101
|
Reynaert NL, Ckless K, Wouters EFM, van der Vliet A, Janssen-Heininger YMW. Nitric oxide and redox signaling in allergic airway inflammation. Antioxid Redox Signal 2005; 7:129-43. [PMID: 15650402 DOI: 10.1089/ars.2005.7.129] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A number of diseases of the respiratory tract, as exemplified in this review by asthma, are associated with increased amounts of nitric oxide (NO) in the expired breath. Asthma is furthermore characterized by increased production of reactive oxygen species that scavenge NO to form more reactive nitrogen species as demonstrated by the enhanced presence of nitrated proteins in the lungs of these patients. This increased oxidative metabolism leaves less bioavailable NO and coincides with lower amounts of S-nitrosothiols. In this review, we speculate on mechanisms responsible for the increased amounts of NO in inflammatory airway disease and discuss the apparent paradox of higher levels of NO as opposed to decreased amounts of S-nitrosothiols. We will furthermore give an overview of the regulation of NO production and biochemical events by which NO transduces signals into cellular responses, with a particular focus on modulation of inflammation by NO. Lastly, difficulties in studying NO signaling and possible therapeutic uses for NO will be highlighted.
Collapse
Affiliation(s)
- Niki L Reynaert
- Department of Pathology, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
102
|
Beeh KM, Beier J, Koppenhoefer N, Buhl R. Increased glutathione disulfide and nitrosothiols in sputum supernatant of patients with stable COPD. Chest 2004; 126:1116-22. [PMID: 15486372 DOI: 10.1378/chest.126.4.1116] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
STUDY OBJECTIVES Increased oxidant burden is involved in the pathogenesis of COPD. Glutathione (GSH) is a major antioxidant scavenging reactive oxygen and nitrogen species. We studied the concentrations of total and reduced GSH, glutathione disulfide (GSSG), and nitrosothiols in sputum supernatant of patients with COPD. DESIGN Twenty-five patients with moderate-to-severe COPD (FEV(1) 61 +/- 12% of predicted) and 25 healthy nonsmoking control subjects underwent sputum induction. Sputum total GSH and GSSG were measured spectrophotometrically, and nitrosothiols were quantified by enzyme assay. Exhaled nitric oxide (eNO) was also measured to correlate eNO with nitrosothiols in induced sputum. MEASUREMENTS AND RESULTS Compared with healthy subjects, patients with COPD had increased sputum neutrophils (geometric mean, 65%; 95% confidence interval [CI], 57.5 to 71; vs 21%; 95% CI, 13.2 to 31.6; p < 0.001); total GSH (geometric mean, 7.1 micromol/L; 95% CI, 2.95 to 17; vs 5.1 micromol/L; 95% CI, 3.2 to 8.1; p = 0.024); GSSG (geometric mean, 4.1 micromol/L; 95% CI, 1.7 to 10; vs 0.84 micromol/L; 95% CI, 0.35 to 1.99; p = 0.002); and nitrosothiols (geometric mean, 60.4 micromol/L; 95% CI, 40 to 95.5; vs 38 micromol/L; 95% CI, 31.6 to 43.6; p = 0.04). Sputum GSSG was positively correlated with neutrophils (rho = 0.47, p = 0.016) and nitrosothiols (rho = 0.49, p = 0.024) in patients with COPD, whereas there was no correlation of eNO with nitrosothiols (rho = 0.38, p = 0.1). CONCLUSIONS Sputum concentrations of GSSG and nitrosothiols are increased in patients with COPD and associated with neutrophilic inflammation. These data underline the role of oxidative stress in the pathogenesis of COPD, and suggest that GSH is important to scavenge both reactive oxygen and nitrogen species.
Collapse
Affiliation(s)
- Kai Michael Beeh
- Pulmonary Department, Internal Medicine, University Hospital, Langenbeckstrasse 1, 55131 Mainz, Germany.
| | | | | | | |
Collapse
|
103
|
Abstract
Background—
Perfluorocarbons (PFCs) are promising blood substitutes because of their chemical inertness and unparalleled ability to transport and upload O
2
and CO
2
. Here, we report that PFC emulsions also efficiently absorb and transport nitric oxide (NO).
Methods and Results—
Accumulation of NO and O
2
in PFC micelles results in rapid NO oxidation and generation of reactive NO
x
species. Such micellar catalysis of NO oxidation leads to formation of vasoactive
S
-nitrosothiols (RSNO) in vitro and in vivo as detected electrochemically. The efficiency of PFC-mediated
S
-nitrosation depends on the amount of PFC in aqueous solution. The optimal PFC concentration that produced the maximum level of RSNO was ≈1% (vol/vol). Larger PFC amounts were progressively less efficient in generating RSNO and functioned simply as NO sink. These results explain the characteristic hemodynamic effects of PFCs. Intravenous bolus application of PFC (0.14 g/kg, ≈1% vol/vol) to Wistar-Kyoto rats decreased mean arterial pressure significantly (−10 mm Hg over 40 minutes). PFC-induced hypotension could be further stimulated (−17 mm Hg over 140 minutes) by exogenous thiols (cysteine and glutathione). In contrast, a larger amount of PFC (1 g/kg, ≈7% vol/vol) exhibited a strong hypertensive effect (11 mm Hg over 40 minutes).
Conclusions—
The present study reveals a physiologically significant pool of endogenous plasma NO and underscores the crucial role of the circulating hydrophobic phase in modulating its bioactivity. The results also establish PFC as a conceptually new pharmacological tool for various cardiovascular complications associated with NO imbalance.
Collapse
Affiliation(s)
- Olga Rafikova
- Department of Biochemistry, New York University Medical Center,New York, NY 10016, USA
| | | | | | | |
Collapse
|
104
|
Sugiura H, Ichinose M, Tomaki M, Ogawa H, Koarai A, Kitamuro T, Komaki Y, Akita T, Nishino H, Okamoto S, Akaike T, Hattori T. Quantitative assessment of protein-bound tyrosine nitration in airway secretions from patients with inflammatory airway disease. Free Radic Res 2004; 38:49-57. [PMID: 15061653 DOI: 10.1080/10715760310001633817] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Because reactive nitrogen species (RNS) have potent inflammatory activity, they may be involved in the inflammatory process in pulmonary diseases. We recently reported increased numbers of 3-nitrotyrosine immunopositive cells, which are evidences of RNS production, in the sputum of patients with chronic obstructive pulmonary disease (COPD) and patients with asthma compared with healthy subjects. In the present study, we attempted to quantify this protein nitration in the airways by means of high-performance liquid chromatography (HPLC) used together with an electrochemical detection system that we developed. Sputum samples were obtained from 15 stable COPD patients, 9 asthmatic patients and 7 healthy subjects by using hypertonic saline inhalation. The values for the molar ratio of protein-bound 3-nitrotyrosine/tyrosine in patients with asthma (4.31 +/- 1.13 x 10(-6), p < 0.05) and patients with COPD (3.04 +/- 0.36 x 10(-6), p < 0.01) were significantly higher than those in healthy subjects (1.37 +/- 0.19 x 10(-6)). The levels of protein-bound 3-nitrotyrosine in the airways were not significantly different in asthmatic patients and COPD patients. A significant negative correlation was found between values for protein-bound 3-nitrotyrosine/tyrosine and % FEV1 values in patients with COPD (r = -0.53, p < 0.05) but not in patients with asthma. These results suggest that our HPLC-electrochemical method is useful for quantifying RNS production in human airways. More importantly, they show that increased RNS production in the airways seems to contribute in a critical way to the pathogenesis of COPD, and that the effects of RNS in airways may differ in asthma and COPD.
Collapse
Affiliation(s)
- Hisatoshi Sugiura
- Division of Respiratory and Infectious Diseases, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Gow AJ, Farkouh CR, Munson DA, Posencheg MA, Ischiropoulos H. Biological significance of nitric oxide-mediated protein modifications. Am J Physiol Lung Cell Mol Physiol 2004; 287:L262-8. [PMID: 15246980 DOI: 10.1152/ajplung.00295.2003] [Citation(s) in RCA: 264] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO), despite an apparently simple diatomic structure, has a wide variety of functions in both physiology and pathology and within every major organ system. It has become an increasingly important scientific challenge to decipher how this wide range of activity is achieved. To this end a number of investigators have begun to explore how NO-mediated posttranslational modifications of proteins may represent mechanisms of cellular signaling. These modifications include: 1). binding to metal centers; 2). nitrosylation of thiol and amine groups; 3). nitration of tyrosine, tryptophan, amine, carboxylic acid, and phenylalanine groups; and 4). oxidation of thiols (both cysteine and methionine residues) and tyrosine. However, two particular modifications have recently received much attention, nitrosylation of thiols to produce S-nitrosothiol and nitration of tyrosine residues to produce nitrotyrosine. It is the purpose of this review to examine the possibility that these modifications may play a role in NO-mediated signaling.
Collapse
Affiliation(s)
- Andrew J Gow
- Children's Hospital of Philadelphia, Abramson Research Center, Rm 416, 34th & Civic Center Blvd., Philadelphia, PA 19104, USA. )
| | | | | | | | | |
Collapse
|
106
|
Ricciardolo FLM, Sterk PJ, Gaston B, Folkerts G. Nitric oxide in health and disease of the respiratory system. Physiol Rev 2004; 84:731-65. [PMID: 15269335 DOI: 10.1152/physrev.00034.2003] [Citation(s) in RCA: 585] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During the past decade a plethora of studies have unravelled the multiple roles of nitric oxide (NO) in airway physiology and pathophysiology. In the respiratory tract, NO is produced by a wide variety of cell types and is generated via oxidation of l-arginine that is catalyzed by the enzyme NO synthase (NOS). NOS exists in three distinct isoforms: neuronal NOS (nNOS), inducible NOS (iNOS), and endothelial NOS (eNOS). NO derived from the constitutive isoforms of NOS (nNOS and eNOS) and other NO-adduct molecules (nitrosothiols) have been shown to be modulators of bronchomotor tone. On the other hand, NO derived from iNOS seems to be a proinflammatory mediator with immunomodulatory effects. The concentration of this molecule in exhaled air is abnormal in activated states of different inflammatory airway diseases, and its monitoring is potentially a major advance in the management of, e.g., asthma. Finally, the production of NO under oxidative stress conditions secondarily generates strong oxidizing agents (reactive nitrogen species) that may modulate the development of chronic inflammatory airway diseases and/or amplify the inflammatory response. The fundamental mechanisms driving the altered NO bioactivity under pathological conditions still need to be fully clarified, because their regulation provides a novel target in the prevention and treatment of chronic inflammatory diseases of the airways.
Collapse
Affiliation(s)
- Fabio L M Ricciardolo
- Dept. of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands
| | | | | | | |
Collapse
|
107
|
Beier J, Beeh KM, Semmler D, Buhl R. Sputum levels of reduced glutathione increase 24 hours after allergen challenge in isolated early, but not dual asthmatic responders. Int Arch Allergy Immunol 2004; 135:30-5. [PMID: 15286443 DOI: 10.1159/000080040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Accepted: 04/23/2004] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The pathogenesis of late asthmatic reactions after allergen challenge in contrast to isolated early responses is incompletely understood. Recently, the antioxidant glutathione and endogenous nitrosothiols were shown to protect against bronchoconstriction. We compared reduced (GSH) and oxidized glutathione (GSSG) and nitrosothiols in induced sputum following allergen challenge in mild asthmatics with isolated early (EAR) and dual early and late (LAR) asthmatic responses. METHODS Exhaled nitric oxide, sputum cells and sputum supernatant concentrations of GSH, GSSG and nitrosothiols were quantified 2-5 days prior to and 24 h after allergen challenge in 24 mild asthmatics (12 EAR, 12 LAR, only beta-agonists prn). RESULTS There were no differences at baseline between EAR and LAR asthmatics for any of the parameters (p > 0.1, all comparisons). Mean +/- SD fall in forced expiratory volume in 1 s, expressed as the percentage decrease compared to the baseline value, between 3 and 8 h after allergen challenge was 1 +/- 5% in the group of patients without LAR vs. 24.9 +/- 8.7% in the group of patients with LAR (p < 0.001). Sputum eosinophils increased in both groups (p < 0.05, both comparisons), whereas neutrophils only increased in LAR subjects (p = 0.06 vs. EAR). In contrast, GSH was significantly increased 24 h after challenge only in EAR asthmatics [geometric mean with 95% confidence intervals: before: 3.3 microM (1.25-7.9 microM), after: 5.9 microM (2.7-12.9 microM), p = 0.05; mean difference vs. LAR subjects: 6 microM (0.1-12 microM), p = 0.048], and the proportion of GSSG was positively correlated with postallergen eosinophils in all patients (rho = 0.4, p = 0.05). There was no change in nitrosothiols after 24 h in either EAR or LAR subjects (p > 0.23, all comparisons). CONCLUSIONS GSH increases 24 h after allergen challenge in isolated early responders. These data suggest that different adoptive responses to allergen may result in different physiologic phenotypes. Further studies on the role of glutathione in allergen-induced bronchoconstriction are clearly warranted.
Collapse
Affiliation(s)
- Jutta Beier
- Pulmonary Department, Internal Medicine, University Hospital Mainz, Mainz, Germany.
| | | | | | | |
Collapse
|
108
|
Mulrennan SA, Redington AE. Nitric oxide synthase inhibition: therapeutic potential in asthma. ACTA ACUST UNITED AC 2004; 3:79-88. [PMID: 15182209 DOI: 10.2165/00151829-200403020-00002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Nitric oxide (NO) is synthesized from L-arginine in the human respiratory tract by enzymes of the NO synthase (NOS) family. Levels of NO in exhaled air are increased in asthma, and measurement of exhaled NO has been advocated as a noninvasive tool to monitor the underlying inflammatory process. However, the relation of NO to disease pathophysiology is uncertain, and in particular the fundamental question of whether it should be viewed primarily as beneficial or harmful remains unanswered. Exogenously administered NO has both bronchodilator and bronchoprotective properties. Although it is unlikely that NO is an important regulator of basal airway tone, there is good evidence that endogenous NO release exerts a protective effect against various bronchoconstrictor stimuli. This response is thought to involve one or both of the constitutive NOS isoforms, endothelial NOS (eNOS) and neuronal NOS (nNOS). Therefore, inhibition of these enzymes is unlikely to be therapeutically useful in asthma and indeed may worsen disease control. On the other hand, the high concentrations of NO in asthma, which are believed to reflect upregulation of inducible NOS (iNOS) by proinflammatory cytokines, may produce various deleterious effects. These include increased vascular permeability, damage to the airway epithelium, and promotion of inflammatory cell infiltration. However, the possible effects of iNOS inhibition on allergic inflammation in asthma have not yet been described and studies in animal models have yielded inconsistent findings. Thus, the evidence to suggest that inhibition of iNOS would be a useful therapeutic strategy in asthma is limited at present. More definitive information will require studies combining agents that potently and specifically target individual NOS isoforms with direct measurement of inflammatory markers.
Collapse
Affiliation(s)
- Siobhan A Mulrennan
- Division of Academic Medicine, Postgraduate Medical Institute, University of Hull, Hull, England
| | | |
Collapse
|
109
|
Morris CR, Poljakovic M, Lavrisha L, Machado L, Kuypers FA, Morris SM. Decreased arginine bioavailability and increased serum arginase activity in asthma. Am J Respir Crit Care Med 2004; 170:148-53. [PMID: 15070820 DOI: 10.1164/rccm.200309-1304oc] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Recent studies suggest that a nitric oxide (NO) deficiency and elevated arginase activity may play a role in the pathogenesis of asthma. Although much attention has been directed toward measurements of exhaled NO in asthma, no studies to date have evaluated levels of plasma arginase or arginine, the substrate for NO production, in patients with asthma. This study, therefore, measured amino acid levels, arginase activity, and nitric oxide metabolites in the blood of patients with asthma, as well as NO in exhaled breath. Although levels of virtually all amino acids were reduced, patients with asthma exhibited a striking reduction in plasma arginine levels compared with normal control subjects without asthma (45 +/- 22 vs. 94 +/- 29 microM, p < 0.0001), and serum arginase activity was elevated (1.6 +/- 0.8 vs. 0.5 +/- 0.3 micromol/ml/hour, asthma vs. control, p < 0.0001). High arginase activity in patients with asthma may contribute to low circulating arginine levels, thereby limiting arginine bioavailability and creating a NO deficiency that induces hyperreactive airways. Addressing the alterations in arginine metabolism may result in new strategies for treatment of asthma.
Collapse
Affiliation(s)
- Claudia R Morris
- Department of Emergency Medicine, Children's Hospital and Research Center at Oakland, Oakland, CA 94609, USA.
| | | | | | | | | | | |
Collapse
|
110
|
Abstract
Many decades of research have produced a significant amount of data showing increased oxidative stress in asthma and indicating a potential role for oxidants in the pathogenesis of the disease, particularly during exacerbations. Putatively relevant pro-oxidative mechanisms have also been identified. Currently available asthma drugs are generally effective for the treatment of the disease, but their effects on oxidative stress have still not been completely elucidated. From the data available in the literature one can conclude that antioxidant compounds may have a potential role in the treatment of asthma, especially of asthma exacerbations. More convincing evidence from controlled clinical trials is required.
Collapse
Affiliation(s)
- G Caramori
- Department of Clinical and Experimental Medicine, Research Centre on Asthma and COPD, University of Ferrara, Italy
| | | |
Collapse
|
111
|
Rassaf T, Feelisch M, Kelm M. Circulating NO pool: assessment of nitrite and nitroso species in blood and tissues. Free Radic Biol Med 2004; 36:413-22. [PMID: 14975444 DOI: 10.1016/j.freeradbiomed.2003.11.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Revised: 11/12/2003] [Accepted: 11/14/2003] [Indexed: 11/21/2022]
Abstract
The formation of nitric oxide (NO) has been linked to many regulatory functions in mammalian cells. With the appreciation that NO-mediated nitrosation reactions are involved in cell signaling and pathology there is a need to elucidate and better characterize the different biochemical pathways of NO in vivo. Despite significant methodological advances over the years one major obstacle in assessing the significance of nitrosated species and other NO-related metabolites remains: their reliable measurement in complex biological matrices. In this review we briefly discuss the major routes of NO metabolism and transport in the mammalian circulation, considering plasma, red blood cell, and tissue compartments separately. In addition, we attempt to give a recommendation as to the most appropriate analytical technique and sample processing procedures for the reliable quantification of either species.
Collapse
Affiliation(s)
- Tienush Rassaf
- Department of Medicine, Division of Cardiology, Pulmonary Diseases and Angiology, Heinrich-Heine-University, Duesseldorf, Germany
| | | | | |
Collapse
|
112
|
Shin HW, Rose-Gottron CM, Cooper DM, Newcomb RL, George SC. Airway diffusing capacity of nitric oxide and steroid therapy in asthma. J Appl Physiol (1985) 2004; 96:65-75. [PMID: 12959957 DOI: 10.1152/japplphysiol.00575.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exhaled nitric oxide (NO) concentration is a noninvasive index for monitoring lung inflammation in diseases such as asthma. The plateau concentration at constant flow is highly dependent on the exhalation flow rate and the use of corticosteroids and cannot distinguish airway and alveolar sources. In subjects with steroid-naive asthma (n = 8) or steroid-treated asthma (n = 12) and in healthy controls (n = 24), we measured flow-independent NO exchange parameters that partition exhaled NO into airway and alveolar regions and correlated these with symptoms and lung function. The mean (+/-SD) maximum airway flux (pl/s) and airway tissue concentration [parts/billion (ppb)] of NO were lower in steroid-treated asthmatic subjects compared with steroid-naive asthmatic subjects (1,195 +/- 836 pl/s and 143 +/- 66 ppb compared with 2,693 +/- 1,687 pl/s and 438 +/- 312 ppb, respectively). In contrast, the airway diffusing capacity for NO (pl.s-1.ppb-1) was elevated in both asthmatic groups compared with healthy controls, independent of steroid therapy (11.8 +/- 11.7, 8.71 +/- 5.74, and 3.13 +/- 1.57 pl.s-1.ppb-1 for steroid treated, steroid naive, and healthy controls, respectively). In addition, the airway diffusing capacity was inversely correlated with both forced expired volume in 1 s and forced vital capacity (%predicted), whereas the airway tissue concentration was positively correlated with forced vital capacity. Consistent with previously reported results from Silkoff et al. (Silkoff PE, Sylvester JT, Zamel N, and Permutt S, Am J Respir Crit Med 161: 1218-1228, 2000) that used an alternate technique, we conclude that the airway diffusing capacity for NO is elevated in asthma independent of steroid therapy and may reflect clinically relevant changes in airways.
Collapse
Affiliation(s)
- Hye-Won Shin
- Department of Biomedical Engineering, University of California, Irvine, CA 92697-2575, USA
| | | | | | | | | |
Collapse
|
113
|
Palmerini CP, Palombari R, Arienti G. Electrochemical assay of human haemoglobin S-nitrosylation by nitrosocysteine. Amino Acids 2003; 25:59-62. [PMID: 12836059 DOI: 10.1007/s00726-002-0355-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Oxyhaemoglobin (oxyHb) and methaemoglobin (metHb) react with S-nitrosocysteine (CysNO) to form nitroso derivatives. We test this reaction with a new method for evaluating transnitrosation reaction. The assay exploits an amperometric sensor developed in our laboratory. The results we obtain are in good agreement with those reported by others, although at much higher sensitivity, indicating the suitability of the method for examining high-mass nitroso compounds. The S-nitrosylation of oxyHb at a CysNO/haem ratio of 1 : 1 is about 5% in 60 min. In the same experimental conditions, the nitrosylation of met-Hb reaches 25%. OxyHb and metHb derivatize by 50% in 60 min upon using a CysNO/haem ratio of 10 : 1. The oxidation of haem iron occurs at ratios of haem/CysNO of 1 : 5 or higher. We conclude that CysNO transfers NO(+) both to metHb and oxyHb. We propose that NO transfer in RBC may occur through transnitrosation reactions between high and low-mass nitrosothiols.
Collapse
Affiliation(s)
- C P Palmerini
- Dipartimento di Scienze Biochimiche e Biotecnologie Molecolari.
| | | | | |
Collapse
|
114
|
Abstract
S-nitrosylation is a ubiquitous redox-related modification of cysteine thiol by nitric oxide (NO), which transduces NO bioactivity. Accumulating evidence suggests that the products of S-nitrosylation, S-nitrosothiols (SNOs), play key roles in human health and disease. In this review, we focus on the reaction mechanisms underlying the biological responses mediated by SNOs. We emphasize reactions that can be identified with complex (patho)physiological responses, and that best rationalize the observed increase or decrease in specific classes of SNOs across a spectrum of disease states. Thus, changes in the levels of various SNOs depend on specific defects in both enzymatic and non-enzymatic mechanisms of nitrosothiol formation, processing and degradation. An understanding of these mechanisms is crucial for the development of an integrated model of NO biology, and for effective treatment of diseases associated with dysregulation of NO homeostasis.
Collapse
Affiliation(s)
- Matthew W Foster
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
115
|
The Mechanism of the Decomposition of a Bronchodilator, S-Nitroso-N-acetyl-D,L-penicillamine (SNAP), by a Bronchoconstrictor, Aqueous Sulfite: Detection of the N-Nitrosohydroxylamine-N-sulfonate ion. B KOREAN CHEM SOC 2003. [DOI: 10.5012/bkcs.2003.24.3.350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
116
|
Abstract
The therapeutic modulation of the nitric oxide (NO) system has generated considerable interest as a new way for managing many disease processes. In stroke, a useful strategy is to increase NO availability and thereby exploit its beneficial antiplatelet, antiatherosclerotic, haemodynamic and neuroprotective properties. Pharmacologically, this can be achieved by providing NO substrate, using NO donors or by upregulating nitric oxide synthase. Alternatively, one can reduce NO availability by inhibiting NO synthase and thereby limiting its pro-inflammatory and neurotoxic properties. This article reviews developments in NO-related therapeutics for treatment of stroke, with a particular emphasis on compounds that are in the clinical research and development pipeline. Although the routine use of NO therapeutics for the prevention or treatment of stroke cannot currently be recommended, we are evidently at an exciting stage in their pharmacological development. Definitive randomised controlled trials in stroke patients are required as a matter of urgency.
Collapse
Affiliation(s)
- M R Willmot
- Division of Stroke Medicine, Clinical Sciences Building, University of Nottingham, Nottingham NG5 1PB, UK
| | | |
Collapse
|
117
|
Kharitonov SA, Barnes PJ. Nitric oxide, nitrotyrosine, and nitric oxide modulators in asthma and chronic obstructive pulmonary disease. Curr Allergy Asthma Rep 2003; 3:121-9. [PMID: 12562551 DOI: 10.1007/s11882-003-0024-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nitric oxide (NO), a simple free-radical gas, elicits a diverse range of physiologic and pathophysiologic effects, and plays an important role in pulmonary diseases. Nitrosative stress and nitration of proteins in airway epithelium may be responsible for steroid resistance in asthma and their ineffectiveness in chronic obstructive pulmonary disease (COPD), supporting the potential role of future therapeutic strategies aimed at regulating NO synthesis in asthma and COPD. In this article, we review the potential role of NO modulators (NO synthase inhibitors and NO donors), which, if given on a regular basis, may have clinical benefit in asthma and COPD.
Collapse
Affiliation(s)
- Sergei A Kharitonov
- Department of Thoracic Medicine, National Heart & Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, UK.
| | | |
Collapse
|
118
|
Abstract
The formation and modulation of nitric oxide (NO) in the lungs is reviewed. Its beneficial and deleterious roles in airways diseases, including asthma, chronic obstructive pulmonary disease, and cystic fibrosis, and in animal models is discussed. The pharmacological effects of agents that modulate NO production or act as NO donors are described. The clinical pharmacology of these agents is described and the therapeutic potential for their use in airways disease is considered.
Collapse
Affiliation(s)
- B J Nevin
- Division of Pharmacology, Welsh School of Pharmacy, Cardiff University, Cathays Park, Cardiff, CF10 3XF, UK
| | | |
Collapse
|
119
|
Abstract
Nitric oxide is endogenously released in the airways by nitric oxide synthase. Functionally, two isoforms of this enzyme exist: constitutive and inducible. The former seems to protect airways from excessive bronchoconstriction while the latter has a modulatory role in inflammatory disorders of the airways such as asthma. This review explores the physiological and pathophysiological role of endogenous nitric oxide in the airways, and the clinical aspects of monitoring nitric oxide in exhaled air of patients with respiratory disease.
Collapse
|
120
|
Palmerini CA, Saccardi C, Arienti G, Palombari R. Formation of nitrosothiols from gaseous nitric oxide at pH 7.4. J Biochem Mol Toxicol 2002; 16:135-9. [PMID: 12112713 DOI: 10.1002/jbt.10028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nitric oxide (NO) is generated in biological systems and plays important roles as a regulatory molecule. Its ability to bind to haem iron is well known. Moreover, it may lose an electron, forming the nitrosonium ion, involved in the synthesis of S-nitrosothiols (SNOs). It has been suggested that S-nitrosohaemoglobin (-SNO Hb) and low molecular weight SNOs may act as reservoirs of NO. SNOs are formed in vitro, at strongly acidic pH values; however, the mechanism of their formation at neutral pH values is still debated. In this paper we report the anaerobic formation of SNOs (both high- and low-molecular weight) from low concentrations of NO at pH 7.4, provided Hb is also present. We propose a reaction mechanism entailing the participation of Fehaem in the formation of NO(+) and the transfer of NO(+) either to Cysbeta(93) of Hb or to glutathione; we show that this reaction also occurs in human RBCs.
Collapse
Affiliation(s)
- Carlo Alberto Palmerini
- Dipartimento di Scienze Biochimiche e Biotecnologie Molecolari, Via del Giochetto, Perugia, Italy.
| | | | | | | |
Collapse
|
121
|
Abstract
Nitric oxide (NO)-mediated nitrosation reactions are involved in cell signaling and pathology. Recent efforts have focused on elucidating the role of S-nitrosothiols (RSNO) in different biological systems, including human plasma, where they are believed to represent a transport and buffer system that controls intercellular NO exchange. Although RSNOs have been implicated in cardiovascular disease processes, it is yet unclear what their true physiological concentration is, whether a change in plasma concentration is causally related to the underlying pathology or purely epiphenomenological, and to what extent other nitrosyl adducts may be formed under the same conditions. Therefore, using gas phase chemiluminescence and liquid chromatography we sought to quantify the basal plasma levels of NO-related metabolites in 18 healthy volunteers. We find that in addition to the oxidative products of NO metabolism, nitrite (0.20 +/- 0.02 micromol/l nitrite) and nitrate (14.4 +/- 1.7 micromol/l), on average human plasma contains an approximately 5-fold higher concentration of N-nitroso species (32.3 +/- 5.0 nmol/l) than RSNOs (7.2 +/- 1.1 nmol/l). Both N- and S-nitroso moieties appear to be associated with the albumin fraction. This is the first report on the constitutive presence of a high-molecular-weight N-nitroso compound in the human circulation, raising the question as to its origin and potential physiological role. Our findings may not only have important implications for the transport of NO in vivo, but also for cardiovascular disease diagnostics and the risk assessment of nitrosamine-related carcinogenesis in man.
Collapse
Affiliation(s)
- Tienush Rassaf
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | | | |
Collapse
|
122
|
Andersson C, Gaston B, Roomans GM. S-Nitrosoglutathione induces functional DeltaF508-CFTR in airway epithelial cells. Biochem Biophys Res Commun 2002; 297:552-7. [PMID: 12270130 DOI: 10.1016/s0006-291x(02)02245-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
S-Nitrosoglutathione (GSNO) is an endogenous bronchodilator levels of which are reduced in the airways of cystic fibrosis (CF) patients. GSNO has recently been shown to increase maturation of CFTR in CF cell lines at physiological concentrations. The ability of S-nitrosoglutathione to direct the DeltaF508-CFTR to the plasma membrane and restore the function of the cAMP-dependent chloride transport in cultured human airway epithelial cells has been studied. Immunocytochemistry showed a time- and dose-dependent increase of apically located CFTR after GSNO treatment. Chloride transport studies with the fluorescent dye N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE) showed that GSNO was able to induce a fourfold increase of cAMP-dependent chloride transport. Our data and the fact that endogenous GSNO levels are lower in the airways of CF patients make GSNO an interesting candidate for pharmacological treatment of cystic fibrosis.
Collapse
Affiliation(s)
- Charlotte Andersson
- Department of Medical Cell Biology, Uppsala University, Box 571, SE-75123 Uppsala, Sweden.
| | | | | |
Collapse
|
123
|
Okamoto T, Valacchi G, Gohil K, Akaike T, van der Vliet A. S-nitrosothiols inhibit cytokine-mediated induction of matrix metalloproteinase-9 in airway epithelial cells. Am J Respir Cell Mol Biol 2002; 27:463-73. [PMID: 12356580 DOI: 10.1165/rcmb.2002-0039oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Inflammatory lung diseases are associated with increased production of matrix metalloproteinase-9 (MMP-9) from infiltrating granulocytes or from the respiratory epithelium, and inappropriate expression and activation of MMP-9 may be associated with tissue injury and airway remodeling. Inflammatory conditions also result in increased expression of inducible nitric oxide synthase (iNOS), and nitric oxide (NO(.)) has been reported to have variable effects on MMP-9 gene expression and activation in various cell types. We investigated the involvement of NO(.) or its metabolites on MMP-9 expression in human bronchial and alveolar epithelial cells by studying effects of NOS inhibition or exogenous NO(.) donors on cytokine-induced MMP-9 expression. Although inhibition of NOS, transfection with iNOS, or addition of NO(.) donors did not affect MMP-9 induction by inflammatory cytokines, addition of S-nitrosothiols dramatically inhibited MMP-9 expression, which was potentiated by depletion of cellular GSH. Cytokine-induced MMP-9 expression involves the activation of the transcription factor NF-kappaB, and S-nitrosothiols, in contrast to NO(.), were found to inhibit cytokine-induced nuclear translocation and DNA binding of NF-kappaB. The inhibitory effects of S-nitrosothiols on cytokine-induced lung epithelial MMP-9 expression illustrate an additional mechanism by which nitrosative stress may affect epithelial injury and repair processes during conditions of airway inflammation.
Collapse
Affiliation(s)
- Tatsuya Okamoto
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of California Davis School of Medicine, USA
| | | | | | | | | |
Collapse
|
124
|
Montuschi P, Barnes PJ. Analysis of exhaled breath condensate for monitoring airway inflammation. Trends Pharmacol Sci 2002; 23:232-7. [PMID: 12008001 DOI: 10.1016/s0165-6147(02)02020-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Several inflammatory mediators have been identified in the exhaled breath condensate (EBC) that is formed by breathing through a cooling system. Analysis of EBC is a noninvasive method that allows repeat measurements of lung inflammation and is potentially useful for monitoring drug therapy. Characterization of the profiles of exhaled markers could help to discriminate between different inflammatory lung diseases; thus, EBC might be a novel, noninvasive approach to monitoring lung diseases. However, several methodological issues, such as standardization of sample collection and validation of analytical techniques, need to be addressed before this method can be applied clinically. Controlled studies are needed to establish the utility of EBC markers for guiding pharmacological treatment in inflammatory lung diseases.
Collapse
Affiliation(s)
- Paolo Montuschi
- Dept of Pharmacology, School of Medicine, Catholic University of the Sacred Heart, 00168 Rome, Italy.
| | | |
Collapse
|
125
|
Rafikova O, Rafikov R, Nudler E. Catalysis of S-nitrosothiols formation by serum albumin: the mechanism and implication in vascular control. Proc Natl Acad Sci U S A 2002; 99:5913-8. [PMID: 11983891 PMCID: PMC122876 DOI: 10.1073/pnas.092048999] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2002] [Indexed: 01/16/2023] Open
Abstract
Nitric oxide (NO(.)) is a short-lived physiological messenger. Its various biological activities can be preserved in a more stable form of S-nitrosothiols (RS-NO). Here we demonstrate that at physiological NO(.) concentrations, plasma albumin becomes saturated with NO(.) and accelerates formation of low-molecular-weight (LMW) RS-NO in vitro and in vivo. The mechanism involves micellar catalysis of NO(.) oxidation in the albumin hydrophobic core and specific transfer of NO(+) to LMW thiols. Albumin-mediated S-nitrosylation and its vasodilatory effect directly depend on the concentration of circulating LMW thiols. Results suggest that the hydrophobic phase formed by albumin serves as a major reservoir of NO(.) and its reactive oxides and controls the dynamics of NO(.)-dependant processes in the vasculature.
Collapse
Affiliation(s)
- Olga Rafikova
- Department of Biochemistry, New York University Medical Center, New York, NY 10016, USA
| | | | | |
Collapse
|
126
|
Snyder AH, McPherson ME, Hunt JF, Johnson M, Stamler JS, Gaston B. Acute effects of aerosolized S-nitrosoglutathione in cystic fibrosis. Am J Respir Crit Care Med 2002; 165:922-6. [PMID: 11934715 DOI: 10.1164/ajrccm.165.7.2105032] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
S-nitrosoglutathione (GSNO), a naturally occurring constituent of airway lining fluid, enhances ciliary motility, relaxes airway smooth muscle, inhibits airway epithelial amiloride-sensitive sodium transport, and prevents pathogen replication. Remarkably, airway levels of GSNO are low in patients with cystic fibrosis (CF). We hypothesized that replacement of airway GSNO would improve gas exchange in CF. In a double-blind, placebo controlled study, we administered 0.05 ml/kg of 10 mM GSNO or phosphate buffered saline by aerosol to patients with CF and followed oxygen saturation, spirometry, respiratory rate, blood pressure, heart rate, and expired nitric oxide (NO). Nine patients received GSNO and 11 placebo. GSNO inhalation was associated with a modest but sustained increase in oxygen saturation at all time points. Expired NO increased in the low ppb range with GSNO treatment, peaking at 5 minutes but remaining above baseline at 30 minutes. There were no adverse effects. We conclude that GSNO is well tolerated in patients with CF and improves oxygenation through a mechanism that may be independent of free NO. Further, GSNO breakdown increases expired NO. We suggest that therapy aimed at restoring endogenous GSNO levels in the CF airway may merit study.
Collapse
Affiliation(s)
- Ashley H Snyder
- Division of Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | | | | | | | | |
Collapse
|
127
|
Griffith OW. Glutaminase and the control of airway pH: yet another problem for the asthmatic lung? Am J Respir Crit Care Med 2002; 165:1-2. [PMID: 11779720 DOI: 10.1164/ajrccm.165.1.2111051a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
128
|
Terada A, Fujisawa T, Togashi K, Miyazaki T, Katsumata H, Atsuta J, Iguchi K, Kamiya H, Togari H. Exhaled nitric oxide decreases during exercise-induced bronchoconstriction in children with asthma. Am J Respir Crit Care Med 2001; 164:1879-84. [PMID: 11734440 DOI: 10.1164/ajrccm.164.10.2009105] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nitric oxide (NO) produced in the airways can be either detrimental or protective to the host. To investigate the role of NO in the pathogenesis of exercise-induced bronchoconstriction (EIB), we measured exhaled NO (ENO) after exercise challenge in 39 asthmatic and six normal children. FEV(1) and ENO were measured before and at 0, 5, 10, and 15 min after exercise performed on a treadmill for 6 min. EIB was defined as a decrease in FEV(1) of more than 15% after the exercise. Normal children (control group) did not have EIB. Twenty-one patients with asthma had EIB (EIB group) whereas the remaining 18 patients did not (non-EIB group). The baseline ENO value was significantly higher in the asthmatic children than in the normal children, and there was a positive correlation between the maximal percent decrease in FEV(1) and the baseline ENO value (r = 0.501, p = 0.012). At the end of the exercise, ENO had decreased in all the subjects. In the non-EIB and control groups, ENO rebounded to above the baseline at 5 min after the exercise and thereafter. In contrast, ENO remained at a decreased level in the EIB group. The change in ENO did not correlate with the change in minute ventilation, and beta-agonist inhalation at the peak of EIB that accelerated the recovery of FEV(1) did not affect the depressed level of ENO, demonstrating that the reduction of ENO is not a simple consequence of increased ventilation nor airway obstruction. Among the EIB group, steroid-treated patients showed sooner recovery in ENO after the exercise than steroid-naive patients. Our study suggests that NO production in response to exercise may be impaired in patients with EIB, and that ENO represents not only airway inflammation but also a protective function of NO in EIB.
Collapse
Affiliation(s)
- A Terada
- Department of Pediatrics and Allergy, National Mie Hospital, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Ottesen LH, Harry D, Frost M, Davies S, Khan K, Halliwell B, Moore K. Increased formation of S-nitrothiols and nitrotyrosine in cirrhotic rats during endotoxemia. Free Radic Biol Med 2001; 31:790-8. [PMID: 11557317 DOI: 10.1016/s0891-5849(01)00647-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasma S-nitrosothiols are believed to function as a circulating form of nitric oxide that affects both vascular function and platelet aggregation. However, the formation of circulating S-nitrosothiols in relation to acute and chronic disease is largely unknown. Plasma S-nitrosothiols were measured by chemiluminescence in rats with biliary cirrhosis or controls, and the effect of lipopolysaccharide (LPS) on their formation was determined. Plasma S-nitrosothiols were increased in rats with cirrhosis (206 +/- 59 nM) compared to controls (51 +/- 6 nM, p <.001). Two hours following injection of LPS (0.5 mg/kg) plasma S-nitrosothiols increased to 108 +/- 23 nM in controls (p <.01) and to 1335 +/- 423 nM in cirrhotic rats (p <.001). The plasma clearance and half-life of S-nitrosoalbumin, the predominant circulating S-nitrosothiol, were similar in control and cirrhotic rats, confirming that the increased plasma concentrations were due to increased synthesis. Because reactive nitrogen species, such as peroxynitrite, may cause the formation of S-nitrosothiols in vivo, we determined the levels of nitrotyrosine by gas chromatography/mass spectrometry as an index for these nitrating and nitrosating radicals. Hepatic nitrotyrosine levels were increased at 7.0 +/- 1.2 ng/mg in cirrhotic rats compared to controls (2.0 +/- 0.2 ng/mg, p <.01). Hepatic nitrotyrosine levels increased by 2.3-fold and 1.5-fold in control and cirrhotic rats, respectively, at 2 h following injection of LPS (p <.01). Strong positive staining for nitrotyrosine was shown by immunohistochemistry in all the livers of the rats with cirrhosis. We conclude that there is increased formation of S-nitrosothiols and nitrotyrosine in biliary cirrhosis, and this is markedly upregulated during endotoxemia.
Collapse
Affiliation(s)
- L H Ottesen
- Centre for Hepatology, Royal Free and University College Medical School, Royal Free Campus, University College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
130
|
Ricciardolo FL, Timmers MC, Geppetti P, van Schadewijk A, Brahim JJ, Sont JK, de Gouw HW, Hiemstra PS, van Krieken JH, Sterk PJ. Allergen-induced impairment of bronchoprotective nitric oxide synthesis in asthma. J Allergy Clin Immunol 2001; 108:198-204. [PMID: 11496234 DOI: 10.1067/mai.2001.116572] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Endogenous nitric oxide protects against airway hyperresponsiveness (AHR) to bradykinin in mild asthma, whereas AHR to bradykinin is enhanced by inhaled allergens. OBJECTIVE Hypothesizing that allergen exposure impairs bronchoprotective nitric oxide within the airways, we studied the effect of the inhaled nitric oxide synthase (NOS) inhibitor N(G)-monomethyl-L-arginine (L-NMMA) on AHR to bradykinin before and after allergen challenge in 10 subjects with atopic asthma. METHODS The study consisted of 3 periods (1 diluent and 2 allergen challenges). AHR to bradykinin (PD(20)BK) was examined before and 48 hours after allergen challenge, both after double-blinded pretreatment with L-NMMA or placebo. The accompanying expression of the various NOS isoforms (ecNOS, nNOS, and iNOS) was examined by means of immunohistochemistry in bronchial biopsies obtained after diluent and allergen challenge. RESULTS After placebo, AHR to BK worsened after allergen challenge in comparison with before allergen challenge (PD(20)BK, 70.8 nmol [range, 6.3-331] and 257 nmol [35.5-2041], respectively; P =.0004). After L-NMMA, preallergen and postallergen PD(20)BK values (50.1 nmol [1.8-200] vs 52.5 nmol [6.9-204]; P =.88) were similarly reduced (P <.01) and not different from the postplacebo/postallergen value (P >.05). After allergen challenge, the intensity of staining in bronchial epithelium decreased for ecNOS (P =.03) and increased for iNOS (P =.009). These changes in immunostaining were correlated with the accompanying worsening in AHR to BK (R(s) = -0.66 and 0.71; P <.04). CONCLUSIONS These data indicate that allergen exposure in asthma induces increased airway hyperresponsiveness to bradykinin through impaired release of bronchoprotective nitric oxide associated with downregulation of ecNOS. This suggests that new therapeutic strategies towards restoring the balance among the NOS isoforms during asthma exacerbations are warranted.
Collapse
Affiliation(s)
- F L Ricciardolo
- Department of Pulmonology, Leiden University Medical Center, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Affiliation(s)
- S A Kharitonov
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | |
Collapse
|
132
|
Moya MP, Gow AJ, McMahon TJ, Toone EJ, Cheifetz IM, Goldberg RN, Stamler JS. S-nitrosothiol repletion by an inhaled gas regulates pulmonary function. Proc Natl Acad Sci U S A 2001; 98:5792-7. [PMID: 11320213 PMCID: PMC33292 DOI: 10.1073/pnas.091109498] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
NO synthases are widely distributed in the lung and are extensively involved in the control of airway and vascular homeostasis. It is recognized, however, that the O(2)-rich environment of the lung may predispose NO toward toxicity. These Janus faces of NO are manifest in recent clinical trials with inhaled NO gas, which has shown therapeutic benefit in some patient populations but increased morbidity in others. In the airways and circulation of humans, most NO bioactivity is packaged in the form of S-nitrosothiols (SNOs), which are relatively resistant to toxic reactions with O(2)/O(2)(-). This finding has led to the proposition that channeling of NO into SNOs may provide a natural defense against lung toxicity. The means to selectively manipulate the SNO pool, however, has not been previously possible. Here we report on a gas, O-nitrosoethanol (ENO), which does not react with O(2) or release NO and which markedly increases the concentration of indigenous species of SNO within airway lining fluid. Inhalation of ENO provided immediate relief from hypoxic pulmonary vasoconstriction without affecting systemic hemodynamics. Further, in a porcine model of lung injury, there was no rebound in cardiopulmonary hemodynamics or fall in oxygenation on stopping the drug (as seen with NO gas), and additionally ENO protected against a decline in cardiac output. Our data suggest that SNOs within the lung serve in matching ventilation to perfusion, and can be manipulated for therapeutic gain. Thus, ENO may be of particular benefit to patients with pulmonary hypertension, hypoxemia, and/or right heart failure, and may offer a new therapeutic approach in disorders such as asthma and cystic fibrosis, where the airways may be depleted of SNOs.
Collapse
Affiliation(s)
- M P Moya
- Neonatal-Perinatal Research Institute, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
133
|
Abstract
Nitric oxide (NO), an evanescent atmospheric gas, has recently been discovered to be an important biological mediator in animals and humans. Nitric oxide plays a key role within the lung in the modulation of a wide variety of functions including pulmonary vascular tone, nonadrenergic non-cholinergic (NANC) transmission and modification of the inflammatory response. Asthma is characterized by chronic airway inflammation and increased synthesis of NO and other highly reactive and toxic substances (reactive oxygen species). Pro- inflammatory cytokines such as TNFalpha and IL-1beta are secreted in asthma and result in inflammatory cell recruitment, but also induce calcium- and calmodulin-independent nitric oxide synthases (iNOS) and perpetuate the inflammatory response within the airways. Nitric oxide is released by several pulmonary cells including epithelial cells, eosinophils and macrophages, and NO has been shown to be increased in conditions associated with airway inflammation, such as asthma and viral infections. Nitric oxide can be measured in the expired air of several species, and exhaled NO can now be rapidly and easily measured by the use of chemiluminescence analysers in humans. Exhaled NO is increased in steroid-naive asthmatic subjects and during an asthma exacerbation, although it returns to baseline levels with appropriate anti-inflammatory treatment, and such measurements have been proposed as a simple non-invasive method of measuring airway inflammation in asthma. Here the chemical and biological properties of NO are briefly discussed, followed by a summary of the methodological considerations relevant to the measurement of exhaled NO and its role in lung diseases including asthma. The origin of exhaled NO is considered, and brief mention made of other potential markers of airway inflammation or oxidant stress in exhaled breath.
Collapse
Affiliation(s)
- D H Yates
- Faculty of Medicine, Sydney University and Department of Respiratory Medicine, Royal North Shore Hospital, St Leonard's, New South Wales, Australia.
| |
Collapse
|
134
|
Suman OE, Beck KC. Role of nitric oxide during hyperventilation-induced bronchoconstriction in the guinea pig. J Appl Physiol (1985) 2001; 90:1474-80. [PMID: 11247949 DOI: 10.1152/jappl.2001.90.4.1474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway function is largely preserved during exercise or isocapnic hyperventilation in humans and guinea pigs despite likely changes in airway milieu during hyperpnea. It is only on cessation of a hyperpneic challenge that airway function deteriorates significantly. We tested the hypothesis that nitric oxide, a known bronchodilator that is produced in the lungs and bronchi, might be responsible for the relative bronchodilation observed during hyperventilation (HV) in guinea pigs. Three groups of anesthetized guinea pigs were given saline and three groups given 50 mg/kg N(G)-monomethyl-L-arginine (L-NMMA), a potent nitric oxide synthase inhibitor. Three isocapnic ventilation groups included normal ventilation [40 breaths/min, 6 ml/kg tidal volume (VT)], increased respiratory rate only (150 breaths/min, 6 ml/kg VT), and increased respiratory rate and increased volume (100 breaths/min, 8 ml/kg VT). L-NMMA reduced expired nitric oxide in all groups. Expired nitric oxide was slightly but significantly increased by HV in the saline groups. However, inhibition of nitric oxide production had no significant effect on rate of rise of respiratory system resistance (Rrs) during HV or on the larger rise in Rrs seen 6 min after HV. We conclude that nitric oxide synthase inhibition has no effect on changes in Rrs, either during or after HV in guinea pigs.
Collapse
Affiliation(s)
- O E Suman
- Thoracic Division Research Unit, Department of Medicine, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
135
|
Corradi M, Montuschi P, Donnelly LE, Pesci A, Kharitonov SA, Barnes PJ. Increased nitrosothiols in exhaled breath condensate in inflammatory airway diseases. Am J Respir Crit Care Med 2001; 163:854-8. [PMID: 11282756 DOI: 10.1164/ajrccm.163.4.2001108] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nitrosothiols (RS-NOs) are formed by interaction of nitric oxide (NO) with glutathione and may limit the detrimental effect of NO. Because NO generation is increased in airway inflammation, we have measured RS-NOs in exhaled breath condensate in patients with asthma, cystic fibrosis, or chronic obstructive pulmonary disease (COPD). We also measured exhaled NO and nitrite (NO(2-)) in the same subjects. RS-NOs were detectable in exhaled breath condensate of all subjects. RS-NOs were higher in subjects with severe asthma (0.81 +/- 0.06 microM) when compared with normal control subjects (0.11 +/- 0.02 microM, p < 0.01) and with subjects with mild asthma (0.08 +/- 0.01 microM, p < 0.01). Elevated RS-NOs values were also found in patients with cystic fibrosis (0.35 +/- 0.07 microM, p < 0.01), in those with COPD (0.24 +/- 0.04 microM, p < 0.01) and in smokers (0.46 +/- 0.09 microM, p < 0.01). In current smokers there was a correlation (r = 0.8, p < 0.05) between RS-NOs values and smoking history (pack/year). We also found elevated concentrations of NO(2-) in patients with severe asthma, cystic fibrosis, or COPD, but not in smokers or patients with mild asthma. This suggests that exhaled NO(2-) is less sensitive than exhaled RS-NOs. This study has shown that RS-NOs are detectable in exhaled breath condensate of healthy subjects and are increased in patients with inflammatory airway diseases. As RS-NOs concentrations in exhaled breath condensate vary in the different airway diseases and increase with the severity of asthma, their measurement may have clinical relevance as a noninvasive biomarker of nitrosative stress.
Collapse
Affiliation(s)
- M Corradi
- Institute of Respiratory Diseases, University of Parma, Italy
| | | | | | | | | | | |
Collapse
|
136
|
Shin HY, George SC. Microscopic modeling of NO and S-nitrosoglutathione kinetics and transport in human airways. J Appl Physiol (1985) 2001; 90:777-88. [PMID: 11181583 DOI: 10.1152/jappl.2001.90.3.777] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) appears in the exhaled breath and is elevated in inflammatory diseases. We developed a steady-state mathematical model of the bronchial mucosa for normal small and large airways to understand NO and S-nitrosoglutathione (GSNO) kinetics and transport using data from the existing literature. Our model predicts that mean steady-state NO and GSNO concentrations for large airways (generation 1) are 2.68 nM and 113 pM, respectively, in the epithelial cells and 0.11 nM (approximately 66 ppb) and 507 nM in the mucus. For small airways (generation 15), the mean concentrations of NO and GSNO, respectively, are 0.26 nM and 21 pM in the epithelial cells and 0.02 nM (approximately 12 ppb) and 132 nM in the mucus. The concentrations in the mucus compare favorably to experimentally measured values. We conclude that 1) the majority of free NO in the mucus, and thus exhaled NO, is due to diffusion of free NO from the epithelial cell and 2) the heterogeneous airway contribution to exhaled NO is due to heterogeneous airway geometries, such as epithelium and mucus thickness.
Collapse
Affiliation(s)
- H Y Shin
- Department of Chemical and Biochemical Engineering and Materials Science, University of California, Irvine, California 92697, USA
| | | |
Collapse
|
137
|
Abstract
Endogenous nitric oxide (NO) is an ubiquitous signaling molecule with important regulatory functions such as regulation of blood pressure, neurotransmission, and host and immune defense. In the respiratory tract, NO is formed and released by various sources including endothelial and epithelial cells, nerves, airway smooth muscle, and inflammatory cells. Recent evidence suggests that endogenous NO is the neurotransmitter of the nonadrenergic noncholinergic inhibitory (iNANC) system, the only bronchorelaxant neural pathway of human airways. A number of studies also suggest that in some species epithelium-derived NO accounts for the functional bronchoprotective role of the so-called epithelium-derived relaxing factor. In human airways, endogenous NO counteracts the bronchoconstriction induced by pharmacologic stimuli such as bradykinin, histamine, and methacholine. On the basis of these and other observations, it is suggested that a reduced synthesis and/or activity of endogenous NO may contribute to the pathogenesis of airway hyperresponsiveness that characterizes asthma and other respiratory disorders. This short paper summarizes the activities of endogenous NO in the airways of experimental animals and man, and discusses the evidence supporting the view that NO confers bronchoprotection.
Collapse
Affiliation(s)
- G U Di Maria
- Institute of Respiratory Diseases, University of Catania, Italy.
| | | | | | | |
Collapse
|
138
|
Dweik RA, Comhair SA, Gaston B, Thunnissen FB, Farver C, Thomassen MJ, Kavuru M, Hammel J, Abu-Soud HM, Erzurum SC. NO chemical events in the human airway during the immediate and late antigen-induced asthmatic response. Proc Natl Acad Sci U S A 2001; 98:2622-7. [PMID: 11226289 PMCID: PMC30188 DOI: 10.1073/pnas.051629498] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A wealth of evidence supports increased NO (NO.) in asthma, but its roles are unknown. To investigate how NO participates in inflammatory airway events in asthma, we measured NO. and NO. chemical reaction products [nitrite, nitrate, S-nitrosothiols (SNO), and nitrotyrosine] before, immediately and 48 h after bronchoscopic antigen (Ag) challenge of the peripheral airways in atopic asthmatic individuals and nonatopic healthy controls. Strikingly, NO(3)(-) was the only NO. derivative to increase during the immediate Ag-induced asthmatic response and continued to increase over 2-fold at 48 h after Ag challenge in contrast to controls [P < 0.05]. NO(2)(-) was not affected by Ag challenge at 10 min or 48 h after Ag challenge. Although SNO was not detectable in asthmatic airways at baseline or immediately after Ag, SNO increased during the late response to levels found in healthy controls. A model of NO. dynamics derived from the current findings predicts that NO. may have harmful effects through formation of peroxynitrite, but also subserves an antioxidant role by consuming reactive oxygen species during the immediate asthmatic response, whereas nitrosylation during the late asthmatic response generates SNO, safe reservoirs for removal of toxic NO. derivatives.
Collapse
Affiliation(s)
- R A Dweik
- Department of Pulmonary and Critical Care Medicine, Cleveland Clinic Foundation, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
De Man JG, Moreels TG, De Winter BY, Herman AG, Pelckmans PA. Pre- and postjunctional protective effect of neocuproine on the nitrergic neurotransmitter in the mouse gastric fundus. Br J Pharmacol 2001; 132:277-285. [PMID: 11156587 PMCID: PMC1572530 DOI: 10.1038/sj.bjp.0703772] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2000] [Revised: 10/06/2000] [Accepted: 10/12/2000] [Indexed: 11/09/2022] Open
Abstract
1. Electrical field stimulation (EFS) of non-adrenergic non-cholinergic nerves of the mouse gastric fundus induced frequency-dependent transient relaxations which were mimicked by nitric oxide (NO), added as acidified NaNO(2). The NO donors S-nitrosocysteine, S-nitrosoglutathione, SIN-1 and hydroxylamine induced sustained concentration-dependent relaxations. The NO synthase blocker L-nitro arginine (L-NOARG; 300 microM) abolished the relaxations to EFS without affecting the relaxations to NO. 2. The copper(I) chelator neocuproine (10 microM) enhanced the relaxations to EFS and NO but inhibited those to S-nitrosocysteine and S-nitrosoglutathione. Neocuproine potentiated the relaxations to SIN-1, which releases NO extracellularly, without affecting the relaxations to hydroxylamine, which releases NO intracellularly. 3. The potentiating effect of neocuproine on the relaxations to EFS was more pronounced after inhibition of catalase with 3-amino-1,2,4-triazole (1 mM) but not after inhibition of Cu/Zn superoxide dismutase (SOD) with diethyl dithiocarbamic acid (DETCA, 1 mM). The potentiating effect of neocuproine on relaxations to NO was not altered by 3-amino-1,2,4-triazole or DETCA treatment. 4. The relaxations to EFS were significantly inhibited by the oxidants hydrogen peroxide (70 microM) and duroquinone (10 microM) but only after inhibition of catalase with 3-amino-1,2,4-triazole or after inhibition of Cu/ZnSOD with DETCA respectively. 5. Our results suggest that neocuproine can act as an antioxidant in the mouse gastric fundus and that both catalase and Cu/ZnSOD protect the nitrergic neurotransmitter from oxidative breakdown. Since inhibition of catalase but not inhibition of Cu/ZnSOD potentiated the effect of neocuproine on relaxations to EFS without affecting the relaxations to NO, catalase may protect the nitrergic neurotransmitter mainly at a prejunctional site whereas Cu/ZnSOD protects at a postjunctional site.
Collapse
Affiliation(s)
- Joris G De Man
- Division of Gastroenterology, Faculty of Medical and Pharmaceutical Sciences, University of Antwerp (UIA), B-2610 Antwerpen, Belgium
| | - Tom G Moreels
- Division of Gastroenterology, Faculty of Medical and Pharmaceutical Sciences, University of Antwerp (UIA), B-2610 Antwerpen, Belgium
| | - Benedicte Y De Winter
- Division of Gastroenterology, Faculty of Medical and Pharmaceutical Sciences, University of Antwerp (UIA), B-2610 Antwerpen, Belgium
| | - Arnold G Herman
- Division of Pharmacology, Faculty of Medical and Pharmaceutical Sciences, University of Antwerp (UIA), B-2610 Antwerpen, Belgium
| | - Paul A Pelckmans
- Division of Gastroenterology, Faculty of Medical and Pharmaceutical Sciences, University of Antwerp (UIA), B-2610 Antwerpen, Belgium
| |
Collapse
|
140
|
Palmerini CA, Arienti G, Palombari R. Determination of S-nitrosohemoglobin using a solid-state amperometric sensor. Nitric Oxide 2000; 4:546-9. [PMID: 11139362 DOI: 10.1006/niox.2000.0306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO, nitrogen monoxide), generated in biological systems, plays important roles as a regulatory molecule. Its ability to bind to hemoglobin (Hb) iron is well known. Moreover, it may lose an electron, forming the nitrosonium ion, involved in the synthesis of nitrosothiols (RSNO). It has been suggested that S-nitrosohemoglobin (SNO-Hb) may act as a reservoir of NO. The S-nitrosylation of Hb can be detected after the incubation of CysNO and Hb for 60 min with a molecular ratio (CysNO/hem) of 1:1. Upon increasing the ratio to 10:1, about 50% of total Hb (100% of beta-chain -SH 93) was derivatized in 60 min. In this paper, we describe a new method for the quantitative assay of SNO-Hb, after the liberation of NO by Cu(2+)/Cu(+) and the simultaneous assessment of NO by solid-state amperometric sensor. The assay described by us is sensitive, rapid, easy to perform, and inexpensive. For this reason, we believe that it may represent an important analytical improvement for the study of the S-transnitrosylation reactions between RSNO and the Hb Cys-beta 93 and SNO-Hb and glutathione.
Collapse
Affiliation(s)
- C A Palmerini
- Dipartimento di Biologia Cellulare e Molecolare, Università di Perugia, Via del Giochetto, Perugia 06127, Italy.
| | | | | |
Collapse
|
141
|
Suman OE, Morrow JD, O'Malley KA, Beck KC. Airway function after cyclooxygenase inhibition during hyperpnea-induced bronchoconstriction in guinea pigs. J Appl Physiol (1985) 2000; 89:1971-8. [PMID: 11053351 DOI: 10.1152/jappl.2000.89.5.1971] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway function deteriorates significantly on cessation of exercise or isocapnic hyperventilation challenges but is largely preserved during the challenge in humans and guinea pigs. PGE(2), an endogenous bronchodilator, might be responsible for the preservation of lung function during hyperventilation (HV). We hypothesized that PGE(2) might have a protective effect during HV, partially explaining the minimal changes in respiratory system resistance (Rrs) usually seen during HV in humans and guinea pigs. Therefore, changes in Rrs were measured during and after HV in anesthetized, mechanically ventilated guinea pigs treated with flurbiprofen (FBN) or placebo. With HV, there was an initial bronchodilation that was unaffected by FBN. Rrs then increased with time during HV, an effect that was blocked by FBN. After HV, Rrs increased further in all groups, but the increase in Rrs was less in the FBN-treated groups. FBN treatment reduced the PGE(2) concentration slightly in lung lavage fluid compared with placebo. We found no enhancement or refractoriness of the Rrs response to repeat bouts of HV and no effect of FBN treatment on the response of Rrs to repeat HV. These results suggest that a constrictor PG is released during and possibly after HV and that the post-HV increase in Rrs is the sum of effects of the PG released during HV and a second constrictor mechanism operating after HV. We found no evidence for bronchodilator PG during or after HV in the guinea pig.
Collapse
Affiliation(s)
- O E Suman
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA.
| | | | | | | |
Collapse
|
142
|
Abstract
Nitric oxide (NO) exhibits multiple biological actions through formation of various oxidized intermediates derived from NO. Among them, nitrosothiol adducts (RS-NOs) with the sulfhydryl moiety of proteins and amino acids appears to be an important species in view of its unique chemical reactivity. Understanding of the biologically relevant S-nitrosation mechanism is essential because RS-NOs seem to be critically involved in modulation of intracellular and intercellular signal transduction, including gene transcription, cell apoptosis, and oxidative stress. RS-NOs have been recently found to be formed efficiently via one-electron oxidation of NO catalyzed by ceruloplasmin, a major copper-containing protein in mammalian plasma. Ceruloplasmin is synthesized mainly by hepatocytes, but it is also expressed by other cells such as macrophages and astrocytes. Once RS-NOs are formed, they function as NO transporters in biological systems, the NO being transferred to different sulfhydryls of various biomolecules. This transfer may be mediated by transnitrosation reactions occurring chemically or enzymatically by a means of specific enzymes such as protein disulfide isomerase. The molecular mechanism of biological S-nitrosation is discussed as related to the important physiological and pathophysiological functions of RS-NOs. Also, RS-NO assays that are being successfully used for detection of biological S-nitrosation are briefly reviewed.
Collapse
Affiliation(s)
- T Akaike
- Department of Microbiology, Kumamoto University School of Medicine, Japan.
| |
Collapse
|
143
|
Fang K, Johns R, Macdonald T, Kinter M, Gaston B. S-nitrosoglutathione breakdown prevents airway smooth muscle relaxation in the guinea pig. Am J Physiol Lung Cell Mol Physiol 2000; 279:L716-21. [PMID: 11000132 DOI: 10.1152/ajplung.2000.279.4.l716] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway levels of the endogenous bronchodilator S-nitrosoglutathione (GSNO) are low in children with near-fatal asthma. We hypothesized that GSNO could be broken down in the lung and that this catabolism could inhibit airway smooth muscle relaxation. In our experiments, GSNO was broken down by guinea pig lung homogenates, particularly after ovalbumin sensitization (OS). Two lung protein fractions had catabolic activity. One was NADPH dependent and was more active after OS. The other was NADPH independent and was partially inhibited by aurothioglucose. Guinea pig lung tissue protein fractions with GSNO catabolic activity inhibited GSNO-mediated guinea pig tracheal ring relaxation. The relaxant effect of GSNO was partially restored by aurothioglucose. These observations suggest that catabolism of GSNO in the guinea pig 1) is mediated by lung proteins, 2) is partially upregulated after OS, and 3) may contribute to increased airway smooth muscle tone. We speculate that enzymatic breakdown of GSNO in the lung could contribute to asthma pathophysiology by inhibiting the beneficial effects of GSNO, including its effect on airway smooth muscle tone.
Collapse
Affiliation(s)
- K Fang
- Department of Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
144
|
Giacoia GP. Incentive to study drugs in children and other governmental initiatives: will patients with asthma benefit? J Allergy Clin Immunol 2000; 106:S118-24. [PMID: 10984391 DOI: 10.1067/mai.2000.109417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This article summarizes current regulations that have been developed to facilitate the performance of pediatric drug trials and their impact on children, particularly those children affected with asthma. In addition, other initiatives that have been developed by the federal government in response to the unexplained increase of asthma occurrence during the last 15 years will be reviewed. In the face of an asthma epidemic, a comprehensive approach is needed to determine the causes for the increase in the prevalence rate and the role of aeroallergens and other environmental and genetic factors and to identify effective preventive measures. Clearly, facilitating drug trials to prove the safety and effectiveness of drugs is of paramount importance.
Collapse
Affiliation(s)
- G P Giacoia
- Pediatric Pharmacology Research Unit Network, National Institute of Child Health and Human Development, Rockville, MD 20892, USA
| |
Collapse
|
145
|
van der Vliet A, Eiserich JP, Cross CE. Nitric oxide: a pro-inflammatory mediator in lung disease? Respir Res 2000; 1:67-72. [PMID: 11667967 PMCID: PMC59543 DOI: 10.1186/rr14] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2000] [Revised: 07/31/2000] [Accepted: 07/31/2000] [Indexed: 11/10/2022] Open
Abstract
Inflammatory diseases of the respiratory tract are commonly associated with elevated production of nitric oxide (NO*) and increased indices of NO* -dependent oxidative stress. Although NO* is known to have anti-microbial, anti-inflammatory and anti-oxidant properties, various lines of evidence support the contribution of NO* to lung injury in several disease models. On the basis of biochemical evidence, it is often presumed that such NO* -dependent oxidations are due to the formation of the oxidant peroxynitrite, although alternative mechanisms involving the phagocyte-derived heme proteins myeloperoxidase and eosinophil peroxidase might be operative during conditions of inflammation. Because of the overwhelming literature on NO* generation and activities in the respiratory tract, it would be beyond the scope of this commentary to review this area comprehensively. Instead, it focuses on recent evidence and concepts of the presumed contribution of NO* to inflammatory diseases of the lung.
Collapse
Affiliation(s)
- A van der Vliet
- Center for Comparative Respiratory Biology and Medicine, University of California, Davis, California 95616, USA.
| | | | | |
Collapse
|
146
|
Webert KE, Vanderzwan J, Duggan M, Scott JA, McCormack DG, Lewis JF, Mehta S. Effects of inhaled nitric oxide in a rat model of Pseudomonas aeruginosa pneumonia. Crit Care Med 2000; 28:2397-405. [PMID: 10921570 DOI: 10.1097/00003246-200007000-00035] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Antimicrobial effects of nitric oxide (NO) have been demonstrated in vitro against a variety of infectious pathogens, yet in vivo evidence of a potential therapeutic role for exogenous NO as an antimicrobial agent is limited. Thus, we assessed the effects of inhaled NO on pulmonary infection, leukocyte infiltration, and NO synthase (NOS) activity in a rat model of Pseudomonas aeruginosa pneumonia. DESIGN Controlled animal study. SETTING Research laboratory of an academic institution. SUBJECTS Male Sprague-Dawley rats. INTERVENTIONS After intratracheal instillation of either P. aeruginosa or saline (sham), rats were randomly exposed to either 40 ppm of inhaled NO or room air (RA) for 24 hrs before they were killed. MEASUREMENTS AND MAIN RESULTS Inhaled NO in pneumonia rats markedly reduced pulmonary bacterial load (0.02+/-0.01% vs. 0.99+/-0.59% of bacterial input in pneumonia with room air, p < .05) and pulmonary myeloperoxidase activity, a marker of leukocyte infiltration (21.7+/-3.8 vs. 55.0+/-8.1 units in pneumonia with room air, p < .05), but had no effect on systemic hemodynamics or gas exchange. Pneumonia was associated with enhanced pulmonary NOS activity (8.8+/-2.4 vs. 0.2+/-0.1 pmol citrulline/min/mg protein in sham, p < .01) and increased plasma levels of nitrites/nitrates (NOx-; 45+/-7 vs. 16+/-3 micromol/L in sham, p < .01). Inhaled NO therapy attenuated the pneumonia-induced increase in pulmonary calcium-independent NOS activity (p < .05) and markedly increased plasma NOx- levels. Exposure of P. aeruginosa in culture to 40 ppm of ambient NO confirmed a delayed antibacterial effect of NO in vitro. CONCLUSIONS Inhaled NO has an important antibacterial effect both in vitro and in vivo against P. aeruginosa and is associated with reduced pulmonary leukocyte infiltration in vivo. These results in a rat model of P. aeruginosa pneumonia suggest that future studies should address the possible clinical effects of inhaled NO therapy in pneumonia.
Collapse
Affiliation(s)
- K E Webert
- Division of Respirology, London Health Sciences Centre, University of Western Ontario, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
147
|
Abstract
Markers for airway inflammation that can be measured noninvasively in expired air may be helpful in treating patients with asthma. For example, levels of nitric oxide are high in the breath of children with asthma exacerbations and decrease with anti-inflammatory therapy. Expired nitric oxide testing has now been standardized and may be useful for children with recurring wheezing that is diagnostically or therapeutically challenging. However, the results may be influenced by several biochemical and anatomic variables and must therefore be interpreted with caution.
Collapse
Affiliation(s)
- J Hunt
- Division of Pediatric Pulmonary Medicine, The University of Virginia, Charlottesville 22951, USA
| | | |
Collapse
|
148
|
Guo FH, Comhair SA, Zheng S, Dweik RA, Eissa NT, Thomassen MJ, Calhoun W, Erzurum SC. Molecular mechanisms of increased nitric oxide (NO) in asthma: evidence for transcriptional and post-translational regulation of NO synthesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:5970-80. [PMID: 10820280 DOI: 10.4049/jimmunol.164.11.5970] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Evidence supporting increased nitric oxide (NO) in asthma is substantial, although the cellular and molecular mechanisms leading to increased NO are not known. Here, we provide a clear picture of the events regulating NO synthesis in the human asthmatic airway in vivo. We show that human airway epithelium has abundant expression of NO synthase II (NOSII) due to continuous transcriptional activation of the gene in vivo. Individuals with asthma have higher than normal NO concentrations and increased NOSII mRNA and protein due to transcriptional regulation through activation of Stat1. NOSII mRNA expression decreases in asthmatics receiving inhaled corticosteroid, treatment effective in reducing inflammation in asthmatic airways. In addition to transcriptional mechanisms, post-translational events contribute to increased NO synthesis. Specifically, high output production of NO is fueled by a previously unsuspected increase in the NOS substrate, l -arginine, in airway epithelial cells of asthmatic individuals. Finally, nitration of proteins in airway epithelium provide evidence of functional consequences of increased NO. In conclusion, these studies define multiple mechanisms that function coordinately to support high level NO synthesis in the asthmatic airway. These findings represent a crucial cornerstone for future therapeutic strategies aimed at regulating NO synthesis in asthma.
Collapse
Affiliation(s)
- F H Guo
- Departments of Pulmonary and Critical Care Medicine, Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Hunt JF, Fang K, Malik R, Snyder A, Malhotra N, Platts-Mills TA, Gaston B. Endogenous airway acidification. Implications for asthma pathophysiology. Am J Respir Crit Care Med 2000; 161:694-9. [PMID: 10712309 DOI: 10.1164/ajrccm.161.3.9911005] [Citation(s) in RCA: 493] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Airway concentrations of many reactive nitrogen and oxygen species are high in asthma. The stability and bioactivities of these species are pH-dependent; however, the pH of the airway during acute asthma has not previously been studied. As with gastric and urinary acidification, asthmatic airway acidification could be expected dramatically to alter the concentrations and bioactivities/cytotoxicities of endogenous nitrogen oxides. Here, we demonstrate that the pH of deaerated exhaled airway vapor condensate is over two log orders lower in patients with acute asthma (5.23 +/- 0.21, n = 22) than in control subjects (7.65 +/- 0.20, n = 19, p < 0. 001) and normalizes with corticosteroid therapy. Values are highly reproducible, unaffected by salivary or therapeutic artifact, and identical to samples taken directly from the lower airway. Further, at these low pH values, the endogenous airway compound, nitrite, is converted to nitric oxide (NO) in quantities sufficient largely to account for the concentrations of NO in asthmatic expired air, and eosinophils undergo accelerated necrosis. We speculate that airway pH may be an important determinant of expired NO concentration and airway inflammation, and suggest that regulation of airway pH has a previously unsuspected role in asthma pathophysiology.
Collapse
Affiliation(s)
- J F Hunt
- Divisions of Pediatric Respiratory Medicine, Pediatric Hematology/Oncology, and Allergy, Asthma and Immunology, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
150
|
Silkoff PE, Robbins RA, Gaston B, Lundberg JO, Townley RG. Endogenous nitric oxide in allergic airway disease. J Allergy Clin Immunol 2000; 105:438-48. [PMID: 10719291 DOI: 10.1067/mai.2000.104938] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There has been intense research into the role nitric oxide (NO) plays in physiologic and pathologic mechanisms. The presence of NO in exhaled breath and the high concentrations in nasal airways stimulated many studies examining exhaled and nasal NO as potential markers of airway inflammation, enabling repeated monitoring of airway inflammation not possible with invasive tests (eg, bronchoscopy). In airway inflammation, NO is not merely a marker but may have anti-inflammatory and proinflammatory effects. Nasal NO measurement may be used in the noninvasive diagnosis and monitoring of nasal disease. This review was compiled by speakers who gave presentations on NO at the annual meeting of the American Academy of Allergy, Asthma, and Immunology in 1999 on exhaled and nasal NO, in vitro studies of NO, the chemistry of airway NO formation, and standardized measurement of exhaled mediators.
Collapse
Affiliation(s)
- P E Silkoff
- National Jewish Medical and Research Center, Denver, CO, USA
| | | | | | | | | |
Collapse
|