101
|
Villeneuve E, Gosselin S. N-Acetylcysteine. CRITICAL CARE TOXICOLOGY 2017:2879-2888. [DOI: 10.1007/978-3-319-17900-1_151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
102
|
Vliegenthart A, Kimmitt RA, Seymour JH, Homer NZ, Clarke JI, Eddleston M, Gray A, Wood DM, Dargan PI, Cooper JG, Antoine DJ, Webb DJ, Lewis SC, Bateman DN, Dear JW. Circulating acetaminophen metabolites are toxicokinetic biomarkers of acute liver injury. Clin Pharmacol Ther 2016; 101:531-540. [PMID: 27770431 PMCID: PMC6099202 DOI: 10.1002/cpt.541] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/15/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023]
Abstract
Acetaminophen (paracetamol-APAP) is the most common cause of drug-induced liver injury in the Western world. Reactive metabolite production by cytochrome P450 enzymes (CYP-metabolites) causes hepatotoxicity. We explored the toxicokinetics of human circulating APAP metabolites following overdose. Plasma from patients treated with acetylcysteine (NAC) for a single APAP overdose was analyzed from discovery (n = 116) and validation (n = 150) patient cohorts. In the discovery cohort, patients who developed acute liver injury (ALI) had higher CYP-metabolites than those without ALI. Receiver operator curve (ROC) analysis demonstrated that at hospital presentation CYP-metabolites were more sensitive/specific for ALI than alanine aminotransferase (ALT) activity and APAP concentration (optimal CYP-metabolite receiver operating characteristic area under the curve (ROC-AUC): 0.91 (95% confidence interval (CI) 0.83-0.98); ALT ROC-AUC: 0.67 (0.50-0.84); APAP ROC-AUC: 0.50 (0.33-0.67)). This enhanced sensitivity/specificity was replicated in the validation cohort. Circulating CYP-metabolites stratify patients by risk of liver injury prior to starting NAC. With development, APAP metabolites have potential utility in stratified trials and for refinement of clinical decision-making.
Collapse
Affiliation(s)
- Adb Vliegenthart
- Pharmacology, Toxicology and Therapeutics, University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK
| | - R A Kimmitt
- Pharmacology, Toxicology and Therapeutics, University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK
| | - J H Seymour
- Pharmacology, Toxicology and Therapeutics, University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK
| | - N Z Homer
- Pharmacology, Toxicology and Therapeutics, University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK
| | - J I Clarke
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - M Eddleston
- Pharmacology, Toxicology and Therapeutics, University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK
| | - A Gray
- Emergency Medicine Research Group, Department of Emergency Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - D M Wood
- Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust, London, UK.,King's College London, London, UK
| | - P I Dargan
- Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust, London, UK.,King's College London, London, UK
| | - J G Cooper
- Emergency Department, Aberdeen Royal Infirmary, Aberdeen, UK
| | - D J Antoine
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - D J Webb
- Pharmacology, Toxicology and Therapeutics, University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK
| | - S C Lewis
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - D N Bateman
- Pharmacology, Toxicology and Therapeutics, University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK
| | - J W Dear
- Pharmacology, Toxicology and Therapeutics, University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK
| |
Collapse
|
103
|
Sulava E, Bergin S, Long B, Koyfman A. Elevated Liver Enzymes: Emergency Department-Focused Management. J Emerg Med 2016; 52:654-667. [PMID: 27889359 DOI: 10.1016/j.jemermed.2016.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/18/2016] [Accepted: 10/14/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Liver function test (LFT) abnormalities are a common problem faced by emergency physicians. This has become more common with the introduction of laboratory panels and automated routine laboratory testing. Fortunately, not all patients with irregularities in liver enzymes possess underlying pathology. This emergency medicine focused review provides a discussion of the various biochemical tests, their underlying biological basis, and an algorithmic approach to the interpretation of abnormalities. OBJECTIVE Our aim was to provide emergency physicians with an overview of the evaluation and management of patients with elevated LFTs. DISCUSSION The liver is a complex organ with multiple roles. The key biochemical markers of hepatic function can be organized into the groupings of hepatocellular, cholestatic, or functioning liver, based on underlying enzymatic roles. Pathologic alterations to these markers can be algorithmically assessed by separating disease processes of these groupings, followed by assessment of the magnitude of enzymatic elevation. This review conducts an in-depth evaluation of the differential diagnosis and emergency department-centered clinical response of elevated LFTs based on subcategories of mild, moderate, and severe transaminase elevation. CONCLUSIONS By understanding the biochemical basis of each LFT, it is possible to correlate laboratory findings to a patient's clinical presentation. An algorithmic approach can be taken to help narrow the spectrum of a differential diagnosis. This may assist providers in ensuring appropriate management and evaluation of the patient with elevated LFTs.
Collapse
Affiliation(s)
- Eric Sulava
- Department of Emergency Medicine, Naval Medical Center Portsmouth, Portsmouth, Virginia
| | - Samuel Bergin
- Department of Emergency Medicine, University Medical Center of Southern Nevada, Las Vegas, Nevada
| | - Brit Long
- Department of Emergency Medicine, San Antonio Military Medical Center, Fort Sam Houston, Texas
| | - Alex Koyfman
- Department of Emergency Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
104
|
Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential. Redox Biol 2016; 10:148-156. [PMID: 27744120 PMCID: PMC5065645 DOI: 10.1016/j.redox.2016.10.001] [Citation(s) in RCA: 385] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 10/01/2016] [Accepted: 10/03/2016] [Indexed: 02/06/2023] Open
Abstract
Acetaminophen (APAP) hepatotoxicity is characterized by an extensive oxidative stress. However, its source, pathophysiological role and possible therapeutic potential if targeted, have been controversially described. Earlier studies argued for cytochrome P450-generated reactive oxygen species (ROS) during APAP metabolism, which resulted in massive lipid peroxidation and subsequent liver injury. However, subsequent studies convincingly challenged this assumption and the current paradigm suggests that mitochondria are the main source of ROS, which impair mitochondrial function and are responsible for cell signaling resulting in cell death. Although immune cells can be a source of ROS in other models, no reliable evidence exists to support a role for immune cell-derived ROS in APAP hepatotoxicity. Recent studies suggest that mitochondrial targeted antioxidants can be viable therapeutic agents against hepatotoxicity induced by APAP overdose, and re-purposing existing drugs to target oxidative stress and other concurrent signaling events can be a promising strategy to increase its potential application in patients with APAP overdose. Oxidative stress plays a critical role in acetaminophen hepatotoxicity. Mitochondria are the main source of ROS and RNS that are responsible for the toxicity. Cytochrome P450 and inflammatory cells are probably not relevant sources of ROS for the toxicity. Mitochondrial oxidative stress is a promising therapeutic target against APAP overdose.
Collapse
|
105
|
Zyoud SH, Waring WS, Al-Jabi SW, Sweileh WM, Awang R. The 100 most influential publications in paracetamol poisoning treatment: a bibliometric analysis of human studies. SPRINGERPLUS 2016; 5:1534. [PMID: 27652107 PMCID: PMC5019997 DOI: 10.1186/s40064-016-3240-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/06/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Analysis of the most influential publications within paracetamol poisoning treatment can be helpful in recognizing main and novel treatment issues within the field of toxicology. The current study was performed to recognize and describe the most highly cited articles related to paracetamol poisoning treatment. METHODS The 100 most highly cited articles in paracetamol poisoning treatment were identified from the Scopus database in November 2015. All eligible articles were read for basic information, including total number of citations, average citations per year, authors' names, journal name, impact factors, document types and countries of authors of publications. RESULTS The median number of citations was 75 (interquartile range 56-137). These publications were published between 1974 and 2013. The average number of years since publication was 17.6 years, and 45 of the publications were from the 2000s. A significant, modest positive correlation was found between years since publication and the number of citations among the top 100 cited articles (r = 0.316; p = 0.001). A total of 55 journals published these 100 most cited articles. Nine documents were published in Clinical Toxicology, whereas eight documents were published in Annals of Emergency Medicine. Citations per year since publication for the top 100 most-cited articles ranged from 1.5 to 42.6 and had a mean of 8.5 citations per year and a median of 5.9 with an interquartile range of 3.75-10.35. In relation to the origin of the research publications, they were from 8 countries. The USA had the largest number of articles, 47, followed by the UK and Australia with 38 and nine articles respectively. CONCLUSIONS This study is the first bibliometric assessment of the top 100 cited articles in toxicology literature. Interest in paracetamol poisoning as a serious clinical problem continues to grow. Research published in high-impact journals and from high income countries is most likely to be cited in published paracetamol research.
Collapse
Affiliation(s)
- Sa’ed H. Zyoud
- Poison Control and Drug Information Center (PCDIC), College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
- WHO Collaborating Centre for Drug Information, National Poison Centre, Universiti Sains Malaysia (USM), 11800 Pulau Pinang, Penang Malaysia
| | - W. Stephen Waring
- Acute Medical Unit, York Teaching Hospitals NHS Foundation Trust, Wigginton Road, York, YO31 8HE UK
| | - Samah W. Al-Jabi
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
| | - Waleed M. Sweileh
- Department of Pharmacology and Toxicology, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
| | - Rahmat Awang
- WHO Collaborating Centre for Drug Information, National Poison Centre, Universiti Sains Malaysia (USM), 11800 Pulau Pinang, Penang Malaysia
| |
Collapse
|
106
|
Du K, Ramachandran A, Weemhoff JL, Chavan H, Xie Y, Krishnamurthy P, Jaeschke H. Editor's Highlight: Metformin Protects Against Acetaminophen Hepatotoxicity by Attenuation of Mitochondrial Oxidant Stress and Dysfunction. Toxicol Sci 2016; 154:214-226. [PMID: 27562556 DOI: 10.1093/toxsci/kfw158] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Overdose of acetaminophen (APAP) causes severe liver injury and even acute liver failure in both mice and human. A recent study by Kim et al. (2015, Metformin ameliorates acetaminophen hepatotoxicity via Gadd45β-dependent regulation of JNK signaling in mice. J. Hepatol. 63, 75-82) showed that metformin, a first-line drug to treat type 2 diabetes mellitus, protected against APAP hepatotoxicity in mice. However, its exact protective mechanism has not been well clarified. To investigate this, C57BL/6J mice were treated with 400 mg/kg APAP and 350 mg/kg metformin was given 0.5 h pre- or 2 h post-APAP. Our data showed that pretreatment with metformin protected against APAP hepatotoxicity, as indicated by the over 80% reduction in plasma alanine aminotransferase (ALT) activities and significant decrease in centrilobular necrosis. Metabolic activation of APAP, as indicated by glutathione depletion and APAP-protein adducts formation, was also slightly inhibited. However, 2 h post-treatment with metformin still reduced liver injury by 50%, without inhibition of adduct formation. Interestingly, neither pre- nor post-treatment of metformin inhibited c-jun N-terminal kinase (JNK) activation or its mitochondrial translocation. In contrast, APAP-induced mitochondrial oxidant stress and dysfunction were greatly attenuated in these mice. In addition, mice with 2 h post-treatment with metformin also showed significant inhibition of complex I activity, which may contribute to the decreased mitochondrial oxidant stress. Furthermore, the protection was reproduced in JNK activation-absent HepaRG cells treated with 20 mM APAP followed by 0.5 or 1 mM metformin 6 h later, confirming JNK-independent protection mechanisms. Thus, metformin protects against APAP hepatotoxicity by attenuating the mitochondrial oxidant stress and subsequent mitochondrial dysfunction, and may be a potential therapeutic option for APAP overdose patients.
Collapse
Affiliation(s)
- Kuo Du
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - James L Weemhoff
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hemantkumar Chavan
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Yuchao Xie
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Partha Krishnamurthy
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
107
|
Lifshitz M, Kornmehl P, Reuveni H. The Incidence and Nature of Adverse Reactions during Intravenous Acetylcysteine Therapy for Acetaminophen Overdose. J Pharm Technol 2016. [DOI: 10.1177/875512250001600204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Objective: To determine the incidence of adverse drug reactions in patients with acetaminophen overdose following administration of intravenous acetylcysteine, and to evaluate the cost-benefit ratio of intravenous compared with oral acetylcysteine therapy. Methods: The incidence of adverse drug reactions to intravenous acetylcysteine therapy was studied retrospectively in all patients with acetaminophen overdose who were admitted to Soroka University Medical Center, Beer-Sheva, Israel, from 1994 to 1998. Data were obtained from hospital records. All patients were treated with a 20-hour intravenous regimen according to the Prescott protocol. Special attention was paid to the clinical manifestations of adverse reactions, time of onset, and history of patient allergy and asthma. Cost of therapy (drug prices, hospital per diems) for intravenous versus oral acetylcysteine administration was evaluated in accordance with average rates prevailing in Israel in December 1998. Results: Ninety-two patients, 32 adolescents aged 12–18 years (mean ± SD 14.2 ± 1.9) and 60 adults aged 18–52 years (28.2 ± 3.2), were treated with intravenous acetylcysteine for acetaminophen overdose during the study period. Three patients (3.2%) developed adverse reactions: one adult presented with a maculopapular rash and pruritus, and two adolescents developed mild urticaria; no other adverse reactions were reported. All adverse reactions occurred during administration of the loading dose, 15–20 minutes after initiation of therapy. The reactions subsided a few hours after the acetylcysteine infusion was stopped and did not require antiallergy therapy. None of the three patients had a history of allergy. The 20-hour intravenous acetylcysteine protocol is approximately three times less expensive than the recommended oral regimen in terms of drug cost and length of hospitalization. Conclusions: Intravenous acetylcysteine is a relatively safe antidote for acetaminophen poisoning. The incidence rate of adverse reactions is low, and they are mild and easily controlled by termination of the infusion. We recommend intravenous acetylcysteine therapy, particularly for patients with vomiting caused by the acetaminophen overdose or by oral acetylcysteine therapy. The 20-hour intravenous acetylcysteine therapy has a cost-benefit advantage over oral therapy; however, the oral formulation is not approved by the FDA.
Collapse
|
108
|
Cairney DG, Beckwith HKS, Al-Hourani K, Eddleston M, Bateman DN, Dear JW. Plasma paracetamol concentration at hospital presentation has a dose-dependent relationship with liver injury despite prompt treatment with intravenous acetylcysteine. Clin Toxicol (Phila) 2016; 54:405-10. [PMID: 27108714 DOI: 10.3109/15563650.2016.1159309] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CONTEXT Paracetamol (acetaminophen) overdose is a common reason for emergency hospital admission in the UK and the leading cause of acute liver failure in the Western world. Currently, the antidote acetylcysteine (NAC) is administered at a dose determined only by body weight without regard for the body burden of paracetamol. OBJECTIVE To determine whether higher plasma paracetamol concentrations are associated with increased risk of liver injury despite prompt treatment with intravenous NAC. METHODS Patients admitted to hospital for treatment with intravenous NAC following a single acute paracetamol overdose entered the study if NAC was commenced within 24 h of drug ingestion (N = 727 hospital presentations). Based on the plasma paracetamol concentration at first presentation to hospital, a series of nomograms were created: 0-100, 101-150, 151-200, 201-300, 301-500 and over 501 mg/L. The primary endpoints were acute liver injury (ALI - peak serum ALT activity >150 U/L and double the admission value) and hepatotoxicity (peak ALT >1000 U/L). RESULTS ALI and hepatotoxicity were more common in patients with higher admission plasma paracetamol concentrations despite NAC treatment (ALI: nomogram 0-100: 6%, 101-150: 3%, 151-200: 3%, 201-300: 9%, 301-500: 13%, over 501 mg/dL: 27%. p < 0.0001). This dose-response relationship between paracetamol concentration and ALI persisted even in patients treated with NAC within 8 h of overdose (nomogram 0-100: 0%, 101-150: 0.8%, 151-200: 2%, 201-300: 3.6%, 301-500: 12.5%, over 501mg/L: 33%. p < 0.0001) and in patients with normal ALT activity at first presentation (nomogram: 0-100: 0%, 101-150: 1.2%, 151-200: 1.5%, 201-300: 5.3%, 301-500: 10.8% p < 0.0001). DISCUSSION Patients with increased concentrations of plasma paracetamol at hospital presentation are at higher risk of liver injury even when intravenous NAC is promptly administered before there is biochemical evidence of toxicity. CONCLUSION This study supports theoretical concerns that the current intravenous dose of NAC may be too low in the setting of higher paracetamol exposure.
Collapse
Affiliation(s)
- David G Cairney
- a NPIS Edinburgh , Royal Infirmary of Edinburgh , Edinburgh , UK
| | | | | | - Michael Eddleston
- a NPIS Edinburgh , Royal Infirmary of Edinburgh , Edinburgh , UK
- c Pharmacology, Toxicology and Therapeutics , University/BHF Centre for Cardiovascular Science, University of Edinburgh , Edinburgh , UK
| | | | - James W Dear
- a NPIS Edinburgh , Royal Infirmary of Edinburgh , Edinburgh , UK
- c Pharmacology, Toxicology and Therapeutics , University/BHF Centre for Cardiovascular Science, University of Edinburgh , Edinburgh , UK
| |
Collapse
|
109
|
Wong A, Graudins A. N-acetylcysteine regimens for paracetamol overdose: Time for a change? Emerg Med Australas 2016; 28:749-751. [DOI: 10.1111/1742-6723.12610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Anselm Wong
- Emergency and Austin Toxicology Service; Austin Hospital; Melbourne Victoria Australia
- Monash Emergency Research Collaborative, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences; Monash University; Melbourne Victoria Australia
| | - Andis Graudins
- Monash Emergency Research Collaborative, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences; Monash University; Melbourne Victoria Australia
- Monash Toxicology Service, Program of Emergency Medicine; Monash Health; Melbourne Victoria Australia
| |
Collapse
|
110
|
Ding Y, Li Q, Xu Y, Chen Y, Deng Y, Zhi F, Qian K. Attenuating Oxidative Stress by Paeonol Protected against Acetaminophen-Induced Hepatotoxicity in Mice. PLoS One 2016; 11:e0154375. [PMID: 27144271 PMCID: PMC4856301 DOI: 10.1371/journal.pone.0154375] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/12/2016] [Indexed: 01/16/2023] Open
Abstract
Acetaminophen (APAP) overdose is the most frequent cause of drug-induced acute liver failure. The purpose of this study was to investigate whether paeonol protected against APAP-induced hepatotoxicity. Mice treated with paeonol (25, 50, 100 mg/kg) received 400 mg/kg acetaminophen intraperitoneally (i.p.) and hepatotoxicity was assessed. Pre-treatment with paeonol for 6 and 24 h ameliorated APAP-induced hepatic necrosis and significantly reduced the serum alanine aminotransferase (ALT) and aspartate transaminase (AST) levels in a dose-dependent manner. Post-treatment with 100 mg/kg paeonol ameliorated APAP-induced hepatic necrosis and reduced AST and ALT levels in the serum after APAP administration for 24 h. Western blot revealed that paeonol inhibited APAP-induced phosphorylated JNK protein expression but not p38 and Erk1/2. Moreover, paeonol showed anti-oxidant activities with reducing hepatic MDA contents and increasing hepatic SOD, GSH-PX and GSH levels. Paeonol dose-dependently prevented against H2O2 or APAP-induced LDH releasing and ROS production in primary mouse hepatocytes. In addition, the mRNA levels of pro-inflammatory genes such as TNF-α, MCP-1, IL-1β and IL-6 in the liver were dose-dependently reduced by paeonol pre-treatment. Pre-treatment with paeonol significantly inhibited IKKα/β, IκBα and p65 phosphorylation which contributed to ameliorating APAP-induced hepatic inflammation. Collectively, the present study demonstrates paeonol has a protective ability against APAP-induced hepatotoxicity and might be an effective candidate compound against drug-induced acute liver failure.
Collapse
Affiliation(s)
- Yi Ding
- Department of Geriatrics, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qing Li
- Department of Pathology, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yuan Xu
- Modern Medical Research Center, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yuning Chen
- Department of Geriatrics, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yue Deng
- Department of Geriatrics, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Feng Zhi
- Modern Medical Research Center, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ke Qian
- Department of Geriatrics, Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
111
|
|
112
|
Du K, Farhood A, Jaeschke H. Mitochondria-targeted antioxidant Mito-Tempo protects against acetaminophen hepatotoxicity. Arch Toxicol 2016; 91:761-773. [PMID: 27002509 DOI: 10.1007/s00204-016-1692-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/10/2016] [Indexed: 02/06/2023]
Abstract
Acetaminophen (APAP) hepatotoxicity is characterized by an extensive mitochondrial oxidant stress. However, its importance as a drug target has not been clarified. To investigate this, fasted C57BL/6J mice were treated with 300 mg/kg APAP and the mitochondria-targeted antioxidant Mito-Tempo (MT) was given 1.5 h later. APAP caused severe liver injury in mice, as indicated by the increase in plasma ALT activities and centrilobular necrosis. MT dose-dependently reduced the injury. Importantly, MT did not affect APAP-protein adducts formation, glutathione depletion or c-jun N-terminal kinase activation and its mitochondrial translocation. In contrast, hepatic glutathione disulfide and peroxynitrite formation were dose-dependently reduced by MT, indicating its effective mitochondrial oxidant stress scavenging capacity. Consequently, mitochondrial translocation of Bax and release of mitochondrial intermembrane proteins such as apoptosis-inducing factor were prevented, and nuclear DNA fragmentation was eliminated. To demonstrate the importance of mitochondria-specific antioxidant property of MT, we compared its efficacy with Tempo, which has the same pharmacological mode of action as MT but lacks the mitochondria targeting moiety. In contrast to the dramatic protection by MT, the same molar dose of Tempo did not significantly reduce APAP hepatotoxicity. In contrast, even a 3 h post-treatment with MT reduced 70 % of the injury, and the combination of MT with N-acetylcysteine (NAC) provided superior protection than NAC alone. We conclude that MT protects against APAP overdose in mice by attenuating the mitochondrial oxidant stress and preventing peroxynitrite formation and the subsequent mitochondrial dysfunction. MT is a promising therapeutic agent for APAP overdose patients.
Collapse
Affiliation(s)
- Kuo Du
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Anwar Farhood
- Department of Pathology, St. David's North Austin Medical Center, Austin, TX, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA.
| |
Collapse
|
113
|
|
114
|
Chiew AL, Isbister GK, Duffull SB, Buckley NA. Evidence for the changing regimens of acetylcysteine. Br J Clin Pharmacol 2016; 81:471-81. [PMID: 26387650 PMCID: PMC4767192 DOI: 10.1111/bcp.12789] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 01/01/2023] Open
Abstract
Paracetamol overdose prior to the introduction of acetylcysteine was associated with significant morbidity. Acetylcysteine is now the mainstay of treatment for paracetamol poisoning and has effectively reduced rates of hepatotoxicity and death. The current three-bag intravenous regimen with an initial high loading dose was empirically derived four decades ago and has not changed since. This regimen is associated with a high rate of adverse effects due mainly to the high initial peak acetylcysteine concentration. Furthermore, there are concerns that the acetylcysteine concentration is not adequate for 'massive' overdoses and that the dose and duration may need to be altered. Various novel regimens have been proposed, looking to address these issues. Many of these modified regimens aim to decrease the rate of adverse reactions by slowing the loading dose and thereby decrease the peak concentration. We used a published population pharmacokinetic model of acetylcysteine to simulate these modified regimens. We determined mean peak and 20 h acetylcysteine concentrations and area under the under the plasma concentration-time curve to compare these regimens. Those regimens that resulted in a lower peak acetylcysteine concentration have been shown in studies to have a lower rate of adverse events. However, these studies were too small to show whether they are as effective as the traditional regimen. Further research is still needed to determine the optimum dose and duration of acetylcysteine that results in the fewest side-effects and treatment failures. Indeed, a more patient-tailored approach might be required, whereby the dose and duration are altered depending on the paracetamol dose ingested or paracetamol concentrations.
Collapse
Affiliation(s)
- Angela L Chiew
- Clinical and Experimental Toxicology Unit, Department of Emergency Medicine, Prince of Wales Hospital, Randwick, NSW, Australia
- Department of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Geoffrey K Isbister
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
- Department of Clinical Toxicology, Calvary Mater Newcastle Hospital, Newcastle, NSW, Australia
| | | | - Nicholas A Buckley
- Department of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
115
|
Levine M, O'Connor AD, Padilla-Jones A, Gerkin RD. Comparison of Prothrombin Time and Aspartate Aminotransferase in Predicting Hepatotoxicity After Acetaminophen Overdose. J Med Toxicol 2016; 12:100-6. [PMID: 26341088 PMCID: PMC4781795 DOI: 10.1007/s13181-015-0504-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Despite decades of experience with acetaminophen (APAP) overdoses, it remains unclear whether elevated hepatic transaminases or coagulopathy develop first. Furthermore, comparison of the predictive value of these two variables in determining hepatic toxicity following APAP overdoses has been poorly elucidated. The primary objective of this study is to determine the test characteristics of the aspartate aminotransferase (AST) and the prothrombin time (PT) in patients with APAP toxicity. A retrospective chart review of APAP overdoses treated with IV N-acetylcysteine at a tertiary care referral center was performed. Of the 304 subjects included in the study, 246 with an initial AST less than 1000 were analyzed to determine predictors of hepatic injury, defined as an AST exceeding 1000 IU/L. The initial AST >50 was 79.5 % sensitive and 82.6 % specific for predicting hepatic injury. The corresponding negative and positive predictive values were 95.5 and 46.3 %, respectively. In contrast, an initial abnormal PT had a sensitivity of 82.1 % and a specificity of 63.6 %. The negative and positive predictive values for initial PT were 94.9 and 30.2 %, respectively. Although the two tests performed similarly for predicting a composite endpoint of death or liver transplant, neither was a useful predictor. Initial AST performed better than the initial PT for predicting hepatic injury in this series of patients with APAP overdose.
Collapse
Affiliation(s)
- Michael Levine
- Department of Emergency Medicine, Division of Medical Toxicology, University of Southern California, Los Angeles, CA, USA.
- Department of Medical Toxicology, Banner Good Samaritan Medical Center, Phoenix, AZ, USA.
| | - Ayrn D O'Connor
- Department of Medical Toxicology, Banner Good Samaritan Medical Center, Phoenix, AZ, USA
- Center for Toxicology and Pharmacology, Education, and Research, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | | | - Richard D Gerkin
- Center for Toxicology and Pharmacology, Education, and Research, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
- Banner Research Institute, Phoenix, AZ, USA
- Department of Internal Medicine, Banner Good Samaritan Medical Center, Phoenix, AZ, USA
| |
Collapse
|
116
|
Bowers MS, Jackson A, Maldoon PP, Damaj MI. N-acetylcysteine decreased nicotine reward-like properties and withdrawal in mice. Psychopharmacology (Berl) 2016; 233:995-1003. [PMID: 26676982 PMCID: PMC4819399 DOI: 10.1007/s00213-015-4179-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/02/2015] [Indexed: 12/26/2022]
Abstract
RATIONALE N-acetylcysteine can increase extrasynaptic glutamate and reduce nicotine self-administration in rats and smoking rates in humans. OBJECTIVES The aim of this study was to determine if N-acetylcysteine modulates the development of nicotine place conditioning and withdrawal in mice. METHODS N-acetylcysteine was given to nicotine-treated male ICR mice. Experiment 1: reward-like behavior. N-acetylcysteine (0, 5, 15, 30, or 60 mg/kg, i.p.) was given 15 min before nicotine (0.5 mg/kg, s.c.) or saline (10 ml/kg, s.c.) in an unbiased conditioned place preference (CPP) paradigm. Conditioning for highly palatable food served as control. Experiment 2: spontaneous withdrawal. The effect of N-acetylcysteine (0, 15, 30, 120 mg/kg, i.p.) on anxiety-like behavior, somatic signs, and hyperalgesia was measured 18-24 h after continuous nicotine (24 mg/kg/day, 14 days). Experiment 3: mecamylamine-precipitated, withdrawal-induced aversion. The effect of N-acetylcysteine (0, 15, 30, 120 mg/kg, i.p.) on mecamylamine (3.5 mg/kg, i.p.)-precipitated withdrawal was determined after continuous nicotine (24 mg/kg, i.p., 28 days) using the conditioned place aversion (CPA) paradigm. RESULTS Dose-related reductions in the development of nicotine CPP, somatic withdrawal signs, hyperalgesia, and CPA were observed after N-acetylcysteine pretreatment. No effect of N-acetylcysteine was found on palatable food CPP, anxiety-like behavior, or motoric capacity (crosses between plus maze arms). Finally, N-acetylcysteine did not affect any measure in saline-treated mice at doses effective in nicotine-treated mice. CONCLUSIONS These are the first data suggesting that N-acetylcysteine blocks specific mouse behaviors associated with nicotine reward and withdrawal, which adds to the growing appreciation that N-acetylcysteine may have high clinical utility in combating nicotine dependence.
Collapse
Affiliation(s)
- M S Bowers
- Department of Pharmacology/Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
- Virginia Institute for Psychiatric and Behavioral Genetics Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - A Jackson
- Department of Pharmacology/Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - P P Maldoon
- Department of Pharmacology/Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - M I Damaj
- Department of Pharmacology/Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| |
Collapse
|
117
|
Hayward KL, Powell EE, Irvine KM, Martin JH. Can paracetamol (acetaminophen) be administered to patients with liver impairment? Br J Clin Pharmacol 2016; 81:210-22. [PMID: 26460177 PMCID: PMC4833155 DOI: 10.1111/bcp.12802] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 10/09/2015] [Accepted: 10/09/2015] [Indexed: 12/15/2022] Open
Abstract
Although 60 years have passed since it became widely available on the therapeutic market, paracetamol dosage in patients with liver disease remains a controversial subject. Fulminant hepatic failure has been a well documented consequence of paracetamol overdose since its introduction, while short and long term use have both been associated with elevation of liver transaminases, a surrogate marker for acute liver injury. From these reports it has been assumed that paracetamol use should be restricted or the dosage reduced in patients with chronic liver disease. We review the factors that have been purported to increase risk of hepatocellular injury from paracetamol and the pharmacokinetic alterations in different pathologies of chronic liver disease which may affect this risk. We postulate that inadvertent under-dosing may result in concentrations too low to enable efficacy. Specific research to improve the evidence base for prescribing paracetamol in patients with different aetiologies of chronic liver disease is needed.
Collapse
Affiliation(s)
- Kelly L. Hayward
- Pharmacy DepartmentPrincess Alexandra HospitalQueensland
- Centre for Liver Disease ResearchThe University of QueenslandQueensland
| | - Elizabeth E. Powell
- Centre for Liver Disease ResearchThe University of QueenslandQueensland
- Department of Gastroenterology and HepatologyPrincess Alexandra HospitalQueensland
| | | | - Jennifer H. Martin
- School of Medicine and Public HealthUniversity of NewcastleNew South Wales
- The University of Queensland Diamantina InstituteQueenslandAustralia
| |
Collapse
|
118
|
Singh R, Shah R, Turner C, Regueira O, Vasylyeva TL. N-acetylcysteine renoprotection in methotrexate induced nephrotoxicity and its effects on B-cell lymphoma. Indian J Med Paediatr Oncol 2016; 36:243-8. [PMID: 26811594 PMCID: PMC4711223 DOI: 10.4103/0971-5851.171545] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: Nephrotoxicity is one of the known side effects of methotrexate (MTX) therapy despite the use of conventional protective measures. Our objectives were to evaluate the effects of N-acetylcysteine (NAC) on MTX-induced toxicity in renal tubular cells and to evaluate whether adjunctive use of NAC interferes with MTX antitumor activity in the B-cell lymphoma. Methods: Kidney Epithelial (Madin-Darby canine kidney [MDCK]) cells were exposed to MTX (10 μM or 100 μM) alone and with NAC (0.2 mM or 0.4 mM). Reactive oxygen species (ROS) generation at 1, 2, 4, and 24 h was measured by flow cytometer. Quantification of total glutathione (GSH) was performed by using GSH assay kit. To measure the impact of NAC on the antitumor activity of MTX, B lymphoma cells were exposed to MTX alone and with NAC. A percentage of apoptosis was measured using fluorescein isothiocyanate in both cell lines. Quantitative data was presented as a means ± standard deviation, and P values were analyzed using the Student's t-test. Results: Apoptosis in MDCK cells were observed after 24 h of incubation with both 10 μM and 100 μM MTX. Maximum ROS generation was observed at 4 h and corresponded to GSH production. Treatment with 0.2 and 0.4 mM of NAC led to decrease percentages of apoptotic MDCK cells. NAC did not change either proliferation or apoptosis of B-cell lymphoma. Conclusion: Using NAC for kidney protection may not interfere with the antitumor activity of MTX. Further in vivo studies are warranted to confirm noninterference between MTX and NAC and assess synergistic antitumor effects.
Collapse
Affiliation(s)
- Ruchi Singh
- Texas Tech Health Sciences Center, Amarillo, Texas 97106, USA
| | - Rikin Shah
- Texas Tech Health Sciences Center, Amarillo, Texas 97106, USA
| | - Curtis Turner
- Texas Tech Health Sciences Center, Amarillo, Texas 97106, USA
| | | | | |
Collapse
|
119
|
Hepatic Failure. PRINCIPLES OF ADULT SURGICAL CRITICAL CARE 2016. [PMCID: PMC7123541 DOI: 10.1007/978-3-319-33341-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The progression of liver disease can cause several physiologic derangements that may precipitate hepatic failure and require admission to an intensive care unit. The underlying pathology may be acute, acute-on chronic, or chronic in nature. Liver failure may manifest with a variety of clinical signs and symptoms that need prompt attention. The compromised synthetic and metabolic activity of the failing liver affects all organ systems, from neurologic to integumentary. Supportive care and specific therapies should be instituted in order to improve outcome and minimize time of recovery. In this chapter we will discuss the definition, clinical manifestations, workup, and management of acute and chronic liver failure and the general principles of treatment of these patients. Management of liver failure secondary to certain common etiologies will also be presented. Finally, liver transplantation and alternative therapies will also be discussed.
Collapse
|
120
|
Papazoglu C, Ang JR, Mandel M, Basak P, Jesmajian S. Acetaminophen overdose associated with double serum concentration peaks. J Community Hosp Intern Med Perspect 2015; 5:29589. [PMID: 26653695 PMCID: PMC4677579 DOI: 10.3402/jchimp.v5.29589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/09/2015] [Accepted: 11/12/2015] [Indexed: 12/31/2022] Open
Abstract
Acetaminophen is the most commonly used analgesic–antipyretic medication in the United States. Acetaminophen overdose, a frequent cause of drug toxicity, has been recognized as the leading cause of fatal and non-fatal hepatic necrosis. N-Acetylcysteine is the recommended antidote for acetaminophen poisoning. Despite evidence on the efficacy of N-acetylcysteine for prevention of hepatic injury, controversy persists about the optimal duration of the therapy. Here, we describe the case of a 65-year-old male with acetaminophen overdose and opioid co-ingestion who developed a second peak in acetaminophen serum levels after completing the recommended 21-hour intravenous N-acetylcysteine protocol and when the standard criteria for monitoring drug levels was achieved. Prolongation of N-acetylcysteine infusion beyond the standard protocol, despite a significant gap in treatment, was critical for successful avoidance of hepatotoxicity. Delay in acetaminophen absorption may be associated with a second peak in serum concentration following an initial declining trend, especially in cases of concomitant ingestion of opioids. In patients with acetaminophen toxicity who co-ingest other medications that may potentially delay gastric emptying or in those with risk factors for delayed absorption of acetaminophen, we recommend close monitoring of aminotransferase enzyme levels, as well as trending acetaminophen concentrations until undetectable before discontinuing the antidote therapy.
Collapse
Affiliation(s)
- Cristian Papazoglu
- Department of Internal Medicine, Montefiore New Rochelle Hospital, Albert Einstein College of Medicine, New Rochelle, NY, USA;
| | - Jonathan R Ang
- Department of Internal Medicine, Montefiore New Rochelle Hospital, Albert Einstein College of Medicine, New Rochelle, NY, USA
| | - Michael Mandel
- Department of Internal Medicine, Montefiore New Rochelle Hospital, Albert Einstein College of Medicine, New Rochelle, NY, USA
| | - Prasanta Basak
- Department of Internal Medicine, Montefiore New Rochelle Hospital, Albert Einstein College of Medicine, New Rochelle, NY, USA
| | - Stephen Jesmajian
- Department of Internal Medicine, Montefiore New Rochelle Hospital, Albert Einstein College of Medicine, New Rochelle, NY, USA
| |
Collapse
|
121
|
Bateman DN, Dear JW, Thomas SHL. New regimens for intravenous acetylcysteine, where are we now? Clin Toxicol (Phila) 2015; 54:75-8. [PMID: 26666290 DOI: 10.3109/15563650.2015.1121545] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Acetylcysteine has been used as a treatment for paracetamol overdose as a 20.25- or 21-h infusion for nearly 40 years. These regimens give 50% of the dose in the first 15 min or 1 h, and are associated with high rates of adverse reactions. A randomised controlled trial has demonstrated that a shorter (12 h) and simpler (two infusions) acetylcysteine regimen using a slower initial infusion rate produces lower rates of adverse events than the original 20.25-h regimen. However, this study was not sufficiently large to show therapeutic equivalence as a hepatoprotective therapy in paracetamol overdose. Two further studies are now reported, which also suggest lower rates of adverse reactions with lower initial rates of acetylcysteine administration. These modified regimens can now be accepted as better tolerated, but it is unlikely that a randomised study of sufficient size to demonstrate non-inferiority of any novel regimen would ever be funded. Against this background we suggest what can be done to establish the efficacy of these less toxic and potentially shorter alternative acetylcysteine regimens and to establish them into routine clinical use.
Collapse
Affiliation(s)
- D Nicholas Bateman
- a Department of Pharmacology and Toxicology , University/BHF Centre for Cardiovascular Science, University of Edinburgh , Edinburgh , UK
| | - James W Dear
- a Department of Pharmacology and Toxicology , University/BHF Centre for Cardiovascular Science, University of Edinburgh , Edinburgh , UK
| | - Simon H L Thomas
- b Medical Toxicology Centre , Institute of Cellular Medicine, Newcastle University , Newcastle , UK
| |
Collapse
|
122
|
Lasram MM, Dhouib IB, Annabi A, El Fazaa S, Gharbi N. A review on the possible molecular mechanism of action of N-acetylcysteine against insulin resistance and type-2 diabetes development. Clin Biochem 2015; 48:1200-8. [DOI: 10.1016/j.clinbiochem.2015.04.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 04/18/2015] [Accepted: 04/21/2015] [Indexed: 01/01/2023]
|
123
|
Du K, McGill MR, Xie Y, Jaeschke H. Benzyl alcohol protects against acetaminophen hepatotoxicity by inhibiting cytochrome P450 enzymes but causes mitochondrial dysfunction and cell death at higher doses. Food Chem Toxicol 2015; 86:253-61. [PMID: 26522885 DOI: 10.1016/j.fct.2015.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 12/13/2022]
Abstract
Acetaminophen (APAP) hepatotoxicity is a serious public health problem in western countries. Current treatment options for APAP poisoning are limited and novel therapeutic intervention strategies are needed. A recent publication suggested that benzyl alcohol (BA) protects against APAP hepatotoxicity and could serve as a promising antidote for APAP poisoning. To assess the protective mechanisms of BA, C56Bl/6J mice were treated with 400 mg/kg APAP and/or 270 mg/kg BA. APAP alone caused extensive liver injury at 6 h and 24 h post-APAP. This injury was attenuated by BA co-treatment. Assessment of protein adduct formation demonstrated that BA inhibits APAP metabolic activation. In support of this, in vitro experiments also showed that BA dose-dependently inhibits cytochrome P450 activities. Correlating with the hepatoprotection of BA, APAP-induced oxidant stress and mitochondrial dysfunction were reduced. Similar results were obtained in primary mouse hepatocytes. Interestingly, BA alone caused mitochondrial membrane potential loss and cell toxicity at high doses, and its protective effect could not be reproduced in primary human hepatocytes (PHH). We conclude that BA protects against APAP hepatotoxicity mainly by inhibiting cytochrome P450 enzymes in mice. Considering its toxic effect and the loss of protection in PHH, BA is not a clinically useful treatment option for APAP overdose patient.
Collapse
Affiliation(s)
- Kuo Du
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Mitchell R McGill
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Yuchao Xie
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
124
|
|
125
|
Goszcz K, Deakin SJ, Duthie GG, Stewart D, Leslie SJ, Megson IL. Antioxidants in Cardiovascular Therapy: Panacea or False Hope? Front Cardiovasc Med 2015; 2:29. [PMID: 26664900 PMCID: PMC4671344 DOI: 10.3389/fcvm.2015.00029] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/10/2015] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress is a key feature of the atherothrombotic process involved in the etiology of heart attacks, ischemic strokes, and peripheral arterial disease. It stands to reason that antioxidants represent a credible therapeutic option to prevent disease progression and thereby improve outcome, but despite positive findings from in vitro studies, clinical trials have failed to consistently show benefit. The aim of this review is to re-appraise the concept of antioxidants in the prevention and management of cardiovascular disease. In particular, the review will explore the reasons behind failed antioxidant strategies with vitamin supplements and will evaluate how flavonoids might improve cardiovascular function despite bioavailability that is not sufficiently high to directly influence antioxidant capacity. As well as reaching conclusions relating to those antioxidant strategies that might hold merit, the major myths, limitations, and pitfalls associated with this research field are explored.
Collapse
Affiliation(s)
- Katarzyna Goszcz
- Department of Diabetes and Cardiovascular Science, Centre for Health Science, University of the Highlands and Islands , Inverness , UK ; James Hutton Institute , Dundee , UK
| | - Sherine J Deakin
- Department of Diabetes and Cardiovascular Science, Centre for Health Science, University of the Highlands and Islands , Inverness , UK
| | - Garry G Duthie
- Rowett Institute of Health and Nutrition , Aberdeen , UK
| | - Derek Stewart
- James Hutton Institute , Dundee , UK ; School of Life Sciences, Heriot Watt University , Edinburgh , UK
| | - Stephen J Leslie
- Department of Diabetes and Cardiovascular Science, Centre for Health Science, University of the Highlands and Islands , Inverness , UK ; Cardiology Unit, Raigmore Hospital , Inverness , UK
| | - Ian L Megson
- Department of Diabetes and Cardiovascular Science, Centre for Health Science, University of the Highlands and Islands , Inverness , UK
| |
Collapse
|
126
|
Aliakbarian M, Nikeghbalian S, Ghaffaripour S, Bahreini A, Shafiee M, Rashidi M, Rajabnejad Y. Effects of N-Acetylcysteine Addition to University of Wisconsin Solution on the Rate of Ischemia-Reperfusion Injury in Adult Orthotopic Liver Transplant. EXP CLIN TRANSPLANT 2015; 15:432-436. [PMID: 26114393 DOI: 10.6002/ect.2014.0263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES One of the main concerns in liver transplant is the prolonged ischemia time, which may lead to primary graft nonfunction or delayed function. N-acetylcysteine is known as a hepato-protective agent in different studies, which may improve human hepatocyte viability in steatotic donor livers. This study investigated whether N-acetylcysteine can decrease the rate of ischemia-reperfusion syndrome and improve short-term outcome in liver transplant recipients. MATERIALS AND METHODS This was a double-blind, randomized, control clinical trial of 115 patients. Between April 2012 and January 2013, patients with orthotopic liver transplant were randomly divided into 2 groups; in 49 cases N-acetylcysteine was added to University of Wisconsin solution as the preservative liquid (experimental group), and in 66 cases standard University of Wisconsin solution was used (control group). We compared postreperfusion hypotension, inotrope requirement before and after portal reperfusion, intermittent arterial blood gas analysis and potassium measurement, pathological review of transplanted liver, in-hospital complications, morbidity, and mortality. RESULTS There was no significant difference between the groups regarding time to hepatic artery reperfusion, hospital stay, vascular complications, inotrope requirement before and after portal declamping, and blood gas analysis. Hypotension after portal reperfusion was significantly more common in experimental group compared with control group (P = .005). Retransplant and in-hospital mortality were comparable between the groups. CONCLUSIONS Preservation of the liver inside Univer-sity of Wisconsin solution plus N-acetylcysteine did not change the rate of ischemia reperfusion injury and short-term outcome in liver transplant recipients.
Collapse
Affiliation(s)
- Mohsen Aliakbarian
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | | | | | |
Collapse
|
127
|
Yiang GT, Yu YL, Lin KT, Chen JN, Chang WJ, Wei CW. Acetaminophen induces JNK/p38 signaling and activates the caspase-9-3-dependent cell death pathway in human mesenchymal stem cells. Int J Mol Med 2015; 36:485-92. [PMID: 26096646 PMCID: PMC4501662 DOI: 10.3892/ijmm.2015.2254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 06/05/2015] [Indexed: 02/05/2023] Open
Abstract
Acetaminophen (APAP) is a widely used analgesic and antipyretic drug. Generally, the therapeutic dose of APAP is clinically safe, however, high doses of APAP can cause acute liver and kidney injury. Therefore, the majority of previous studies have focussed on elucidating the mechanisms of APAP-induced hepatotoxicity and nephrotoxicity, in addition to examining ways to treat these conditions in clinical cases. However, few studies have reported APAP-induced intoxication in human stem cells. Stem cells are important in cell proliferation, differentiation and repair during human development, particularly during fetal and child development. At present, whether APAP causes cytotoxic effects in human stem cells remains to be elucidated, therefore, the present study aimed to investigate the cellular effects of APAP treatment in human stem cells. The results of the present study revealed that high-dose APAP induced more marked cytotoxic effects in human mesenchymal stem cells (hMSCs) than in renal tubular cells. In addition, increased levels of hydrogen peroxide (H2O2), phosphorylation of c-Jun N-terminal kinase and p38, and activation of caspase-9/-3 cascade were observed in the APAP-treated hMSCs. By contrast, antioxidants, including vitamin C reduced APAP-induced augmentations in H2O2 levels, but did not inhibit the APAP-induced cytotoxic effects in the hMSCs. These results suggested that high doses of APAP may cause serious damage towards hMSCs.
Collapse
Affiliation(s)
- Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan, R.O.C
| | - Yung-Lung Yu
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Ko-Ting Lin
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Shalu, Taichung 433, Taiwan, R.O.C
| | - Jen-Ni Chen
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Shalu, Taichung 433, Taiwan, R.O.C
| | - Wei-Jung Chang
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Chyou-Wei Wei
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Shalu, Taichung 433, Taiwan, R.O.C
| |
Collapse
|
128
|
Bateman DN. Paracetamol poisoning: beyond the nomogram. Br J Clin Pharmacol 2015; 80:45-50. [PMID: 26099917 DOI: 10.1111/bcp.12604] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 01/26/2015] [Accepted: 02/02/2015] [Indexed: 12/12/2022] Open
Abstract
Paracetamol poisoning is the commonest overdose seen in the UK. The management of patients with paracetamol poisoning has been little changed for the past 40 years, with a weight related dose of antidote (acetylcysteine) and treatment based on nomograms relating paracetamol concentration to time from ingestion. In 2012 the UK Commission on Human Medicines recommended a revision of the nomogram, following the death of a young woman, lowering the treatment threshold for all patients. As a result many more patients were treated. This has resulted in a large increase in admissions and in the proportion suffering adverse reactions to the antidote acetylcysteine since, interestingly, higher paracetamol concentrations inhibit anaphylactoid reactions to the antidote. New approaches to assessing the toxicity of paracetamol are now emerging using new biomarkers in blood. This article discusses new approaches to risk assessment and treatment for paracetamol overdose based on recent research in this area.
Collapse
Affiliation(s)
- D Nicholas Bateman
- Honorary Professor of Clinical Toxicology, Pharmacology and Toxicology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
129
|
Bateman DN, Carroll R, Pettie J, Yamamoto T, Elamin MEMO, Peart L, Dow M, Coyle J, Cranfield KR, Hook C, Sandilands EA, Veiraiah A, Webb D, Gray A, Dargan PI, Wood DM, Thomas SHL, Dear JW, Eddleston M. Effect of the UK's revised paracetamol poisoning management guidelines on admissions, adverse reactions and costs of treatment. Br J Clin Pharmacol 2015; 78:610-8. [PMID: 24666324 PMCID: PMC4243911 DOI: 10.1111/bcp.12362] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/09/2014] [Indexed: 12/19/2022] Open
Abstract
Aims In September 2012 the UK’s Commission on Human Medicines (CHM) recommended changes in the management of paracetamol poisoning: use of a single ‘100 mg l−1’ nomogram treatment line, ceasing risk assessment, treating all staggered/uncertain ingestions and increasing the duration of the initial acetylcysteine (NAC) infusion from 15 to 60 min. We evaluated the effect of this on presentation, admission, treatment, adverse reactions and costs of paracetamol poisoning. Methods Data were prospectively collected from adult patients presenting to three large UK hospitals from 3 September 2011 to 3 September 2013 (year before and after change). Infusion duration effect on vomiting and anaphylactoid reactions was examined in one centre. A cost analysis from an NHS perspective was performed for 90 000 patients/annum with paracetamol overdose. Results There were increases in the numbers presenting to hospital (before 1703, after 1854; increase 8.9% [95% CI 1.9, 16.2], P = 0.011); admitted (1060/1703 [62.2%] vs. 1285/1854 [69.3%]; increase 7.1% [4.0, 10.2], P < 0.001) and proportion treated (626/1703 [36.8%] vs. 926/1854 [50.0%]; increase: 13.2% [95% CI 10.0, 16.4], P < 0.001). Increasing initial NAC infusion did not change the proportion of treated patients developing adverse reactions (15 min 87/323 [26.9%], 60 min 145/514 [28.2%]; increase: 1.3% [95% CI –4.9, 7.5], P = 0.682). Across the UK the estimated cost impact is £8.3 million (6.4 million–10.2 million) annually, with a cost-per-life saved of £17.4 million (13.4 million–21.5 million). Conclusions The changes introduced by the CHM in September 2012 have increased the numbers of patients admitted to hospital and treated with acetylcysteine without reducing adverse reactions. A safety and cost-benefit review of the CHM guidance is warranted, including novel treatment protocols and biomarkers in the assessment of poisoning.
Collapse
|
130
|
Fan X, Chen P, Jiang Y, Wang Y, Tan H, Zeng H, Wang Y, Qu A, Gonzalez FJ, Huang M, Bi H. Therapeutic efficacy of Wuzhi tablet (Schisandra sphenanthera Extract) on acetaminophen-induced hepatotoxicity through a mechanism distinct from N-acetylcysteine. Drug Metab Dispos 2015; 43:317-24. [PMID: 25534769 PMCID: PMC6067383 DOI: 10.1124/dmd.114.062067] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Acetaminophen (APAP) hepatotoxicity is the most common cause of drug-induced liver injury and N-acetylcysteine (NAC) is the primary antidote of APAP poisoning. Wuzhi tablet (WZ), the active constituents well identified and quantified, is a preparation of an ethanol extract of Schisandra sphenanthera and exerts a protective effect toward APAP-induced hepatotoxicity in mice. However, the clinical use of WZ to rescue APAP-induced acute liver injury and the mechanisms involved in the therapeutic effect of WZ remain unclear. Therefore, the effect of WZ on APAP hepatotoxicity was compared with NAC in mice, and molecular pathways contributing to its therapeutic action were investigated. Administration of WZ 4 hours after APAP treatment significantly attenuated APAP hepatotoxicity and exerted much better therapeutic effect than NAC, as revealed by morphologic, histologic, and biochemical assessments. Both WZ and NAC prevented APAP-induced c-Jun N-terminal protein kinase activation and mitochondrial glutathione depletion in livers. The protein expression of nuclear factor erythroid 2-related factor 2 target genes including Gclc, Gclm, Ho-1, and Nqo1 was increased by WZ administration. Furthermore, p53 and p21 levels were upregulated upon APAP exposure, which were completely reversed by postdosing of WZ 4 hours after APAP treatment over 48 hours. In comparison with NAC, WZ significantly increased the expression of cyclin D1, cyclin D-dependent kinase 4, proliferating cell nuclear antigen, and augmenter of liver regeneration in APAP-injured livers. This study demonstrated that WZ possessed a therapeutic efficacy against APAP-induced liver injury by inhibiting oxidative stress and stimulating a regenerative response after liver injury. Thus WZ may represent a new therapy for APAP-induced acute liver injury.
Collapse
Affiliation(s)
- Xiaomei Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (X.F., Y.J., Yi.W., H.T., H.Z., Yo.W., M.H., H.B.); The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (P.C.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (A.Q., F.J.G)
| | - Pan Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (X.F., Y.J., Yi.W., H.T., H.Z., Yo.W., M.H., H.B.); The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (P.C.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (A.Q., F.J.G)
| | - Yiming Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (X.F., Y.J., Yi.W., H.T., H.Z., Yo.W., M.H., H.B.); The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (P.C.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (A.Q., F.J.G)
| | - Ying Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (X.F., Y.J., Yi.W., H.T., H.Z., Yo.W., M.H., H.B.); The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (P.C.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (A.Q., F.J.G)
| | - Huasen Tan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (X.F., Y.J., Yi.W., H.T., H.Z., Yo.W., M.H., H.B.); The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (P.C.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (A.Q., F.J.G)
| | - Hang Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (X.F., Y.J., Yi.W., H.T., H.Z., Yo.W., M.H., H.B.); The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (P.C.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (A.Q., F.J.G)
| | - Yongtao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (X.F., Y.J., Yi.W., H.T., H.Z., Yo.W., M.H., H.B.); The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (P.C.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (A.Q., F.J.G)
| | - Aijuan Qu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (X.F., Y.J., Yi.W., H.T., H.Z., Yo.W., M.H., H.B.); The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (P.C.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (A.Q., F.J.G)
| | - Frank J Gonzalez
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (X.F., Y.J., Yi.W., H.T., H.Z., Yo.W., M.H., H.B.); The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (P.C.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (A.Q., F.J.G)
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (X.F., Y.J., Yi.W., H.T., H.Z., Yo.W., M.H., H.B.); The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (P.C.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (A.Q., F.J.G)
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (X.F., Y.J., Yi.W., H.T., H.Z., Yo.W., M.H., H.B.); The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (P.C.); and Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (A.Q., F.J.G)
| |
Collapse
|
131
|
Amini A, Masoumi-Moghaddam S, Ehteda A, Morris DL. Bromelain and N-acetylcysteine inhibit proliferation and survival of gastrointestinal cancer cells in vitro: significance of combination therapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014. [PMID: 25425315 DOI: 10.1186/s13046-014-0092-7.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Bromelain and N-acetylcysteine are two natural, sulfhydryl-containing compounds with good safety profiles which have been investigated for their benefits and application in health and disease for more than fifty years. As such, the potential values of these agents in cancer therapy have been variably reported in the literature. In the present study, the efficacy of bromelain and N-acetylcysteine in single agent and combination treatment of human gastrointestinal carcinoma cells was evaluated in vitro and the underlying mechanisms of effect were explored. METHODS The growth-inhibitory effects of bromelain and N-acetylcysteine, on their own and in combination, on a panel of human gastrointestinal carcinoma cell lines, including MKN45, KATO-III, HT29-5F12, HT29-5M21 and LS174T, were assessed by sulforhodamine B assay. Moreover, the influence of the treatment on the expression of a range of proteins involved in the regulation of cell cycle and survival was investigated by Western blot. The presence of apoptosis was also examined by TUNEL assay. RESULTS Bromelain and N-acetylcysteine significantly inhibited cell proliferation, more potently in combination therapy. Drug-drug interaction in combination therapy was found to be predominantly synergistic or additive. Mechanistically, apoptotic bodies were detected in treated cells by TUNEL assay. Furthermore, Western blot analysis revealed diminution of cyclins A, B and D, the emergence of immunoreactive subunits of caspase-3, caspase-7, caspase-8 and cleaved PARP, withering or cleavage of procaspase-9, overexpression of cytochrome c, reduced expression of anti-apoptotic Bcl-2 and pro-survival phospho-Akt, the emergence of the autophagosomal marker LC3-II and deregulation of other autophagy-related proteins, including Atg3, Atg5, Atg7, Atg12 and Beclin 1. These results were more prominent in combination therapy. CONCLUSION We report for the first time to our knowledge the growth-inhibitory and cytotoxic effects of bromelain and N-acetylcysteine, in particular in combination, on a panel of gastrointestinal cancer cell lines with different phenotypes and characteristics. These effects apparently resulted from cell cycle arrest, apoptosis and autophagy. Towards the development of novel strategies for the enhancement of microscopic cytoreduction, our results lay the basis for further evaluation of this formulation in locoregional approaches to peritoneal surface malignancies and carcinomatosis.
Collapse
Affiliation(s)
- Afshin Amini
- Department of Surgery, St George Hospital, 4-10 South Street, Kogarah, Sydney 2217, NSW, Australia.
| | | | | | | |
Collapse
|
132
|
Use of Pharmacologic Agents for Modulation of Ischaemia-Reperfusion Injury after Hepatectomy: A Questionnaire Study of the LiverMetSurvey International Registry of Hepatic Surgery Units. HPB SURGERY : A WORLD JOURNAL OF HEPATIC, PANCREATIC AND BILIARY SURGERY 2014; 2014:437159. [PMID: 25477707 PMCID: PMC4244917 DOI: 10.1155/2014/437159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 10/22/2014] [Indexed: 11/17/2022]
Abstract
Objectives. This study is a questionnaire survey on the use of pharmacological agents to modify liver ischaemia-reperfusion (IR) injury in patients undergoing hepatectomy for colorectal liver metastases with the target population being those units participating in the LiverMetSurvey international registry. Methods. Members of LiverMetSurvey were sent an online questionnaire using SurveyMonkey comprising ten questions on the use of pharmacological agents to modulate hepatic IR injury in the perioperative period after hepatectomy. The questionnaire was sent to 446 clinicians registered with the LiverMetSurvey. There were 83 (19%) respondents. Results. Fifty-two (77% of 68 respondents to this question) never used pharmacological agents to modify liver IR injury during hepatectomy. Thirteen (19%) used pharmacological agents selectively. Three (4%) used these routinely. N-Acetylcysteine was the most widely used pharmacological agent with equal distribution of use around intraoperative and postoperative periods. Conclusions. This is believed to be the first survey on the use of pharmacological agents to modify liver IR injury. The target population is clinicians involved in liver resection. The results show that pharmacological modulation is used by only a minority of respondents to this questionnaire and that when this treatment is selected, N-acetylcysteine is the most frequently used.
Collapse
|
133
|
Amini A, Masoumi-Moghaddam S, Ehteda A, Morris DL. Bromelain and N-acetylcysteine inhibit proliferation and survival of gastrointestinal cancer cells in vitro: significance of combination therapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:92. [PMID: 25425315 PMCID: PMC4245783 DOI: 10.1186/s13046-014-0092-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/22/2014] [Indexed: 12/11/2022]
Abstract
Background Bromelain and N-acetylcysteine are two natural, sulfhydryl-containing compounds with good safety profiles which have been investigated for their benefits and application in health and disease for more than fifty years. As such, the potential values of these agents in cancer therapy have been variably reported in the literature. In the present study, the efficacy of bromelain and N-acetylcysteine in single agent and combination treatment of human gastrointestinal carcinoma cells was evaluated in vitro and the underlying mechanisms of effect were explored. Methods The growth-inhibitory effects of bromelain and N-acetylcysteine, on their own and in combination, on a panel of human gastrointestinal carcinoma cell lines, including MKN45, KATO-III, HT29-5F12, HT29-5M21 and LS174T, were assessed by sulforhodamine B assay. Moreover, the influence of the treatment on the expression of a range of proteins involved in the regulation of cell cycle and survival was investigated by Western blot. The presence of apoptosis was also examined by TUNEL assay. Results Bromelain and N-acetylcysteine significantly inhibited cell proliferation, more potently in combination therapy. Drug-drug interaction in combination therapy was found to be predominantly synergistic or additive. Mechanistically, apoptotic bodies were detected in treated cells by TUNEL assay. Furthermore, Western blot analysis revealed diminution of cyclins A, B and D, the emergence of immunoreactive subunits of caspase-3, caspase-7, caspase-8 and cleaved PARP, withering or cleavage of procaspase-9, overexpression of cytochrome c, reduced expression of anti-apoptotic Bcl-2 and pro-survival phospho-Akt, the emergence of the autophagosomal marker LC3-II and deregulation of other autophagy-related proteins, including Atg3, Atg5, Atg7, Atg12 and Beclin 1. These results were more prominent in combination therapy. Conclusion We report for the first time to our knowledge the growth-inhibitory and cytotoxic effects of bromelain and N-acetylcysteine, in particular in combination, on a panel of gastrointestinal cancer cell lines with different phenotypes and characteristics. These effects apparently resulted from cell cycle arrest, apoptosis and autophagy. Towards the development of novel strategies for the enhancement of microscopic cytoreduction, our results lay the basis for further evaluation of this formulation in locoregional approaches to peritoneal surface malignancies and carcinomatosis.
Collapse
Affiliation(s)
- Afshin Amini
- Department of Surgery, St George Hospital, 4-10 South Street, Kogarah, Sydney 2217, NSW, Australia.
| | | | | | | |
Collapse
|
134
|
Bateman DN, Dear JW, Carroll R, Pettie J, Yamamoto T, Elamin MEMO, Peart L, Dow M, Coyle J, Gray A, Dargan PI, Wood DM, Eddleston M, Thomas SHL. Impact of reducing the threshold for acetylcysteine treatment in acute paracetamol poisoning: the recent United Kingdom experience. Clin Toxicol (Phila) 2014; 52:868-72. [PMID: 25200454 DOI: 10.3109/15563650.2014.954125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND On 3 September 2012, the licensed indication for acetylcysteine was changed in the United Kingdom (UK) so that all patients with a plasma paracetamol concentration above a "100 mg/L" (4 h post ingestion) nomogram treatment line after an acute paracetamol (acetaminophen) overdose should be treated. This is a lower threshold than that used in the United States, Canada, Australia, and New Zealand. Here we report the impact of this change in the UK on the management of patients with acute overdose in different paracetamol concentration ranges. METHODS This is a cohort study, consisting of a retrospective analysis conducted on prospectively collected audit data in three UK hospitals. Following appropriate ethical and data protection authority approval, data for patients presenting within 24 h of an acute timed single paracetamol overdose were extracted. Numbers of admissions and use of antidote in relation to different paracetamol concentration bands (< 100 mg/L; 100-149 mg/L; 150-199 mg/L; and ≥ 200 mg/L at 4 h) were analyzed for one-year periods before and after the change. RESULTS Comparing the year before with the year after the change, there was no change in the numbers of patients presenting to hospital within 24 h of acute timed paracetamol overdose (1246 before and 1251 after), but more patients were admitted (759 before and 849 after) and treated with acetylcysteine (389 before and 539 after). Of the 150 additional patients treated with acetylcysteine in the year following the change, 114 (76%, 95% CI: 68.4-82.6) were in the 100-149 group and 9 (6.0%, 95% CI: 2.8-11.1) in the 150-199 group. CONCLUSIONS Changes to national guidelines for managing paracetamol poisoning in the UK have increased the numbers of patients with acute overdose treated with acetylcysteine, with most additional treatments occurring in patients in the 100-149 mg/L dose range, a group at low risk of hepatotoxicity and higher risk of adverse reactions.
Collapse
Affiliation(s)
- D N Bateman
- National Poisons Information Service (Edinburgh) & Royal Infirmary of Edinburgh , Edinburgh , UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Nematollahi D, Feyzi Barnaji B, Amani A. Electrochemical evidences for the reaction of N-acetyl-p-benzoquinone-imine with organosulfur compounds contained in garlic and onion extracts. Treatment of acetaminophen poisoning using garlic and onion extracts. J Sulphur Chem 2014. [DOI: 10.1080/17415993.2014.963580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Davood Nematollahi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Zip Code 65178-38683, Iran
| | | | - Ameneh Amani
- Department of Medicinal Plants Production, Nahavand University, Nahavand, Iran
| |
Collapse
|
136
|
Tobwala S, Khayyat A, Fan W, Ercal N. Comparative evaluation of N-acetylcysteine and N-acetylcysteineamide in acetaminophen-induced hepatotoxicity in human hepatoma HepaRG cells. Exp Biol Med (Maywood) 2014; 240:261-72. [PMID: 25245075 DOI: 10.1177/1535370214549520] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Acetaminophen (N-acetyl-p-aminophenol, APAP) is one of the most widely used over-the-counter antipyretic analgesic medications. Despite being safe at therapeutic doses, an accidental or intentional overdose can result in severe hepatotoxicity; a leading cause of drug-induced liver failure in the U.S. Depletion of glutathione (GSH) is implicated as an initiating event in APAP-induced toxicity. N-acetylcysteine (NAC), a GSH precursor, is the only currently approved antidote for an APAP overdose. Unfortunately, fairly high doses and longer treatment times are required due to its poor bioavailability. In addition, oral and intravenous administration of NAC in a hospital setting are laborious and costly. Therefore, we studied the protective effects of N-acetylcysteineamide (NACA), a novel antioxidant, with higher bioavailability and compared it with NAC in APAP-induced hepatotoxicity in a human-relevant in vitro system, HepaRG. Our results indicated that exposure of HepaRG cells to APAP resulted in GSH depletion, reactive oxygen species (ROS) formation, increased lipid peroxidation, mitochondrial dysfunction (assessed by JC-1 fluorescence), and lactate dehydrogenase release. Both NAC and NACA protected against APAP-induced hepatotoxicity by restoring GSH levels, scavenging ROS, inhibiting lipid peroxidation, and preserving mitochondrial membrane potential. However, NACA was better than NAC at combating oxidative stress and protecting against APAP-induced damage. The higher efficiency of NACA in protecting cells against APAP-induced toxicity suggests that NACA can be developed into a promising therapeutic option for treatment of an APAP overdose.
Collapse
Affiliation(s)
- Shakila Tobwala
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Ahdab Khayyat
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Weili Fan
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Nuran Ercal
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| |
Collapse
|
137
|
Jaeschke H, Xie Y, McGill MR. Acetaminophen-induced Liver Injury: from Animal Models to Humans. J Clin Transl Hepatol 2014; 2:153-61. [PMID: 26355817 PMCID: PMC4521247 DOI: 10.14218/jcth.2014.00014] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/06/2014] [Accepted: 06/12/2014] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury is an important clinical problem and a challenge for drug development. Whereas progress in understanding rare and unpredictable (idiosyncratic) drug hepatotoxicity is severely hampered by the lack of relevant animal models, enormous insight has been gained in the area of predictable hepatotoxins, in particular acetaminophen-induced liver injury, from a broad range of experimental models. Importantly, mechanisms of toxicity obtained with certain experimental systems, such as in vivo mouse models, primary mouse hepatocytes, and metabolically competent cell lines, are being confirmed in translational studies in patients and in primary human hepatocytes. Despite this progress, suboptimal models are still being used and experimental data can be confusing, leading to controversial conclusions. Therefore, this review attempts to discuss mechanisms of drug hepatotoxicity using the most studied drug acetaminophen as an example. We compare the various experimental models that are used to investigate mechanisms of acetaminophen hepatotoxicity, discuss controversial topics in the mechanisms, and assess how these experimental findings can be translated to the clinic. The success with acetaminophen in demonstrating the clinical relevance of experimental findings could serve as an example for the study of other drug toxicities.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Correspondence to: Hartmut Jaeschke, Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA. Tel: +1-913-588-7969, Fax: +1-913-588-7501. E-mail:
| | | | | |
Collapse
|
138
|
Abstract
OBJECTIVE To investigate the role of Nrf2 in the pathogenesis of hepatic ischemia-reperfusion (I/R) injury. BACKGROUND Hepatic I/R injury is a serious complication that leads to liver failure after liver surgery. NF-E2-related factor 2 (Nrf2) is a transcription factor that plays a critical role in protecting cells against oxidative stress. Therefore, it is suggested that Nrf2 activation protects the liver from I/R injury. METHODS Wild-type and Nrf2-deficient mice were treated with 15-deoxy-Δ(12,14)-prostaglandin J2 (15d-PGJ2), or a vehicle. Subsequently, these mice were subjected to 60-minute hepatic 70% ischemia, followed by reperfusion. Liver and blood samples were collected to evaluate liver injury and mRNA expressions. RESULTS After hepatic I/R, Nrf2-deficient livers exhibited enhanced tissue damage; impaired GSTm1, NQO1, and GCLc inductions; disturbed redox state; and aggravated tumor necrosis factor α mRNA expression in comparison with wild-type livers. 15d-PGJ2 treatment protected the livers of wild-type mice from I/R injury via increased expressions of GSTm1, NQO1, and GCLc; maintained redox status; and decreased tumor necrosis factor α induction. These effects induced by 15d-PGJ2 were not seen in the livers of Nrf2(-/-) mice and were not annulled by peroxisome proliferator-activated receptor γ antagonist in Nrf2(+/+) mice, suggesting that the protective effect of 15d-PGJ2 is mediated by Nrf2-dependent antioxidant response. CONCLUSIONS Nrf2 plays a critical role in the mechanism of hepatic I/R injury and would be a new therapeutic target for preventing hepatic I/R injury during liver surgery.
Collapse
|
139
|
George JN, López JA, Konkle BA. N-Acetylcysteine: an old drug, a new insight, a potentially effective treatment for thrombotic thrombocytopenic purpura. Transfusion 2014; 54:1205-7. [PMID: 24819072 DOI: 10.1111/trf.12561] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- James N George
- Department of Biostatistics and Epidemiology, College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, OK; Department of Medicine, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK.
| | | | | |
Collapse
|
140
|
Xie Y, McGill MR, Dorko K, Kumer SC, Schmitt TM, Forster J, Jaeschke H. Mechanisms of acetaminophen-induced cell death in primary human hepatocytes. Toxicol Appl Pharmacol 2014; 279:266-274. [PMID: 24905542 DOI: 10.1016/j.taap.2014.05.010] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 12/27/2022]
Abstract
UNLABELLED Acetaminophen (APAP) overdose is the most prevalent cause of drug-induced liver injury in western countries. Numerous studies have been conducted to investigate the mechanisms of injury after APAP overdose in various animal models; however, the importance of these mechanisms for humans remains unclear. Here we investigated APAP hepatotoxicity using freshly isolated primary human hepatocytes (PHH) from either donor livers or liver resections. PHH were exposed to 5mM, 10mM or 20mM APAP over a period of 48 h and multiple parameters were assessed. APAP dose-dependently induced significant hepatocyte necrosis starting from 24h, which correlated with the clinical onset of human liver injury after APAP overdose. Interestingly, cellular glutathione was depleted rapidly during the first 3h. APAP also resulted in early formation of APAP-protein adducts (measured in whole cell lysate and in mitochondria) and mitochondrial dysfunction, indicated by the loss of mitochondrial membrane potential after 12h. Furthermore, APAP time-dependently triggered c-Jun N-terminal kinase (JNK) activation in the cytosol and translocation of phospho-JNK to the mitochondria. Both co-treatment and post-treatment (3h) with the JNK inhibitor SP600125 reduced JNK activation and significantly attenuated cell death at 24h and 48h after APAP. The clinical antidote N-acetylcysteine offered almost complete protection even if administered 6h after APAP and a partial protection when given at 15 h. CONCLUSION These data highlight important mechanistic events in APAP toxicity in PHH and indicate a critical role of JNK in the progression of injury after APAP in humans. The JNK pathway may represent a therapeutic target in the clinic.
Collapse
Affiliation(s)
- Yuchao Xie
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Mitchell R McGill
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Kenneth Dorko
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sean C Kumer
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Timothy M Schmitt
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jameson Forster
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
141
|
High Dose of N-Acetylcystein Prevents Acute Kidney Injury in Chronic Kidney Disease Patients Undergoing Myocardial Revascularization. Ann Thorac Surg 2014; 97:1617-23. [DOI: 10.1016/j.athoracsur.2014.01.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/15/2014] [Accepted: 01/17/2014] [Indexed: 11/22/2022]
|
142
|
|
143
|
Heard K, Rumack BH, Green JL, Bucher-Bartelson B, Heard S, Bronstein AC, Dart RC. A single-arm clinical trial of a 48-hour intravenous N-acetylcysteine protocol for treatment of acetaminophen poisoning. Clin Toxicol (Phila) 2014; 52:512-8. [PMID: 24708414 DOI: 10.3109/15563650.2014.902955] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Acetylcysteine prevents hepatic injury when administered soon after acetaminophen overdose. The most commonly used treatment protocols are a 72-hour oral and a 21-hour intravenous (IV) protocol. Between 1984 and 1994, 409 patients were enrolled in a study to describe the outcomes of patients who were treated using a 48-hour IV protocol. In 1991, an interim analysis reported the first 223 patients. The objective of this manuscript is to report the rates of hepatotoxicity and adverse events occurring during a 48-hour IV acetylcysteine protocol in the entire 409 patient cohort. METHODS This was a multicenter, single-arm, open-label clinical trial enrolling patients who presented with a toxic serum acetaminophen concentration within 24 h of acute acetaminophen ingestion. Patients were treated with 140 mg/kg loading dose followed by 70 mg/kg every 4 h for 12 doses. Serum aminotransferase activities were measured every 8 h during the protocol, and adverse events were recorded. The primary outcome was the percentage of subjects who developed hepatotoxicity defined as a peak serum aminotransferase greater than 1000 IU/L. RESULTS Four hundred and nine patients were enrolled, and 309 met inclusion for the outcome analysis. The overall percentage of patients developing hepatotoxicity was 18.1%, and 3.4% of patients treated within 10 h developed hepatotoxicity. One acetaminophen-related death occurred in a patient treated at 22 h. Adverse events occurred in 28.9% of enrolled subjects; the most common adverse events were nausea, vomiting, and flushing, and no events were rated as serious by the investigator. CONCLUSIONS Acetaminophen-overdosed patients treated with IV acetylcysteine administered as 140 mg/kg loading dose followed by 70 mg/kg every 4 h for 12 doses had a low rate of hepatotoxicity and few adverse events. This protocol delivers a higher dose of acetylcysteine which may be useful in selected cases involving very large overdoses.
Collapse
Affiliation(s)
- K Heard
- Rocky Mountain Poison and Drug Center , Denver, CO , USA
| | | | | | | | | | | | | |
Collapse
|
144
|
Jan YH, Heck DE, Dragomir AC, Gardner CR, Laskin DL, Laskin JD. Acetaminophen reactive intermediates target hepatic thioredoxin reductase. Chem Res Toxicol 2014; 27:882-94. [PMID: 24661219 PMCID: PMC4033643 DOI: 10.1021/tx5000443] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Acetaminophen (APAP) is metabolized in the liver to N-acetyl-p-benzoquinone imine (NAPQI), an electrophilic metabolite known to bind liver proteins resulting in hepatotoxicity. Mammalian thioredoxin reductase (TrxR) is a cellular antioxidant containing selenocysteine (Sec) in its C-terminal redox center, a highly accessible target for electrophilic modification. In the present study, we determined if NAPQI targets TrxR. Hepatotoxicity induced by APAP treatment of mice (300 mg/kg, i.p.) was associated with a marked inhibition of both cytosolic TrxR1 and mitochondrial TrxR2 activity. Maximal inhibition was detected at 1 and 6 h post-APAP for TrxR1 and TrxR2, respectively. In purified rat liver TrxR1, enzyme inactivation was correlated with the metabolic activation of APAP by cytochrome P450, indicating that enzyme inhibition was due to APAP-reactive metabolites. NAPQI was also found to inhibit TrxR1. NADPH-reduced TrxR1 was significantly more sensitive to NAPQI (IC50 = 0.023 μM) than the oxidized enzyme (IC50 = 1.0 μM) or a human TrxR1 Sec498Cys mutant enzyme (IC50 = 17 μM), indicating that cysteine and selenocysteine residues in the redox motifs of TrxR are critical for enzyme inactivation. This is supported by our findings that alkylation of reduced TrxR with biotin-conjugated iodoacetamide, which selectively reacts with selenol or thiol groups on proteins, was inhibited by NAPQI. LC-MS/MS analysis confirmed that NAPQI modified cysteine 59, cysteine 497, and selenocysteine 498 residues in the redox centers of TrxR, resulting in enzyme inhibition. In addition to disulfide reduction, TrxR is also known to mediate chemical redox cycling. We found that menadione redox cycling by TrxR was markedly less sensitive to NAPQI than disulfide reduction, suggesting that TrxR mediates these reactions via distinct mechanisms. These data demonstrate that APAP-reactive metabolites target TrxR, suggesting an additional mechanism by which APAP induces oxidative stress and hepatotoxicity.
Collapse
Affiliation(s)
- Yi-Hua Jan
- Department of Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School , Piscataway, New Jersey 08854, United States
| | | | | | | | | | | |
Collapse
|
145
|
Tanaka R, Ishima Y, Maeda H, Kodama A, Nagao S, Watanabe H, Chuang VTG, Otagiri M, Maruyama T. Albumin fusion prolongs the antioxidant and anti-inflammatory activities of thioredoxin in mice with acetaminophen-induced hepatitis. Mol Pharm 2014; 11:1228-38. [PMID: 24576052 DOI: 10.1021/mp400690v] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Overdoses of acetaminophen (APAP) are a major cause of acute liver failure. N-Acetylcysteine (NAC) is the standard therapy for patients with such an overdose because oxidative stress plays an important role in the pathogenesis of APAP-induced hepatitis. However, NAC is not sufficiently efficacious. We previously developed a recombinant human serum albumin (HSA)-thioredoxin 1 (Trx) fusion protein (HSA-Trx), designed to overcome the unfavorable pharmacokinetic and short pharmacological properties of Trx, an endogenous protein with antioxidative and anti-inflammatory properties. In this study, we investigated the therapeutic impact of HSA-Trx in mice with APAP-induced hepatitis. The systemic administration of HSA-Trx significantly improved the survival rate of mice treated with a lethal dose of APAP compared with saline. HSA-Trx strongly attenuated plasma transaminases in APAP-induced hepatitis mice compared with HSA or Trx, components of the fusion protein. HSA-Trx also markedly caused a diminution in the histopathological features of hepatic injuries and the number of apoptosis-positive hepatic cells. In addition, an evaluation of oxidative stress markers and plasma cytokine and chemokine levels clearly showed that HSA-Trx significantly improved the breakdown of hepatic redox conditions and inflammation caused by the APAP treatment. HSA-Trx also significantly decreased oxidative and nitrosative/nitrative stress induced by SIN-1 in vitro. Finally, HSA-Trx, but not the NAC treatment at 4 h after APAP injection, significantly inhibited the elevation in plasma transaminase levels. In conclusion, the findings suggest that HSA-Trx has considerable potential for use as a novel therapeutic agent for APAP-induced hepatitis, due to its long-lasting antioxidative and anti-inflammatory effects.
Collapse
Affiliation(s)
- Ryota Tanaka
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, and ‡Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto University , 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Bateman DN, Dear JW, Thanacoody HKR, Thomas SHL, Eddleston M, Sandilands EA, Coyle J, Cooper JG, Rodriguez A, Butcher I, Lewis SC, Vliegenthart ADB, Veiraiah A, Webb DJ, Gray A. Reduction of adverse effects from intravenous acetylcysteine treatment for paracetamol poisoning: a randomised controlled trial. Lancet 2014; 383:697-704. [PMID: 24290406 DOI: 10.1016/s0140-6736(13)62062-0] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Paracetamol poisoning is common worldwide. It is treated with intravenous acetylcysteine, but the standard regimen is complex and associated with frequent adverse effects related to concentration, which can cause treatment interruption. We aimed to ascertain whether adverse effects could be reduced with either a shorter modified acetylcysteine schedule, antiemetic pretreatment, or both. METHODS We undertook a double-blind, randomised factorial study at three UK hospitals, between Sept 6, 2010, and Dec 31, 2012. We randomly allocated patients with acute paracetamol overdose to either the standard intravenous acetylcysteine regimen (duration 20·25 h) or a shorter (12 h) modified protocol, with or without intravenous ondansetron pretreatment (4 mg). Masking was achieved by infusion of 5% dextrose (during acetylcysteine delivery) or saline (for antiemetic pretreatment). Randomisation was done via the internet and included a minimisation procedure by prognostic factors. The primary outcome was absence of vomiting, retching, or need for rescue antiemetic treatment at 2 h. Prespecified secondary outcomes included a greater than 50% increase in alanine aminotransferase activity over the admission value. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov (identifier NCT01050270). FINDINGS Of 222 patients who underwent randomisation, 217 were assessable 2 h after the start of acetylcysteine treatment. Vomiting, retching, or need for rescue antiemetic treatment at 2 h was reported in 39 of 108 patients assigned to the shorter modified protocol compared with 71 of 109 allocated to the standard acetylcysteine regimen (adjusted odds ratio 0·26, 97·5% CI 0·13-0·52; p<0·0001), and in 45 of 109 patients who received ondansetron compared with 65 of 108 allocated placebo (0·41, 0·20-0·80; p=0·003). Severe anaphylactoid reactions were recorded in five patients assigned to the shorter modified acetylcysteine regimen versus 31 who were allocated to the standard protocol (adjusted common odds ratio 0·23, 97·5% CI 0·12-0·43; p<0·0001). The proportion of patients with a 50% increase in alanine aminotransferase activity did not differ between the standard (9/110) and shorter modified (13/112) regimens (adjusted odds ratio 0·60, 97·5% CI 0·20-1·83); however, the proportion was higher with ondansetron (16/111) than with placebo (6/111; 3·30, 1·01-10·72; p=0·024). INTERPRETATION In patients with paracetamol poisoning, a 12 h modified acetylcysteine regimen resulted in less vomiting, fewer anaphylactoid reactions, and reduced need for treatment interruption. This study was not powered to detect non-inferiority of the shorter protocol versus the standard approach; therefore, further research is needed to confirm the efficacy of the 12 h modified acetylcysteine regimen. FUNDING Chief Scientist Office of the Scottish Government.
Collapse
Affiliation(s)
- D Nicholas Bateman
- National Poisons Information Service, Royal Infirmary of Edinburgh, Edinburgh, UK.
| | - James W Dear
- National Poisons Information Service, Royal Infirmary of Edinburgh, Edinburgh, UK; British Heart Foundation Centre for Cardiovascular Science, Edinburgh University, Edinburgh, UK
| | - H K Ruben Thanacoody
- Institute of Cellular Medicine, Newcastle University, and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Simon H L Thomas
- Institute of Cellular Medicine, Newcastle University, and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Michael Eddleston
- National Poisons Information Service, Royal Infirmary of Edinburgh, Edinburgh, UK; British Heart Foundation Centre for Cardiovascular Science, Edinburgh University, Edinburgh, UK
| | - Euan A Sandilands
- National Poisons Information Service, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Judy Coyle
- Emergency Medicine Research Group, Department of Emergency Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Jamie G Cooper
- Emergency Department, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Aryelly Rodriguez
- Edinburgh Clinical Trials Unit, University of Edinburgh, Edinburgh, UK
| | - Isabella Butcher
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Steff C Lewis
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Aravindan Veiraiah
- National Poisons Information Service, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - David J Webb
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh University, Edinburgh, UK
| | - Alasdair Gray
- Emergency Medicine Research Group, Department of Emergency Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
147
|
Affiliation(s)
- Kevin Park
- MRC Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK.
| | - Daniel J Antoine
- MRC Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Munir Pirmohamed
- MRC Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
148
|
Du K, Williams CD, McGill MR, Xie Y, Farhood A, Vinken M, Jaeschke H. The gap junction inhibitor 2-aminoethoxy-diphenyl-borate protects against acetaminophen hepatotoxicity by inhibiting cytochrome P450 enzymes and c-jun N-terminal kinase activation. Toxicol Appl Pharmacol 2013; 273:484-91. [PMID: 24070586 PMCID: PMC3858533 DOI: 10.1016/j.taap.2013.09.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 12/13/2022]
Abstract
Acetaminophen (APAP) hepatotoxicity is the leading cause of acute liver failure in the US. Although many aspects of the mechanism are known, recent publications suggest that gap junctions composed of connexin32 function as critical intercellular communication channels which transfer cytotoxic mediators into neighboring hepatocytes and aggravate liver injury. However, these studies did not consider off-target effects of reagents used in these experiments, especially the gap junction inhibitor 2-aminoethoxy-diphenyl-borate (2-APB). In order to assess the mechanisms of protection of 2-APB in vivo, male C56Bl/6 mice were treated with 400 mg/kg APAP to cause extensive liver injury. This injury was prevented when animals were co-treated with 20 mg/kg 2-APB and was attenuated when 2-APB was administered 1.5 h after APAP. However, the protection was completely lost when 2-APB was given 4-6 h after APAP. Measurement of protein adducts and c-jun-N-terminal kinase (JNK) activation indicated that 2-APB reduced both protein binding and JNK activation, which correlated with hepatoprotection. Although some of the protection was due to the solvent dimethyl sulfoxide (DMSO), in vitro experiments clearly demonstrated that 2-APB directly inhibits cytochrome P450 activities. In addition, JNK activation induced by phorone and tert-butylhydroperoxide in vivo was inhibited by 2-APB. The effects against APAP toxicity in vivo were reproduced in primary cultured hepatocytes without use of DMSO and in the absence of functional gap junctions. We conclude that the protective effect of 2-APB was caused by inhibition of metabolic activation of APAP and inhibition of the JNK signaling pathway and not by blocking connexin32-based gap junctions.
Collapse
Affiliation(s)
- Kuo Du
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - C. David Williams
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mitchell R. McGill
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Yuchao Xie
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Anwar Farhood
- Department of Pathology, St. David’s North Austin Medical Center, Austin, TX 78756, USA
| | - Mathieu Vinken
- Department of Toxicology, Center for Pharmaceutical Sciences, Vrije Universiteit Brussels, 1090 Brussels, Belgium
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
149
|
Williams CD, McGill MR, Lebofsky M, Bajt ML, Jaeschke H. Protection against acetaminophen-induced liver injury by allopurinol is dependent on aldehyde oxidase-mediated liver preconditioning. Toxicol Appl Pharmacol 2013; 274:417-24. [PMID: 24345528 DOI: 10.1016/j.taap.2013.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/25/2013] [Accepted: 12/05/2013] [Indexed: 12/22/2022]
Abstract
Acetaminophen (APAP) overdose causes severe and occasionally fatal liver injury. Numerous drugs that attenuate APAP toxicity have been described. However these compounds frequently protect by cytochrome P450 inhibition, thereby preventing the initiating step of toxicity. We have previously shown that pretreatment with allopurinol can effectively protect against APAP toxicity, but the mechanism remains unclear. In the current study, C3HeB/FeJ mice were administered allopurinol 18h or 1h prior to an APAP overdose. Administration of allopurinol 18h prior to APAP overdose resulted in an 88% reduction in liver injury (serum ALT) 6h after APAP; however, 1h pretreatment offered no protection. APAP-cysteine adducts and glutathione depletion kinetics were similar with or without allopurinol pretreatment. The phosphorylation and mitochondrial translocation of c-jun-N-terminal-kinase (JNK) have been implicated in the progression of APAP toxicity. In our study we showed equivalent early JNK activation (2h) however late JNK activation (6h) was attenuated in allopurinol treated mice, which suggests that later JNK activation is more critical for the toxicity. Additional mice were administered oxypurinol (primary metabolite of allopurinol) 18h or 1h pre-APAP, but neither treatment protected. This finding implicated an aldehyde oxidase (AO)-mediated metabolism of allopurinol, so mice were treated with hydralazine to inhibit AO prior to allopurinol/APAP administration, which eliminated the protective effects of allopurinol. We evaluated potential targets of AO-mediated preconditioning and found increased hepatic metallothionein 18h post-allopurinol. These data show metabolism of allopurinol occurring independent of P450 isoenzymes preconditions the liver and renders the animal less susceptible to an APAP overdose.
Collapse
Affiliation(s)
- C David Williams
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mitchell R McGill
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Margitta Lebofsky
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mary Lynn Bajt
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
150
|
Navid A, Ng DM, Stewart BJ, Wong SE, Lightstone FC. Quantitative In Silico analysis of transient metabolism of acetaminophen and associated causes of hepatotoxicity in humans. In Silico Pharmacol 2013. [PMCID: PMC4750864 DOI: 10.1186/2193-9616-1-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|