101
|
Monaco S, Jahraus B, Samstag Y, Bading H. Conditions of limited calcium influx (CLCI) inhibits IL2 induction and favors expression of anergy-related genes in TCR/CD3 and CD28 costimulated primary human T cells. Mol Immunol 2019; 114:81-87. [PMID: 31344552 DOI: 10.1016/j.molimm.2019.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/31/2022]
Abstract
Calcium is a key regulator of the T cell immune response. Depending on the spatial properties (nucleus versus cytoplasm) of the calcium signals generated after CD3xCD28 stimulation, primary human T cells either mount a productive immune response or develop tolerance. Nuclear calcium acts as a genomic decision maker: during T cell activation, it drives expression of genes associated with a productive immune response while in its absence, stimulated T cells acquire an anergy-like gene profile. Selective inhibition of nuclear calcium signaling in stimulated T cells blocks the productive immune response and directs the cells towards an anergy-like state. Here we show that the two transcriptional programs that include, respectively, the 'activation gene', interleukin 2 (IL2) and 'anergy-related genes', EGR2, EGR3, and CREM have different requirements for transmembrane calcium flux. By either lowering extracellular calcium concentrations with EGTA or using low concentrations of the ORAI blockers, BTP2 or RO2959, we reduced transmembrane calcium flux in human primary T cells stimulated with CD3xCD28. These 'conditions of limited calcium influx' (CLCI) blocked CD3xCD28-induced IL2 expression but only moderately affected induction of the anergy-related genes EGR2, EGR3, and CREM. We observed no difference in NFAT2 nuclear translocation after CD3xCD28 stimulation between normal conditions and CLCI. These results indicate that CLCI favors expression of anergy-related genes in activated human T cells. CLCI may be used to develop novel means for pro-tolerance immunosuppressive treatments.
Collapse
Affiliation(s)
- Sara Monaco
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, 69120, Heidelberg, Germany.
| | - Beate Jahraus
- Department of Immunology, Heidelberg University, 69120, Heidelberg, Germany.
| | - Yvonne Samstag
- Department of Immunology, Heidelberg University, 69120, Heidelberg, Germany.
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
102
|
Atsaves V, Leventaki V, Rassidakis GZ, Claret FX. AP-1 Transcription Factors as Regulators of Immune Responses in Cancer. Cancers (Basel) 2019; 11:E1037. [PMID: 31340499 PMCID: PMC6678392 DOI: 10.3390/cancers11071037] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022] Open
Abstract
Immune check point blockade therapy has revolutionized the standard of cancer treatment and is credited with producing remarkable tumor remissions and increase in overall survival. This unprecedented clinical success however is feasible for a limited number of cancer patients due to resistance occurring before or during a course of immunotherapy, which is often associated with activation of oncogenic signaling pathways, co-inhibitory checkpoints upregulation or expansion of immunosuppressive regulatory T-cells (Tregs) in the tumor microenviroment (TME). Targeted therapy aiming to inactivate a signaling pathway such as the Mitogen Activated Protein Kinases (MAPKs) has recently received a lot of attention due to emerging data from preclinical studies indicating synergy with immune checkpoint blockade therapy. The dimeric transcription factor complex Activator Protein-1 (AP-1) is a group of proteins involved in a wide array of cell processes and a critical regulator of nuclear gene expression during T-cell activation. It is also one of the downstream targets of the MAPK signaling cascade. In this review, we will attempt to unravel the roles of AP-1 in the regulation of anti-tumor immune responses, with a focus on the regulation of immune checkpoints and Tregs, seeking to extract useful insights for more efficacious immunotherapy.
Collapse
Affiliation(s)
- Vasileios Atsaves
- Department of Oncology, Ludwig Institute for Cancer Research-Lausanne Branch, University of Lausanne, Épalinges, 1066 Lausanne, Switzerland
| | - Vasiliki Leventaki
- Department of Pathology, Children's Hospital of Wisconsin & Medical College of Wisconsin, Medical College of Winsconsin, Milwaukee, WI 53226, USA
| | - George Z Rassidakis
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden
- Department of Pathology and Cytology, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Francois X Claret
- Department of Systems Biology, The University of Texas-MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
103
|
Zaiss MM, Jones RM, Schett G, Pacifici R. The gut-bone axis: how bacterial metabolites bridge the distance. J Clin Invest 2019; 129:3018-3028. [PMID: 31305265 DOI: 10.1172/jci128521] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The gut microbiome is a key regulator of bone health that affects postnatal skeletal development and skeletal involution. Alterations in microbiota composition and host responses to the microbiota contribute to pathological bone loss, while changes in microbiota composition that prevent, or reverse, bone loss may be achieved by nutritional supplements with prebiotics and probiotics. One mechanism whereby microbes influence organs of the body is through the production of metabolites that diffuse from the gut into the systemic circulation. Recently, short-chain fatty acids (SCFAs), which are generated by fermentation of complex carbohydrates, have emerged as key regulatory metabolites produced by the gut microbiota. This Review will focus on the effects of SCFAs on the musculoskeletal system and discuss the mechanisms whereby SCFAs regulate bone cells.
Collapse
Affiliation(s)
- Mario M Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, Georgia, USA.,Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
104
|
Seo H, Chen J, González-Avalos E, Samaniego-Castruita D, Das A, Wang YH, López-Moyado IF, Georges RO, Zhang W, Onodera A, Wu CJ, Lu LF, Hogan PG, Bhandoola A, Rao A. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8 + T cell exhaustion. Proc Natl Acad Sci U S A 2019; 116:12410-12415. [PMID: 31152140 PMCID: PMC6589758 DOI: 10.1073/pnas.1905675116] [Citation(s) in RCA: 474] [Impact Index Per Article: 94.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
T cells expressing chimeric antigen receptors (CAR T cells) have shown impressive therapeutic efficacy against leukemias and lymphomas. However, they have not been as effective against solid tumors because they become hyporesponsive ("exhausted" or "dysfunctional") within the tumor microenvironment, with decreased cytokine production and increased expression of several inhibitory surface receptors. Here we define a transcriptional network that mediates CD8+ T cell exhaustion. We show that the high-mobility group (HMG)-box transcription factors TOX and TOX2, as well as members of the NR4A family of nuclear receptors, are targets of the calcium/calcineurin-regulated transcription factor NFAT, even in the absence of its partner AP-1 (FOS-JUN). Using a previously established CAR T cell model, we show that TOX and TOX2 are highly induced in CD8+ CAR+ PD-1high TIM3high ("exhausted") tumor-infiltrating lymphocytes (CAR TILs), and CAR TILs deficient in both TOX and TOX2 (Tox DKO) are more effective than wild-type (WT), TOX-deficient, or TOX2-deficient CAR TILs in suppressing tumor growth and prolonging survival of tumor-bearing mice. Like NR4A-deficient CAR TILs, Tox DKO CAR TILs show increased cytokine expression, decreased expression of inhibitory receptors, and increased accessibility of regions enriched for motifs that bind activation-associated nuclear factor κB (NFκB) and basic region-leucine zipper (bZIP) transcription factors. These data indicate that Tox and Nr4a transcription factors are critical for the transcriptional program of CD8+ T cell exhaustion downstream of NFAT. We provide evidence for positive regulation of NR4A by TOX and of TOX by NR4A, and suggest that disruption of TOX and NR4A expression or activity could be promising strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Hyungseok Seo
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Joyce Chen
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA 92037
- Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, CA 92093
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| | - Edahí González-Avalos
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA 92037
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093
| | - Daniela Samaniego-Castruita
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA 92037
- Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093
| | - Arundhoti Das
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20184
| | - Yueqiang H Wang
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20184
| | - Isaac F López-Moyado
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA 92037
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093
| | - Romain O Georges
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Wade Zhang
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA 92037
- Bioengineering Graduate Program, Bioengineering Department, University of California, San Diego, La Jolla, CA 92093
| | - Atsushi Onodera
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA 92037
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Institute for Global Prominent Research, Chiba University, Chiba 263-8522, Japan
| | - Cheng-Jang Wu
- Division of Biological Sciences, Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093
| | - Li-Fan Lu
- Division of Biological Sciences, Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093
- Program in Immunology, University of California, San Diego, La Jolla, CA 92037
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093
| | - Patrick G Hogan
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA 92037
- Program in Immunology, University of California, San Diego, La Jolla, CA 92037
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093
| | - Avinash Bhandoola
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20184
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA 92037;
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
- Program in Immunology, University of California, San Diego, La Jolla, CA 92037
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
105
|
TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8 + T cell exhaustion. Proc Natl Acad Sci U S A 2019. [PMID: 31152140 DOI: 10.1073/pnas.1905675116.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T cells expressing chimeric antigen receptors (CAR T cells) have shown impressive therapeutic efficacy against leukemias and lymphomas. However, they have not been as effective against solid tumors because they become hyporesponsive ("exhausted" or "dysfunctional") within the tumor microenvironment, with decreased cytokine production and increased expression of several inhibitory surface receptors. Here we define a transcriptional network that mediates CD8+ T cell exhaustion. We show that the high-mobility group (HMG)-box transcription factors TOX and TOX2, as well as members of the NR4A family of nuclear receptors, are targets of the calcium/calcineurin-regulated transcription factor NFAT, even in the absence of its partner AP-1 (FOS-JUN). Using a previously established CAR T cell model, we show that TOX and TOX2 are highly induced in CD8+ CAR+ PD-1high TIM3high ("exhausted") tumor-infiltrating lymphocytes (CAR TILs), and CAR TILs deficient in both TOX and TOX2 (Tox DKO) are more effective than wild-type (WT), TOX-deficient, or TOX2-deficient CAR TILs in suppressing tumor growth and prolonging survival of tumor-bearing mice. Like NR4A-deficient CAR TILs, Tox DKO CAR TILs show increased cytokine expression, decreased expression of inhibitory receptors, and increased accessibility of regions enriched for motifs that bind activation-associated nuclear factor κB (NFκB) and basic region-leucine zipper (bZIP) transcription factors. These data indicate that Tox and Nr4a transcription factors are critical for the transcriptional program of CD8+ T cell exhaustion downstream of NFAT. We provide evidence for positive regulation of NR4A by TOX and of TOX by NR4A, and suggest that disruption of TOX and NR4A expression or activity could be promising strategies for cancer immunotherapy.
Collapse
|
106
|
Tuncel J, Benoist C, Mathis D. T cell anergy in perinatal mice is promoted by T reg cells and prevented by IL-33. J Exp Med 2019; 216:1328-1344. [PMID: 30988052 PMCID: PMC6547863 DOI: 10.1084/jem.20182002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/30/2019] [Accepted: 03/22/2019] [Indexed: 12/25/2022] Open
Abstract
Perinatal T cells broadly access nonlymphoid tissues, where they are exposed to sessile tissue antigens. To probe the outcome of such encounters, we examined the defective elimination of self-reactive clones in Aire-deficient mice. Nonlymphoid tissues were sequentially seeded by distinct waves of CD4+ T cells. Early arrivers were mostly Foxp3+ regulatory T (T reg) cells and metabolically active, highly proliferative conventional T cells (T conv cells). T conv cells had unusually high expression of PD-1 and the IL-33 receptor ST2. As T conv cells accumulated in the tissue, they gradually lost expression of ST2, ceased to proliferate, and acquired an anergic phenotype. The transition from effector to anergic state was substantially faster in ST2-deficient perinates, whereas it was abrogated in IL-33-treated mice. A similar dampening of anergy occurred after depletion of perinatal T reg cells. Attenuation of anergy through PD-1 blockade or IL-33 administration promoted the immediate breakdown of tolerance and onset of multiorgan autoimmunity. Hence, regulating IL-33 availability may be critical in maintaining T cell anergy.
Collapse
Affiliation(s)
- Jonatan Tuncel
- Department of Immunology, Harvard Medical School, Boston, MA
| | | | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA
| |
Collapse
|
107
|
Targeting the NFAT:AP-1 transcriptional complex on DNA with a small-molecule inhibitor. Proc Natl Acad Sci U S A 2019; 116:9959-9968. [PMID: 31019078 DOI: 10.1073/pnas.1820604116] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The transcription factor nuclear factor of activated T cells (NFAT) has a key role in both T cell activation and tolerance and has emerged as an important target of immune modulation. NFAT directs the effector arm of the immune response in the presence of activator protein-1 (AP-1), and T cell anergy/exhaustion in the absence of AP-1. Envisioning a strategy for selective modulation of the immune response, we designed a FRET-based high-throughput screen to identify compounds that disrupt the NFAT:AP-1:DNA complex. We screened ∼202,000 small organic compounds and identified 337 candidate inhibitors. We focus here on one compound, N-(3-acetamidophenyl)-2-[5-(1H-benzimidazol-2-yl)pyridin-2-yl]sulfanylacetamide (Compound 10), which disrupts the NFAT:AP-1 interaction at the composite antigen-receptor response element-2 site without affecting the binding of NFAT or AP-1 alone to DNA. Compound 10 binds to DNA in a sequence-selective manner and inhibits the transcription of the Il2 gene and several other cyclosporin A-sensitive cytokine genes important for the effector immune response. This study provides proof-of-concept that small molecules can inhibit the assembly of specific DNA-protein complexes, and opens a potential new approach to treat human diseases where known transcription factors are deregulated.
Collapse
|
108
|
Prunk M, Nanut MP, Sabotic J, Svajger U, Kos J. Increased cystatin F levels correlate with decreased cytotoxicity of cytotoxic T cells. Radiol Oncol 2019; 53:57-68. [PMID: 30840596 PMCID: PMC6411024 DOI: 10.2478/raon-2019-0007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 01/05/2019] [Indexed: 12/13/2022] Open
Abstract
Background Cystatin F is a protein inhibitor of cysteine peptidases, expressed predominantly in immune cells and localised in endosomal/lysosomal compartments. In cytotoxic immune cells cystatin F inhibits both the major pro-granzyme convertases, cathepsins C and H that activate granzymes, and cathepsin L, that acts as perforin activator. Since perforin and granzymes are crucial molecules for target cell killing by cytotoxic lymphocytes, defects in the activation of either granzymes or perforin can affect their cytotoxic potential. Materials and methods Levels of cystatin F were assessed by western blot and interactions of cystatin F with cathepsins C, H and L were analysed by immunoprecipitation and confocal microscopy. In TALL-104 cells specific activities of the cathepsins and granzyme B were determined using peptide substrates. Results Two models of reduced T cell cytotoxicity of TALL-104 cell line were established, either by treatment by ionomycin or by immunosuppressive transforming growth factor beta. Reduced cytotoxicity correlated with increased levels of cystatin F and with attenuated activities of cathepsins C, H and L and of granzyme B. Co-localisation of cystatin F and cathepsins C, H and L and interactions between cystatin F and cathepsins C and H were demonstrated. Conclusions Cystatin F is designated as a possible regulator of T cell cytotoxicity, similar to its role in natural killer cells.
Collapse
Affiliation(s)
- Mateja Prunk
- Jožef Stefan Institute, Department of Biotechnology, Ljubljana, Slovenia
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | | | - Jerica Sabotic
- Jožef Stefan Institute, Department of Biotechnology, Ljubljana, Slovenia
| | - Urban Svajger
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Janko Kos
- Jožef Stefan Institute, Department of Biotechnology, Ljubljana, Slovenia
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
- Prof. Janko Kos, Ph.D., Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia.
Phone: +386 1 4769 604; Fax: +386 1 4258 031
| |
Collapse
|
109
|
TRPC-mediated Ca 2+ signaling and control of cellular functions. Semin Cell Dev Biol 2019; 94:28-39. [PMID: 30738858 DOI: 10.1016/j.semcdb.2019.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/30/2019] [Accepted: 02/06/2019] [Indexed: 12/15/2022]
Abstract
Canonical members of the TRP superfamily of ion channels have long been recognized as key elements of Ca2+ handling in a plethora of cell types. The emerging role of TRPC channels in human physiopathology has generated considerable interest in their pharmacological targeting, which requires detailed understanding of their molecular function. Although consent has been reached that receptor-phospholipase C (PLC) pathways and generation of lipid mediators constitute the prominent upstream signaling process that governs channel activity, multimodal sensing features of TRPC complexes have been demonstrated repeatedly. Downstream signaling by TRPC channels is similarly complex and involves the generation of local and global cellular Ca2+ rises, which are well-defined in space and time to govern specific cellular functions. These TRPC-mediated Ca2+ signals rely in part on Ca2+ permeation through the channels, but are essentially complemented by secondary mechanisms such as Ca2+ mobilization from storage sites and Na+/Ca2+ exchange, which involve coordinated interaction with signaling partners. Consequently, the control of cell functions by TRPC molecules is critically determined by dynamic assembly and subcellular targeting of the TRPC complexes. The very recent availability of high-resolution structure information on TRPC channel complexes has paved the way towards a comprehensive understanding of signal transduction by TRPC channels. Here, we summarize current concepts of cation permeation in TRPC complexes, TRPC-mediated shaping of cellular Ca2+ signals and the associated control of specific cell functions.
Collapse
|
110
|
Genome-wide analysis identifies NR4A1 as a key mediator of T cell dysfunction. Nature 2019; 567:525-529. [PMID: 30814730 DOI: 10.1038/s41586-019-0979-8] [Citation(s) in RCA: 285] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 01/14/2019] [Indexed: 01/28/2023]
Abstract
T cells become dysfunctional when they encounter self antigens or are exposed to chronic infection or to the tumour microenvironment1. The function of T cells is tightly regulated by a combinational co-stimulatory signal, and dominance of negative co-stimulation results in T cell dysfunction2. However, the molecular mechanisms that underlie this dysfunction remain unclear. Here, using an in vitro T cell tolerance induction system in mice, we characterize genome-wide epigenetic and gene expression features in tolerant T cells, and show that they are distinct from effector and regulatory T cells. Notably, the transcription factor NR4A1 is stably expressed at high levels in tolerant T cells. Overexpression of NR4A1 inhibits effector T cell differentiation, whereas deletion of NR4A1 overcomes T cell tolerance and exaggerates effector function, as well as enhancing immunity against tumour and chronic virus. Mechanistically, NR4A1 is preferentially recruited to binding sites of the transcription factor AP-1, where it represses effector-gene expression by inhibiting AP-1 function. NR4A1 binding also promotes acetylation of histone 3 at lysine 27 (H3K27ac), leading to activation of tolerance-related genes. This study thus identifies NR4A1 as a key general regulator in the induction of T cell dysfunction, and a potential target for tumour immunotherapy.
Collapse
|
111
|
Abstract
Exhausted CD8 T (Tex) cells are a distinct cell lineage that arise during chronic infections and cancers in animal models and humans. Tex cells are characterized by progressive loss of effector functions, high and sustained inhibitory receptor expression, metabolic dysregulation, poor memory recall and homeostatic self-renewal, and distinct transcriptional and epigenetic programs. The ability to reinvigorate Tex cells through inhibitory receptor blockade, such as αPD-1, highlights the therapeutic potential of targeting this population. Emerging insights into the mechanisms of exhaustion are informing immunotherapies for cancer and chronic infections. However, like other immune cells, Tex cells are heterogeneous and include progenitor and terminal subsets with unique characteristics and responses to checkpoint blockade. Here, we review our current understanding of Tex cell biology, including the developmental paths, transcriptional and epigenetic features, and cell intrinsic and extrinsic factors contributing to exhaustion and how this knowledge may inform therapeutic targeting of Tex cells in chronic infections, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Laura M McLane
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mohamed S Abdel-Hakeem
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
112
|
Merida I, Arranz-Nicolás J, Torres-Ayuso P, Ávila-Flores A. Diacylglycerol Kinase Malfunction in Human Disease and the Search for Specific Inhibitors. Handb Exp Pharmacol 2019; 259:133-162. [PMID: 31227890 DOI: 10.1007/164_2019_221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The diacylglycerol kinases (DGKs) are master regulator kinases that control the switch from diacylglycerol (DAG) to phosphatidic acid (PA), two lipids with important structural and signaling properties. Mammalian DGKs distribute into five subfamilies that regulate local availability of DAG and PA pools in a tissue- and subcellular-restricted manner. Pharmacological manipulation of DGK activity holds great promise, given the critical contribution of specific DGK subtypes to the control of membrane structure, signaling complexes, and cell-cell communication. The latest advances in the DGK field have unveiled the differential contribution of selected isoforms to human disease. Defects in the expression/activity of individual DGK isoforms contribute substantially to cognitive impairment, mental disorders, insulin resistance, and vascular pathologies. Abnormal DGK overexpression, on the other hand, confers the acquisition of malignant traits including invasion, chemotherapy resistance, and inhibition of immune attack on tumors. Translation of these findings into therapeutic approaches will require development of methods to pharmacologically modulate DGK functions. In particular, inhibitors that target the DGKα isoform hold particular promise in the fight against cancer, on their own or in combination with immune-targeting therapies.
Collapse
Affiliation(s)
- Isabel Merida
- Department of Immunology and Oncology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain.
| | - Javier Arranz-Nicolás
- Department of Immunology and Oncology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Pedro Torres-Ayuso
- Laboratory of Cell and Developmental Signaling, National Cancer Institute (NCI-NIH), Frederick, MD, USA
| | - Antonia Ávila-Flores
- Department of Immunology and Oncology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| |
Collapse
|
113
|
Al-Raawi D, Jones R, Wijesinghe S, Halsall J, Petric M, Roberts S, Hotchin NA, Kanhere A. A novel form of JARID2 is required for differentiation in lineage-committed cells. EMBO J 2018; 38:embj.201798449. [PMID: 30573669 PMCID: PMC6356158 DOI: 10.15252/embj.201798449] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 10/15/2018] [Accepted: 10/25/2018] [Indexed: 12/11/2022] Open
Abstract
Polycomb repressive complex‐2 (PRC2) is a group of proteins that play an important role during development and in cell differentiation. PRC2 is a histone‐modifying complex that catalyses methylation of lysine 27 of histone H3 (H3K27me3) at differentiation genes leading to their transcriptional repression. JARID2 is a co‐factor of PRC2 and is important for targeting PRC2 to chromatin. Here, we show that, unlike in embryonic stem cells, in lineage‐committed human cells, including human epidermal keratinocytes, JARID2 predominantly exists as a novel low molecular weight form, which lacks the N‐terminal PRC2‐interacting domain (ΔN‐JARID2). We show that ΔN‐JARID2 is a cleaved product of full‐length JARID2 spanning the C‐terminal conserved jumonji domains. JARID2 knockout in keratinocytes results in up‐regulation of cell cycle genes and repression of many epidermal differentiation genes. Surprisingly, repression of epidermal differentiation genes in JARID2‐null keratinocytes can be rescued by expression of ΔN‐JARID2 suggesting that, in contrast to PRC2, ΔN‐JARID2 promotes activation of differentiation genes. We propose that a switch from expression of full‐length JARID2 to ΔN‐JARID2 is important for the up‐regulation differentiation genes.
Collapse
Affiliation(s)
- Diaa Al-Raawi
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Rhian Jones
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | - John Halsall
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Marija Petric
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Sally Roberts
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Neil A Hotchin
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Aditi Kanhere
- School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
114
|
Tyagi AM, Yu M, Darby TM, Vaccaro C, Li JY, Owens JA, Hsu E, Adams J, Weitzmann MN, Jones RM, Pacifici R. The Microbial Metabolite Butyrate Stimulates Bone Formation via T Regulatory Cell-Mediated Regulation of WNT10B Expression. Immunity 2018; 49:1116-1131.e7. [PMID: 30446387 PMCID: PMC6345170 DOI: 10.1016/j.immuni.2018.10.013] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/08/2018] [Accepted: 10/17/2018] [Indexed: 01/06/2023]
Abstract
Nutritional supplementation with probiotics can prevent pathologic bone loss. Here we examined the impact of supplementation with Lactobacillus rhamnosus GG (LGG) on bone homeostasis in eugonadic young mice. Micro-computed tomography revealed that LGG increased trabecular bone volume in mice, which was due to increased bone formation. Butyrate produced in the gut following LGG ingestion, or butyrate fed directly to germ-free mice, induced the expansion of intestinal and bone marrow (BM) regulatory T (Treg) cells. Interaction of BM CD8+ T cells with Treg cells resulted in increased secretion of Wnt10b, a bone anabolic Wnt ligand. Mechanistically, Treg cells promoted the assembly of a NFAT1-SMAD3 transcription complex in CD8+ cells, which drove expression of Wnt10b. Reducing Treg cell numbers, or reconstitution of TCRβ-/- mice with CD8+ T cells from Wnt10b-/- mice, prevented butyrate-induced bone formation and bone mass acquisition. Thus, butyrate concentrations regulate bone anabolism via Treg cell-mediated regulation of CD8+ T cell Wnt10b production.
Collapse
Affiliation(s)
- Abdul Malik Tyagi
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Mingcan Yu
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Trevor M Darby
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Chiara Vaccaro
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Jau-Yi Li
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Joshua A Owens
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Emory Hsu
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Jonathan Adams
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - M Neale Weitzmann
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | | | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA; Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, GA, USA.
| |
Collapse
|
115
|
Müller DJ, Wirths S, Fuchs AR, Märklin M, Heitmann JS, Sturm M, Haap M, Kirschniak A, Sasaki Y, Kanz L, Kopp HG, Müller MR. Loss of NFAT2 expression results in the acceleration of clonal evolution in chronic lymphocytic leukemia. J Leukoc Biol 2018; 105:531-538. [PMID: 30556925 DOI: 10.1002/jlb.2ab0218-076rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) can be defined as a clonal expansion of B cells with stereotypic BCRs. Somatic hypermutation of the BCR heavy chains (IGVH) defines a subgroup of patients with a better prognosis. In up to 10% of CLL cases, a transformation to an aggressive B cell lymphoma (Richter's syndrome) with a dismal prognosis can be observed over time. NFAT proteins are transcription factors originally identified in T cells, which also play an important role in B cells. The TCL1 transgenic mouse is a well-accepted model of CLL. Upon B cell-specific deletion of NFAT2, TCL1 transgenic mice develop a disease resembling human Richter's syndrome. Whereas TCL1 B cells exhibit tonic anergic BCR signaling characteristic of human CLL, loss of NFAT2 expression leads to readily activated BCRs indicating different BCR usage with altered downstream signaling. Here, we analyzed BCR usage in wild-type and TCL1 transgenic mice with and without NFAT2 deletion employing conventional molecular biology techniques and next-generation sequencing (NGS). We demonstrate that the loss of NFAT2 in CLL precipitates the selection of unmutated BCRs and the preferential usage of certain VDJ recombinations, which subsequently results in the accelerated development of oligoclonal disease.
Collapse
Affiliation(s)
- David J Müller
- Department of Oncology, Hematology and Immunology, University of Tübingen, Tübingen, Germany
| | - Stefan Wirths
- Department of Oncology, Hematology and Immunology, University of Tübingen, Tübingen, Germany
| | - Alexander R Fuchs
- Department of Oncology, Hematology and Immunology, University of Tübingen, Tübingen, Germany
| | - Melanie Märklin
- Department of Oncology, Hematology and Immunology, University of Tübingen, Tübingen, Germany
| | - Jonas S Heitmann
- Department of Oncology, Hematology and Immunology, University of Tübingen, Tübingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Michael Haap
- Department of Endocrinology, Diabetology, Clinical Pathology and Metabolism, University of Tübingen, Tübingen, Germany
| | | | - Yoshiteru Sasaki
- Department of Hematology and Oncology, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Japan
| | - Lothar Kanz
- Department of Oncology, Hematology and Immunology, University of Tübingen, Tübingen, Germany
| | - Hans-Georg Kopp
- Department of Oncology, Hematology and Immunology, University of Tübingen, Tübingen, Germany
| | - Martin R Müller
- Department of Oncology, Hematology and Immunology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
116
|
Schober R, Waldherr L, Schmidt T, Graziani A, Stilianu C, Legat L, Groschner K, Schindl R. STIM1 and Orai1 regulate Ca 2+ microdomains for activation of transcription. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:1079-1091. [PMID: 30408546 DOI: 10.1016/j.bbamcr.2018.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
Since calcium (Ca2+) regulates a large variety of cellular signaling processes in a cell's life, precise control of Ca2+ concentrations within the cell is essential. This enables the transduction of information via Ca2+ changes in a time-dependent and spatially defined manner. Here, we review molecular and functional aspects of how the store-operated Ca2+ channel Orai1 creates spatiotemporal Ca2+ microdomains. The architecture of this channel is unique, with a long helical pore and a six-fold symmetry. Energetic barriers within the Ca2+ channel pathway limit permeation to allow an extensive local Ca2+ increase in close proximity to the channel. The precise timing of the Orai1 channel function is controlled by direct binding to STIM proteins upon Ca2+ depletion in the endoplasmic reticulum. These induced Ca2+ microdomains are tailored to, and sufficient for, triggering long-term activation processes, such as transcription factor activation and subsequent gene regulation. We describe the principles of spatiotemporal activation of the transcription factor NFAT and compare its signaling characteristics to those of the autophagy regulating transcription factors, MITF and TFEB.
Collapse
Affiliation(s)
- Romana Schober
- Institute for Biophysics, Johannes Kepler University Linz, A-4040 Linz, Austria.
| | - Linda Waldherr
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria
| | - Tony Schmidt
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria
| | - Annarita Graziani
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria
| | - Clemens Stilianu
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria
| | - Lorenz Legat
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria
| | - Klaus Groschner
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria
| | - Rainer Schindl
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria.
| |
Collapse
|
117
|
Wan X, Zinselmeyer BH, Zakharov PN, Vomund AN, Taniguchi R, Santambrogio L, Anderson MS, Lichti CF, Unanue ER. Pancreatic islets communicate with lymphoid tissues via exocytosis of insulin peptides. Nature 2018; 560:107-111. [PMID: 30022165 PMCID: PMC6090537 DOI: 10.1038/s41586-018-0341-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/04/2018] [Indexed: 12/27/2022]
Abstract
Tissue-specific autoimmunity occurs when selected antigens presented by susceptible alleles of the major histocompatibility complex are recognized by T cells. However, the reason why certain specific self-antigens dominate the response and are indispensable for triggering autoreactivity is unclear. Spontaneous presentation of insulin is essential for initiating autoimmune type 1 diabetes in non-obese diabetic mice1,2. A major set of pathogenic CD4 T cells specifically recognizes the 12-20 segment of the insulin B-chain (B:12-20), an epitope that is generated from direct presentation of insulin peptides by antigen-presenting cells3,4. These T cells do not respond to antigen-presenting cells that have taken up insulin that, after processing, leads to presentation of a different segment representing a one-residue shift, B:13-214. CD4 T cells that recognize B:12-20 escape negative selection in the thymus and cause diabetes, whereas those that recognize B:13-21 have only a minor role in autoimmunity3-5. Although presentation of B:12-20 is evident in the islets3,6, insulin-specific germinal centres can be formed in various lymphoid tissues, suggesting that insulin presentation is widespread7,8. Here we use live imaging to document the distribution of insulin recognition by CD4 T cells throughout various lymph nodes. Furthermore, we identify catabolized insulin peptide fragments containing defined pathogenic epitopes in β-cell granules from mice and humans. Upon glucose challenge, these fragments are released into the circulation and are recognized by CD4 T cells, leading to an activation state that results in transcriptional reprogramming and enhanced diabetogenicity. Therefore, a tissue such as pancreatic islets, by releasing catabolized products, imposes a constant threat to self-tolerance. These findings reveal a self-recognition pathway underlying a primary autoantigen and provide a foundation for assessing antigenic targets that precipitate pathogenic outcomes by systemically sensitizing lymphoid tissues.
Collapse
Affiliation(s)
- Xiaoxiao Wan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bernd H Zinselmeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Pavel N Zakharov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anthony N Vomund
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ruth Taniguchi
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Laura Santambrogio
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Cheryl F Lichti
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Emil R Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
118
|
Arranz-Nicolás J, Ogando J, Soutar D, Arcos-Pérez R, Meraviglia-Crivelli D, Mañes S, Mérida I, Ávila-Flores A. Diacylglycerol kinase α inactivation is an integral component of the costimulatory pathway that amplifies TCR signals. Cancer Immunol Immunother 2018; 67:965-980. [PMID: 29572701 PMCID: PMC11028345 DOI: 10.1007/s00262-018-2154-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/19/2018] [Indexed: 12/18/2022]
Abstract
The arsenal of cancer therapies has evolved to target T lymphocytes and restore their capacity to destroy tumor cells. T cells rely on diacylglycerol (DAG) to carry out their functions. DAG availability and signaling are regulated by the enzymes diacylglycerol kinase (DGK) α and ζ, whose excess function drives T cells into hyporesponsive states. Targeting DGKα is a promising strategy for coping with cancer; its blockade could reinstate T-cell attack on tumors while limiting tumor growth, due to positive DGKα functions in several oncogenic pathways. Here, we made a side-by-side comparison of the effects of commercial pharmacological DGK inhibitors on T-cell responses with those promoted by DGKα and DGKζ genetic deletion or silencing. We show the specificity for DGKα of DGK inhibitors I and II and the structurally similar compound ritanserin. Inhibitor treatment promoted Ras/ERK (extracellular signal-regulated kinase) signaling and AP-1 (Activator protein-1) transcription, facilitated DGKα membrane localization, reduced the requirement for costimulation, and cooperated with enhanced activation following DGKζ silencing/deletion. DGKiII and ritanserin had similar effects on TCR proximal signaling, but ritanserin counteracted long-term T-cell activation, an effect that was potentiated in DGKα-/- cells. In contrast with enhanced activation triggered by pharmacological inhibition, DGKα silencing/genetic deletion led to impaired Lck (lymphocyte-specific protein tyrosine kinase) activation and limited costimulation responses. Our results demonstrate that pharmacological inhibition of DGKα downstream of the TCR provides a gain-of-function effect that amplifies the DAG-dependent signaling cascade, an ability that could be exploited therapeutically to reinvigorate T cells to attack tumors.
Collapse
Affiliation(s)
- Javier Arranz-Nicolás
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, UAM Campus de Cantoblanco, 28049, Madrid, Spain
| | - Jesús Ogando
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, UAM Campus de Cantoblanco, 28049, Madrid, Spain
| | - Denise Soutar
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, UAM Campus de Cantoblanco, 28049, Madrid, Spain
| | - Raquel Arcos-Pérez
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, UAM Campus de Cantoblanco, 28049, Madrid, Spain
| | - Daniel Meraviglia-Crivelli
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, UAM Campus de Cantoblanco, 28049, Madrid, Spain
| | - Santos Mañes
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, UAM Campus de Cantoblanco, 28049, Madrid, Spain
| | - Isabel Mérida
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, UAM Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Antonia Ávila-Flores
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, UAM Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
119
|
Agüera-González S, Burton OT, Vázquez-Chávez E, Cuche C, Herit F, Bouchet J, Lasserre R, Del Río-Iñiguez I, Di Bartolo V, Alcover A. Adenomatous Polyposis Coli Defines Treg Differentiation and Anti-inflammatory Function through Microtubule-Mediated NFAT Localization. Cell Rep 2018; 21:181-194. [PMID: 28978472 DOI: 10.1016/j.celrep.2017.09.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/04/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022] Open
Abstract
Adenomatous polyposis coli (APC) is a polarity regulator and tumor suppressor associated with familial adenomatous polyposis and colorectal cancer development. Although extensively studied in epithelial transformation, the effect of APC on T lymphocyte activation remains poorly defined. We found that APC ensures T cell receptor-triggered activation through Nuclear Factor of Activated T cells (NFAT), since APC is necessary for NFAT's nuclear localization in a microtubule-dependent fashion and for NFAT-driven transcription leading to cytokine gene expression. Interestingly, NFAT forms clusters juxtaposed with microtubules. Ultimately, mouse Apc deficiency reduces the presence of NFAT in the nucleus of intestinal regulatory T cells (Tregs) and impairs Treg differentiation and the acquisition of a suppressive phenotype, which is characterized by the production of the anti-inflammatory cytokine IL-10. These findings suggest a dual role for APC mutations in colorectal cancer development, where mutations drive the initiation of epithelial neoplasms and also reduce Treg-mediated suppression of the detrimental inflammation that enhances cancer growth.
Collapse
Affiliation(s)
- Sonia Agüera-González
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, 75015 Paris, France; CNRS URA1961, 75015 Paris, France; INSERM U1221, 75015 Paris, France.
| | - Oliver T Burton
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Elena Vázquez-Chávez
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, 75015 Paris, France; CNRS URA1961, 75015 Paris, France; INSERM U1221, 75015 Paris, France
| | - Céline Cuche
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, 75015 Paris, France; CNRS URA1961, 75015 Paris, France; INSERM U1221, 75015 Paris, France
| | - Floriane Herit
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, 75015 Paris, France; CNRS URA1961, 75015 Paris, France; INSERM U1221, 75015 Paris, France
| | - Jérôme Bouchet
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, 75015 Paris, France; CNRS URA1961, 75015 Paris, France; INSERM U1221, 75015 Paris, France
| | - Rémi Lasserre
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, 75015 Paris, France; CNRS URA1961, 75015 Paris, France; INSERM U1221, 75015 Paris, France
| | - Iratxe Del Río-Iñiguez
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, 75015 Paris, France; CNRS URA1961, 75015 Paris, France; INSERM U1221, 75015 Paris, France
| | - Vincenzo Di Bartolo
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, 75015 Paris, France; CNRS URA1961, 75015 Paris, France; INSERM U1221, 75015 Paris, France
| | - Andrés Alcover
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, 75015 Paris, France; CNRS URA1961, 75015 Paris, France; INSERM U1221, 75015 Paris, France.
| |
Collapse
|
120
|
Just F, Oster M, Büsing K, Borgelt L, Murani E, Ponsuksili S, Wolf P, Wimmers K. Lowered dietary phosphorus affects intestinal and renal gene expression to maintain mineral homeostasis with immunomodulatory implications in weaned piglets. BMC Genomics 2018; 19:207. [PMID: 29554878 PMCID: PMC5859397 DOI: 10.1186/s12864-018-4584-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 03/07/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In monogastric animals, phosphorus (P) homeostasis is maintained by regulating intestinal absorption, bone mobilization, and renal excretion. Since P is a non-renewable resource, a shortage is imminent due to widespread over-usage in the farming and animal husbandry industries. As a consequence, P efficiency should be improved in pig production. We sought to characterize the transcriptional response in re-/absorbing and excreting tissues in pigs to diets varying in calcium: phosphorus ratios. Weaned piglets were assigned to one of three groups fed diets varying in digestible P content for a period of five weeks. Gene expression profiles were analyzed in jejunum, colon, and kidney. RESULTS Transcriptome analysis revealed that reduced dietary P intake affects gene expression in jejunum and kidney, but not in colon. The regulation of mineral homeostasis was reflected via altered mRNA abundances of CYP24A1, CYP27A1, TRPM6, SPP1, and VDR in jejunum and kidney. Moreover, lowered abundances of transcripts associated with the classical complement system pathway were observed in the jejunum. In kidney, shifted transcripts were involved in phospholipase C, calcium signaling, and NFAT signaling, which may have immunomodulatory implications. CONCLUSIONS Our results revealed local transcriptional consequences of variable P intake in intestinal and renal tissues. The adaptive responses are the result of organismal efforts to maintain systemic mineral homeostasis while modulating immune features at local tissue sites. Therefore, the deviation from the currently recommended dietary P supply must be carefully considered, as the endogenous mechanisms that respond to low P diets may impact important adaptive immune responses.
Collapse
Affiliation(s)
- Franziska Just
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Michael Oster
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Kirsten Büsing
- Faculty of Agricultural and Environmental Sciences, University Rostock, 18059, Rostock, Germany
| | - Luisa Borgelt
- Faculty of Agricultural and Environmental Sciences, University Rostock, 18059, Rostock, Germany
| | - Eduard Murani
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Petra Wolf
- Faculty of Agricultural and Environmental Sciences, University Rostock, 18059, Rostock, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany. .,Faculty of Agricultural and Environmental Sciences, University Rostock, 18059, Rostock, Germany.
| |
Collapse
|
121
|
Abstract
Nuclear factor of activated T cells (NFAT) was first described almost three decades ago as a Ca
2+/calcineurin-regulated transcription factor in T cells. Since then, a large body of research uncovered the regulation and physiological function of different NFAT homologues in the immune system and many other tissues. In this review, we will discuss novel roles of NFAT in T cells, focusing mainly on its function in humoral immune responses, immunological tolerance, and the regulation of immune metabolism.
Collapse
Affiliation(s)
- Martin Vaeth
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
122
|
Mencarelli A, Vacca M, Khameneh HJ, Acerbi E, Tay A, Zolezzi F, Poidinger M, Mortellaro A. Calcineurin B in CD4 + T Cells Prevents Autoimmune Colitis by Negatively Regulating the JAK/STAT Pathway. Front Immunol 2018. [PMID: 29515579 PMCID: PMC5826051 DOI: 10.3389/fimmu.2018.00261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calcineurin (Cn) is a protein phosphatase that regulates the activation of the nuclear factor of activated T-cells (NFAT) family of transcription factors, which are key regulators of T-cell development and function. Here, we generated a conditional Cnb1 mouse model in which Cnb1 was specifically deleted in CD4+ T cells (Cnb1CD4 mice) to delineate the role of the Cn–NFAT pathway in immune homeostasis of the intestine. The Cnb1CD4 mice developed severe, spontaneous colitis characterized at the molecular level by an increased T helper-1-cell response but an unaltered regulatory T-cell compartment. Antibiotic treatment ameliorated the intestinal inflammation observed in Cnb1CD4 mice, suggesting that the microbiota contributes to the onset of colitis. CD4+ T cells isolated from Cnb1CD4 mice produced high levels of IFNγ due to increased activation of the JAK2/STAT4 pathway induced by IL-12. Our data highlight that Cn signaling in CD4+ T cells is critical for intestinal immune homeostasis in part by inhibiting IL-12 responsiveness of CD4+ T cells.
Collapse
Affiliation(s)
- Andrea Mencarelli
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Maurizio Vacca
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hanif Javanmard Khameneh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Enzo Acerbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Alicia Tay
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Francesca Zolezzi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Alessandra Mortellaro
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
123
|
Bijnens J, Missiaen L, Bultynck G, Parys JB. A critical appraisal of the role of intracellular Ca 2+-signaling pathways in Kawasaki disease. Cell Calcium 2018; 71:95-103. [PMID: 29604968 DOI: 10.1016/j.ceca.2018.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/20/2018] [Indexed: 12/31/2022]
Abstract
Kawasaki disease is a multi-systemic vasculitis that generally occurs in children and that can lead to coronary artery lesions. Recent studies showed that Kawasaki disease has an important genetic component. In this review, we discuss the single-nucleotide polymorphisms in the genes encoding proteins with a role in intracellular Ca2+ signaling: inositol 1,4,5-trisphosphate 3-kinase C, caspase-3, the store-operated Ca2+-entry channel ORAI1, the type-3 inositol 1,4,5-trisphosphate receptor, the Na+/Ca2+ exchanger 1, and phospholipase Cß4 and Cß1. An increase of the free cytosolic Ca2+ concentration is proposed to be a major factor in susceptibility to Kawasaki disease and disease outcome, but only for polymorphisms in the genes encoding the inositol 1,4,5-trisphosphate 3-kinase C and the Na+/Ca2+ exchanger 1, the free cytosolic Ca2+ concentration was actually measured and shown to be increased. Excessive cytosolic Ca2+ signaling can result in hyperactive calcineurin in T cells with an overstimulated nuclear factor of activated T cells pathway, in hypersecretion of interleukin-1ß and tumor necrosis factor-α by monocytes/macrophages, in increased urotensin-2 signaling, and in an overactivation of vascular endothelial cells.
Collapse
Affiliation(s)
- Jeroen Bijnens
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Ludwig Missiaen
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium.
| |
Collapse
|
124
|
Alam MS, Gaida MM, Debnath S, Tagad HD, Miller Jenkins LM, Appella E, Rahman MJ, Ashwell JD. Unique properties of TCR-activated p38 are necessary for NFAT-dependent T-cell activation. PLoS Biol 2018; 16:e2004111. [PMID: 29357353 PMCID: PMC5794172 DOI: 10.1371/journal.pbio.2004111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/01/2018] [Accepted: 01/08/2018] [Indexed: 01/10/2023] Open
Abstract
Nuclear factor of activated T cells (NFAT) transcription factors are required for induction of T-cell cytokine production and effector function. Although it is known that activation via the T-cell antigen receptor (TCR) results in 2 critical steps, calcineurin-mediated NFAT1 dephosphorylation and NFAT2 up-regulation, the molecular mechanisms underlying each are poorly understood. Here we find that T cell p38, which is activated by an alternative pathway independent of the mitogen-activated protein (MAP) kinase cascade and with different substrate specificities, directly controls these events. First, alternatively (but not classically) activated p38 was required to induce the expression of the AP-1 component c-Fos, which was necessary for NFAT2 expression and cytokine production. Second, alternatively (but not classically) activated p38 phosphorylated NFAT1 on a heretofore unidentified site, S79, and in its absence NFAT1 was unable to interact with calcineurin or migrate to the nucleus. These results demonstrate that the acquisition of unique specificities by TCR-activated p38 orchestrates NFAT-dependent T-cell functions. The p38 MAP kinase, which is required for a large number of important biological responses, is activated by an enzymatic cascade that results in its dual phosphorylation on p38T180Y182. T cells have evolved a unique pathway in which T-cell antigen receptor (TCR) ligation results in phosphorylation of p38Y323 (the alternative pathway). Why T cells acquired this pathway is the subject of conjecture. In this study, we examine the activation of 2 members of the nuclear factor of activated T cells (NFAT) family, which, when dephosphorylated by calcineurin, migrate from the cytoplasm to the nucleus. In T cells with the alternative pathway ablated by a single amino acid substitution (p38Y323F), NFAT1 remained in the cytoplasm after stimulation via the TCR. Studies identified NFAT1S79 as a target for alternatively (but not classically) activated p38, and phosphorylation of this residue was required for binding calcineurin and nuclear translocation. Furthermore, although classically activated p38 induced NFAT1 translocation in the absence of NFAT1S79 phosphorylation, unlike alternatively activated p38 it did not cause NFAT2 up-regulation. This paradox was resolved by the finding that only the latter induces c-Fos, which binds to the NFAT2 promoter and participates in its up-regulation. These T-cell-specific p38 activities provide a strong rationale for the acquisition of the alternative mechanism for activating p38.
Collapse
Affiliation(s)
- Muhammad S. Alam
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Matthias M. Gaida
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Subrata Debnath
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Harichandra D. Tagad
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lisa M. Miller Jenkins
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ettore Appella
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - M. Jubayer Rahman
- Laboratory of Molecular Immunology at the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Jonathan D. Ashwell
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
125
|
Regulatory T cells trigger effector T cell DNA damage and senescence caused by metabolic competition. Nat Commun 2018; 9:249. [PMID: 29339767 PMCID: PMC5770447 DOI: 10.1038/s41467-017-02689-5] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022] Open
Abstract
Defining the suppressive mechanisms used by regulatory T (Treg) cells is critical for the development of effective strategies for treating tumors and chronic infections. The molecular processes that occur in responder T cells that are suppressed by Treg cells are unclear. Here we show that human Treg cells initiate DNA damage in effector T cells caused by metabolic competition during cross-talk, resulting in senescence and functional changes that are molecularly distinct from anergy and exhaustion. ERK1/2 and p38 signaling cooperate with STAT1 and STAT3 to control Treg-induced effector T-cell senescence. Human Treg-induced T-cell senescence can be prevented via inhibition of the DNA damage response and/or STAT signaling in T-cell adoptive transfer mouse models. These studies identify molecular mechanisms of human Treg cell suppression and indicate that targeting Treg-induced T-cell senescence is a checkpoint for immunotherapy against cancer and other diseases associated with Treg cells. Regulatory T (Treg) cells can induce senescence of tumour-associated effector T cells, but it is not clear how. Here the authors show that Treg cells outcompete effector T cells for glucose uptake, resulting in activation of the DNA damage response in effector T cells.
Collapse
|
126
|
Ram BM, Dolpady J, Kulkarni R, Usha R, Bhoria U, Poli UR, Islam M, Trehanpati N, Ramakrishna G. Human papillomavirus (HPV) oncoprotein E6 facilitates Calcineurin-Nuclear factor for activated T cells 2 (NFAT2) signaling to promote cellular proliferation in cervical cell carcinoma. Exp Cell Res 2018; 362:132-141. [DOI: 10.1016/j.yexcr.2017.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 12/13/2022]
|
127
|
Chuang E, Augustine M, Jung M, Schwartz RH, Singh NJ. Density dependent re-tuning of autoreactive T cells alleviates their pathogenicity in a lymphopenic environment. Immunol Lett 2017; 192:61-71. [PMID: 29111199 DOI: 10.1016/j.imlet.2017.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
Abstract
Peripheral T cell tolerance is challenging to induce in partially lymphopenic hosts and this is relevant for clinical situations involving transplant tolerance. While the shortage of regulatory cells is thought to be one reason for this, T cell-intrinsic tolerance processes such as anergy are also poorly triggered in such hosts. In order to understand the latter, we used a T cell deficient mouse model system where adoptively transferred autoreactive T cells are significantly tolerized in a cell intrinsic fashion, without differentiation to regulatory T cells. Intriguingly these T cells often retain sufficient effector functions to trigger autoimmune pathology. Here we find that the high population density of the autoreactive T cells that accumulated in such a host limits the progression of the cell-intrinsic tolerance process in T cells. Accordingly, reducing the cell density during a second transfer allowed T cells to further tune down their responsiveness to antigenic stimulation. The retuning of T cells was reflected by a loss of the T cell's abilities to proliferate, produces cytokines or help B cells. We further suggest, based on altering the levels of chronic antigen using miniosmotic pumps, that the effects of cell-density on T cell re-tuning may reflect the effective changes in the antigen dose perceived by individual T cells. This could proportionally elicit more negative feedback downstream of the TCR. Consistent with this, the retuned T cells showed signaling defects both proximal and distal to the TCR. Therefore, similar to the immunogenic activation of T cells, cell-intrinsic T cell tolerance may also involve a quantitative and progressive process of tuning down its antigen-responsiveness. The progress of such tuning seems to be stabilized at multiple intermediate stages by factors such as cell density, rather than just absolute antigen levels.
Collapse
Affiliation(s)
- Eleanore Chuang
- Laboratory of Cellular & Molecular Immunology, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), 4/211, Center Drive, Bethesda, MD 20892-0420, United States; John A. Burns School of Medicine, Department of Tropical Medicine, Hawaii Center for AIDS, University of Hawaii, Honolulu, HI 96813, United States
| | - Marilyn Augustine
- Laboratory of Cellular & Molecular Immunology, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), 4/211, Center Drive, Bethesda, MD 20892-0420, United States; University of Pittsburgh, Division of Endocrinology and Metabolism, 200 Lothrop Street, E1140 BST, Pittsburgh, PA 15261, United States
| | - Matthew Jung
- Laboratory of Cellular & Molecular Immunology, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), 4/211, Center Drive, Bethesda, MD 20892-0420, United States; Washington University School of Medicine, Deptartment of Otolaryngology Head and Neck Surgery, 660 South Euclid Ave, St. Louis, MO 63110, United States
| | - Ronald H Schwartz
- Laboratory of Cellular & Molecular Immunology, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), 4/211, Center Drive, Bethesda, MD 20892-0420, United States
| | - Nevil J Singh
- Laboratory of Cellular & Molecular Immunology, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), 4/211, Center Drive, Bethesda, MD 20892-0420, United States; Department of Microbiology and Immunology, University of Maryland School of Medicine, HH 320A, 660 W Baltimore Street, Baltimore, MD 21201, United States.
| |
Collapse
|
128
|
Romo-Tena J, Rajme-López S, Aparicio-Vera L, Alcocer-Varela J, Gómez-Martín D. Lys63-polyubiquitination by the E3 ligase casitas B-lineage lymphoma-b (Cbl-b) modulates peripheral regulatory T cell tolerance in patients with systemic lupus erythematosus. Clin Exp Immunol 2017; 191:42-49. [PMID: 28940360 DOI: 10.1111/cei.13054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/23/2017] [Accepted: 09/14/2017] [Indexed: 11/28/2022] Open
Abstract
T cells from systemic lupus erythematosus (SLE) patients display a wide array of anomalies in peripheral immune tolerance mechanisms. The role of ubiquitin ligases such as Cbl-b has been described recently in these phenomena. However, its role in resistance to suppression phenotype in SLE has not been characterized, which was the aim of the present study. Thirty SLE patients (20 with active disease and 10 with complete remission) and 30 age- and sex-matched healthy controls were recruited. Effector (CD4+ CD25- ) and regulatory (CD4+ CD25+ ) T cells (Tregs ) were purified from peripheral blood mononuclear cells (PBMCs) by magnetic selection. Suppression assays were performed in autologous and allogeneic co-cultures and analysed by a flow cytometry assay. Cbl-b expression and lysine-63 (K63)-specific polyubiquitination profile were assessed by Western blotting. We found a defective Cbl-b expression in Tregs from lupus patients in contrast to healthy controls (1·1 ± 0·9 versus 2·5 ± 1·8, P = 0·003), which was related with resistance to suppression (r = 0·633, P = 0·039). Moreover, this feature was associated with deficient K63 polyubiquitination substrates and enhanced expression of phosphorylated signal transducer and activation of transcription 3 (pSTAT-3) in Tregs from lupus patients. Our findings support that Cbl-b modulates resistance to suppression by regulating the K63 polyubiquitination profile in lupus Tregs . In addition, defective K63 polyubiquitination of STAT-3 is related to increased pSTAT-3 expression, and might promote the loss of suppressive capacity of Tregs in lupus patients.
Collapse
Affiliation(s)
- J Romo-Tena
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - S Rajme-López
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - L Aparicio-Vera
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - J Alcocer-Varela
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - D Gómez-Martín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| |
Collapse
|
129
|
Märklin M, Heitmann JS, Fuchs AR, Truckenmüller FM, Gutknecht M, Bugl S, Saur SJ, Lazarus J, Kohlhofer U, Quintanilla-Martinez L, Rammensee HG, Salih HR, Kopp HG, Haap M, Kirschniak A, Kanz L, Rao A, Wirths S, Müller MR. NFAT2 is a critical regulator of the anergic phenotype in chronic lymphocytic leukaemia. Nat Commun 2017; 8:755. [PMID: 28970470 PMCID: PMC5624906 DOI: 10.1038/s41467-017-00830-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 07/31/2017] [Indexed: 11/18/2022] Open
Abstract
Chronic lymphocytic leukaemia (CLL) is a clonal disorder of mature B cells. Most patients are characterised by an indolent disease course and an anergic phenotype of their leukaemia cells, which refers to a state of unresponsiveness to B cell receptor stimulation. Up to 10% of CLL patients transform from an indolent subtype to an aggressive form of B cell lymphoma over time (Richter´s syndrome) and show a significantly worse treatment outcome. Here we show that B cell-specific ablation of Nfat2 leads to the loss of the anergic phenotype culminating in a significantly compromised life expectancy and transformation to aggressive disease. We further define a gene expression signature of anergic CLL cells consisting of several NFAT2-dependent genes including Cbl-b, Grail, Egr2 and Lck. In summary, this study identifies NFAT2 as a crucial regulator of the anergic phenotype in CLL.NFAT2 is a transcription factor that has been linked with chronic lymphocytic leukaemia (CLL), but its functions in CLL manifestation are still unclear. Here the authors show, by analysing mouse CLL models and characterising biopsies from CLL patients, that NFAT2 is an important regulator for the anergic phenotype of CLL.
Collapse
Affiliation(s)
- Melanie Märklin
- Department of Oncology, Haematology and Immunology, University of Tübingen, Tübingen, 72076, Germany
| | - Jonas S Heitmann
- Department of Oncology, Haematology and Immunology, University of Tübingen, Tübingen, 72076, Germany
| | - Alexander R Fuchs
- Department of Oncology, Haematology and Immunology, University of Tübingen, Tübingen, 72076, Germany
| | - Felicia M Truckenmüller
- Department of Oncology, Haematology and Immunology, University of Tübingen, Tübingen, 72076, Germany
| | - Michael Gutknecht
- Department of Oncology, Haematology and Immunology, University of Tübingen, Tübingen, 72076, Germany
| | - Stefanie Bugl
- Department of Oncology, Haematology and Immunology, University of Tübingen, Tübingen, 72076, Germany
| | - Sebastian J Saur
- Department of Oncology, Haematology and Immunology, University of Tübingen, Tübingen, 72076, Germany
| | - Juliane Lazarus
- Department of Oncology, Haematology and Immunology, University of Tübingen, Tübingen, 72076, Germany
| | - Ursula Kohlhofer
- Department of Pathology, University of Tübingen, Tübingen, 72076, Germany
| | | | | | - Helmut R Salih
- Department of Oncology, Haematology and Immunology, University of Tübingen, Tübingen, 72076, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Hans-Georg Kopp
- Department of Oncology, Haematology and Immunology, University of Tübingen, Tübingen, 72076, Germany
| | - Michael Haap
- Department of Endocrinology, Diabetology, Clinical Pathology and Metabolism, University of Tübingen, Tübingen, 72076, Germany
| | | | - Lothar Kanz
- Department of Oncology, Haematology and Immunology, University of Tübingen, Tübingen, 72076, Germany
| | - Anjana Rao
- La Jolla Institute of Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Stefan Wirths
- Department of Oncology, Haematology and Immunology, University of Tübingen, Tübingen, 72076, Germany
| | - Martin R Müller
- Department of Oncology, Haematology and Immunology, University of Tübingen, Tübingen, 72076, Germany.
| |
Collapse
|
130
|
Chae CS, Kim GC, Park ES, Lee CG, Verma R, Cho HL, Jun CD, Yoo YJ, Im SH. NFAT1 Regulates Systemic Autoimmunity through the Modulation of a Dendritic Cell Property. THE JOURNAL OF IMMUNOLOGY 2017; 199:3051-3062. [PMID: 28972088 DOI: 10.4049/jimmunol.1700882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/28/2017] [Indexed: 01/10/2023]
Abstract
The transcription factor NFAT1 plays a pivotal role in the homeostasis of T lymphocytes. However, its functional importance in non-CD4+ T cells, especially in systemic immune disorders, is largely unknown. In this study, we report that NFAT1 regulates dendritic cell (DC) tolerance and suppresses systemic autoimmunity using the experimental autoimmune myasthenia gravis (EAMG) as a model. Myasthenia gravis and EAMG are T cell-dependent, Ab-mediated autoimmune disorders in which the acetylcholine receptor is the major autoantigen. NFAT1-knockout mice showed higher susceptibility to EAMG development with enhanced Th1/Th17 cell responses. NFAT1 deficiency led to a phenotypic alteration of DCs that show hyperactivation of NF-κB-mediated signaling pathways and enhanced binding of NF-κB (p50) to the promoters of IL-6 and IL-12. As a result, NFAT1-knockout DCs produced much higher levels of proinflammatory cytokines such as IL-1β, IL-6, IL-12, and TNF-α, which preferentially induce Th1/Th17 cell differentiation. Our data suggest that NFAT1 may limit the hyperactivation of the NF-κB-mediated proinflammatory response in DCs and suppress autoimmunity by serving as a key regulator of DC tolerance.
Collapse
Affiliation(s)
- Chang-Suk Chae
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Gi-Cheon Kim
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Eun Sil Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; and
| | - Choong-Gu Lee
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Ravi Verma
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Haag-Lim Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; and
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; and
| | - Yung Joon Yoo
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; and
| | - Sin-Hyeog Im
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673, Republic of Korea; .,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
131
|
Bongiovanni D, Saccomani V, Piovan E. Aberrant Signaling Pathways in T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2017; 18:ijms18091904. [PMID: 28872614 PMCID: PMC5618553 DOI: 10.3390/ijms18091904] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease caused by the malignant transformation of immature progenitors primed towards T-cell development. Clinically, T-ALL patients present with diffuse infiltration of the bone marrow by immature T-cell blasts high blood cell counts, mediastinal involvement, and diffusion to the central nervous system. In the past decade, the genomic landscape of T-ALL has been the target of intense research. The identification of specific genomic alterations has contributed to identify strong oncogenic drivers and signaling pathways regulating leukemia growth. Notwithstanding, T-ALL patients are still treated with high-dose multiagent chemotherapy, potentially exposing these patients to considerable acute and long-term side effects. This review summarizes recent advances in our understanding of the signaling pathways relevant for the pathogenesis of T-ALL and the opportunities offered for targeted therapy.
Collapse
Affiliation(s)
- Deborah Bongiovanni
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita' di Padova, Padova 35128, Italy.
| | - Valentina Saccomani
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita' di Padova, Padova 35128, Italy.
| | - Erich Piovan
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita' di Padova, Padova 35128, Italy.
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV-IRCCS, Padova 35128, Italy.
| |
Collapse
|
132
|
The Transcription Factor NFAT1 Participates in the Induction of CD4 + T Cell Functional Exhaustion during Plasmodium yoelii Infection. Infect Immun 2017. [PMID: 28630062 DOI: 10.1128/iai.00364-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Repeated stimulation of T cells that occurs in the context of chronic infection results in progressively reduced responsiveness of T cells to pathogen-derived antigens. This phenotype, known as T cell exhaustion, occurs during chronic infections caused by a variety of pathogens, from persistent viruses to parasites. Unlike the memory cells that typically form after successful pathogen clearance following an acute infection, exhausted T cells secrete lower levels of effector cytokines, proliferate less in response to cognate antigen, and upregulate cell surface inhibitory molecules such as PD-1 and LAG-3. The molecular events that lead to the induction of this phenotype have, however, not been fully characterized. In T cells, members of the NFAT family of transcription factors not only are responsible for the expression of many activation-induced genes but also are crucial for the induction of transcriptional programs that inhibit T cell activation and maintain tolerance. Here we show that NFAT1-deficient CD4+ T cells maintain higher proliferative capacity and expression of effector cytokines following Plasmodium yoelii infection and are therefore more resistant to P. yoelii-induced exhaustion than their wild-type counterparts. Consequently, gene expression microarray analysis of CD4+ T cells following P. yoelii-induced exhaustion shows upregulation of effector T cell-associated genes in the absence of NFAT1 compared with wild-type exhausted T cells. Furthermore, adoptive transfer of NFAT1-deficient CD4+ T cells into mice infected with P. yoelii results in increased production of antibodies to cognate antigen. Our results support the idea that NFAT1 is necessary to fully suppress effector responses during Plasmodium-induced CD4+ T cell exhaustion.
Collapse
|
133
|
Pereira RM, Hogan PG, Rao A, Martinez GJ. Transcriptional and epigenetic regulation of T cell hyporesponsiveness. J Leukoc Biol 2017; 102:601-615. [PMID: 28606939 DOI: 10.1189/jlb.2ri0317-097r] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 12/19/2022] Open
Abstract
Naive CD8+ T cells differentiate into effector and memory cytolytic T cells (CTLs) during an acute infection. In contrast, in scenarios of persistent antigen stimulation, such as chronic infections and cancer, antigen-specific CTLs show a gradual decrease in effector function, a phenomenon that has been termed CD8+ T cell "exhaustion" or "dysfunction." Another hyporesponsive state, termed "anergy", is observed when T cells are activated in the absence of positive costimulatory signals. Among the many negative regulators induced in hyporesponsive T cells are inhibitory cell-surface receptors, such as PD-1, LAG-3, CTLA-4, and TIM-3; "checkpoint blockade" therapies that involve treatment of patients with cancer with blocking antibodies to those receptors show considerable promise in the clinic because the blocking antibodies can mitigate hyporesponsiveness and promote tumor rejection. In this review, we describe recent advances in our molecular understanding of these hyporesponsive states. We review evidence for the involvement of diverse transcription factors, metabolic programs, and chromatin accessibility changes in hyporesponsive T cells, and we discuss how checkpoint blockade therapies affect the molecular program of CD8+ T cell exhaustion.
Collapse
Affiliation(s)
- Renata M Pereira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil;
| | - Patrick G Hogan
- Division of Signaling and Gene Expression, La Jolla Institute, San Diego, California, USA
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute, San Diego, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA.,Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California, USA; and
| | - Gustavo J Martinez
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, Illinois, USA
| |
Collapse
|
134
|
Kim TD, Jung HR, Seo SH, Oh SC, Ban Y, Tan X, Min Kim J, Hyun Lee S, Koh DS, Jung H, Park YJ, Ran Yoon S, Doh J, Ha SJ, Choi I, Greenberg PD. MicroRNA-150 modulates intracellular Ca 2+ levels in naïve CD8 + T cells by targeting TMEM20. Sci Rep 2017; 7:2623. [PMID: 28572627 PMCID: PMC5453935 DOI: 10.1038/s41598-017-02697-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/19/2017] [Indexed: 11/09/2022] Open
Abstract
Regulation of intracellular Ca2+ signaling is a major determinant of CD8+ T cell responsiveness, but the mechanisms underlying this regulation of Ca2+ levels, especially in naïve CD8+ T cells, are not fully defined. Here, we showed that microRNA-150 (miR-150) controls intracellular Ca2+ levels in naïve CD8+ T cells required for activation by suppressing TMEM20, a negative regulator of Ca2+ extrusion. miR-150 deficiency increased TMEM20 expression, which resulted in increased intracellular Ca2+ levels in naïve CD8+ T cells. The subsequent increase in Ca2+ levels induced expression of anergy-inducing genes, such as Cbl-b, Egr2, and p27, through activation of NFAT1, as well as reduced cell proliferation, cytokine production, and the antitumor activity of CD8+ T cells upon antigenic stimulation. The anergy-promoting molecular milieu and function induced by miR-150 deficiency were rescued by reinstatement of miR-150. Additionally, knockdown of TMEM20 in miR-150-deficient naïve CD8+ T cells reduced intracellular Ca2+ levels. Our findings revealed that miR-150 play essential roles in controlling intracellular Ca2+ level and activation in naïve CD8+ T cells, which suggest a mechanism to overcome anergy induction by the regulation of intracellular Ca2+ levels.
Collapse
Affiliation(s)
- Tae-Don Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong, Daejeon, 34141, Republic of Korea. .,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong, Daejeon, 34113, Republic of Korea.
| | - Hong-Ryul Jung
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong, Daejeon, 34141, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering (I-Bio), POSTECH, Pohang, 37673, Republic of Korea
| | - Sang-Hwan Seo
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong, Daejeon, 34141, Republic of Korea
| | - Se-Chan Oh
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong, Daejeon, 34141, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong, Daejeon, 34113, Republic of Korea
| | - Youngho Ban
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Xiaoxia Tan
- Departments of Immunology and Medicine, University of Washington School of Medicine and Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jung Min Kim
- NAR Center, Inc., Daejeon Oriental Hospital of Daejeon University, 22-5 Daeheung-dong, Jung-gu, Daejeon, 34929, Republic of Korea
| | - Sang Hyun Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong, Daejeon, 34141, Republic of Korea
| | - Duk-Su Koh
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Haiyoung Jung
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong, Daejeon, 34141, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong, Daejeon, 34113, Republic of Korea
| | - Young-Jun Park
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong, Daejeon, 34141, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong, Daejeon, 34113, Republic of Korea
| | - Suk Ran Yoon
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong, Daejeon, 34141, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong, Daejeon, 34113, Republic of Korea
| | - Junsang Doh
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), POSTECH, Pohang, 37673, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Inpyo Choi
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong, Daejeon, 34141, Republic of Korea. .,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong, Daejeon, 34113, Republic of Korea.
| | - Philip D Greenberg
- Departments of Immunology and Medicine, University of Washington School of Medicine and Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
| |
Collapse
|
135
|
Hemon P, Renaudineau Y, Debant M, Le Goux N, Mukherjee S, Brooks W, Mignen O. Calcium Signaling: From Normal B Cell Development to Tolerance Breakdown and Autoimmunity. Clin Rev Allergy Immunol 2017; 53:141-165. [DOI: 10.1007/s12016-017-8607-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
136
|
Hogan PG. Calcium-NFAT transcriptional signalling in T cell activation and T cell exhaustion. Cell Calcium 2017; 63:66-69. [PMID: 28153342 PMCID: PMC5739523 DOI: 10.1016/j.ceca.2017.01.014] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/26/2017] [Indexed: 02/02/2023]
Abstract
A cornerstone of the adaptive immune response is the T cell receptor (TcR)-calcium-calcineurin signalling pathway leading to T cell activation. The 'nuclear factor of activated T cells' proteins NFAT1, NFAT2, and NFAT4 are transcription factors that promote expression of a panel of genes required for activation. It has become apparent that these same NFAT transcription factors underlie an alternative transcriptional program in T cells that serves to limit the immune response. This duality in NFAT transcriptional functions raises the possibility that NFAT transcriptional complexes could be targeted therapeutically to alter the relative strength of the effector and alternative transcriptional programs, thereby modulating immune responses.
Collapse
Affiliation(s)
- Patrick G Hogan
- La Jolla Institute for Allergy & Immunology, 9420 Athena Circle, La Jolla, CA 92037, United States.
| |
Collapse
|
137
|
Li Z, Khan MM, Kuja-Panula J, Wang H, Chen Y, Guo D, Chen ZJ, Lahesmaa R, Rauvala H, Tian L. AMIGO2 modulates T cell functions and its deficiency in mice ameliorates experimental autoimmune encephalomyelitis. Brain Behav Immun 2017; 62:110-123. [PMID: 28119027 DOI: 10.1016/j.bbi.2017.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/26/2016] [Accepted: 01/10/2017] [Indexed: 01/10/2023] Open
Abstract
The immune function of AMIGO2 is currently unknown. Here, we revealed novel roles of AMIGO2 in modulating T-cell functions and EAE using Amigo2-knockout (AMG2KO) mice. Amigo2 was abundantly expressed by murine T helper (Th) cells. Its deficiency impaired transplanted T-cell infiltration into the secondary lymphoid organs and dampened Th-cell activation, but promoted splenic Th-cell proliferation and abundancy therein. AMG2KO Th cells had respectively elevated T-bet in Th1- and GATA-3 in Th2-lineage during early Th-cell differentiation, accompanied with increased IFN-γ and IL-10 but decreased IL-17A production. AMG2KO mice exhibited ameliorated EAE, dampened spinal T-cell accumulation, decreased serum IL-17A levels and enhanced splenic IL-10 production. Adoptive transfer of encephalitogenic AMG2KO T cells induced milder EAE and dampened spinal Th-cell accumulation and Tnf expression. Mechanistically, Amigo2-overexpression in 293T cells dampened NF-kB transcriptional activity, while Amigo2-deficiency enhanced Akt but suppressed GSK-3β phosphorylation and promoted nuclear translocations of NF-kB and NFAT1 in Th-cells. Collectively, our data demonstrate that AMIGO2 is important in regulating T-cell functions and EAE, and may be harnessed as a potential therapeutic target for multiple sclerosis.
Collapse
Affiliation(s)
- Zhilin Li
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.
| | - Mohd Moin Khan
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
| | - Juha Kuja-Panula
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.
| | - Hongyun Wang
- College of Life Sciences, Wuhan University, Wuhan, China.
| | - Yu Chen
- College of Life Sciences, Wuhan University, Wuhan, China.
| | - Deyin Guo
- College of Life Sciences, Wuhan University, Wuhan, China; School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| | - Zhi Jane Chen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
| | - Heikki Rauvala
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.
| | - Li Tian
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland; Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University, Beijing, China.
| |
Collapse
|
138
|
Growth Factor Midkine Promotes T-Cell Activation through Nuclear Factor of Activated T Cells Signaling and Th1 Cell Differentiation in Lupus Nephritis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:740-751. [DOI: 10.1016/j.ajpath.2016.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 12/24/2022]
|
139
|
Rezende RM, Weiner HL. History and mechanisms of oral tolerance. Semin Immunol 2017; 30:3-11. [DOI: 10.1016/j.smim.2017.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 07/13/2017] [Indexed: 12/26/2022]
|
140
|
Identification of Significant Pathways Induced by PAX5 Haploinsufficiency Based on Protein-Protein Interaction Networks and Cluster Analysis in Raji Cell Line. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5326370. [PMID: 28316978 PMCID: PMC5339483 DOI: 10.1155/2017/5326370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/23/2017] [Accepted: 01/30/2017] [Indexed: 12/02/2022]
Abstract
PAX5 encodes a transcription factor essential for B-cell differentiation, and PAX5 haploinsufficiency is involved in tumorigenesis. There were few studies on how PAX5 haploinsufficiency regulated genes expression to promote tumorigenesis. In this study, we constructed the cell model of PAX5 haploinsufficiency using gene editing technology in Raji cells, detected differentially expressed genes in PAX5 haploinsufficiency Raji cells, and used protein-protein interaction networks and cluster analysis to comprehensively investigate the cellular pathways involved in PAX5 haploinsufficiency. The clusters of gene transcription, inflammatory and immune response, and cancer pathways were identified as three important pathways associated with PAX5 haploinsufficiency in Raji cells. These changes hinted that the mechanism of PAX5 haploinsufficiency promoting tumorigenesis may be related to genomic instability, immune tolerance, and tumor pathways.
Collapse
|
141
|
Short-course rapamycin treatment enables engraftment of immunogenic gene-engineered bone marrow under low-dose irradiation to permit long-term immunological tolerance. Stem Cell Res Ther 2017; 8:57. [PMID: 28279220 PMCID: PMC5345164 DOI: 10.1186/s13287-017-0508-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/01/2017] [Accepted: 02/11/2017] [Indexed: 01/02/2023] Open
Abstract
Background Application of genetically modified hematopoietic stem cells is increasingly mooted as a clinically relevant approach to protein replacement therapy, immune tolerance induction or conditions where both outcomes may be helpful. Hematopoietic stem and progenitor cell (HSPC)-mediated gene therapy often requires highly toxic pretransfer recipient conditioning to provide a ‘niche’ so that transferred HSPCs can engraft effectively and to prevent immune rejection of neoantigen-expressing engineered HSPCs. For widespread clinical application, reducing conditioning toxicity is an important requirement, but reduced conditioning can render neoantigen-expressing bone marrow (BM) and HSC susceptible to immune rejection if immunity is retained. Methods BM or HSPC-expressing OVA ubiquitously (actin.OVA) or targeted to MHC II+ cells was transferred using low-dose (300 cGy) total body irradiation. Recipients were administered rapamycin, cyclosporine or vehicle for 3 weeks commencing at BM transfer. Engraftment was determined using CD45 congenic donors and recipients. Induction of T-cell tolerance was tested by immunising recipients and analysing in-vivo cytotoxic T-lymphocyte (CTL) activity. The effect of rapamycin on transient effector function during tolerance induction was tested using an established model of tolerance induction where antigen is targeted to dendritic cells. Results Immune rejection of neoantigen-expressing BM and HSPCs after low-dose irradiation was prevented by a short course of rapamycin, but not cyclosporine, treatment. Whereas transient T-cell tolerance developed in recipients of OVA-expressing BM administered vehicle, only when engraftment of neoantigen-expressing BM was facilitated with rapamycin treatment did stable, long-lasting T-cell tolerance develop. Rapamycin inhibited transient effector function development during tolerance induction and inhibited development of CTL activity in recipients of OVA-expressing BM. Conclusions Rapamycin acts to suppress acquisition of transient T-cell effector function during peripheral tolerance induction elicited by HSPC-encoded antigen. By facilitating engraftment, short-course rapamycin permits development of long-term stable T-cell tolerance. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0508-3) contains supplementary material, which is available to authorized users.
Collapse
|
142
|
Noessner E. DGK-α: A Checkpoint in Cancer-Mediated Immuno-Inhibition and Target for Immunotherapy. Front Cell Dev Biol 2017; 5:16. [PMID: 28316970 PMCID: PMC5335622 DOI: 10.3389/fcell.2017.00016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/17/2017] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy is moving to the forefront of cancer treatments owing to impressive durable responses achieved with checkpoint blockade antibodies and adoptive T-cell therapy. Still, improvements are necessary since, overall, only a small percentage of patients benefit from current therapies. Here, I summarize evidence that DGK-α may represent an immunological checkpoint suppressing the activity of cytotoxic immunocytes in the tumor microenvironment. DGK-inhibitors can restore the antitumor function of tumor-suppressed adaptive and innate cytotoxic immunocytes. The activity of DGK-inhibitors lays downstream of current checkpoint blockade antibodies. Thus, synergistic effects are expected from combination strategies. Moreover, DGK-inhibitors may permit a double-strike attack on tumor cells as DGK-inhibition may not only re-instate immunological tumor attack but also may harm tumor cells directly by interfering with oncogenic survival pathways. Together, DGK-inhibitors have very promising characteristics and may be beneficially included into the armamentarium of cancer immunotherapeutics.
Collapse
Affiliation(s)
- Elfriede Noessner
- Immunoanalytics Core Facility and Research Group Tissue Control of Immunocytes, Helmholtz Zentrum München München, Germany
| |
Collapse
|
143
|
Mérida I, Torres-Ayuso P, Ávila-Flores A, Arranz-Nicolás J, Andrada E, Tello-Lafoz M, Liébana R, Arcos R. Diacylglycerol kinases in cancer. Adv Biol Regul 2017; 63:22-31. [PMID: 27697466 DOI: 10.1016/j.jbior.2016.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 05/27/2023]
Abstract
Diacylglycerol kinases (DGK) are a family of enzymes that catalyze the transformation of diacylglycerol into phosphatidic acid. In T lymphocytes, DGKα and ζ limit the activation of the PLCγ/Ras/ERK axis, providing a critical checkpoint to inhibit T cell responses. Upregulation of these isoforms limits Ras activation, leading to hypo-responsive, anergic states similar to those caused by tumors. Recent studies have identified DGKα upregulation in tumor lymphocyte infiltrates, and cells from DGKα and ζ deficient mice show enhanced antitumor activity, suggesting that limitation of DAG based signals by DGK is used by tumors to evade immune attack. DGKα expression is low or even absent in other healthy cells like melanocytes, hepatocytes or neurons. Expression of this isoform, nevertheless is upregulated in melanoma, hepatocarcinoma and glioblastoma where DGKα contributes to the acquisition of tumor metastatic traits. A model thus emerges where tumor milieu fosters DGKα expression in tumors as well as in tumor infiltrating lymphocytes with opposite consequences. Here we review the mechanisms and targets that facilitate tumor "addiction" to DGKα, and discuss its relevance in the more advanced forms of cancer for tumor immune evasion. A better knowledge of this function offers a new perspective in the search of novel approaches to prevent inhibition of immune attack in cancer. Part of the failure in clinical progress may be attributed to the complexity of the tumor/T lymphocyte interaction. As they develop, tumors use a number of mechanisms to drive endogenous, tumor reactive T cells to a general state of hyporesponsiveness or anergy. A better knowledge of the molecular mechanisms that tumors use to trigger T cell anergic states will greatly help in the advance of immunotherapy research.
Collapse
Affiliation(s)
- Isabel Mérida
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain.
| | - Pedro Torres-Ayuso
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Antonia Ávila-Flores
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Javier Arranz-Nicolás
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Elena Andrada
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - María Tello-Lafoz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Rosa Liébana
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Raquel Arcos
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| |
Collapse
|
144
|
Immunological Disorders: Regulation of Ca 2+ Signaling in T Lymphocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:397-424. [PMID: 28900926 DOI: 10.1007/978-3-319-57732-6_21] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Engagement of T cell receptors (TCRs) with cognate antigens triggers cascades of signaling pathways in helper T cells. TCR signaling is essential for the effector function of helper T cells including proliferation, differentiation, and cytokine production. It also modulates effector T cell fate by inducing cell death, anergy (nonresponsiveness), exhaustion, and generation of regulatory T cells. One of the main axes of TCR signaling is the Ca2+-calcineurin-nuclear factor of activated T cells (NFAT) signaling pathway. Stimulation of TCRs triggers depletion of intracellular Ca2+ store and, in turn, activates store-operated Ca2+ entry (SOCE) to raise the intracellular Ca2+ concentration. SOCE in T cells is mediated by the Ca2+ release-activated Ca2+ (CRAC) channels, which have been very well characterized in terms of their electrophysiological properties. Identification of STIM1 as a sensor to detect depletion of the endoplasmic reticulum (ER) Ca2+ store and Orai1 as the pore subunit of CRAC channels has dramatically advanced our understanding of the regulatory mechanism of Ca2+ signaling in T cells. In this review, we discuss our current understanding of Ca2+ signaling in T cells with specific focus on the mechanism of CRAC channel activation and regulation via protein interactions. In addition, we will discuss the role of CRAC channels in effector T cells, based on the analyses of genetically modified animal models.
Collapse
|
145
|
Petrou T, Olsen HL, Thrasivoulou C, Masters JR, Ashmore JF, Ahmed A. Intracellular Calcium Mobilization in Response to Ion Channel Regulators via a Calcium-Induced Calcium Release Mechanism. J Pharmacol Exp Ther 2016; 360:378-387. [PMID: 27980039 PMCID: PMC5267512 DOI: 10.1124/jpet.116.236695] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/14/2016] [Indexed: 01/19/2023] Open
Abstract
Free intracellular calcium ([Ca2+]i), in addition to being an important second messenger, is a key regulator of many cellular processes including cell membrane potential, proliferation, and apoptosis. In many cases, the mobilization of [Ca2+]i is controlled by intracellular store activation and calcium influx. We have investigated the effect of several ion channel modulators, which have been used to treat a range of human diseases, on [Ca2+]i release, by ratiometric calcium imaging. We show that six such modulators [amiodarone (Ami), dofetilide, furosemide (Fur), minoxidil (Min), loxapine (Lox), and Nicorandil] initiate release of [Ca2+]i in prostate and breast cancer cell lines, PC3 and MCF7, respectively. Whole-cell currents in PC3 cells were inhibited by the compounds tested in patch-clamp experiments in a concentration-dependent manner. In all cases [Ca2+]i was increased by modulator concentrations comparable to those used clinically. The increase in [Ca2+]i in response to Ami, Fur, Lox, and Min was reduced significantly (P < 0.01) when the external calcium was reduced to nM concentration by chelation with EGTA. The data suggest that many ion channel regulators mobilize [Ca2+]i. We suggest a mechanism whereby calcium-induced calcium release is implicated; such a mechanism may be important for understanding the action of these compounds.
Collapse
Affiliation(s)
- Terry Petrou
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom (T.P., A.A.); Sophion Bioscience A/S, Biolin Scientific, Ballerup, Denmark (H.L.O.); Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics (C.T.), Division of Surgery (J.R.M.), and Ear Institute, (J.F.A.), University College London, London, United Kingdom
| | - Hervør L Olsen
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom (T.P., A.A.); Sophion Bioscience A/S, Biolin Scientific, Ballerup, Denmark (H.L.O.); Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics (C.T.), Division of Surgery (J.R.M.), and Ear Institute, (J.F.A.), University College London, London, United Kingdom
| | - Christopher Thrasivoulou
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom (T.P., A.A.); Sophion Bioscience A/S, Biolin Scientific, Ballerup, Denmark (H.L.O.); Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics (C.T.), Division of Surgery (J.R.M.), and Ear Institute, (J.F.A.), University College London, London, United Kingdom
| | - John R Masters
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom (T.P., A.A.); Sophion Bioscience A/S, Biolin Scientific, Ballerup, Denmark (H.L.O.); Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics (C.T.), Division of Surgery (J.R.M.), and Ear Institute, (J.F.A.), University College London, London, United Kingdom
| | - Jonathan F Ashmore
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom (T.P., A.A.); Sophion Bioscience A/S, Biolin Scientific, Ballerup, Denmark (H.L.O.); Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics (C.T.), Division of Surgery (J.R.M.), and Ear Institute, (J.F.A.), University College London, London, United Kingdom
| | - Aamir Ahmed
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom (T.P., A.A.); Sophion Bioscience A/S, Biolin Scientific, Ballerup, Denmark (H.L.O.); Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics (C.T.), Division of Surgery (J.R.M.), and Ear Institute, (J.F.A.), University College London, London, United Kingdom
| |
Collapse
|
146
|
Schmiedeberg K, Krause H, Röhl FW, Hartig R, Jorch G, Brunner-Weinzierl MC. T Cells of Infants Are Mature, but Hyporeactive Due to Limited Ca2+ Influx. PLoS One 2016; 11:e0166633. [PMID: 27893767 PMCID: PMC5125607 DOI: 10.1371/journal.pone.0166633] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/01/2016] [Indexed: 12/12/2022] Open
Abstract
CD4 T cells in human infants and adults differ in the initiation and strength of their responses. The molecular basis for these differences is not yet understood. To address this the principle key molecular events of TCR- and CD28-induced signaling in naive CD4 T cells, such as Ca2+ influx, NFAT expression, phosphorylation and translocation into the nucleus, ERK activation and IL-2 response, were analyzed over at least the first 3 years of life. We report dramatically reduced IL-2 and TNFα responses in naive CD31+ T cells during infancy. Looking at the obligatory Ca2+ influx required to induce T cell activation and proliferation, we demonstrate characteristic patterns of impairment for each stage of infancy that are partly due to the differential usage of Ca2+ stores. Consistent with those findings, translocation of NFATc2 is limited, but still dependent on Ca2+ influx as demonstrated by sensitivity to cyclosporin A (CsA) treatment. Thus weak Ca2+ influx functions as a catalyst for the implementation of restricted IL-2 response in T cells during infancy. Our studies also define limited mobilization of Ca2+ ions as a characteristic property of T cells during infancy. This work adds to our understanding of infants’ poor T cell responsiveness against pathogens.
Collapse
Affiliation(s)
- Kristin Schmiedeberg
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Hardy Krause
- Clinic of Pediatric Surgery University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Friedrich-Wilhelm Röhl
- Institute of Biometry and Medical Informatics University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Roland Hartig
- Institute for Molecular and Clinical Immunology, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Gerhard Jorch
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Monika C. Brunner-Weinzierl
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
147
|
Kar P, Mirams GR, Christian HC, Parekh AB. Control of NFAT Isoform Activation and NFAT-Dependent Gene Expression through Two Coincident and Spatially Segregated Intracellular Ca 2+ Signals. Mol Cell 2016; 64:746-759. [PMID: 27863227 PMCID: PMC5128683 DOI: 10.1016/j.molcel.2016.11.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 08/22/2016] [Accepted: 11/03/2016] [Indexed: 01/25/2023]
Abstract
Excitation-transcription coupling, linking stimulation at the cell surface to changes in nuclear gene expression, is conserved throughout eukaryotes. How closely related coexpressed transcription factors are differentially activated remains unclear. Here, we show that two Ca2+-dependent transcription factor isoforms, NFAT1 and NFAT4, require distinct sub-cellular InsP3 and Ca2+ signals for physiologically sustained activation. NFAT1 is stimulated by sub-plasmalemmal Ca2+ microdomains, whereas NFAT4 additionally requires Ca2+ mobilization from the inner nuclear envelope by nuclear InsP3 receptors. NFAT1 is rephosphorylated (deactivated) more slowly than NFAT4 in both cytoplasm and nucleus, enabling a more prolonged activation phase. Oscillations in cytoplasmic Ca2+, long considered the physiological form of Ca2+ signaling, play no role in activating either NFAT protein. Instead, effective sustained physiological activation of NFAT4 is tightly linked to oscillations in nuclear Ca2+. Our results show how gene expression can be controlled by coincident yet geographically distinct Ca2+ signals, generated by a freely diffusible InsP3 message.
Collapse
Affiliation(s)
- Pulak Kar
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Gary R Mirams
- Computational Biology, Department of Computer Science, University of Oxford, Parks Road, Oxford, OX1 3QD, UK
| | - Helen C Christian
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Anant B Parekh
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
148
|
Chen SS, Hu Z, Zhong XP. Diacylglycerol Kinases in T Cell Tolerance and Effector Function. Front Cell Dev Biol 2016; 4:130. [PMID: 27891502 PMCID: PMC5103287 DOI: 10.3389/fcell.2016.00130] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022] Open
Abstract
Diacylglycerol kinases (DGKs) are a family of enzymes that regulate the relative levels of diacylglycerol (DAG) and phosphatidic acid (PA) in cells by phosphorylating DAG to produce PA. Both DAG and PA are important second messengers cascading T cell receptor (TCR) signal by recruiting multiple effector molecules, such as RasGRP1, PKCθ, and mTOR. Studies have revealed important physiological functions of DGKs in the regulation of receptor signaling and the development and activation of immune cells. In this review, we will focus on recent progresses in our understanding of two DGK isoforms, α and ζ, in CD8 T effector and memory cell differentiation, regulatory T cell development and function, and invariant NKT cell development and effector lineage differentiation.
Collapse
Affiliation(s)
- Shelley S Chen
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center Durham, NC, USA
| | - Zhiming Hu
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical CenterDurham, NC, USA; Institute of Biotherapy, School of Biotechnology, Southern Medical UniversityGuangzhou, China
| | - Xiao-Ping Zhong
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical CenterDurham, NC, USA; Department of Immunology, Duke University Medical CenterDurham, NC, USA; Hematologic Malignancies and Cellular Therapies Program, Duke Cancer Institute, Duke University Medical CenterDurham, NC, USA
| |
Collapse
|
149
|
Monaco S, Jahraus B, Samstag Y, Bading H. Nuclear calcium is required for human T cell activation. J Cell Biol 2016; 215:231-243. [PMID: 27810914 PMCID: PMC5084645 DOI: 10.1083/jcb.201602001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 09/27/2016] [Indexed: 01/12/2023] Open
Abstract
Monaco et al. demonstrate that calcium signals in activated human T cells consist of a cytoplasmic and a nuclear component, which are both required for the immune response. Blockade of nuclear calcium signaling inhibits T cell activation and induces an anergy-like state. Calcium signals in stimulated T cells are generally considered single entities that merely trigger immune responses, whereas costimulatory events specify the type of reaction. Here we show that the “T cell calcium signal” is a composite signal harboring two distinct components that antagonistically control genomic programs underlying the immune response. Using human T cells from healthy individuals, we establish nuclear calcium as a key signal in human T cell adaptogenomics that drives T cell activation and is required for signaling to cyclic adenosine monophosphate response element–binding protein and the induction of CD25, CD69, interleukin-2, and γ-interferon. In the absence of nuclear calcium signaling, cytosolic calcium activating nuclear factor of activated T cells translocation directed the genomic response toward enhanced expression of genes that negatively modulate T cell activation and are associated with a hyporesponsive state. Thus, nuclear calcium controls the T cell fate decision between a proliferative immune response and tolerance. Modulators of nuclear calcium–driven transcription may be used to develop a new type of pro-tolerance immunosuppressive therapy.
Collapse
Affiliation(s)
- Sara Monaco
- Interdisciplinary Center for Neurosciences, Department of Neurobiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Beate Jahraus
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, 69120 Heidelberg, Germany
| | - Yvonne Samstag
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Interdisciplinary Center for Neurosciences, Department of Neurobiology, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
150
|
Singh BK, Kambayashi T. The Immunomodulatory Functions of Diacylglycerol Kinase ζ. Front Cell Dev Biol 2016; 4:96. [PMID: 27656643 PMCID: PMC5013040 DOI: 10.3389/fcell.2016.00096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/22/2016] [Indexed: 12/13/2022] Open
Abstract
The generation of diacylglycerol (DAG) is critical for promoting immune cell activation, regulation, and function. Diacylglycerol kinase ζ (DGKζ) serves as an important negative regulator of DAG by enzymatically converting DAG into phosphatidic acid (PA) to shut down DAG-mediated signaling. Consequently, the loss of DGKζ increases DAG levels and the duration of DAG-mediated signaling. However, while the enhancement of DAG signaling is thought to augment immune cell function, the loss of DGKζ can result in both immunoactivation and immunomodulation depending on the cell type and function. In this review, we discuss how different immune cell functions can be selectively modulated by DGKζ. Furthermore, we consider how targeting DGKζ can be potentially beneficial for the resolution of human diseases by either promoting immune responses important for protection against infection or cancer or dampening immune responses in immunopathologic conditions such as allergy and septic shock.
Collapse
Affiliation(s)
- Brenal K Singh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|