DPPH radicals. No evident differences were observed between the two cannabinoids in antimicrobial activity, except with respect to S. aureus, which showed greater susceptibility to cannabidiol than to cannabidivarin after 72 h of exposure.
Collapse
|
106
|
Targeting lysosomes in human disease: from basic research to clinical applications. Signal Transduct Target Ther 2021; 6:379. [PMID: 34744168 PMCID: PMC8572923 DOI: 10.1038/s41392-021-00778-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/26/2021] [Indexed: 01/18/2023] Open
Abstract
In recent years, accumulating evidence has elucidated the role of lysosomes in dynamically regulating cellular and organismal homeostasis. Lysosomal changes and dysfunction have been correlated with the development of numerous diseases. In this review, we interpreted the key biological functions of lysosomes in four areas: cellular metabolism, cell proliferation and differentiation, immunity, and cell death. More importantly, we actively sought to determine the characteristic changes and dysfunction of lysosomes in cells affected by these diseases, the causes of these changes and dysfunction, and their significance to the development and treatment of human disease. Furthermore, we outlined currently available targeting strategies: (1) targeting lysosomal acidification; (2) targeting lysosomal cathepsins; (3) targeting lysosomal membrane permeability and integrity; (4) targeting lysosomal calcium signaling; (5) targeting mTOR signaling; and (6) emerging potential targeting strategies. Moreover, we systematically summarized the corresponding drugs and their application in clinical trials. By integrating basic research with clinical findings, we discussed the current opportunities and challenges of targeting lysosomes in human disease.
Collapse
|
107
|
Maeda FY, van Haaren JJ, Langley DB, Christ D, Andrews NW, Song W. Surface-associated antigen induces permeabilization of primary mouse B-cells and lysosome exocytosis facilitating antigen uptake and presentation to T-cells. eLife 2021; 10:66984. [PMID: 34704555 PMCID: PMC8589448 DOI: 10.7554/elife.66984] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
B-cell receptor (BCR)-mediated antigen internalization and presentation are essential for humoral memory immune responses. Antigen encountered by B-cells is often tightly associated with the surface of pathogens and/or antigen-presenting cells. Internalization of such antigens requires myosin-mediated traction forces and extracellular release of lysosomal enzymes, but the mechanism triggering lysosomal exocytosis is unknown. Here, we show that BCR-mediated recognition of antigen tethered to beads, to planar lipid-bilayers or expressed on cell surfaces causes localized plasma membrane (PM) permeabilization, a process that requires BCR signaling and non-muscle myosin II activity. B-cell permeabilization triggers PM repair responses involving lysosomal exocytosis, and B-cells permeabilized by surface-associated antigen internalize more antigen than cells that remain intact. Higher affinity antigens cause more B-cell permeabilization and lysosomal exocytosis and are more efficiently presented to T-cells. Thus, PM permeabilization by surface-associated antigen triggers a lysosome-mediated B-cell resealing response, providing the extracellular hydrolases that facilitate antigen internalization and presentation.
Collapse
Affiliation(s)
- Fernando Y Maeda
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Jurriaan Jh van Haaren
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - David B Langley
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Daniel Christ
- Immunology, Garvan Institute of Medical Research, Darlinghurst/Sydney, Australia
| | - Norma W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| |
Collapse
|
108
|
Roman W, Pinheiro H, Pimentel MR, Segalés J, Oliveira LM, García-Domínguez E, Gómez-Cabrera MC, Serrano AL, Gomes ER, Muñoz-Cánoves P. Muscle repair after physiological damage relies on nuclear migration for cellular reconstruction. Science 2021; 374:355-359. [PMID: 34648328 DOI: 10.1126/science.abe5620] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- William Roman
- Department of Experimental & Health Sciences, University Pompeu Fabra, CIBERNED, 08003 Barcelona, Spain.,Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Helena Pinheiro
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Mafalda R Pimentel
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Jessica Segalés
- Department of Experimental & Health Sciences, University Pompeu Fabra, CIBERNED, 08003 Barcelona, Spain
| | - Luis M Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Esther García-Domínguez
- FreshAge Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Mari Carmen Gómez-Cabrera
- FreshAge Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Antonio L Serrano
- Department of Experimental & Health Sciences, University Pompeu Fabra, CIBERNED, 08003 Barcelona, Spain
| | - Edgar R Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Pura Muñoz-Cánoves
- Department of Experimental & Health Sciences, University Pompeu Fabra, CIBERNED, 08003 Barcelona, Spain.,Centro Nacional de Investigaciones Cardiovasculares, 28019 Madrid, Spain.,ICREA, 08010 Barcelona, Spain
| |
Collapse
|
109
|
Actin Cytoskeletal Dynamics in Single-Cell Wound Repair. Int J Mol Sci 2021; 22:ijms221910886. [PMID: 34639226 PMCID: PMC8509258 DOI: 10.3390/ijms221910886] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
The plasma membrane protects the eukaryotic cell from its surroundings and is essential for cell viability; thus, it is crucial that membrane disruptions are repaired quickly to prevent immediate dyshomeostasis and cell death. Accordingly, cells have developed efficient repair mechanisms to rapidly reseal ruptures and reestablish membrane integrity. The cortical actin cytoskeleton plays an instrumental role in both plasma membrane resealing and restructuring in response to damage. Actin directly aids membrane repair or indirectly assists auxiliary repair mechanisms. Studies investigating single-cell wound repair have often focused on the recruitment and activation of specialized repair machinery, despite the undeniable need for rapid and dynamic cortical actin modulation; thus, the role of the cortical actin cytoskeleton during wound repair has received limited attention. This review aims to provide a comprehensive overview of membrane repair mechanisms directly or indirectly involving cortical actin cytoskeletal remodeling.
Collapse
|
110
|
Wang J, Cao Z, Wang P, Zhang X, Tang J, He Y, Huang Z, Mao X, Shi S, Kou X. Apoptotic Extracellular Vesicles Ameliorate Multiple Myeloma by Restoring Fas-Mediated Apoptosis. ACS NANO 2021; 15:14360-14372. [PMID: 34506129 DOI: 10.1021/acsnano.1c03517] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Apoptosis is critical for maintaining bodily homeostasis and produces a large number of apoptotic extracellular vesicles (apoEVs). Several types of cancer cells display reduced expression of Fas on the cell surface and are thus capable of escaping Fas ligand-induced apoptosis. However, it is unknown whether normal cell-derived apoEVs can regulate tumor growth. In this study, we show that apoEVs can induce multiple myeloma (MM) cell apoptosis and inhibit MM cell growth. Systemic infusion of mesenchymal stem cell (MSC)-derived apoEVs significantly prolongs the lifespan of MM mice. Mechanistically, apoEVs directly contact MM cells to facilitate Fas trafficking from the cytoplasm to the cell membrane by evoking Ca2+ influx and elevation of cytosolic Ca2+. Subsequently, apoEVs use their Fas ligand to activate the Fas pathway in MM cells, leading to the initiation of apoptosis. This study identifies the role of apoEVs in inducing MM apoptosis and suggests a potential for apoEVs to treat MM.
Collapse
Affiliation(s)
- Juan Wang
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Zeyuan Cao
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Panpan Wang
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Xiao Zhang
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Jianxia Tang
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Hunan Key Laboratory of Oral Health Research and Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha 410000, China
| | - Yifan He
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Zhiqing Huang
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Xueli Mao
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Songtao Shi
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania 19104, United States
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - Xiaoxing Kou
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania 19104, United States
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| |
Collapse
|
111
|
Vevea JD, Kusick GF, Courtney KC, Chen E, Watanabe S, Chapman ER. Synaptotagmin 7 is targeted to the axonal plasma membrane through γ-secretase processing to promote synaptic vesicle docking in mouse hippocampal neurons. eLife 2021; 10:e67261. [PMID: 34543184 PMCID: PMC8452306 DOI: 10.7554/elife.67261] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/27/2021] [Indexed: 12/28/2022] Open
Abstract
Synaptotagmin 7 (SYT7) has emerged as a key regulator of presynaptic function, but its localization and precise role in the synaptic vesicle cycle remain the subject of debate. Here, we used iGluSnFR to optically interrogate glutamate release, at the single-bouton level, in SYT7KO-dissociated mouse hippocampal neurons. We analyzed asynchronous release, paired-pulse facilitation, and synaptic vesicle replenishment and found that SYT7 contributes to each of these processes to different degrees. 'Zap-and-freeze' electron microscopy revealed that a loss of SYT7 diminishes docking of synaptic vesicles after a stimulus and inhibits the recovery of depleted synaptic vesicles after a stimulus train. SYT7 supports these functions from the axonal plasma membrane, where its localization and stability require both γ-secretase-mediated cleavage and palmitoylation. In summary, SYT7 is a peripheral membrane protein that controls multiple modes of synaptic vesicle (SV) exocytosis and plasticity, in part, through enhancing activity-dependent docking of SVs.
Collapse
Affiliation(s)
- Jason D Vevea
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| | - Grant F Kusick
- Department of Cell Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Kevin C Courtney
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| | - Erin Chen
- Department of Cell Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Edwin R Chapman
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| |
Collapse
|
112
|
Abstract
Lysosomes are the main degradative organelles of almost all eukaryotic cells. They fulfil a crucial function in cellular homeostasis, and impairments in lysosomal function are connected to a continuously increasing number of pathological conditions. In recent years, lysosomes are furthermore emerging as control centers of cellular metabolism, and major regulators of cellular signaling were shown to be activated at the lysosomal surface. To date, >300 proteins were demonstrated to be located in/at the lysosome, and the lysosomal proteome and interactome is constantly growing. For the identification of these proteins, and their involvement in cellular mechanisms or disease progression, mass spectrometry (MS)-based proteomics has proven its worth in a large number of studies. In this review, we are recapitulating the application of MS-based approaches for the investigation of the lysosomal proteome, and their application to a diverse set of research questions. Numerous strategies were applied for the enrichment of lysosomes or lysosomal proteins and their identification by MS-based methods. This allowed for the characterization of the lysosomal proteome, the investigation of lysosome-related disorders, the utilization of lysosomal proteins as biomarkers for diseases, and the characterization of lysosome-related cellular mechanisms. While these >60 studies provide a comprehensive picture of the lysosomal proteome across several model organisms and pathological conditions, various proteomics approaches have not been applied to lysosomes yet, and a large number of questions are still left unanswered.
Collapse
Affiliation(s)
- Pathma Muthukottiappan
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, Nussallee 11, 53115 Bonn, Germany.
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, Nussallee 11, 53115 Bonn, Germany.
| |
Collapse
|
113
|
Zhu F, Miao Y, Cheng M, Ye X, Chen A, Zheng G, Tian X. The CACNA1A Mutant Disrupts Lysosome Calcium Homeostasis in Cerebellar Neurons and the Resulting Endo-Lysosomal Fusion Defect Can be Improved by Calcium Modulation. Neurochem Res 2021; 47:249-263. [PMID: 34476720 DOI: 10.1007/s11064-021-03438-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022]
Abstract
Mutations in P/Q type voltage gated calcium channel (VGCC) lead severe human neurological diseases such as episodic ataxia 2, familial hemiplegic migraine 1, absence epilepsy, progressive ataxia and spinocerebellar ataxia 6. The pathogenesis of these diseases remains unclear. Mice with spontaneous mutation in the Cacna1a gene encoding the pore-forming subunit of P/Q type VGCC also exhibit ataxia, epilepsy and neurodegeneration. Based on the previous work showing that the P/Q type VGCC in neurons regulates lysosomal fusion through its calcium channel activity on lysosomes, we utilized CACNA1A mutant mice to further investigate the mechanism by which P/Q-type VGCCs regulate lysosomal function and neuronal homeostasis. We found CACNA1A mutant neurons have reduced lysosomal calcium storage without changing the resting calcium concentration in cytoplasm and the acidification of lysosomes. Immunohistochemistry and transmission electron microscopy reveal axonal degeneration due to lysosome dysfunction in the CACNA1A mutant cerebella. The calcium modulating drug thapsigargin, by depleting the ER calcium store, which locally increases the calcium concentration can alleviate the defective lysosomal fusion in mutant neurons. We propose a model that in cerebellar neurons, P/Q-type VGCC maintains the integrity of the nervous system by regulating lysosomal calcium homeostasis to affect lysosomal fusion, which in turn regulates multiple important cellular processes such as autophagy and endocytosis. This study helps us to better understand the pathogenesis of P/Q-type VGCC related neurodegenerative diseases and provides a feasible direction for future pharmacological treatment.
Collapse
Affiliation(s)
- Feng Zhu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, 310013, China.,Department of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Yunping Miao
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, 310013, China.,Department of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Min Cheng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, 310013, China.,Department of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Xiaodi Ye
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, 310013, China.,Department of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Aiying Chen
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, 310013, China.,Department of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Gaoli Zheng
- National Zhejiang Center for Safety Evaluation of New Drugs, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, 310013, China
| | - Xuejun Tian
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, 310013, China. .,Department of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China. .,Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
114
|
Breiden B, Sandhoff K. Acid Sphingomyelinase, a Lysosomal and Secretory Phospholipase C, Is Key for Cellular Phospholipid Catabolism. Int J Mol Sci 2021; 22:9001. [PMID: 34445706 PMCID: PMC8396676 DOI: 10.3390/ijms22169001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
Here, we present the main features of human acid sphingomyelinase (ASM), its biosynthesis, processing and intracellular trafficking, its structure, its broad substrate specificity, and the proposed mode of action at the surface of the phospholipid substrate carrying intraendolysosomal luminal vesicles. In addition, we discuss the complex regulation of its phospholipid cleaving activity by membrane lipids and lipid-binding proteins. The majority of the literature implies that ASM hydrolyses solely sphingomyelin to generate ceramide and ignores its ability to degrade further substrates. Indeed, more than twenty different phospholipids are cleaved by ASM in vitro, including some minor but functionally important phospholipids such as the growth factor ceramide-1-phosphate and the unique lysosomal lysolipid bis(monoacylglycero)phosphate. The inherited ASM deficiency, Niemann-Pick disease type A and B, impairs mainly, but not only, cellular sphingomyelin catabolism, causing a progressive sphingomyelin accumulation, which furthermore triggers a secondary accumulation of lipids (cholesterol, glucosylceramide, GM2) by inhibiting their turnover in late endosomes and lysosomes. However, ASM appears to be involved in a variety of major cellular functions with a regulatory significance for an increasing number of metabolic disorders. The biochemical characteristics of ASM, their potential effect on cellular lipid turnover, as well as a potential impact on physiological processes will be discussed.
Collapse
Affiliation(s)
| | - Konrad Sandhoff
- Membrane Biology and Lipid Biochemistry Unit, LIMES Institute, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
115
|
Glycans in autophagy, endocytosis and lysosomal functions. Glycoconj J 2021; 38:625-647. [PMID: 34390447 PMCID: PMC8497297 DOI: 10.1007/s10719-021-10007-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
Glycans have been shown to function as versatile molecular signals in cells. This prompted us to look at their roles in endocytosis, endolysosomal system and autophagy. We start by introducing the cell biological aspects of these pathways, the concept of the sugar code, and provide an overview on the role of glycans in the targeting of lysosomal proteins and in lysosomal functions. Moreover, we review evidence on the regulation of endocytosis and autophagy by glycans. Finally, we discuss the emerging concept that cytosolic exposure of luminal glycans, and their detection by endogenous lectins, provides a mechanism for the surveillance of the integrity of the endolysosomal compartments, and serves their eventual repair or disposal.
Collapse
|
116
|
Mahanty S, Setty SRG. Epidermal Lamellar Body Biogenesis: Insight Into the Roles of Golgi and Lysosomes. Front Cell Dev Biol 2021; 9:701950. [PMID: 34458262 PMCID: PMC8387949 DOI: 10.3389/fcell.2021.701950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
Epidermal lamellar bodies (eLBs) are secretory organelles that carry a wide variety of secretory cargo required for skin homeostasis. eLBs belong to the class of lysosome-related organelles (LROs), which are cell-type-specific organelles that perform diverse functions. The formation of eLBs is thought to be related to that of other LROs, which are formed either through the gradual maturation of Golgi/endosomal precursors or by the conversion of conventional lysosomes. Current evidence suggests that eLB biogenesis presumably initiate from trans-Golgi network and receive cargo from endosomes, and also acquire lysosome characteristics during maturation. These multistep biogenesis processes are frequently disrupted in human skin disorders. However, many gaps remain in our understanding of eLB biogenesis and their relationship to skin diseases. Here, we describe our current understanding on eLB biogenesis with a focus on cargo transport to this LRO and highlight key areas where future research is needed.
Collapse
Affiliation(s)
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
117
|
Krones D, Rühling M, Becker KA, Kunz TC, Sehl C, Paprotka K, Gulbins E, Fraunholz M. Staphylococcus aureus α-Toxin Induces Acid Sphingomyelinase Release From a Human Endothelial Cell Line. Front Microbiol 2021; 12:694489. [PMID: 34394034 PMCID: PMC8358437 DOI: 10.3389/fmicb.2021.694489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/05/2021] [Indexed: 11/14/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is well known to express a plethora of toxins of which the pore-forming hemolysin A (α-toxin) is the best-studied cytolysin. Pore-forming toxins (PFT) permeabilize host membranes during infection thereby causing concentration-dependent effects in host cell membranes ranging from disordered ion fluxes to cytolysis. Host cells possess defense mechanisms against PFT attack, resulting in endocytosis of the breached membrane area and delivery of repair vesicles to the insulted plasma membrane as well as a concurrent release of membrane repair enzymes. Since PFTs from several pathogens have been shown to recruit membrane repair components, we here investigated whether staphylococcal α-toxin is able to induce these mechanisms in endothelial cells. We show that S. aureus α-toxin induced increase in cytosolic Ca2+ in endothelial cells, which was accompanied by p38 MAPK phosphorylation. Toxin challenge led to increased endocytosis of an extracellular fluid phase marker as well as increased externalization of LAMP1-positive membranes suggesting that peripheral lysosomes are recruited to the insulted plasma membrane. We further observed that thereby the lysosomal protein acid sphingomyelinase (ASM) was released into the cell culture medium. Thus, our results show that staphylococcal α-toxin triggers mechanisms in endothelial cells, which have been implicated in membrane repair after damage of other cell types by different toxins.
Collapse
Affiliation(s)
- David Krones
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Marcel Rühling
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Katrin Anne Becker
- Institute of Molecular Biology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Tobias C Kunz
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Carolin Sehl
- Institute of Molecular Biology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Kerstin Paprotka
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University of Duisburg-Essen, University Hospital, Essen, Germany.,Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Martin Fraunholz
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
118
|
Graceffa V. Clinical Development of Cell Therapies to Halt Lysosomal Storage Diseases: Results and Lessons Learned. Curr Gene Ther 2021; 22:191-213. [PMID: 34323185 DOI: 10.2174/1566523221666210728141924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/31/2021] [Accepted: 06/13/2021] [Indexed: 11/22/2022]
Abstract
Although cross-correction was discovered more than 50 years ago, and held the promise of drastically improving disease management, still no cure exists for lysosomal storage diseases (LSDs). Cell therapies hold the potential to halt disease progression: either a subset of autologous cells can be ex vivo/ in vivo transfected with the functional gene or allogenic wild type stem cells can be transplanted. However, majority of cell-based attempts have been ineffective, due to the difficulties in reversing neuronal symptomatology, in finding appropriate gene transfection approaches, in inducing immune tolerance, reducing the risk of graft versus host disease (GVHD) when allogenic cells are used and that of immune response when engineered viruses are administered, coupled with a limited secretion and uptake of some enzymes. In the last decade, due to advances in our understanding of lysosomal biology and mechanisms of cross-correction, coupled with progresses in gene therapy, ongoing pre-clinical and clinical investigations have remarkably increased. Even gene editing approaches are currently under clinical experimentation. This review proposes to critically discuss and compare trends and advances in cell-based and gene therapy for LSDs. Systemic gene delivery and transplantation of allogenic stem cells will be initially discussed, whereas proposed brain targeting methods will be then critically outlined.
Collapse
Affiliation(s)
- Valeria Graceffa
- Cellular Health and Toxicology Research Group (CHAT), Institute of Technology Sligo, Ash Ln, Bellanode, Sligo, Ireland
| |
Collapse
|
119
|
Allemailem KS, Almatroudi A, Alrumaihi F, Almatroodi SA, Alkurbi MO, Basfar GT, Rahmani AH, Khan AA. Novel Approaches of Dysregulating Lysosome Functions in Cancer Cells by Specific Drugs and Its Nanoformulations: A Smart Approach of Modern Therapeutics. Int J Nanomedicine 2021; 16:5065-5098. [PMID: 34345172 PMCID: PMC8324981 DOI: 10.2147/ijn.s321343] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023] Open
Abstract
The smart strategy of cancer cells to bypass the caspase-dependent apoptotic pathway has led to the discovery of novel anti-cancer approaches including the targeting of lysosomes. Recent discoveries observed that lysosomes perform far beyond just recycling of cellular waste, as these organelles are metabolically very active and mediate several signalling pathways to sense the cellular metabolic status. These organelles also play a significant role in mediating the immune system functions. Thus, direct or indirect lysosome-targeting with different drugs can be considered a novel therapeutic approach in different disease including cancer. Recently, some anticancer lysosomotropic drugs (eg, nortriptyline, siramesine, desipramine) and their nanoformulations have been engineered to specifically accumulate within these organelles. These drugs can enhance lysosome membrane permeabilization (LMP) or disrupt the activity of resident enzymes and protein complexes, like v-ATPase and mTORC1. Other anticancer drugs like doxorubicin, quinacrine, chloroquine and DQ661 have also been used which act through multi-target points. In addition, autophagy inhibitors, ferroptosis inducers and fluorescent probes have also been used as novel theranostic agents. Several lysosome-specific drug nanoformulations like mixed charge and peptide conjugated gold nanoparticles (AuNPs), Au-ZnO hybrid NPs, TPP-PEG-biotin NPs, octadecyl-rhodamine-B and cationic liposomes, etc. have been synthesized by diverse methods. These nanoformulations can target cathepsins, glucose-regulated protein 78, or other lysosome specific proteins in different cancers. The specific targeting of cancer cell lysosomes with drug nanoformulations is quite recent and faces tremendous challenges like toxicity concerns to normal tissues, which may be resolved in future research. The anticancer applications of these nanoformulations have led them up to various stages of clinical trials. Here in this review article, we present the recent updates about the lysosome ultrastructure, its cross-talk with other organelles, and the novel strategies of targeting this organelle in tumor cells as a recent innovative approach of cancer management.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammad O Alkurbi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghaiyda Talal Basfar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
120
|
Horioka M, Ceraudo E, Lorenzen E, Sakmar TP, Huber T. Purinergic Receptors Crosstalk with CCR5 to Amplify Ca 2+ Signaling. Cell Mol Neurobiol 2021; 41:1085-1101. [PMID: 33216235 PMCID: PMC8159800 DOI: 10.1007/s10571-020-01002-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023]
Abstract
Many G protein-coupled receptors (GPCRs) signal through more than one subtype of heterotrimeric G proteins. For example, the C-C chemokine receptor type 5 (CCR5), which serves as a co-receptor to facilitate cellular entry of human immunodeficiency virus 1 (HIV-1), normally signals through the heterotrimeric G protein, Gi. However, CCR5 also exhibits G protein signaling bias and certain chemokine analogs can cause a switch to Gq pathways to induce Ca2+ signaling. We want to understand how much of the Ca2+ signaling from Gi-coupled receptors is due to G protein promiscuity and how much is due to transactivation and crosstalk with other receptors. We propose a possible mechanism underlying the apparent switching between different G protein signaling pathways. We show that chemokine-mediated Ca2+ flux in HEK293T cells expressing CCR5 can be primed and enhanced by ATP pretreatment. In addition, agonist-dependent lysosomal exocytosis results in the release of ATP to the extracellular milieu, which amplifies cellular signaling networks. ATP is quickly degraded via ADP and AMP to adenosine. ATP, ADP and adenosine activate different cell surface purinergic receptors. Endogenous Gq-coupled purinergic P2Y receptors amplify Ca2+ signaling and allow for Gi- and Gq-coupled receptor signaling pathways to converge. Associated secretory release of GPCR ligands, such as chemokines, opioids, and monoamines, should also lead to concomitant release of ATP with a synergistic effect on Ca2+ signaling. Our results suggest that crosstalk between ATP-activated purinergic receptors and other Gi-coupled GPCRs is an important cooperative mechanism to amplify the intracellular Ca2+ signaling response.
Collapse
Affiliation(s)
- Mizuho Horioka
- Tri-Institutional Program in Chemical Biology, New York, NY 10065 USA
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Ave., New York, NY USA
| | - Emilie Ceraudo
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Ave., New York, NY USA
| | - Emily Lorenzen
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Ave., New York, NY USA
| | - Thomas P. Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Ave., New York, NY USA
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Ave., New York, NY USA
| |
Collapse
|
121
|
Zuma AA, Dos Santos Barrias E, de Souza W. Basic Biology of Trypanosoma cruzi. Curr Pharm Des 2021; 27:1671-1732. [PMID: 33272165 DOI: 10.2174/1381612826999201203213527] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
The present review addresses basic aspects of the biology of the pathogenic protozoa Trypanosoma cruzi and some comparative information of Trypanosoma brucei. Like eukaryotic cells, their cellular organization is similar to that of mammalian hosts. However, these parasites present structural particularities. That is why the following topics are emphasized in this paper: developmental stages of the life cycle in the vertebrate and invertebrate hosts; the cytoskeleton of the protozoa, especially the sub-pellicular microtubules; the flagellum and its attachment to the protozoan body through specialized junctions; the kinetoplast-mitochondrion complex, including its structural organization and DNA replication; glycosome and its role in the metabolism of the cell; acidocalcisome, describing its morphology, biochemistry, and functional role; cytostome and the endocytic pathway; the organization of the endoplasmic reticulum and Golgi complex; the nucleus, describing its structural organization during interphase and division; and the process of interaction of the parasite with host cells. The unique characteristics of these structures also make them interesting chemotherapeutic targets. Therefore, further understanding of cell biology aspects contributes to the development of drugs for chemotherapy.
Collapse
Affiliation(s)
- Aline A Zuma
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emile Dos Santos Barrias
- Laboratorio de Metrologia Aplicada a Ciencias da Vida, Diretoria de Metrologia Aplicada a Ciencias da Vida - Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
122
|
Rodríguez-Bejarano OH, Avendaño C, Patarroyo MA. Mechanisms Associated with Trypanosoma cruzi Host Target Cell Adhesion, Recognition and Internalization. Life (Basel) 2021; 11:534. [PMID: 34207491 PMCID: PMC8227291 DOI: 10.3390/life11060534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Chagas disease is caused by the kinetoplastid parasite Trypanosoma cruzi, which is mainly transmitted by hematophagous insect bites. The parasite's lifecycle has an obligate intracellular phase (amastigotes), while metacyclic and bloodstream-trypomastigotes are its infective forms. Mammalian host cell recognition of the parasite involves the interaction of numerous parasite and host cell plasma membrane molecules and domains (known as lipid rafts), thereby ensuring internalization by activating endocytosis mechanisms triggered by various signaling cascades in both host cells and the parasite. This increases cytoplasmatic Ca2+ and cAMP levels; cytoskeleton remodeling and endosome and lysosome intracellular system association are triggered, leading to parasitophorous vacuole formation. Its membrane becomes modified by containing the parasite's infectious form within it. Once it has become internalized, the parasite seeks parasitophorous vacuole lysis for continuing its intracellular lifecycle, fragmenting such a vacuole's membrane. This review covers the cellular and molecular mechanisms involved in T. cruzi adhesion to, recognition of and internalization in host target cells.
Collapse
Affiliation(s)
- Oscar Hernán Rodríguez-Bejarano
- Health Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá 111166, Colombia;
| | - Catalina Avendaño
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá 111166, Colombia;
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, Carrera 9#51-11, Bogotá 110231, Colombia
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| |
Collapse
|
123
|
Batista Napotnik T, Polajžer T, Miklavčič D. Cell death due to electroporation - A review. Bioelectrochemistry 2021; 141:107871. [PMID: 34147013 DOI: 10.1016/j.bioelechem.2021.107871] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/12/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
Exposure of cells to high voltage electric pulses increases transiently membrane permeability through membrane electroporation. Electroporation can be reversible and is used in gene transfer and enhanced drug delivery but can also lead to cell death. Electroporation resulting in cell death (termed as irreversible electroporation) has been successfully used as a new non-thermal ablation method of soft tissue such as tumours or arrhythmogenic heart tissue. Even though the mechanisms of cell death can influence the outcome of electroporation-based treatments due to use of different electric pulse parameters and conditions, these are not elucidated yet. We review the mechanisms of cell death after electroporation reported in literature, cell injuries that may lead to cell death after electroporation and membrane repair mechanisms involved. The knowledge of membrane repair and cell death mechanisms after cell exposure to electric pulses, targets of electric field in cells need to be identified to optimize existing and develop of new electroporation-based techniques used in medicine, biotechnology, and food technology.
Collapse
Affiliation(s)
- Tina Batista Napotnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Tamara Polajžer
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia.
| |
Collapse
|
124
|
Escrevente C, Bento-Lopes L, Ramalho JS, Barral DC. Rab11 is required for lysosome exocytosis through the interaction with Rab3a, Sec15 and GRAB. J Cell Sci 2021; 134:jcs246694. [PMID: 34100549 PMCID: PMC8214760 DOI: 10.1242/jcs.246694] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Lysosomes are dynamic organelles, capable of undergoing exocytosis. This process is crucial for several cellular functions, namely plasma membrane repair. Nevertheless, the molecular machinery involved in this process is poorly understood. Here, we identify Rab11a and Rab11b as regulators of Ca2+-induced lysosome exocytosis. Interestingly, Rab11-positive vesicles transiently interact with lysosomes at the cell periphery, indicating that this interaction is required for the last steps of lysosome exocytosis. Additionally, we found that the silencing of the exocyst subunit Sec15, a Rab11 effector, impairs lysosome exocytosis, suggesting that Sec15 acts together with Rab11 in the regulation of lysosome exocytosis. Furthermore, we show that Rab11 binds the guanine nucleotide exchange factor for Rab3a (GRAB) as well as Rab3a, which we have previously described to be a regulator of the positioning and exocytosis of lysosomes. Thus, our study identifies new players required for lysosome exocytosis and suggest the existence of a Rab11-Rab3a cascade involved in this process.
Collapse
Affiliation(s)
| | | | | | - Duarte C. Barral
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
125
|
Annexins and Membrane Repair Dysfunctions in Muscular Dystrophies. Int J Mol Sci 2021; 22:ijms22105276. [PMID: 34067866 PMCID: PMC8155887 DOI: 10.3390/ijms22105276] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
Muscular dystrophies constitute a group of genetic disorders that cause weakness and progressive loss of skeletal muscle mass. Among them, Miyoshi muscular dystrophy 1 (MMD1), limb girdle muscular dystrophy type R2 (LGMDR2/2B), and LGMDR12 (2L) are characterized by mutation in gene encoding key membrane-repair protein, which leads to severe dysfunctions in sarcolemma repair. Cell membrane disruption is a physiological event induced by mechanical stress, such as muscle contraction and stretching. Like many eukaryotic cells, muscle fibers possess a protein machinery ensuring fast resealing of damaged plasma membrane. Members of the annexins A (ANXA) family belong to this protein machinery. ANXA are small soluble proteins, twelve in number in humans, which share the property of binding to membranes exposing negatively-charged phospholipids in the presence of calcium (Ca2+). Many ANXA have been reported to participate in membrane repair of varied cell types and species, including human skeletal muscle cells in which they may play a collective role in protection and repair of the sarcolemma. Here, we discuss the participation of ANXA in membrane repair of healthy skeletal muscle cells and how dysregulation of ANXA expression may impact the clinical severity of muscular dystrophies.
Collapse
|
126
|
Ordway B, Gillies RJ, Damaghi M. Extracellular Acidification Induces Lysosomal Dysregulation. Cells 2021; 10:1188. [PMID: 34067971 PMCID: PMC8152284 DOI: 10.3390/cells10051188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 02/05/2023] Open
Abstract
Many invasive cancers emerge through a years-long process of somatic evolution, characterized by an accumulation of heritable genetic and epigenetic changes and the emergence of increasingly aggressive clonal populations. In solid tumors, such as breast ductal carcinoma, the extracellular environment for cells within the nascent tumor is harsh and imposes different types of stress on cells, such as hypoxia, nutrient deprivation, and cytokine inflammation. Acidosis is a constant stressor of most cancer cells due to its production through fermentation of glucose to lactic acid in hypoxic or normoxic regions (Warburg effect). Over a short period of time, acid stress can have a profound effect on the function of lysosomes within the cells exposed to this environment, and after long term exposure, lysosomal function of the cancer cells can become completely dysregulated. Whether this dysregulation is due to an epigenetic change or evolutionary selection has yet to be determined, but understanding the mechanisms behind this dysregulation could identify therapeutic opportunities.
Collapse
Affiliation(s)
- Bryce Ordway
- Department of Cancer Physiology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (B.O.); (R.J.G.)
| | - Robert J. Gillies
- Department of Cancer Physiology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (B.O.); (R.J.G.)
| | - Mehdi Damaghi
- Department of Cancer Physiology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (B.O.); (R.J.G.)
- Department of Oncological Sciences, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
127
|
Muratori C, Silkuniene G, Mollica PA, Pakhomov AG, Pakhomova ON. The role of ESCRT-III and Annexin V in the repair of cell membrane permeabilization by the nanosecond pulsed electric field. Bioelectrochemistry 2021; 140:107837. [PMID: 34004548 DOI: 10.1016/j.bioelechem.2021.107837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/25/2023]
Abstract
Exposure of living cells to intense nanosecond pulsed electric field (nsPEF) increases membrane permeability to small solutes, presumably by the formation of nanometer-size membrane lesions. Mechanisms responsible for the restoration of membrane integrity over the course of minutes after nsPEF have not been identified. This study explored if ESCRT-III and Annexin V calcium-dependent repair mechanisms, which play critical role in resealing large membrane lesions, are also activated by electroporation and contribute to the membrane resealing. The extent of membrane damage and the time course of resealing were monitored by the time-lapse imaging of propidium (Pr) uptake in human cervical carcinoma (HeLa) cells exposed to trains of 300-ns PEF. The removal of the extracellular Ca2+ slowed down the resealing, although did not prevent it. Recruitment of CHMP4B protein, a component of ESCRT-III complex, to the electroporated plasma membrane was not observed, thus providing no evidence for possible contribution of the macro-vesicle shedding mechanism. In contrast, silencing the AnxA5 gene impaired resealing and reduced the viability of nsPEF-treated cells. We conclude that Annexin V but not ESCRT-III was involved in the repair of HeLa cells permeabilized by 300-ns stimuli, but it was not the only and perhaps not the main repair mechanism.
Collapse
Affiliation(s)
- Claudia Muratori
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Giedre Silkuniene
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; Institute for Digestive Research, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Peter A Mollica
- Department of Medical Diagnostics and Translational Sciences, Old Dominion University, Norfolk, VA, USA
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Olga N Pakhomova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA.
| |
Collapse
|
128
|
Kang KR, Kim J, Ryu B, Lee SG, Oh MS, Baek J, Ren X, Canavero S, Kim CY, Chung HM. BAPTA, a calcium chelator, neuroprotects injured neurons in vitro and promotes motor recovery after spinal cord transection in vivo. CNS Neurosci Ther 2021; 27:919-929. [PMID: 33942993 PMCID: PMC8265943 DOI: 10.1111/cns.13651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/25/2021] [Accepted: 04/11/2021] [Indexed: 12/27/2022] Open
Abstract
Aim Despite animal evidence of a role of calcium in the pathogenesis of spinal cord injury, several studies conducted in the past found calcium blockade ineffective. However, those studies involved oral or parenteral administration of Ca++ antagonists. We hypothesized that Ca++ blockade might be effective with local/immediate application (LIA) at the time of neural injury. Methods In this study, we assessed the effects of LIA of BAPTA (1,2‐bis (o‐aminophenoxy) ethane‐N, N, N′, N'‐tetraacetic acid), a cell‐permeable highly selective Ca++ chelator, after spinal cord transection (SCT) in mice over 4 weeks. Effects of BAPTA were assessed behaviorally and with immunohistochemistry. Concurrently, BAPTA was submitted for the first time to multimodality assessment in an in vitro model of neural damage as a possible spinal neuroprotectant. Results We demonstrate that BAPTA alleviates neuronal apoptosis caused by physical damage by inhibition of neuronal apoptosis and reactive oxygen species (ROS) generation. This translates to enhanced preservation of electrophysiological function and superior behavioral recovery. Conclusion This study shows for the first time that local/immediate application of Ca++ chelator BAPTA is strongly neuroprotective after severe spinal cord injury.
Collapse
Affiliation(s)
- Kyu-Ree Kang
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Jin Kim
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Bokyeong Ryu
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Seul-Gi Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Min-Seok Oh
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Jieun Baek
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Xiaoping Ren
- Department of Orthopedics, Ruikang Hospital, Nanning, China.,GICUP-Global Initiative to Cure Paralysis, Columbus, Ohio, USA
| | - Sergio Canavero
- GICUP-Global Initiative to Cure Paralysis, Columbus, Ohio, USA.,HEAVEN/GEMINI International Collaborative Group, Turin, Italy
| | - C-Yoon Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea.,GICUP-Global Initiative to Cure Paralysis, Columbus, Ohio, USA.,Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Hyung Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
129
|
The Role of Lipids, Lipid Metabolism and Ectopic Lipid Accumulation in Axon Growth, Regeneration and Repair after CNS Injury and Disease. Cells 2021; 10:cells10051078. [PMID: 34062747 PMCID: PMC8147289 DOI: 10.3390/cells10051078] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Axons in the adult mammalian nervous system can extend over formidable distances, up to one meter or more in humans. During development, axonal and dendritic growth requires continuous addition of new membrane. Of the three major kinds of membrane lipids, phospholipids are the most abundant in all cell membranes, including neurons. Not only immature axons, but also severed axons in the adult require large amounts of lipids for axon regeneration to occur. Lipids also serve as energy storage, signaling molecules and they contribute to tissue physiology, as demonstrated by a variety of metabolic disorders in which harmful amounts of lipids accumulate in various tissues through the body. Detrimental changes in lipid metabolism and excess accumulation of lipids contribute to a lack of axon regeneration, poor neurological outcome and complications after a variety of central nervous system (CNS) trauma including brain and spinal cord injury. Recent evidence indicates that rewiring lipid metabolism can be manipulated for therapeutic gain, as it favors conditions for axon regeneration and CNS repair. Here, we review the role of lipids, lipid metabolism and ectopic lipid accumulation in axon growth, regeneration and CNS repair. In addition, we outline molecular and pharmacological strategies to fine-tune lipid composition and energy metabolism in neurons and non-neuronal cells that can be exploited to improve neurological recovery after CNS trauma and disease.
Collapse
|
130
|
Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol 2021; 18:1106-1121. [PMID: 33785842 PMCID: PMC8008022 DOI: 10.1038/s41423-020-00630-3] [Citation(s) in RCA: 895] [Impact Index Per Article: 298.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/15/2020] [Indexed: 02/01/2023] Open
Abstract
Cell death is a fundamental physiological process in all living organisms. Its roles extend from embryonic development, organ maintenance, and aging to the coordination of immune responses and autoimmunity. In recent years, our understanding of the mechanisms orchestrating cellular death and its consequences on immunity and homeostasis has increased substantially. Different modalities of what has become known as 'programmed cell death' have been described, and some key players in these processes have been identified. We have learned more about the intricacies that fine tune the activity of common players and ultimately shape the different types of cell death. These studies have highlighted the complex mechanisms tipping the balance between different cell fates. Here, we summarize the latest discoveries in the three most well understood modalities of cell death, namely, apoptosis, necroptosis, and pyroptosis, highlighting common and unique pathways and their effect on the surrounding cells and the organism as a whole.
Collapse
Affiliation(s)
- Damien Bertheloot
- Institute of Innate Immunity, University Hospitals Bonn, University of Bonn, Bonn, NRW, Germany.
| | - Eicke Latz
- Institute of Innate Immunity, University Hospitals Bonn, University of Bonn, Bonn, NRW, Germany
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
- German Center for Neurodegenerative Diseases, Bonn, NRW, Germany
| | - Bernardo S Franklin
- Institute of Innate Immunity, University Hospitals Bonn, University of Bonn, Bonn, NRW, Germany.
| |
Collapse
|
131
|
Ammendolia DA, Bement WM, Brumell JH. Plasma membrane integrity: implications for health and disease. BMC Biol 2021; 19:71. [PMID: 33849525 PMCID: PMC8042475 DOI: 10.1186/s12915-021-00972-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Plasma membrane integrity is essential for cellular homeostasis. In vivo, cells experience plasma membrane damage from a multitude of stressors in the extra- and intra-cellular environment. To avoid lethal consequences, cells are equipped with repair pathways to restore membrane integrity. Here, we assess plasma membrane damage and repair from a whole-body perspective. We highlight the role of tissue-specific stressors in health and disease and examine membrane repair pathways across diverse cell types. Furthermore, we outline the impact of genetic and environmental factors on plasma membrane integrity and how these contribute to disease pathogenesis in different tissues.
Collapse
Affiliation(s)
- Dustin A Ammendolia
- Cell Biology Program, Hospital for Sick Children, 686 Bay Street PGCRL, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - William M Bement
- Center for Quantitative Cell Imaging and Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John H Brumell
- Cell Biology Program, Hospital for Sick Children, 686 Bay Street PGCRL, Toronto, ON, M5G 0A4, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A1, Canada. .,SickKids IBD Centre, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
132
|
Sommer F, Torraca V, Xie Y, In 't Veld AE, Willemse J, Meijer AH. Disruption of Cxcr3 chemotactic signaling alters lysosomal function and renders macrophages more microbicidal. Cell Rep 2021; 35:109000. [PMID: 33852860 DOI: 10.1016/j.celrep.2021.109000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/11/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Chemotaxis and lysosomal function are closely intertwined processes essential for the inflammatory response and clearance of intracellular bacteria. We used the zebrafish model to examine the link between chemotactic signaling and lysosome physiology in macrophages during mycobacterial infection and wound-induced inflammation in vivo. Macrophages from zebrafish larvae carrying a mutation in a chemokine receptor of the Cxcr3 family display upregulated expression of vesicle trafficking and lysosomal genes and possess enlarged lysosomes that enhance intracellular bacterial clearance. This increased microbicidal capacity is phenocopied by inhibiting the lysosomal transcription factor EC, while its overexpression counteracts the protective effect of chemokine receptor mutation. Tracking macrophage migration in zebrafish revealed that lysosomes of chemokine receptor mutants accumulate in the front half of cells, preventing macrophage polarization during chemotaxis and reaching sites of inflammation. Our work shows that chemotactic signaling affects the bactericidal properties and localization during chemotaxis, key aspects of the inflammatory response.
Collapse
Affiliation(s)
- Frida Sommer
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Vincenzo Torraca
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands; Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Yufei Xie
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | | | - Joost Willemse
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Annemarie H Meijer
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
133
|
Zhang KS, Blauch LR, Huang W, Marshall WF, Tang SKY. Microfluidic guillotine reveals multiple timescales and mechanical modes of wound response in Stentor coeruleus. BMC Biol 2021; 19:63. [PMID: 33810789 PMCID: PMC8017755 DOI: 10.1186/s12915-021-00970-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/31/2021] [Indexed: 11/11/2022] Open
Abstract
Background Wound healing is one of the defining features of life and is seen not only in tissues but also within individual cells. Understanding wound response at the single-cell level is critical for determining fundamental cellular functions needed for cell repair and survival. This understanding could also enable the engineering of single-cell wound repair strategies in emerging synthetic cell research. One approach is to examine and adapt self-repair mechanisms from a living system that already demonstrates robust capacity to heal from large wounds. Towards this end, Stentor coeruleus, a single-celled free-living ciliate protozoan, is a unique model because of its robust wound healing capacity. This capacity allows one to perturb the wounding conditions and measure their effect on the repair process without immediately causing cell death, thereby providing a robust platform for probing the self-repair mechanism. Results Here we used a microfluidic guillotine and a fluorescence-based assay to probe the timescales of wound repair and of mechanical modes of wound response in Stentor. We found that Stentor requires ~ 100–1000 s to close bisection wounds, depending on the severity of the wound. This corresponds to a healing rate of ~ 8–80 μm2/s, faster than most other single cells reported in the literature. Further, we characterized three distinct mechanical modes of wound response in Stentor: contraction, cytoplasm retrieval, and twisting/pulling. Using chemical perturbations, active cilia were found to be important for only the twisting/pulling mode. Contraction of myonemes, a major contractile fiber in Stentor, was surprisingly not important for the contraction mode and was of low importance for the others. Conclusions While events local to the wound site have been the focus of many single-cell wound repair studies, our results suggest that large-scale mechanical behaviors may be of greater importance to single-cell wound repair than previously thought. The work here advances our understanding of the wound response in Stentor and will lay the foundation for further investigations into the underlying components and molecular mechanisms involved. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-00970-0.
Collapse
Affiliation(s)
- Kevin S Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Lucas R Blauch
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Wesley Huang
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA
| | - Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
134
|
Marques ARA, Ramos C, Machado-Oliveira G, Vieira OV. Lysosome (Dys)function in Atherosclerosis-A Big Weight on the Shoulders of a Small Organelle. Front Cell Dev Biol 2021; 9:658995. [PMID: 33855029 PMCID: PMC8039146 DOI: 10.3389/fcell.2021.658995] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is a progressive insidious chronic disease that underlies most of the cardiovascular pathologies, including myocardial infarction and ischemic stroke. The malfunctioning of the lysosomal compartment has a central role in the etiology and pathogenesis of atherosclerosis. Lysosomes are the degradative organelles of mammalian cells and process endogenous and exogenous substrates in a very efficient manner. Dysfunction of these organelles and consequent inefficient degradation of modified low-density lipoproteins (LDL) and apoptotic cells in atherosclerotic lesions have, therefore, numerous deleterious consequences for cellular homeostasis and disease progression. Lysosome dysfunction has been mostly studied in the context of the inherited lysosomal storage disorders (LSDs). However, over the last years it has become increasingly evident that the consequences of this phenomenon are more far-reaching, also influencing the progression of multiple acquired human pathologies, such as neurodegenerative diseases, cancer, and cardiovascular diseases (CVDs). During the formation of atherosclerotic plaques, the lysosomal compartment of the various cells constituting the arterial wall is under severe stress, due to the tremendous amounts of lipoproteins being processed by these cells. The uncontrolled uptake of modified lipoproteins by arterial phagocytic cells, namely macrophages and vascular smooth muscle cells (VSMCs), is the initial step that triggers the pathogenic cascade culminating in the formation of atheroma. These cells become pathogenic "foam cells," which are characterized by dysfunctional lipid-laden lysosomes. Here, we summarize the current knowledge regarding the origin and impact of the malfunctioning of the lysosomal compartment in plaque cells. We further analyze how the field of LSD research may contribute with some insights to the study of CVDs, particularly how therapeutic approaches that target the lysosomes in LSDs could be applied to hamper atherosclerosis progression and associated mortality.
Collapse
Affiliation(s)
- André R A Marques
- iNOVA4Health, Chronic Diseases Research Center (CEDOC), NOVA Medical School (NMS), Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Cristiano Ramos
- iNOVA4Health, Chronic Diseases Research Center (CEDOC), NOVA Medical School (NMS), Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Gisela Machado-Oliveira
- iNOVA4Health, Chronic Diseases Research Center (CEDOC), NOVA Medical School (NMS), Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Otília V Vieira
- iNOVA4Health, Chronic Diseases Research Center (CEDOC), NOVA Medical School (NMS), Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
135
|
Pedersen NM, Wenzel EM, Wang L, Antoine S, Chavrier P, Stenmark H, Raiborg C. Protrudin-mediated ER-endosome contact sites promote MT1-MMP exocytosis and cell invasion. J Cell Biol 2021; 219:151827. [PMID: 32479595 PMCID: PMC7401796 DOI: 10.1083/jcb.202003063] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer cells break tissue barriers by use of small actin-rich membrane protrusions called invadopodia. Complete invadopodia maturation depends on protrusion outgrowth and the targeted delivery of the matrix metalloproteinase MT1-MMP via endosomal transport by mechanisms that are not known. Here, we show that the ER protein Protrudin orchestrates invadopodia maturation and function. Protrudin formed contact sites with MT1-MMP-positive endosomes that contained the RAB7-binding Kinesin-1 adaptor FYCO1, and depletion of RAB7, FYCO1, or Protrudin inhibited MT1-MMP-dependent extracellular matrix degradation and cancer cell invasion by preventing anterograde translocation and exocytosis of MT1-MMP. Moreover, when endosome translocation or exocytosis was inhibited by depletion of Protrudin or Synaptotagmin VII, respectively, invadopodia were unable to expand and elongate. Conversely, when Protrudin was overexpressed, noncancerous cells developed prominent invadopodia-like protrusions and showed increased matrix degradation and invasion. Thus, Protrudin-mediated ER-endosome contact sites promote cell invasion by facilitating translocation of MT1-MMP-laden endosomes to the plasma membrane, enabling both invadopodia outgrowth and MT1-MMP exocytosis.
Collapse
Affiliation(s)
- Nina Marie Pedersen
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Eva Maria Wenzel
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ling Wang
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Sandra Antoine
- Research Center, Institut Curie, Membrane and Cytoskeleton Dynamics and Cell and Tissue Imaging Facility, Centre National de la Recherche Scientifique UMR 144, Paris, France
| | - Philippe Chavrier
- Research Center, Institut Curie, Membrane and Cytoskeleton Dynamics and Cell and Tissue Imaging Facility, Centre National de la Recherche Scientifique UMR 144, Paris, France
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Camilla Raiborg
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
136
|
Mohamud Y, Tang H, Xue YC, Liu H, Ng CS, Bahreyni A, Luo H. Coxsackievirus B3 targets TFEB to disrupt lysosomal function. Autophagy 2021; 17:3924-3938. [PMID: 33691586 PMCID: PMC8726691 DOI: 10.1080/15548627.2021.1896925] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Coxsackievirus B3 (CVB3) is a prevalent etiological agent for viral myocarditis and neurological disorders, particularly in infants and young children. Virus-encoded proteinases have emerged as cytopathic factors that contribute to disease pathogenesis in part through targeting the cellular recycling machinery of autophagy. Although it is appreciated that CVB3 can usurp cellular macroautophagy/autophagy for pro-viral functions, the precise mechanisms by which viral proteinases disrupt autophagy remain incompletely understood. Here we identified TFEB (transcription factor EB), a master regulator of autophagy and lysosome biogenesis, as a novel target of CVB3 proteinase 3 C. Time-course infections uncovered a significant loss of full-length TFEB and the emergence of a lower-molecular mass (~63 kDa) fragment. Cellular and in vitro cleavage assays revealed the involvement of viral proteinase 3 C in the proteolytic processing of TFEB, while site-directed mutagenesis identified the site of cleavage after glutamine 60. Assessment of TFEB transcriptional activity using a reporter construct discovered a loss of function of the cleavage fragment despite nuclear localization and retaining of the ability of DNA and protein binding. Furthermore, we showed that CVB3 infection was also able to trigger cleavage-independent nuclear translocation of TFEB that relied on the serine-threonine phosphatase PPP3/calcineurin. Finally, we demonstrated that both TFEB and TFEB [Δ60] serve roles in viral egress albeit through differing mechanisms. Collectively, this study reveals that CVB3 targets TFEB for proteolytic processing to disrupt host lysosomal function and enhance viral infection. Abbreviations:ACTB: actin beta; CLEAR: coordinated lysosomal enhancement and regulation; CVB3: coxsackievirus B3; DAPI: 4′,6-diamidino-2-phenylindole; GFP: green fluorescent protein; LAMP1: lysosomal associated membrane protein 1; LTR: LysoTracker Red; PPP3/calcineurin: protein phosphatase 3; PPP3CA: protein phosphatase 3 catalytic subunit A; p-TFEB: phospho-Ser211 TFEB; si-CON: scramble control siRNA; TFEB: transcription factor EB; TFEB [Δ60]: TFEB cleavage fragment that lacks the first 60 amino acids; VP1: viral capsid protein 1
Collapse
Affiliation(s)
- Yasir Mohamud
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Hui Tang
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada.,Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuan Chao Xue
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Huitao Liu
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada.,Department of Experimental Medicine, University of British Columbia, Vancouver, Canada
| | - Chen Seng Ng
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Amirhossein Bahreyni
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
137
|
Ferri G, Edreira MM. All Roads Lead to Cytosol: Trypanosoma cruzi Multi-Strategic Approach to Invasion. Front Cell Infect Microbiol 2021; 11:634793. [PMID: 33747982 PMCID: PMC7973469 DOI: 10.3389/fcimb.2021.634793] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/27/2021] [Indexed: 12/17/2022] Open
Abstract
T. cruzi has a complex life cycle involving four developmental stages namely, epimastigotes, metacyclic trypomastigotes, amastigotes and bloodstream trypomastigotes. Although trypomastigotes are the infective forms, extracellular amastigotes have also shown the ability to invade host cells. Both stages can invade a broad spectrum of host tissues, in fact, almost any nucleated cell can be the target of infection. To add complexity, the parasite presents high genetic variability with differential characteristics such as infectivity. In this review, we address the several strategies T. cruzi has developed to subvert the host cell signaling machinery in order to gain access to the host cell cytoplasm. Special attention is made to the numerous parasite/host protein interactions and to the set of signaling cascades activated during the formation of a parasite-containing vesicle, the parasitophorous vacuole, from which the parasite escapes to the cytosol, where differentiation and replication take place.
Collapse
Affiliation(s)
- Gabriel Ferri
- CONICET-Universidad de Buenos Aires, IQUIBICEN, Ciudad de Buenos Aires, Argentina
| | - Martin M Edreira
- CONICET-Universidad de Buenos Aires, IQUIBICEN, Ciudad de Buenos Aires, Argentina.,Laboratorio de Biología Molecular de Trypanosoma, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos, Ciudad de Buenos Aires, Argentina.,Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
138
|
Zhen Y, Radulovic M, Vietri M, Stenmark H. Sealing holes in cellular membranes. EMBO J 2021; 40:e106922. [PMID: 33644904 PMCID: PMC8013788 DOI: 10.15252/embj.2020106922] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
The compartmentalization of eukaryotic cells, which is essential for their viability and functions, is ensured by single or double bilayer membranes that separate the cell from the exterior and form boundaries between the cell’s organelles and the cytosol. Nascent nuclear envelopes and autophagosomes, which both are enveloped by double membranes, need to be sealed during the late stage of their biogenesis. On the other hand, the integrity of cellular membranes such as the plasma membrane, lysosomes and the nuclear envelope can be compromised by pathogens, chemicals, radiation, inflammatory responses and mechanical stress. There are cellular programmes that restore membrane integrity after injury. Here, we review cellular mechanisms that have evolved to maintain membrane integrity during organelle biogenesis and after injury, including membrane scission mediated by the endosomal sorting complex required for transport (ESCRT), vesicle patching and endocytosis.
Collapse
Affiliation(s)
- Yan Zhen
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Maja Radulovic
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Marina Vietri
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine and Health Sciences, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
139
|
Jia C, Shi J, Han T, Yu ACH, Qin P. Plasma Membrane Blebbing Dynamics Involved in the Reversibly Perforated Cell by Ultrasound-Driven Microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:733-750. [PMID: 33358511 DOI: 10.1016/j.ultrasmedbio.2020.11.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/13/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
The perforation of plasma membrane by ultrasound-driven microbubbles (i.e., sonoporation) provides a temporary window for transporting macromolecules into the cytoplasm that is promising with respect to drug delivery and gene therapy. To improve the efficacy of delivery while ensuring biosafety, membrane resealing and cell recovery are required to help sonoporated cells defy membrane injury and regain their normal function. Blebs are found to accompany the recovery of sonoporated cells. However, the spatiotemporal characteristics of blebs and the underlying mechanisms remain unclear. With a customized platform for ultrasound exposure and 2-D/3-D live single-cell imaging, localized membrane perforation was induced with ultrasound-driven microbubbles, and the cellular responses were monitored using multiple fluorescent probes. The results indicated that localized blebs undergoing four phases (nucleation, expansion, pausing and retraction) on a time scale of tens of seconds to minutes were specifically involved in the reversibly sonoporated cells. The blebs spatially correlated with the membrane perforation site and temporally lagged (about tens of seconds to minutes) the resealing of perforated membrane. Their diameter (about several microns) and lifetime (about tens of seconds to minutes) positively correlated with the degree of sonoporation. Further studies revealed that intracellular calcium transients might be an upstream signal for triggering blebbing nucleation; exocytotic lysosomes not only contributed to resealing of the perforated membrane, but also to the increasing bleb volume during expansion; and actin components accumulation facilitated bleb retraction. These results provide new insight into the short-term strategies that the sonoporated cell employs to recover on membrane perforation and to remodel membrane structure and a biophysical foundation for sonoporation-based therapy.
Collapse
Affiliation(s)
- Caixia Jia
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jianmin Shi
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Han
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Alfred C H Yu
- Schlegel Research Institute for Aging, University of Waterloo, Waterloo, ON, Canada
| | - Peng Qin
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
140
|
Machado ER, Annunziata I, van de Vlekkert D, Grosveld GC, d’Azzo A. Lysosomes and Cancer Progression: A Malignant Liaison. Front Cell Dev Biol 2021; 9:642494. [PMID: 33718382 PMCID: PMC7952443 DOI: 10.3389/fcell.2021.642494] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/08/2021] [Indexed: 01/04/2023] Open
Abstract
During primary tumorigenesis isolated cancer cells may undergo genetic or epigenetic changes that render them responsive to additional intrinsic or extrinsic cues, so that they enter a transitional state and eventually acquire an aggressive, metastatic phenotype. Among these changes is the alteration of the cell metabolic/catabolic machinery that creates the most permissive conditions for invasion, dissemination, and survival. The lysosomal system has emerged as a crucial player in this malignant transformation, making this system a potential therapeutic target in cancer. By virtue of their ubiquitous distribution in mammalian cells, their multifaced activities that control catabolic and anabolic processes, and their interplay with other organelles and the plasma membrane (PM), lysosomes function as platforms for inter- and intracellular communication. This is due to their capacity to adapt and sense nutrient availability, to spatially segregate specific functions depending on their position, to fuse with other compartments and with the PM, and to engage in membrane contact sites (MCS) with other organelles. Here we review the latest advances in our understanding of the role of the lysosomal system in cancer progression. We focus on how changes in lysosomal nutrient sensing, as well as lysosomal positioning, exocytosis, and fusion perturb the communication between tumor cells themselves and between tumor cells and their microenvironment. Finally, we describe the potential impact of MCS between lysosomes and other organelles in propelling cancer growth and spread.
Collapse
Affiliation(s)
- Eda R. Machado
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Ida Annunziata
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | | | - Gerard C. Grosveld
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Alessandra d’Azzo
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
141
|
Abstract
Lysosomes offer a unique arrangement of degradative, exocytic, and signaling capabilities that make their continued function critical to cellular homeostasis. Lysosomes owe their function to the activity of lysosomal ion channels and transporters, which maintain concentration gradients of H+, K+, Ca2+, Na+, and Cl- across the lysosomal membrane. This review examines the contributions of lysosomal ion channels to lysosome function, showing how ion channel function is integral to degradation and autophagy, maintaining lysosomal membrane potential, controlling Ca2+ signaling, and facilitating exocytosis. Evidence of lysosome dysfunction in a variety of disease pathologies creates a need to understand how lysosomal ion channels contribute to lysosome dysfunction. For example, the loss of function of the TRPML1 Ca2+ lysosome channel in multiple lysosome storage diseases leads to lysosome dysfunction and disease pathogenesis while neurodegenerative diseases are marked by lysosome dysfunction caused by changes in ion channel activity through the TRPML1, TPC, and TMEM175 ion channels. Autoimmune disease is marked by dysregulated autophagy, which is dependent on the function of multiple lysosomal ion channels. Understanding the role of lysosomal ion channel activity in lysosome membrane permeability and NLRP3 inflammasome activation could provide valuable mechanistic insight into NLRP3 inflammasome-mediated diseases. Finally, this review seeks to show that understanding the role of lysosomal ion channels in lysosome dysfunction could give mechanistic insight into the efficacy of certain drug classes, specifically those that target the lysosome, such as cationic amphiphilic drugs.
Collapse
Affiliation(s)
- Rebekah L Kendall
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
142
|
Function of Drosophila Synaptotagmins in membrane trafficking at synapses. Cell Mol Life Sci 2021; 78:4335-4364. [PMID: 33619613 PMCID: PMC8164606 DOI: 10.1007/s00018-021-03788-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
The Synaptotagmin (SYT) family of proteins play key roles in regulating membrane trafficking at neuronal synapses. Using both Ca2+-dependent and Ca2+-independent interactions, several SYT isoforms participate in synchronous and asynchronous fusion of synaptic vesicles (SVs) while preventing spontaneous release that occurs in the absence of stimulation. Changes in the function or abundance of the SYT1 and SYT7 isoforms alter the number and route by which SVs fuse at nerve terminals. Several SYT family members also regulate trafficking of other subcellular organelles at synapses, including dense core vesicles (DCV), exosomes, and postsynaptic vesicles. Although SYTs are linked to trafficking of multiple classes of synaptic membrane compartments, how and when they interact with lipids, the SNARE machinery and other release effectors are still being elucidated. Given mutations in the SYT family cause disorders in both the central and peripheral nervous system in humans, ongoing efforts are defining how these proteins regulate vesicle trafficking within distinct neuronal compartments. Here, we review the Drosophila SYT family and examine their role in synaptic communication. Studies in this invertebrate model have revealed key similarities and several differences with the predicted activity of their mammalian counterparts. In addition, we highlight the remaining areas of uncertainty in the field and describe outstanding questions on how the SYT family regulates membrane trafficking at nerve terminals.
Collapse
|
143
|
Hope JM, Bersi MR, Dombroski JA, Clinch AB, Pereles RS, Merryman WD, King MR. Circulating prostate cancer cells have differential resistance to fluid shear stress-induced cell death. J Cell Sci 2021; 134:jcs.251470. [PMID: 33526716 PMCID: PMC7929932 DOI: 10.1242/jcs.251470] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
Circulating tumor cells (CTCs) are exposed to fluid shear stress (FSS) of greater than 1000 dyn/cm2 (100 Pa) in circulation. Normally, CTCs that are exposed to FSS of this magnitude die. However, some CTCs develop resistance to this FSS, allowing them to colonize distant organs. We explored how prostate CTCs can resist cell death in response to forces of this magnitude. The DU145, PC3 and LNCaP human prostate cancer cell lines were used to represent cells of different metastatic origins. The cell lines were briefly treated with an average FSS of 3950 dyn/cm2 (395 Pa) using a 30 G needle and a syringe pump. DU145 cells had no change in cell viability, PC3 cells had some cell death and LNCaP cells exhibited significant cell death. These cell death responses correlated with increased cell membrane damage, less efficient membrane repair and increased stiffness. Additionally, FSS treatment prevented the LNCaP FSS-sensitive cell line from forming a growing tumor in vivo. This suggests that these properties play a role in FSS resistance and could represent potential targets for disrupting blood-borne metastasis. Summary: Prostate cancer cells have different sensitivities to fluid forces that alter their resistance to elevated blood flow-level fluid shear stress.
Collapse
Affiliation(s)
- Jacob M Hope
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37235, USA
| | - Matthew R Bersi
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37235, USA
| | - Jenna A Dombroski
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37235, USA
| | - Andrea B Clinch
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37235, USA
| | - Rebecca S Pereles
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37235, USA
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37235, USA
| | - Michael R King
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37235, USA
| |
Collapse
|
144
|
Axonal Organelles as Molecular Platforms for Axon Growth and Regeneration after Injury. Int J Mol Sci 2021; 22:ijms22041798. [PMID: 33670312 PMCID: PMC7918155 DOI: 10.3390/ijms22041798] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Investigating the molecular mechanisms governing developmental axon growth has been a useful approach for identifying new strategies for boosting axon regeneration after injury, with the goal of treating debilitating conditions such as spinal cord injury and vision loss. The picture emerging is that various axonal organelles are important centers for organizing the molecular mechanisms and machinery required for growth cone development and axon extension, and these have recently been targeted to stimulate robust regeneration in the injured adult central nervous system (CNS). This review summarizes recent literature highlighting a central role for organelles such as recycling endosomes, the endoplasmic reticulum, mitochondria, lysosomes, autophagosomes and the proteasome in developmental axon growth, and describes how these organelles can be targeted to promote axon regeneration after injury to the adult CNS. This review also examines the connections between these organelles in developing and regenerating axons, and finally discusses the molecular mechanisms within the axon that are required for successful axon growth.
Collapse
|
145
|
Plasma membrane integrity in health and disease: significance and therapeutic potential. Cell Discov 2021; 7:4. [PMID: 33462191 PMCID: PMC7813858 DOI: 10.1038/s41421-020-00233-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Maintenance of plasma membrane integrity is essential for normal cell viability and function. Thus, robust membrane repair mechanisms have evolved to counteract the eminent threat of a torn plasma membrane. Different repair mechanisms and the bio-physical parameters required for efficient repair are now emerging from different research groups. However, less is known about when these mechanisms come into play. This review focuses on the existence of membrane disruptions and repair mechanisms in both physiological and pathological conditions, and across multiple cell types, albeit to different degrees. Fundamentally, irrespective of the source of membrane disruption, aberrant calcium influx is the common stimulus that activates the membrane repair response. Inadequate repair responses can tip the balance between physiology and pathology, highlighting the significance of plasma membrane integrity. For example, an over-activated repair response can promote cancer invasion, while the inability to efficiently repair membrane can drive neurodegeneration and muscular dystrophies. The interdisciplinary view explored here emphasises the widespread potential of targeting plasma membrane repair mechanisms for therapeutic purposes.
Collapse
|
146
|
Koren E, Fuchs Y. Modes of Regulated Cell Death in Cancer. Cancer Discov 2021; 11:245-265. [PMID: 33462123 DOI: 10.1158/2159-8290.cd-20-0789] [Citation(s) in RCA: 199] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/15/2020] [Accepted: 10/29/2020] [Indexed: 11/16/2022]
Abstract
Cell suicide pathways, termed regulated cell death (RCD), play a critical role in organismal development, homeostasis, and pathogenesis. Here, we provide an overview of key RCD modalities, namely apoptosis, entosis, necroptosis, pyroptosis, and ferroptosis. We explore how various RCD modules serve as a defense mechanism against the emergence of cancer as well as the manner in which they can be exploited to drive oncogenesis. Furthermore, we outline current therapeutic agents that activate RCD and consider novel RCD-based strategies for tumor elimination. SIGNIFICANCE: A variety of antitumor therapeutics eliminate cancer cells by harnessing the devastating potential of cellular suicide pathways, emphasizing the critical importance of RCD in battling cancer. This review supplies a mechanistic perspective of distinct RCD modalities and explores the important role they play in tumorigenesis. We discuss how RCD modules serve as a double-edged sword as well as novel approaches aimed at selectively manipulating RCD for tumor eradication.
Collapse
Affiliation(s)
- Elle Koren
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, Israel. Lorry Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Yaron Fuchs
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, Israel. Lorry Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
147
|
Kuijpers M, Azarnia Tehran D, Haucke V, Soykan T. The axonal endolysosomal and autophagic systems. J Neurochem 2021; 158:589-602. [PMID: 33372296 DOI: 10.1111/jnc.15287] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/26/2022]
Abstract
Neurons, because of their elaborate morphology and the long distances between distal axons and the soma as well as their longevity, pose special challenges to autophagy and to the endolysosomal system, two of the main degradative routes for turnover of defective proteins and organelles. Autophagosomes sequester cytoplasmic or organellar cargos by engulfing them into their lumen before fusion with degradative lysosomes enriched in neuronal somata and participate in retrograde signaling to the soma. Endosomes are mainly involved in the sorting, recycling, or lysosomal turnover of internalized or membrane-bound macromolecules to maintain axonal membrane homeostasis. Lysosomes and the multiple shades of lysosome-related organelles also serve non-degradative roles, for example, in nutrient signaling and in synapse formation. Recent years have begun to shed light on the distinctive organization of the autophagy and endolysosomal systems in neurons, in particular their roles in axons. We review here our current understanding of the localization, distribution, and growing list of functions of these organelles in the axon in health and disease and outline perspectives for future research.
Collapse
Affiliation(s)
- Marijn Kuijpers
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | | | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Freie Universität Berlin, Faculty of Biology, Chemistry, Berlin, Germany.,Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Tolga Soykan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| |
Collapse
|
148
|
Sharma P, Nicoli ER, Serra-Vinardell J, Morimoto M, Toro C, Malicdan MCV, Introne WJ. Chediak-Higashi syndrome: a review of the past, present, and future. ACTA ACUST UNITED AC 2021; 31:31-36. [PMID: 33424983 DOI: 10.1016/j.ddmod.2019.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Since the initial description of Chediak-Higashi syndrome (CHS), over 75 years ago, several studies have been conducted to underscore the role of the lysosomal trafficking regulator (LYST) gene in the pathogenesis of disease. CHS is a rare autosomal recessive disorder, which is caused by biallelic mutations in the highly conserved LYST gene. The disease is characterized by partial oculocutaneous albinism, prolonged bleeding, immune and neurologic dysfunction, and risk for the development of hemophagocytic lympohistiocytosis (HLH). The presence of giant secretory granules in leukocytes is the classical diagnostic feature, which distinguishes CHS from closely related Griscelli and Hermansky-Pudlak syndromes. While the exact mechanism of the formation of the giant granules in CHS patients is not understood, dysregulation of LYST function in regulating lysosomal biogenesis has been proposed to play a role. In this review, we discuss the clinical characteristics of the disease and highlight the functional consequences of enlarged lysosomes and lysosome-related organelles (LROs) in CHS.
Collapse
Affiliation(s)
- Prashant Sharma
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elena-Raluca Nicoli
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jenny Serra-Vinardell
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marie Morimoto
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Camilo Toro
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - May Christine V Malicdan
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wendy J Introne
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
149
|
Abstract
The lysosome represents an important regulatory platform within numerous vesicle trafficking pathways including the endocytic, phagocytic, and autophagic pathways. Its ability to fuse with endosomes, phagosomes, and autophagosomes enables the lysosome to break down a wide range of both endogenous and exogenous cargo, including macromolecules, certain pathogens, and old or damaged organelles. Due to its center position in an intricate network of trafficking events, the lysosome has emerged as a central signaling node for sensing and orchestrating the cells metabolism and immune response, for inter-organelle and inter-cellular signaling and in membrane repair. This review highlights the current knowledge of general lysosome function and discusses these findings in their implication for renal glomerular cell types in health and disease including the involvement of glomerular cells in lysosomal storage diseases and the role of lysosomes in nongenetic glomerular injuries.
Collapse
|
150
|
Zambon AA, Lemaigre A, Phadke R, Grunewald S, Sewry C, Sarkozy A, Clement E, Muntoni F. Persistently elevated CK and lysosomal storage myopathy associated with mucolipin 1 defects. Neuromuscul Disord 2021; 31:212-217. [PMID: 33454187 DOI: 10.1016/j.nmd.2020.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
Mucolipidosis type IV is a rare autosomal recessive lysosomal storage disorder caused by bi-allelic pathogenic variants in the gene MCOLN1. This encodes for mucolipin-1 (ML1), an endo-lysosomal transmembrane Ca++ channel involved in vesicular trafficking. Although experimental models suggest that defects in mucolipin-1 can cause muscular dystrophy, putatively due to defective lysosomal-mediated sarcolemma repair, the role of mucolipin-1 in human muscle is still poorly deciphered. Elevation of creatine kinase (CK) had been reported in a few cases in the past but comprehensive descriptions of muscle pathology are lacking. Here we report a 7-year-old boy who underwent muscle biopsy due to persistently elevated CK levels (780-15,000 UI/L). Muscle pathology revealed features of a lysosomal storage myopathy with mild regenerative changes. Next generation sequencing confirmed homozygous nonsense variants in MCOLN1. This is a comprehensive pathological description of ML1-related myopathy, supporting the role of mucolipin-1 in muscle homoeostasis.
Collapse
Affiliation(s)
- Alberto A Zambon
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Alexandra Lemaigre
- Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Rahul Phadke
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Stephanie Grunewald
- Metabolic Department Great Ormond Street Hospital, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Caroline Sewry
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Anna Sarkozy
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Emma Clement
- Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK.
| | | |
Collapse
|