101
|
Sfera A, Cummings M, Osorio C. Non-Neuronal Acetylcholine: The Missing Link Between Sepsis, Cancer, and Delirium? Front Med (Lausanne) 2015; 2:56. [PMID: 26347869 PMCID: PMC4543923 DOI: 10.3389/fmed.2015.00056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 07/29/2015] [Indexed: 12/11/2022] Open
Abstract
The interaction between living organisms and the environment requires a balancing act between genomic and epigenomic forces. Inflammation and cellular proliferation are kept in check by the genes, which code for their components and the microRNAs, which are capable of silencing the transcription of these genes. Acetylcholine (ACh) may play a unique role in the maintenance of this equilibrium, as the epigenomic inhibition of the gene coding for nicotinic receptors, and disinhibits the gene causing anergia in immune cells. We hypothesize that age-induced ACh deficiency is the result of an epigenomic dysfunction of microRNA-6775 (miR-6775), which silences the transcription of CHRNA7 gene [coding for alpha 7 nicotinic cholinergic receptors (nAChRs)]. When silenced, this gene induces decreased expression of alpha 7 nAChRs, which may predispose elderly individuals to inflammation, neuroinflammation, and delirium. We hypothesize further that miR-6775-induced hypocholinergia augments the expression of RNF 128, the gene related to anergy in lymphocytes (GRAIL). This gene favors regulatory T cells (Tregs), promoters of immunologic tolerance, which may predispose to both cancer and sepsis-induced immunosuppression.
Collapse
Affiliation(s)
- Adonis Sfera
- Psychiatry, Patton State Hospital , Patton, CA , USA
| | | | | |
Collapse
|
102
|
Zhang QH, Li AM, He SL, Yao XD, Zhu J, Zhang ZW, Sheng ZY, Yao YM. Serum Total Cholinesterase Activity on Admission Is Associated with Disease Severity and Outcome in Patients with Traumatic Brain Injury. PLoS One 2015; 10:e0129082. [PMID: 26107885 PMCID: PMC4479571 DOI: 10.1371/journal.pone.0129082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/06/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is one of the leading causes of neurological disability. In this retrospective study, serum total cholinesterase (ChE) activities were analyzed in 188 patients for diagnostic as well as predictive values for mortality. METHODS AND FINDINGS Within 72 hours after injury, serum ChE activities including both acetylcholinesterase and butyrylcholinesterase were measured. Disease severity was evaluated with Acute Physiology and Chronic Health Evaluation (APACHE) II score, Glasgow Coma Score, length of coma, post-traumatic amnesia and injury feature. Neurocognitive and functional scores were assessed using clinical records. Of 188 patients, 146 (77.7%) survived and 42 (22.3%) died within 90 days. Lower ChE activities were noted in the non-survivors vs. survivors (5.94±2.19 vs. 7.04±2.16 kU/L, p=0.023), in septic vs. non-infected patients (5.93±1.89 vs. 7.31±2.45 kU/L, p=0.0005) and in patients with extremely severe injury vs. mild injury (6.3±1.98 vs. 7.57±2.48 kU/L, p=0.049). The trajectories of serum ChE levels were also different between non-survivors and survivors, septic and non-infected patients, mild and severely injured patients, respectively. Admission ChE activities were closely correlated with blood cell counts, neurocognitive and functional scores both on admission and at discharge. Receiver operating characteristic analysis showed that the area under the curve for ChE was inferior to that for either APACHE II or white blood cell (WBC) count. However, at the optimal cutoff value of 5 kU/L, the sensitivity of ChE for correct prediction of 90-day mortality was 65.5% and the specificity was 86.4%. Kaplan-Meier analysis showed that lower ChE activity (<5 kU/L) was more closely correlated with poor survival than higher ChE activity (>5 kU/L) (p=0.04). After adjusting for other variables, ChE was identified as a borderline independent predictor for mortality as analyzed by Binary logistic regression (P=0.078). CONCLUSIONS Lowered ChE activity measured on admission appears to be associated with disease severity and outcome for TBI patients.
Collapse
Affiliation(s)
- Qing-Hong Zhang
- Key Research Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, 100048, P. R. China
- * E-mail: (QHZ); (YMY)
| | - An-Min Li
- Department of Neurosurgery, Hainan Branch of the Chinese PLA General Hospital, Sanya, Hainan, 572013, P. R. China
| | - Sai-Lin He
- Department of Neurosurgery, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, 100048, P. R. China
| | - Xu-Dong Yao
- Department of Emergency, First Hospital Affiliated to Wenzhou Medical University, Wenzhou, 325000, P. R. China
| | - Jing Zhu
- Department of Laboratory Medicine, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, 100048, P. R. China
| | - Zhi-Wen Zhang
- Department of Neurosurgery, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, 100048, P. R. China
| | - Zhi-Yong Sheng
- Key Research Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, 100048, P. R. China
| | - Yong-Ming Yao
- Key Research Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, 100048, P. R. China
- * E-mail: (QHZ); (YMY)
| |
Collapse
|
103
|
Słoniecka M, Backman LJ, Danielson P. Acetylcholine enhances keratocyte proliferation through muscarinic receptor activation. Int Immunopharmacol 2015; 29:57-62. [PMID: 26049030 DOI: 10.1016/j.intimp.2015.05.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/18/2015] [Accepted: 05/18/2015] [Indexed: 12/20/2022]
Abstract
Acetylcholine (ACh), a classical neurotransmitter, has been shown to be present in various non-neuronal cells, including cells of the eye, such as corneal epithelium and endothelium, and to have widespread physiological effects such as cytoskeleton reorganization, cellular proliferation, differentiation, and apoptosis. The aim of this study was to investigate the effect of ACh on corneal keratocyte proliferation, and the underlying mechanisms, in order to explore its possible effect in corneal wound healing. Primary culture of human keratocytes was established from donated corneas. Cell viability and fraction of proliferating cells were detected by MTS assay and BrdU incorporation ELISA, respectively. Expression of proliferative markers, PCNA and Ki-67, was detected by western blot and immunocytochemistry. Activation of the MAPK/Erk signaling pathway and its involvement in ACh-enhanced proliferation was determined by western blot analysis, MTS, and BrdU ELISA. We found that ACh enhanced keratocyte proliferation even at low concentrations. Stimulation of proliferation was mediated through activation of muscarinic ACh receptors (mAChRs). Western blot analysis revealed that ACh stimulation of keratocytes upregulated the expression of PCNA and Ki-67, and Ki-67 immunocytochemistry showed that ACh-treated cells were in an active phase of the cell cycle. ACh activated MAPK signaling, and this step was crucial for the ACh-enhanced proliferation, as inhibition of the MAPK pathway resulted in ACh having no proliferative effect. In conclusion, ACh enhances keratocyte proliferation and might thus play a role in proper corneal wound healing.
Collapse
Affiliation(s)
- Marta Słoniecka
- Department of Integrative Medical Biology, Umeå University, SE-901 87, Umeå, Sweden.
| | - Ludvig J Backman
- Department of Integrative Medical Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Patrik Danielson
- Department of Integrative Medical Biology, Umeå University, SE-901 87, Umeå, Sweden
| |
Collapse
|
104
|
Truong LD, Trostel J, Garcia GE. Absence of nicotinic acetylcholine receptor α7 subunit amplifies inflammation and accelerates onset of fibrosis: an inflammatory kidney model. FASEB J 2015; 29:3558-70. [PMID: 25985801 DOI: 10.1096/fj.14-262493] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 05/04/2015] [Indexed: 01/06/2023]
Abstract
Inflammation is regulated by endogenous mechanisms, including anti-inflammatory cytokines, adenosine, and the nicotinic acetylcholine receptor α7 subunit (α7nAChR). We investigated the role of α7nAChR in protection against the progression of tissue injury in a model of severe, macrophage-mediated, cytokine-dependent anti-glomerular basement membrane (GBM) glomerulonephritis (GN), in α7nAChR-deficient (α7(-/-)) mice . At d 7 after the injection of anti-GBM antibody, kidneys from α7(-/-) mice displayed severe glomeruli (P < 0.0001) and tubulointerstitial lesions (P < 0.001) compared to kidneys from WT mice. An important finding was the presence of severe glomerulosclerosis in α7(-/-) mice in this early phase of the disease. Kidneys of α7(-/-) mice showed greater accumulation of inflammatory cells and higher expression of chemokines and cytokines than did those of WT mice. In addition, in α7(-/-) fibrotic kidneys, the expression of fibrin, collagen, TGF-β, and tissue inhibitor of metalloproteinase (TIMP)-2 increased, and the expression of TIMP3 declined. The increase in counterregulatory responses to inflammation in α7(-/-) nephritic kidneys did not compensate for the lack of α7nAChR. These findings indicate that α7nAChR plays a key role in regulating the inflammatory response in anti-GBM GN and that disruption of the endogenous protective α7nAChR amplifies inflammation to accelerate kidney damage and fibrosis.
Collapse
Affiliation(s)
- Luan D Truong
- *Department of Pathology and Division of Nephrology, Department of Medicine, and The Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA; and Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA
| | - Jessica Trostel
- *Department of Pathology and Division of Nephrology, Department of Medicine, and The Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA; and Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA
| | - Gabriela E Garcia
- *Department of Pathology and Division of Nephrology, Department of Medicine, and The Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA; and Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
105
|
Mediators of Chronic Pruritus in Atopic Dermatitis: Getting the Itch Out? Clin Rev Allergy Immunol 2015; 51:263-292. [DOI: 10.1007/s12016-015-8488-5] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
106
|
Zhang SJ, Jiang JX, Ren QQ, Xie QM, Xiong YK. Effects of the inhalation of the m3 receptor antagonist bencycloquidium bromide in a mouse cigarette smoke-induced airway inflammation model. Drug Dev Res 2015; 76:123-31. [PMID: 25958838 DOI: 10.1002/ddr.21248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/28/2015] [Indexed: 11/09/2022]
Abstract
Bencycloquidium bromide (BCQB), a novel M3 receptor antagonist, alleviates airway hyperresponsiveness, inflammation, and airway remodeling in a murine model of asthma. The aim of this study was to investigate the anti-inflammatory activity of inhaled BCQB in a cigarette smoke (CS)-induced model of acute lung inflammation. Mice exposed to CS developed chronic obstructive pulmonary disease (COPD). Inhalation of BCQB suppressed the accumulation of neutrophils and macrophages in airways and lung and also inhibited the CS-induced increases in mRNA levels of keratinocyte-derived chemokine, monocyte chemotactic protein-1, tumor necrosis factor-alpha, and interleukin-1β in lung and protein expression levels in bronchoalveolar lavage fluid. Moreover, BCQB (300 μg/ml) inhibited the CS-induced changes in superoxide dismutase and myeloperoxidase activities in the lungs. Our study suggests that BCQB might be a potential therapy for inflammation in CS-induced pulmonary diseases, including COPD.
Collapse
Affiliation(s)
- Shui-Juan Zhang
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jun-Xia Jiang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China, 310058
| | - Qian-Qian Ren
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qiang-Min Xie
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China, 310058
- Department of Medicine, Laboratory Animal Center of Zhejiang University, Hangzhou, China, 310058
| | - Yao-Kang Xiong
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
107
|
Modulation of immune response by organophosphorus pesticides: fishes as a potential model in immunotoxicology. J Immunol Res 2015; 2015:213836. [PMID: 25973431 PMCID: PMC4417994 DOI: 10.1155/2015/213836] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 02/06/2023] Open
Abstract
Immune response is modulated by different substances that are present in the environment. Nevertheless, some of these may cause an immunotoxic effect. In this paper, the effect of organophosphorus pesticides (frequent substances spilled in aquatic ecosystems) on the immune system of fishes and in immunotoxicology is reviewed. Furthermore, some cellular and molecular mechanisms that might be involved in immunoregulation mechanisms of organophosphorus pesticides are discussed.
Collapse
|
108
|
Non-neuronal cholinergic system in regulation of immune function with a focus on α7 nAChRs. Int Immunopharmacol 2015; 29:127-34. [PMID: 25907239 DOI: 10.1016/j.intimp.2015.04.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/05/2015] [Accepted: 04/07/2015] [Indexed: 11/20/2022]
Abstract
In 1929, Dale and Dudley described the first reported natural occurrence of acetylcholine (ACh) in an animal's body. They identified this ACh in the spleens of horses and oxen, which we now know suggests possible involvement of ACh in the regulation of lymphocyte activity and immune function. However, the source and function of splenic ACh were left unexplored for several decades. Recent studies on the source of ACh in the blood revealed ACh synthesis catalyzed by choline acetyltransferase (ChAT) in CD4(+) T cells. T and B cells, macrophages and dendritic cells (DCs) all express all five muscarinic ACh receptor subtypes (mAChRs) and several subtypes of nicotinic AChRs (nAChRs), including α7 nAChRs. Stimulation of these mAChRs and nAChRs by their respective agonists causes functional and biochemical changes in the cells. Using AChR knockout mice, we found that M(1)/M(5) mAChR signaling up-regulates IgG(1) and pro-inflammatory cytokine production, while α7 nAChR signaling has the opposite effect. These findings suggest that ACh synthesized by T cells acts in an autocrine/paracrine fashion at AChRs on various immune cells to modulate immune function. In addition, an endogenous allosteric and/or orthosteric α7 nAChR ligand, SLURP-1, facilitates functional development of T cells and increases ACh synthesis via up-regulation of ChAT mRNA expression. SLURP-1 is expressed in CD205(+) DCs residing in the tonsil in close proximity to T cells, macrophages and B cells. Collectively, these findings suggest that ACh released from T cells along with SLURP-1 regulates cytokine production by activating α7 nAChRs on various immune cells, thereby facilitating T cell development and/or differentiation, leading to immune modulation.
Collapse
|
109
|
Extraorbital lacrimal gland excision: a reproducible model of severe aqueous tear-deficient dry eye disease. Cornea 2015; 33:1336-41. [PMID: 25255136 DOI: 10.1097/ico.0000000000000264] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE The aim of this study was to establish and characterize extraorbital lacrimal gland excision (LGE) as a model of aqueous tear-deficient dry eye disease in mice. METHODS Female C57BL/6 mice at 6 to 8 weeks of age were randomized to extraorbital LGE, sham surgery, or scopolamine groups. Mice that underwent extraorbital LGE or sham surgery were housed in the standard vivarium. Scopolamine-treated mice were housed in a controlled environment chamber that allowed for the continuous regulation of airflow (15 L/min), relative humidity (30%), and temperature (21-23°C). Clinical disease severity was assessed over the course of 14 days using the phenol red thread test and corneal fluorescein staining. Real-time polymerase chain reaction was performed to assess corneal mRNA expression of interleukin 1β, tumor necrosis factor α, and matrix metalloproteinase 9. Flow cytometry was used to assess T helper cell frequencies in the conjunctivae and draining lymph nodes. RESULTS Extraorbital LGE markedly reduced aqueous tear secretion as compared with the sham procedure and induced a more consistent decrease in aqueous tear secretion than was observed in mice that received scopolamine while housed in the controlled environment chamber. Extraorbital LGE significantly increased corneal fluorescein staining scores as compared with those of both the sham surgery and scopolamine-treated groups. Extraorbital LGE significantly increased the corneal expression of interleukin 1β, tumor necrosis factor α, and matrix metalloproteinase 9. Further, extraorbital LGE increased T helper 17-cell frequencies in the conjunctivae and draining lymph nodes. CONCLUSIONS Extraorbital LGE induces aqueous tear-deficient dry eye disease in mice as evidenced by decreased aqueous tear secretion, increased corneal epitheliopathy, and induced ocular surface inflammation and immunity.
Collapse
|
110
|
Michel-Schmidt R, Kirkpatrick CJ, Wessler I. Effect of LIF-withdrawal on acetylcholine synthesis in the embryonic stem cell line CGR8 is not mediated by STAT3, PI3Ks or cAMP/PKA pathways. Int Immunopharmacol 2015; 29:115-8. [PMID: 25887270 DOI: 10.1016/j.intimp.2015.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 11/18/2022]
Abstract
Acetylcholine (ACh) acts as a local cellular signaling molecule and is widely expressed in nature, including mammalian cells and embryonic stem cells. The murine embryonic stem cell line CGR8 synthesizes and releases substantial amounts of ACh. Particularly during early differentiation - a period associated with multiple alterations in geno-/phenotype functions - synthesis and release of ACh are increased by 10-fold. In murine stem cells second messengers of the STAT-3, PI3K and cAMP/PKA pathways are involved in maintaining self-renewal and pluripotency. The present experiments were designed to test whether blockers of these signaling pathways enhance ACh cell content in the presence of LIF, i.e. when CGR8 is pluripotent. NSC74859, an inhibitor of STAT-3, affected neither the proliferation rate nor ACh cell content, whereas the more sensitive STAT-3 inhibitor FLLL31 reduced the proliferation rate and increased ACh cell content by about 3-fold. The PI3K inhibitor LY294002 reduced the proliferation rate but did not modify the ACh cell content, whereas the PKA inhibitor H89 produced effects comparable to FLLL31. Interestingly, in control experiments a strong inverse correlation was found between cell density and ACh cell content, which could explain the 3-fold increase in the ACh cell content observed in the presence of FLLL31 and H89. Forskolin, a PKA activator, had no effect. In conclusion, it appears unlikely that the 10-fold increase in ACh cell content induced by LIF removal, i.e. during early differentiation, is mediated by second messengers of the STAT-3, PI3K and cAMP/PKA pathways. However, the PI3K pathway appears to be involved in control of the inverse relation between cell density and ACh cell content, because this correlation was significantly attenuated in the presence of LY294002.
Collapse
Affiliation(s)
- Rosmarie Michel-Schmidt
- Institute of Pathology, University Medical Center, Johannes Gutenberg University, D-55101 Mainz, Germany
| | - Charles James Kirkpatrick
- Institute of Pathology, University Medical Center, Johannes Gutenberg University, D-55101 Mainz, Germany
| | - Ignaz Wessler
- Institute of Pathology, University Medical Center, Johannes Gutenberg University, D-55101 Mainz, Germany.
| |
Collapse
|
111
|
Abstract
A powerful interaction between the autonomic and the immune systems plays a prominent role in the initiation and maintenance of hypertension and significantly contributes to cardiovascular pathology, end-organ damage and mortality. Studies have shown consistent association between hypertension, proinflammatory cytokines and the cells of the innate and adaptive immune systems. The sympathetic nervous system, a major determinant of hypertension, innervates the bone marrow, spleen and peripheral lymphatic system and is proinflammatory, whereas the parasympathetic nerve activity dampens the inflammatory response through α7-nicotinic acetylcholine receptors. The neuro-immune synapse is bidirectional as cytokines may enhance the sympathetic activity through their central nervous system action that in turn increases the mobilization, migration and infiltration of immune cells in the end organs. Kidneys may be infiltrated by immune cells and mesangial cells that may originate in the bone marrow and release inflammatory cytokines that cause renal damage. Hypertension is also accompanied by infiltration of the adventitia and perivascular adipose tissue by inflammatory immune cells including macrophages. Increased cytokine production induces myogenic and structural changes in the resistance vessels, causing elevated blood pressure. Cardiac hypertrophy in hypertension may result from the mechanical afterload and the inflammatory response to resident or migratory immune cells. Toll-like receptors on innate immune cells function as sterile injury detectors and initiate the inflammatory pathway. Finally, abnormalities of innate immune cells and the molecular determinants of their activation that include toll-like receptor, adrenergic, cholinergic and AT1 receptors can define the severity of inflammation in hypertension. These receptors are putative therapeutic targets.
Collapse
|
112
|
Pinsino A, Matranga V. Sea urchin immune cells as sentinels of environmental stress. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:198-205. [PMID: 25463510 DOI: 10.1016/j.dci.2014.11.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 06/04/2023]
Abstract
Echinoderms, an ancient and very successful phylum of marine invertebrates, play a central role in the maintenance of ecosystem integrity and are constantly exposed to environmental pressure, including: predation, changes in temperature and pH, hypoxia, pathogens, UV radiation, metals, toxicants, and emerging pollutants like nanomaterials. The annotation of the sea urchin genome, so closely related to humans and other vertebrate genomes, revealed an unusually complex immune system, which may be the basis for why sea urchins can adapt to different marine environments and survive even in hazardous conditions. In this review, we give a brief overview of the morphological features and recognized functions of echinoderm immune cells with a focus on studies correlating stress and immunity in the sea urchin. Immune cells from adult Paracentrotus lividus, which have been introduced in the last fifteen years as sentinels of environmental stress, are valid tools to uncover basic molecular and regulatory mechanisms of immune responses, supporting their use in immunological research. Here we summarize laboratory and field studies that reveal the amenability of sea urchin immune cells for toxicological testing.
Collapse
Affiliation(s)
- Annalisa Pinsino
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "A. Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy.
| | - Valeria Matranga
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "A. Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy.
| |
Collapse
|
113
|
Watson BM, Oliveria JP, Nusca GM, Smith SG, Beaudin S, Dua B, Watson RM, Assayag EI, Cormier YF, Sehmi R, Gauvreau GM. Inhibition of allergen-induced basophil activation by ASM-024, a nicotinic receptor ligand. Int Arch Allergy Immunol 2015; 165:255-64. [PMID: 25660404 DOI: 10.1159/000370068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 11/21/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Nicotinic acetylcholine receptors (nAChRs) were identified on eosinophils and shown to regulate inflammatory responses, but nAChR expression on basophils has not been explored yet. OBJECTIVE We investigated surface receptor expression of nAChR α4, α7 and α1/α3/α5 subunits on basophils. Furthermore, we examined the effects of ASM-024, a synthetic nicotinic ligand, on in vitro anti-IgE and in vivo allergen-induced basophil activation. METHODS Basophils were enriched from the peripheral blood of allergic donors and the expression of nAChR subunits and muscarinic receptors was determined. Purified basophils were stimulated with anti-IgE in the presence of ASM-024 with or without muscarinic or nicotinic antagonists for the measurement of CD203c expression and histamine release. The effect of 9 days of treatment with 50 and 200 mg ASM-024 on basophil CD203c expression was examined in the blood of mild allergic asthmatics before and after allergen inhalation challenge. RESULTS nAChR α4, α7 and α1/α3/α5 receptor subunit expression was detected on basophils. Stimulation of basophils with anti-IgE increased CD203c expression and histamine release, which was inhibited by ASM-024 (10(-5) to 10(-)(3) M, p < 0.05). The effect of ASM-024 was reversed in the presence of muscarinic and nicotinic antagonists. In subjects with mild asthma, ASM-024 inhalation significantly inhibited basophil CD203c expression measured 24 h after allergen challenge (p = 0.03). CONCLUSION This study shows that ASM-024 inhibits IgE- and allergen-induced basophil activation through both nicotinic and muscarinic receptors, and suggests that ASM-024 may be an efficacious agent for modulating allergic asthma responses.
Collapse
|
114
|
Zhang MQ, Wan Y, Jin Y, Xin JB, Zhang JC, Xiong XZ, Chen L, Chen G. Cigarette smoking promotes inflammation in patients with COPD by affecting the polarization and survival of Th/Tregs through up-regulation of muscarinic receptor 3 and 5 expression. PLoS One 2014; 9:e112350. [PMID: 25375131 PMCID: PMC4223024 DOI: 10.1371/journal.pone.0112350] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/04/2014] [Indexed: 11/29/2022] Open
Abstract
Background CD4+ T cells in the lung are involved in the pathogenesis of chronic obstructive pulmonary disease (COPD), although CD4+ T cell subsets and the direct effect of smoking on these cells, especially the expression of MRs, have not been comprehensively examined. Methods First, circulating CD4+ T cell subsets in healthy nonsmokers, patients with SCOPD and patients with AECOPD were evaluated by flow cytometry. Then, differentiation experiments were carried out using RT-PCR, and Ki-67/Annexin V antibodies were used to measure proliferation and apoptosis. We also explored the impact of CSE on the differentiation and survival of CD4+Th/Tregs and examined the expression of MRs in healthy nonsmokers and patients with SCOPD. Results We found the percentages of circulating Th1 and Th17 cells were increased in patients with AECOPD, while the percentage of Th2 cells was decreased in patients with SCOPD. The percentages of Th10 cells were decreased in both patients with SCOPD and patients with AECOPD, while the percentages of Tregs were increased. In addition, the percentages of CD4+α-7+ T cells were decreased in patients with SCOPD and patients with AECOPD. However, only the decrease observed in patients with AECOPD was significant. In vitro studies also revealed MR expression affected the polarization of T cells, with different CD4+ T cell subtypes acquiring different MR expression profiles. The addition of CSE facilitated CD4+ T cell polarization towards pro-inflammatory subsets (Th1 and Th17) and affected the survival of CD4+ T cells and Treg cells by up-regulating the expression of MR3 and 5, resulting in an imbalance of CD4+ T cell subsets. Conclusions Our findings suggest an imbalance of circulating CD4+ T cell subsets is involved in COPD pathogenesis in smokers. Cigarette smoking may contribute to this imbalance by affecting the polarization and survival of Th/Tregs through the up-regulation of MR3 and MR5.
Collapse
Affiliation(s)
- Ming-Qiang Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Wan
- Department of Respiratory and Critical Care Medicine WUHAN NO. 1 HOSPITAL, Wuhan, China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Bao Xin
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Chu Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian-Zhi Xiong
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| | - Long Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
115
|
Lautert C, Ferreiro L, Wolkmer P, Paim FC, da Silva CB, Jaques JAS, Lopes STA, Santurio JM. Individual in vitro effects of ochratoxin A, deoxynivalenol and zearalenone on oxidative stress and acetylcholinesterase in lymphocytes of broiler chickens. SPRINGERPLUS 2014; 3:506. [PMID: 25279298 PMCID: PMC4169786 DOI: 10.1186/2193-1801-3-506] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/03/2014] [Indexed: 02/01/2023]
Abstract
The contamination of consumer food and animal feed with toxigenic fungi has resulted in economic losses worldwide in animal industries. Mycotoxins are highly biologically reactive secondary metabolites and can inhibit protein synthesis and cell multiplication. Considering the cytotoxicity of mycotoxins, this experiment was performed to determine the in vitro influence of ochratoxin A, deoxynivalenol and zearalenone on lipid peroxidation in lymphocytes of broiler chickens at different concentrations. This study has also evaluated whether the presence of these mycotoxins changes the acetylcholinesterase activity in lymphocytes, which is involved in the regulation of immune and inflammatory responses. Blood lymphocytes of broiler chickens were isolated through density gradient centrifugation and incubated with the respective mycotoxins at concentrations of 0.001, 0.01, 0.1 and 1 μg/mL. Lipid peroxidation, which was evaluated through the amount of malondialdehyde measured in a thiobarbituric acid-reactive species test, and the enzymatic activity were analyzed at 24, 48 and 72 h. Results of the lipid peroxidation evaluation showed an increasing cytotoxicity relation: ochratoxin A > deoxynivalenol > zearalenone. Conversely, cytotoxicity was valued as zearalenone > deoxynivalenol > ochratoxin A in relation to the acetylcholinesterase enzymatic activity. At a concentration of 1 μg/mL, ochratoxin A and deoxynivalenol induced the highest cellular oxidative stress levels and the highest enzymatic activity at the majority of time points. However, the same mycotoxins, except at 1 μg/mL concentration, induced a reduction of lymphocytic lipid peroxidation 72 h after incubation, suggesting the action of a compensatory mechanism in these cells.
Collapse
Affiliation(s)
- Claudia Lautert
- />Setor de Micologia, Faculdade de Veterinária (FAVET), Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9090, 91540-000 Porto Alegre, RS Brasil
| | - Laerte Ferreiro
- />Setor de Micologia, Faculdade de Veterinária (FAVET), Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9090, 91540-000 Porto Alegre, RS Brasil
| | - Patrícia Wolkmer
- />Curso de Medicina Veterinária, Universidade de Cruz Alta (UNICRUZ), Campus Universitário Dr. Ulysses Guimarães - Rodovia Municipal Jacob Della Méa, Km 5.6, 98020-290 Cruz Alta, RS Brasil
| | - Francine C Paim
- />Laboratório de Análises Clínicas Veterinário (LACVET), Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, Cidade Universitária, Bairro Camobi, 97105-900 Santa Maria, RS Brasil
| | - Cássia B da Silva
- />Laboratório de Análises Clínicas Veterinário (LACVET), Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, Cidade Universitária, Bairro Camobi, 97105-900 Santa Maria, RS Brasil
| | - Jeandre AS Jaques
- />Universidade Federal de Mato Grosso do Sul (UFMS), Cidade Universitária, 79070-900 Campo Grande, MS Brasil
| | - Sônia TA Lopes
- />Laboratório de Análises Clínicas Veterinário (LACVET), Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, Cidade Universitária, Bairro Camobi, 97105-900 Santa Maria, RS Brasil
| | - Janio M Santurio
- />Departamento de Microbiologia e Parasitologia, Laboratório de Pesquisas Micológicas (LAPEMI), Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, Cidade Universitária, Bairro Camobi, 97105-900 Santa Maria, RS Brasil
| |
Collapse
|
116
|
Barvitenko NN, Aslam M, Filosa J, Matteucci E, Nikinmaa M, Pantaleo A, Saldanha C, Baskurt OK. Tissue oxygen demand in regulation of the behavior of the cells in the vasculature. Microcirculation 2014; 20:484-501. [PMID: 23441854 DOI: 10.1111/micc.12052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/19/2013] [Indexed: 12/20/2022]
Abstract
The control of arteriolar diameters in microvasculature has been in the focus of studies on mechanisms matching oxygen demand and supply at the tissue level. Functionally, important vascular elements include EC, VSMC, and RBC. Integration of these different cell types into functional units aimed at matching tissue oxygen supply with tissue oxygen demand is only achieved when all these cells can respond to the signals of tissue oxygen demand. Many vasoactive agents that serve as signals of tissue oxygen demand have their receptors on all these types of cells (VSMC, EC, and RBC) implying that there can be a coordinated regulation of their behavior by the tissue oxygen demand. Such functions of RBC as oxygen carrying by Hb, rheology, and release of vasoactive agents are considered. Several common extra- and intracellular signaling pathways that link tissue oxygen demand with control of VSMC contractility, EC permeability, and RBC functioning are discussed.
Collapse
|
117
|
Rodrigues R, Debom G, Soares F, Machado C, Pureza J, Peres W, de Lima Garcias G, Duarte MF, Schetinger MRC, Stefanello F, Braganhol E, Spanevello R. Alterations of ectonucleotidases and acetylcholinesterase activities in lymphocytes of Down syndrome subjects: relation with inflammatory parameters. Clin Chim Acta 2014; 433:105-10. [PMID: 24631131 DOI: 10.1016/j.cca.2014.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 02/22/2014] [Accepted: 03/03/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Subjects with Down syndrome (DS) have an increased susceptibility to infections and autoimmune disorders. ATP, adenosine, and acetylcholine contribute to the immune response regulation, and NTPDase, adenosine deaminase (ADA) and acetylcholinesterase (AChE) are important enzymes in the control of the extracellular levels of these molecules. We evaluated the activities of these enzymes and the cytokine levels in samples of DS individuals. METHODS The population consisted of 23 subjects with DS and 23 healthy subjects. Twelve milliliters of blood was obtained from each subject and used for lymphocyte and serum preparation. Lymphocytes were separated on Ficoll density gradients. After isolation, NTPDase and AChE activities were determined. RESULTS The NTPDase activity using ADP as substrate was increased in lymphocytes of DS patients compared to control (P<0.05); however, no alterations were observed in the ATP hydrolysis. An increase was observed in the AChE activity in lymphocytes and in ADA activity in serum of DS patients when compared to healthy subjects (P<0.05). In DS subjects, an increase in the levels of IL-1β, IL-6, TNF-α and IFN-γ and a decrease in the IL-10 levels were also observed (P<0.05). CONCLUSIONS Alterations in the NTPDase, ADA and AChE activities as well changes in the cytokine levels may contribute to immunological alterations observed in DS.
Collapse
Affiliation(s)
- Rodrigo Rodrigues
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Gabriela Debom
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Fabiano Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Caroline Machado
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Jéssica Pureza
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - William Peres
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | | | - Marta Frescura Duarte
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900 Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900 Santa Maria, RS, Brazil
| | - Francieli Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Elizandra Braganhol
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Roselia Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| |
Collapse
|
118
|
Inazu M. Choline transporter-like proteins CTLs/SLC44 family as a novel molecular target for cancer therapy. Biopharm Drug Dispos 2014; 35:431-49. [PMID: 24532461 DOI: 10.1002/bdd.1892] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/31/2014] [Accepted: 02/07/2014] [Indexed: 12/13/2022]
Abstract
Choline is essential for the synthesis of the major membrane phospholipid phosphatidylcholine (PC), the methyl donor betaine and the neurotransmitter acetylcholine (ACh). Elevated levels of choline and up-regulated choline kinase activity have been detected in various cancers. Thus, the intracellular accumulation of choline through choline transporters is the rate-limiting step in phospholipid metabolism and a prerequisite for cancer cell proliferation. Previous studies have demonstrated abnormalities in choline uptake and choline phospholipid metabolism in cancer cells using the imaging of cancer with positron emission tomography (PET) and magnetic resonance spectroscopy (MRS). The aberrant choline metabolism in cancer cells is strongly correlated with their malignant progression. Using quantitative real-time PCR, the mRNA expression of choline transporters was measured, and it was found that choline transporter-like proteins CTLs/SLC44 family are highly expressed in various cancer cell lines. Choline uptake through CTLs is associated with cell viability, and the functional inhibition of CTLs could promote apoptotic cell death. Furthermore, non-neuronal cholinergic systems that include CTLs-mediated choline transport are associated with cell proliferation and their inhibition promotes apoptotic cell death in colon cancer, small cell lung cancer and human leukemic T-cells. The identification of this new CTLs-mediated choline transport system provides a potential new target for cancer therapy.
Collapse
Affiliation(s)
- Masato Inazu
- Institute of Medical Science, Department of Molecular Preventive Medicine, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
119
|
Polachini CRN, Spanevello RM, Casali EA, Zanini D, Pereira LB, Martins CC, Baldissareli J, Cardoso AM, Duarte MF, da Costa P, Prado ALC, Schetinger MRC, Morsch VM. Alterations in the cholinesterase and adenosine deaminase activities and inflammation biomarker levels in patients with multiple sclerosis. Neuroscience 2014; 266:266-74. [PMID: 24508813 DOI: 10.1016/j.neuroscience.2014.01.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/21/2014] [Accepted: 01/25/2014] [Indexed: 12/20/2022]
Abstract
Multiple sclerosis (MS) is one of the main chronic inflammatory diseases of the CNS that cause functional disability in young adults. It has unknown etiology characterized by the infiltration of lymphocytes and macrophages into the brain. The aim of this study was to evaluate the acetylcholinesterase (AChE) activity in lymphocytes and whole blood, as well as butyrylcholinesterase (BChE) and adenosine deaminase (ADA) activities in serum. We also checked the levels of nucleotides, nucleosides, biomarkers of inflammation such as cytokines (interleukin (IL)-1, IL-6, interferon (IFN)-γ, tumor necrosis factor-alpha (TNF-α) and IL-10) and C-reactive protein (CRP) in serum from 29 patients with the relapsing-remitting form of MS (RRMS) and 29 healthy subjects as the control group. Results showed that AChE in lymphocytes and whole blood as well as BChE, and ADA activities in serum were significantly increased in RRMS patients when compared to the control group (P<0.05). In addition, we observed a decrease in ATP levels and a significant increase in the levels of ADP, AMP, adenosine and inosine in serum from RRMS patients in relation to the healthy subjects (P<0.05). Results also demonstrated an increase in the IFN-γ, TNF-α, IL-1, IL-6 and CRP (P<0.05) and a significant decrease in the IL-10 (P<0.0001) in RRMS patients when compared to control. Our results suggest that alterations in the biomarkers of inflammation and hydrolysis of nucleotides and nucleosides may contribute to the understanding of the neurological dysfunction of RRMS patients.
Collapse
Affiliation(s)
- C R N Polachini
- Programa de Pós-Graduação em Bioquímica Toxicológica, Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - R M Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário, Capão do Leão, 96010-900 Pelotas, RS, Brazil
| | - E A Casali
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Porto Alegre, 90035-003 Porto Alegre, RS, Brazil
| | - D Zanini
- Programa de Pós-Graduação em Bioquímica Toxicológica, Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - L B Pereira
- Programa de Pós-Graduação em Bioquímica Toxicológica, Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - C C Martins
- Programa de Pós-Graduação em Bioquímica Toxicológica, Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - J Baldissareli
- Programa de Pós-Graduação em Bioquímica Toxicológica, Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - A M Cardoso
- Programa de Pós-Graduação em Bioquímica Toxicológica, Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - M F Duarte
- Centro de Ciências da Saúde, Universidade Luterana do Brazil, Campus Santa Maria, Santa Maria, RS, Brazil
| | - P da Costa
- Programa de Pós-Graduação em Bioquímica Toxicológica, Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - A L C Prado
- Departamento de Fisioterapia e Reabilitação, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Campus Universitário, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - M R C Schetinger
- Programa de Pós-Graduação em Bioquímica Toxicológica, Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - V M Morsch
- Programa de Pós-Graduação em Bioquímica Toxicológica, Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
120
|
Shen LL, Liu YN, Shen HJ, Wen C, Jia YL, Dong XW, Jin F, Chen XP, Sun Y, Xie QM. Inhalation of glycopyrronium inhibits cigarette smoke-induced acute lung inflammation in a murine model of COPD. Int Immunopharmacol 2014; 18:358-64. [PMID: 24389380 DOI: 10.1016/j.intimp.2013.12.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
Abstract
Glycopyrronium bromide (GB) is a muscarinic receptor antagonist that has been used as a long-acting bronchodilator in chronic obstructive pulmonary disease (COPD) patients. The aim of this study was to investigate the anti-inflammatory activity of inhaled GB in a cigarette smoke-induced acute lung inflammation mouse model. We found that aerosol pre-treatment with GB suppresses the accumulation of neutrophils and macrophages in the bronchoalveolar lavage fluid (BALF) in cigarette smoke (CS)-exposed mice. GB at doses of 300 and 600 μg/ml significantly inhibited the CS-induced increases in the mRNA and protein expression levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, monocyte chemotactic protein (MCP)-1 and transforming growth factor (TGF)-β1 in lung tissues and the BALF. Moreover, GB at a dose of 600 μg/ml significantly inhibited the CS-induced changes in glutathione (GSH) and myeloperoxidase (MPO) activities in the BALF, decreased the CS-induced expression of matrix metalloproteinases (MMP)-9, and increased the CS-induced expression of tissue inhibitor of metalloproteinases (TIMP)-1, as determined through the immunohistochemical staining of lung tissue. Our results demonstrate the beneficial effects of inhaled GB on the inflammatory reaction in COPD.
Collapse
Affiliation(s)
- Liang-liang Shen
- Medical College, Yangzhou University, 11 Huaihai Road, Yangzhou City, Jiangsu Province, 225001, China; Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Medicine School of Zhejiang University, Hangzhou 310058, China
| | - Ya-nan Liu
- Medical College, Yangzhou University, 11 Huaihai Road, Yangzhou City, Jiangsu Province, 225001, China; Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Medicine School of Zhejiang University, Hangzhou 310058, China
| | - Hui-juan Shen
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Medicine School of Zhejiang University, Hangzhou 310058, China
| | - Chong Wen
- Shanghai Institute of Pharmaceutical Industry, Shanghai 200040, China
| | - Yong-liang Jia
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Medicine School of Zhejiang University, Hangzhou 310058, China
| | - Xin-wei Dong
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Medicine School of Zhejiang University, Hangzhou 310058, China
| | - Fang Jin
- Shanghai Institute of Pharmaceutical Industry, Shanghai 200040, China
| | - Xiao-ping Chen
- Jiashilianbo Medicine Science & Technique Co., Beijing 100080, China
| | - Yun Sun
- Medical College, Yangzhou University, 11 Huaihai Road, Yangzhou City, Jiangsu Province, 225001, China.
| | - Qiang-min Xie
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Medicine School of Zhejiang University, Hangzhou 310058, China; Laboratory Animal Center of Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
121
|
Fujii T, Horiguchi K, Sunaga H, Moriwaki Y, Misawa H, Kasahara T, Tsuji S, Kawashima K. SLURP-1, an endogenous α7 nicotinic acetylcholine receptor allosteric ligand, is expressed in CD205+ dendritic cells in human tonsils and potentiates lymphocytic cholinergic activity. J Neuroimmunol 2014; 267:43-9. [DOI: 10.1016/j.jneuroim.2013.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/01/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
|
122
|
Nonneuronal Cholinergic System in Breast Tumors and Dendritic Cells: Does It Improve or Worsen the Response to Tumor? ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/486545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Besides being the main neurotransmitter in the parasympathetic nervous system, acetylcholine (ACh) can act as a signaling molecule in nonneuronal tissues. For this reason, ACh and the enzymes that synthesize and degrade it (choline acetyltransferase and acetylcholinesterase) as well as muscarinic (mAChRs) and nicotinic receptors conform the non-neuronal cholinergic system (nNCS). It has been reported that nNCS regulates basal cellular functions including survival, proliferation, adhesion, and migration. Moreover, nNCS is broadly expressed in tumors and in different components of the immune system. In this review, we summarize the role of nNCS in tumors and in different immune cell types focusing on the expression and function of mAChRs in breast tumors and dendritic cells (DCs) and discussing the role of DCs in breast cancer.
Collapse
|
123
|
Shenhar-Tsarfaty S, Berliner S, Bornstein NM, Soreq H. Cholinesterases as biomarkers for parasympathetic dysfunction and inflammation-related disease. J Mol Neurosci 2013; 53:298-305. [PMID: 24254221 DOI: 10.1007/s12031-013-0176-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/05/2013] [Indexed: 12/31/2022]
Abstract
Accumulating evidence suggests parasympathetic dysfunction and elevated inflammation as underlying processes in multiple peripheral and neurological diseases. Acetylcholine, the main parasympathetic neurotransmitter and inflammation regulator, is hydrolyzed by the two closely homologous enzymes, acetylcholinesterase and butyrylcholinesterase (AChE and BChE, respectively), which are also expressed in the serum. Here, we consider the potential value of both enzymes as possible biomarkers in diseases associated with parasympathetic malfunctioning. We cover the modulations of cholinesterase activities in inflammation-related events as well as by cholinesterase-targeted microRNAs. We further discuss epigenetic control over cholinesterase gene expression and the impact of single-nucleotide polymorphisms on the corresponding physiological and pathological processes. In particular, we focus on measurements of circulation cholinesterases as a readily quantifiable readout for changes in the sympathetic/parasympathetic balance and the implications of changes in this readout in health and disease. Taken together, this cumulative know-how calls for expanding the use of cholinesterase activity measurements for both basic research and as a clinical assessment tool.
Collapse
Affiliation(s)
- Shani Shenhar-Tsarfaty
- The Edmond and Lily Safra Center for Brain Science and Department of Biological Chemistry, The Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | | | | | | |
Collapse
|
124
|
Roy A, Fields WC, Rocha-Resende C, Resende RR, Guatimosim S, Prado VF, Gros R, Prado MAM. Cardiomyocyte-secreted acetylcholine is required for maintenance of homeostasis in the heart. FASEB J 2013; 27:5072-82. [PMID: 24018063 DOI: 10.1096/fj.13-238279] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Heart activity and long-term function are regulated by the sympathetic and parasympathetic branches of the nervous system. Parasympathetic neurons have received increased attention recently because acetylcholine (ACh) has been shown to play protective roles in heart disease. However, parasympathetic innervation is sparse in the heart, raising the question of how cholinergic signaling regulates cardiomyocytes. We hypothesized that non-neuronal secretion of ACh from cardiomyocytes plays a role in cholinergic regulation of cardiac activity. To test this possibility, we eliminated secretion of ACh exclusively from cardiomyocytes by targeting the vesicular acetylcholine transporter (VAChT). We find that lack of cardiomyocyte-secreted ACh disturbs the regulation of cardiac activity and causes cardiomyocyte remodeling. Mutant mice present normal hemodynamic parameters under nonstressful conditions; however, following exercise, their heart rate response is increased. Moreover, hearts from mutant mice present increased oxidative stress, altered calcium signaling, remodeling, and hypertrophy. Hence, without cardiomyocyte-derived ACh secretion, hearts from mutant mice show signs of imbalanced autonomic activity consistent with decreased cholinergic drive. These unexpected results suggest that cardiomyocyte-derived ACh is required for maintenance of cardiac homeostasis and regulates critical signaling pathways necessary to maintain normal heart activity. We propose that this non-neuronal source of ACh boosts parasympathetic cholinergic signaling to counterbalance sympathetic activity regulating multiple aspects of heart physiology.
Collapse
Affiliation(s)
- Ashbeel Roy
- 1Robarts Research Institute, 100 Perth Dr., London, Ontario, N6A 5K8, Canada. M.A.M.P.,
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Greig NH, Reale M, Tata AM. New pharmacological approaches to the cholinergic system: an overview on muscarinic receptor ligands and cholinesterase inhibitors. RECENT PATENTS ON CNS DRUG DISCOVERY 2013; 8:123-41. [PMID: 23597304 PMCID: PMC5831731 DOI: 10.2174/1574889811308020003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/13/2013] [Accepted: 04/13/2013] [Indexed: 12/27/2022]
Abstract
The cholinergic system is expressed in neuronal and in non-neuronal tissues. Acetylcholine (ACh), synthesized in and out of the nervous system can locally contribute to modulation of various cell functions (e.g. survival, proliferation). Considering that the cholinergic system and its functions are impaired in a number of disorders, the identification of new pharmacological approaches to regulate cholinergic system components appears of great relevance. The present review focuses on recent pharmacological drugs able to modulate the activity of cholinergic receptors and thereby, cholinergic function, with an emphasis on the muscarinic receptor subtype, and additionally covers the cholinesterases, the main enzymes involved in ACh hydrolysis. The presence and function of muscarinic receptor subtypes both in neuronal and non-neuronal cells has been demonstrated using extensive pharmacological data emerging from studies on transgenic mice. The possible involvement of ACh in different pathologies has been proposed in recent years and is becoming an important area of study. Although the lack of selective muscarinic receptor ligands has for a long time limited the definition of therapeutic treatment based on muscarinic receptors as targets, some muscarinic ligands such as cevimeline (patents US4855290; US5571918) or xanomeline (patent, US5980933) have been developed and used in pre-clinical or in clinical studies for the treatment of nervous system diseases (Alzheimer' and Sjogren's diseases). The present review focuses on the potential implications of muscarinic receptors in different pathologies, including tumors. Moreover, the future use of muscarinic ligands in therapeutic protocols in cancer therapy will be discussed, considering that some muscarinic antagonists currently used in the treatment of genitourinary disease (e.g. darifenacin, patent, US5096890; US6106864) have also been demonstrated to arrest tumor progression in nude mice. The involvement of muscarinic receptors in nociception also is over-viewed. In fact, muscarinic agonists such as vedaclidine, CMI-936 and CMI-1145 have been demonstrated to have analgesic effects in animal models comparable or more pronounced to those produced by morphine or opiates. Likewise, the crucial role of cholinesterases (acetylcholinesterase and butirylcholinesterase) in neural transmission is discussed, as large number of drugs inhibiting cholinesterase activity have become of increasing relevance particularly for the treatment of neurodegenerative disorders. Herein we summarize the current knowledge of the cholinesterase inhibitors with particular attention to recent patents for Alzheimer's disease drugs.
Collapse
Affiliation(s)
- Nigel H. Greig
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Marcella Reale
- Department of Experimental and Clinical Sciences, University G. D'Annunzio, Chieti, Italy
| | - Ada Maria Tata
- Dept. of Biology and Biotechnologies Charles Darwin, Sapienza Università di Roma, Research Center of Neurobiology Daniel Bovet, Roma, Italy
| |
Collapse
|
126
|
Gras D, Chanez P, Vachier I, Petit A, Bourdin A. Bronchial epithelium as a target for innovative treatments in asthma. Pharmacol Ther 2013; 140:290-305. [PMID: 23880290 DOI: 10.1016/j.pharmthera.2013.07.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 01/03/2023]
Abstract
Increasing evidence of a critical role played by the bronchial epithelium in airway homeostasis is opening new therapeutic avenues. Its unique situation at the interface with the environment suggests that the subtle regulation orchestrated by the epithelium between tolerance and specific immune response might be impaired in asthma. Airway mucus is acting as a physical and a biological fluid between the environment and the epithelium, synergistically moved by the cilia. In asthma, excessive mucus production is a hallmark of airway remodeling. Since many years we tried to therapeutically target mucus hypersecretion, but actually this option is still not achieved. The present review discusses the dynamic processes regulating airway mucus production. Airway inflammation is central in current asthma management. Understanding of how the airway epithelium influences the TH2 paradigm in response to deleterious agents is improving. The multiple receptors expressed by the airway epithelium are the transducers of the biological signals induced by various invasive agents to develop the most adapted response. Airway remodeling is observed in severe chronic airway diseases and may result from ongoing disturbance of signal transduction and epithelial renewal. Chronic airway diseases such as asthma will require assessment of these epithelial abnormalities to identify phenotypic characteristics associated with predicting a clinical benefit for epithelial-directed therapies.
Collapse
Affiliation(s)
- Delphine Gras
- UMR INSERM U1067 CNRS 7333, Aix-Marseille University, Marseille, France
| | | | | | | | | |
Collapse
|
127
|
Narumoto O, Niikura Y, Ishii S, Morihara H, Okashiro S, Nakahari T, Nakano T, Matsumura H, Shimamoto C, Moriwaki Y, Misawa H, Yamashita N, Nagase T, Kawashima K, Yamashita N. Effect of secreted lymphocyte antigen-6/urokinase-type plasminogen activator receptor-related peptide-1 (SLURP-1) on airway epithelial cells. Biochem Biophys Res Commun 2013; 438:175-9. [PMID: 23876317 DOI: 10.1016/j.bbrc.2013.07.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/13/2013] [Indexed: 01/13/2023]
Abstract
Acetylcholine (ACh) exerts various anti-inflammatory effects through α7 nicotinic ACh receptors (nAChRs). We have previously shown that secreted lymphocyte antigen-6/urokinase-type plasminogen activator receptor-related peptide-1 (SLURP-1), a positive allosteric modulator of α7 nAChR signaling, is down-regulated both in an animal model of asthma and in human epithelial cells treated with an inflammatory cytokine related to asthma. Our aim of this study was to explore the effect of SLURP-1, signal through α7 nAChR, in the pathophysiology of airway inflammation. Cytokine production was examined using human epithelial cells. Ciliary beat frequency of murine trachea was measured using a high speed camera. The IL-6 and TNF-α production by human epithelial cells was augmented by siRNA of SLURP-1 and α7 nicotinic ACh receptor. The cytokine production was also dose-dependently suppressed by human recombinant SLURP-1 (rSLURP-1). The ciliary beat frequency and amplitude of murine epithelial cells were augmented by PNU282987, a selective α7 nAChR agonist. Those findings suggested that SLURP-1 and stimulus through α7 nicotinic ACh receptors actively controlled asthmatic condition by stimulating ciliary beating and also by suppressing airway inflammation.
Collapse
Affiliation(s)
- Osamu Narumoto
- Department of Pharmacotherapy, Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Song P, Rekow SS, Singleton CA, Sekhon HS, Dissen GA, Zhou M, Campling B, Lindstrom J, Spindel ER. Choline transporter-like protein 4 (CTL4) links to non-neuronal acetylcholine synthesis. J Neurochem 2013; 126:451-61. [PMID: 23651124 DOI: 10.1111/jnc.12298] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 01/26/2023]
Abstract
Synthesis of acetylcholine (ACh) by non-neuronal cells is now well established and plays diverse physiologic roles. In neurons, the Na(+) -dependent, high affinity choline transporter (CHT1) is absolutely required for ACh synthesis. In contrast, some non-neuronal cells synthesize ACh in the absence of CHT1 indicating a fundamental difference in ACh synthesis compared to neurons. The aim of this study was to identify choline transporters, other than CHT1, that play a role in non-neuronal ACh synthesis. ACh synthesis was studied in lung and colon cancer cell lines focusing on the choline transporter-like proteins, a five gene family choline-transporter like protein (CTL)1-5. Supporting a role for CTLs in choline transport in lung cancer cells, choline transport was Na(+) -independent and CTL1-5 were expressed in all cells examined. CTL1, 2, and 5 were expressed at highest levels and knockdown of CTL1, 2, and 5 decreased choline transport in H82 lung cancer cells. Knockdowns of CTL1, 2, 3, and 5 had no effect on ACh synthesis in H82 cells. In contrast, knockdown of CTL4 significantly decreased ACh secretion by both lung and colon cancer cells. Conversely, increasing expression of CTL4 increased ACh secretion. These results indicate that CTL4 mediates ACh synthesis in non-neuronal cell lines and presents a mechanism to target non-neuronal ACh synthesis without affecting neuronal ACh synthesis.
Collapse
Affiliation(s)
- Pingfang Song
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Aydın B, Kan B, Cabadak H. The role of intracellular pathways in the proliferation of human K562 cells mediated by muscarinic receptors. Leuk Res 2013; 37:1144-9. [PMID: 23800797 DOI: 10.1016/j.leukres.2013.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/04/2013] [Accepted: 05/26/2013] [Indexed: 10/26/2022]
Abstract
Muscarinic acetylcholine receptors (mAChRs) are members of the superfamily of G protein coupled receptors (GPCRs). Muscarinic receptors are relatively abundant in the central nervous system and in the peripheral parasympathetic nervous system. Several studies have suggested that muscarinic receptors also mediate some cellular events in hematopoietic cells. K562 erythroleukemia cells contain muscarinic receptors M2, M3 and M4, and activation of muscarinic receptors changes cell proliferation. We examined the effects of several compounds on cell proliferation in K562 erythroleukemia cells. These included a muscarinic receptor agonist carbachol (CCh), a protein kinase inhibitor staurosporine; the phospholipase C inhibitor U73122, the MEK 1-2 inhibitor UO126, the PI3-kinase inhibitor wortmannin, the Ca(2+) chelators BAPTA/AM and 2-aminoethoxy-diphenylborate (2APB). In addition, we also investigated muscarinic receptor mediated protein kinase C (PKC) expression in K562 cells. CCh caused a decrease in DNA synthesis in K562 cells supplemented with 1% fetal bovine serum after starvation. Pre-treatment of K562 cells with U73122 and BAPTA/AM antagonized the inhibitory effect of CCh, suggesting that phospholipase C and intracellular calcium are involved in CCh-mediated inhibition of proliferation in K562 cells. Our data also suggest that the regulatory roles of protein kinase C and the MAPK/ERK pathways in K562 cell proliferation are independent of cholinergic activation.
Collapse
Affiliation(s)
- Banu Aydın
- Department of Biophysics, Marmara University School of Medicine, Istanbul, Turkey
| | | | | |
Collapse
|
130
|
Wessler I, Michel-Schmidt R, Schmidt H, Kaltwasser S, Unger R, Kirkpatrick CJ. Upregulated acetylcholine synthesis during early differentiation in the embryonic stem cell line CGR8. Neurosci Lett 2013; 547:32-6. [DOI: 10.1016/j.neulet.2013.04.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 02/04/2013] [Accepted: 04/28/2013] [Indexed: 10/26/2022]
|
131
|
Abstract
Acetylcholine, the first chemical to be identified as a neurotransmitter, is packed in synaptic vesicles by the activity of VAChT (vesicular acetylcholine transporter). A decrease in VAChT expression has been reported in a number of diseases, and this has consequences for the amount of acetylcholine loaded in synaptic vesicles as well as for neurotransmitter release. Several genetically modified mice targeting the VAChT gene have been generated, providing novel models to understand how changes in VAChT affect transmitter release. A surprising finding is that most cholinergic neurons in the brain also can express a second type of vesicular neurotransmitter transporter that allows these neurons to secrete two distinct neurotransmitters. Thus a given neuron can use two neurotransmitters to regulate different physiological functions. In addition, recent data indicate that non-neuronal cells can also express the machinery used to synthesize and release acetylcholine. Some of these cells rely on VAChT to secrete acetylcholine with potential physiological consequences in the periphery. Hence novel functions for the oldest neurotransmitter known are emerging with the potential to provide new targets for the treatment of several pathological conditions.
Collapse
|
132
|
Anwar J, Spanevello RM, Thomé G, Stefanello N, Schmatz R, Gutierres J, Vieira J, Baldissarelli J, Carvalho FB, da Rosa MM, Rubin MA, Fiorenza A, Morsch VM, Schetinger MRC. Effects of caffeic acid on behavioral parameters and on the activity of acetylcholinesterase in different tissues from adult rats. Pharmacol Biochem Behav 2012; 103:386-94. [DOI: 10.1016/j.pbb.2012.09.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 08/10/2012] [Accepted: 09/08/2012] [Indexed: 01/04/2023]
|
133
|
Ikeda T, Anisuzzaman ASM, Yoshiki H, Sasaki M, Koshiji T, Uwada J, Nishimune A, Itoh H, Muramatsu I. Regional quantification of muscarinic acetylcholine receptors and β-adrenoceptors in human airways. Br J Pharmacol 2012; 166:1804-14. [PMID: 22300233 DOI: 10.1111/j.1476-5381.2012.01881.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Muscarinic acetylcholine receptors (mAChRs) and β-adrenoceptors in the airways and lungs are clinically important in chronic obstructive pulmonary disease (COPD) and asthma. However, the quantitative and qualitative estimation of these receptors by radioligand binding approaches in human airways has not yet been reported because of tissue limitations. EXPERIMENTAL APPROACH The regional distribution and relative proportion of mAChR and β-adrenoceptor subtypes were evaluated in human bronchus and lung parenchyma by a tissue segment binding method with [(3)H]-N-methylscopolamine ([(3)H]-NMS) for mAChRs and [(3)H]-CGP-12,177 for β-adrenoceptors. Functional responses to carbachol and isoprenaline were also analysed in the bronchus. KEY RESULTS The M(3) subtype predominantly occurred in the bronchus, but the density decreased from the segmental to subsegmental bronchus, and was absent in lung parenchyma. On the other hand, the M(1) subtype occurred in the lung only, and the M(2) subtype was distributed ubiquitously in the bronchus and lungs. β(2)-adrenoceptors were increased along the airways, and their densities in the subsegmental bronchus and lung parenchyma were approximately twofold higher than those of mAChRs in the same region. β(1)-adrenoceptors were also detected in lung parenchyma but not in the bronchus. The muscarinic contractions and adrenoceptor relaxations in both bronchial regions were mediated through M(3)-mAChRs and β(2)-adrenoceptors, respectively. CONCLUSIONS AND IMPLICATIONS From the present radioligand binding approach with intact tissue segments, we constructed a distribution map of mAChRs and β-adrenoceptors in human bronchus and lung parenchyma for the first time, providing important evidence for future pharmacotherapy and new drug development for respiratory disorders.
Collapse
Affiliation(s)
- T Ikeda
- Division of Thoracic Surgery, Department of Surgery, School of Medicine, University of Fukui, Eiheiji, Fukui, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Wessler I, Neumann S, Razen M, Zepp F, Kirkpatrick CJ. Blockade of nicotinic and muscarinic receptors facilitates spontaneous migration of human peripheral granulocytes: Failure in cystic fibrosis. Life Sci 2012; 91:1119-21. [DOI: 10.1016/j.lfs.2012.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/09/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
|
135
|
Wessler I, Michel-Schmidt R, Dohle E, Kirkpatrick CJ. Release of acetylcholine from murine embryonic stem cells: Effect of nicotinic and muscarinic receptors and blockade of organic cation transporter. Life Sci 2012; 91:973-6. [DOI: 10.1016/j.lfs.2012.04.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 03/09/2012] [Accepted: 04/13/2012] [Indexed: 11/26/2022]
|
136
|
Critical roles of acetylcholine and the muscarinic and nicotinic acetylcholine receptors in the regulation of immune function. Life Sci 2012; 91:1027-32. [DOI: 10.1016/j.lfs.2012.05.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/25/2012] [Accepted: 05/03/2012] [Indexed: 12/17/2022]
|
137
|
Kawashima K, Fujii T, Moriwaki Y, Misawa H, Horiguchi K. Reconciling neuronally and nonneuronally derived acetylcholine in the regulation of immune function. Ann N Y Acad Sci 2012; 1261:7-17. [PMID: 22823388 DOI: 10.1111/j.1749-6632.2012.06516.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Immune cells, including lymphocytes, express muscarinic and nicotinic acetylcholine (ACh) receptors (mAChRs and nAChRs, respectively), and agonist stimulation of these AChRs causes functional and biochemical changes in the cells. The origin of the ACh that acts on immune cell AChRs has remained unclear until recently, however. In 1995, we identified choline acetyltransferase mRNA and protein in human T cells, and found that immunological T cell activation potentiated lymphocytic cholinergic transmission by increasing ACh synthesis and AChR expression. We also found that M(1) /M(5) mAChR signaling upregulates IgG(1) and proinflammatory cytokine production, whereas α7 nAChR signaling has the opposite effect. These findings suggest that ACh synthesized by T cells acts as an autocrine and/or paracrine factor via AChRs on immune cells to modulate immune function. In addition, a recently discovered endogenous allosteric α7 nAChR ligand, SLURP-1, also appears to be involved in modulating normal T cell function.
Collapse
Affiliation(s)
- Koichiro Kawashima
- Department of Molecular Pharmacology, Kitasato University School of Pharmacy, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
138
|
Relation between pro-inflammatory cytokines and acetylcholine levels in relapsing-remitting multiple sclerosis patients. Int J Mol Sci 2012. [PMID: 23202919 PMCID: PMC3497293 DOI: 10.3390/ijms131012656] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory, demyelinating and neurodegenerative disorder. Since acetylcholine (ACh) is known to participate in the inflammatory response, we investigated the possible relationship between pro-inflammatory cytokines and acetylcholine levels in relapsing-remitting multiple sclerosis (RR-MS) patients. Levels of ACh and pro-inflammatory cytokines IL1-β and IL-17 were measured both in cerebrospinal fluid (CSF) and sera of 22 RR-MS patients in the relapsing phase and in 17 control subjects affected by other non-neurological diseases (OND). We observed higher levels of pro-inflammatory cytokines such as IL-1β and IL-17 in both CSF and serum of RR-MS patients compared to control subjects. Moreover, ACh levels were lower in CSF and serum of RR-MS patients compared to levels of control subjects. Although the relationship between high inflammatory cytokine levels and low ACh levels need to be further investigated in the future, our data suggest that IL-1β, and cytokines induced by it, such as IL-17 and ACh, may be involved in the pathogenesis of MS.
Collapse
|
139
|
Burst of succinate dehydrogenase and α-ketoglutarate dehydrogenase activity in concert with the expression of genes coding for respiratory chain proteins underlies short-term beneficial physiological stress in mitochondria. Int J Biochem Cell Biol 2012; 45:190-200. [PMID: 22814171 DOI: 10.1016/j.biocel.2012.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 06/28/2012] [Accepted: 07/01/2012] [Indexed: 11/20/2022]
Abstract
Conditions for the realization in rats of moderate physiological stress (PHS) (30-120 min) were selected, which preferentially increase adaptive restorative processes without adverse responses typical of harmful stress (HST). The succinate dehydrogenase (SDH) and α-ketoglutarate dehydrogenase (KDH) activity and the formation of reactive oxygen species (ROS) in mitochondria were measured in lymphocytes by the cytobiochemical method, which detects the regulation of mitochondria in the organism with high sensitivity. These mitochondrial markers undergo an initial 10-20-fold burst of activity followed by a decrease to a level exceeding the quiescent state 2-3-fold by 120 min of PHS. By 30-60 min, the rise in SDH activity was greater than in KDH activity, while the activity of KDH prevailed over that of SDH by 120 min. The attenuation of SDH hyperactivity during PHS occurs by a mechanism other than oxaloacetate inhibition developed under HST. The dynamics of SDH and KDH activity corresponds to the known physiological replacement of adrenergic regulation by cholinergic during PHS, which is confirmed here by mitochondrial markers because their activity reflects these two types of nerve regulation, respectively. The domination of cholinergic regulation provides the overrestoration of expenditures for activity. In essence, this phenomenon corresponds to the training of the organism. It was first revealed in mitochondria after a single short-time stress episode. The burst of ROS formation was congruous with changes in SDH and KDH activity, as well as in ucp2 and cox3 expression, while the activity of SDH was inversely dependent on the expression of the gene of its catalytic subunit in the spleen. As the SDH activity enhanced, the expression of the succinate receptor decreased with subsequent dramatic rise when the activity was becoming lower. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaption and therapy.
Collapse
|
140
|
Aqueous seed extract of Syzygium cumini inhibits the dipeptidyl peptidase IV and adenosine deaminase activities, but it does not change the CD26 expression in lymphocytes in vitro. J Physiol Biochem 2012; 69:119-24. [DOI: 10.1007/s13105-012-0195-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/28/2012] [Indexed: 10/28/2022]
|
141
|
Wessler I, Michel-Schmidt R, Brochhausen C, Kirkpatrick CJ. Subcellular distribution of choline acetyltransferase by immunogold electron microscopy in non-neuronal cells: placenta, airways and murine embryonic stem cells. Life Sci 2012; 91:977-80. [PMID: 22683430 DOI: 10.1016/j.lfs.2012.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/29/2012] [Accepted: 05/17/2012] [Indexed: 01/13/2023]
Abstract
AIMS Acetylcholine is synthesized in more or less all mammalian cells. However, little is known about the subcellular location of acetylcholine synthesis. Therefore, in the present experiments the subcellular location of the synthesizing enzyme choline acetyltransferase (ChAT) was investigated by anti-ChAT immunogold electron microscopy in human placenta and airways as well as in a murine embryonic stem cell line (CGR8 cell line). MAIN METHODS Human tissue was obtained as so-called surplus tissue (after delivery/surgical removal because of lung tumor); the CGR8 stem cell line was cultured under standard conditions. For human tissue a monoclonal mouse anti-ChAT antibody (ab) was used and for the CGR8 cell line a polyclonal goat anti-ChAT ab. Immunogold electron microscopy was applied to identify the subcellular location of ChAT. KEY FINDINGS In trophoblast cells (placenta) specific anti-ChAT immunogold deposition was found within the cell membrane, microvilli, and caveolae but also within the cytosol, for example associated with intermediate filaments. In addition, immunogold deposition was identified within mitochondria and the nuclear membrane. In airway epithelial cells anti-ChAT immunogold was found particularly within the apical cell membrane, cilia, submucosa, cytosol and nuclear membrane. Likewise alveolar macrophages showed positive anti-ChAT immunogold within the nucleus, nuclear membrane and granula. Also in the CGR8 cell line positive anti-ChAT immunogold was identified within the cell nucleus and cytosol. SIGNIFICANCE The present experiments demonstrate a wide subcellular distribution of ChAT with particular preference of the cell membrane in human epithelial cells.
Collapse
Affiliation(s)
- Ignaz Wessler
- Institute of Pathology, University Medical Center, Johannes Gutenberg University Mainz, D-55101 Mainz, Germany.
| | | | | | | |
Collapse
|
142
|
Martins DB, Mazzanti CM, Costa MM, França R, Pagnoncelli M, Maciel RM, Schmatz R, Oliveira L, Morsch V, Facco G, Visentini D, Mann T, Mazzanti A, Lopes STA. Complete blood count and acetylcholinesterase activity of lymphocytes of demyelinated and ovariectomized rats treated with resveratrol. Immunopharmacol Immunotoxicol 2012; 34:983-90. [DOI: 10.3109/08923973.2012.682581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
143
|
Regulatory mechanisms of acetylcholine synthesis and release by T cells. Life Sci 2012; 91:981-5. [PMID: 22569292 DOI: 10.1016/j.lfs.2012.04.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/13/2012] [Accepted: 04/13/2012] [Indexed: 11/24/2022]
Abstract
AIMS Muscarinic and nicotinic acetylcholine (ACh) receptors are expressed in immune cells. ACh synthesized by choline acetyltransferase (ChAT) and released in T cells binds to these receptors. Furthermore, we have recently demonstrated the involvement of mediatophore, a homooligomer of a 16-kDa proteolipid subunit of vacuolar H(+)-ATPase, in ACh release from T cells. In this study, we investigated the effects of phorbol 12-myristate 13-acetate (PMA), dibutyryl cAMP (dbcAMP) and FK506, an immunosuppressant calcineurin inhibitor, on lymphocytic cholinergic activity in T cells. MAIN METHODS We determined the content and release of ACh in human leukemic T cell line MOLT-3 cells using a sensitive and specific radioimmunoassay for ACh. In addition, expression of ChAT mRNA and ChAT activity were investigated using reverse-transcription-polymerase chain reaction and Fonnum method, respectively. KEY FINDINGS Phytohemagglutinin (PHA), a T-cell activator, up-regulated ChAT mRNA expression, synthesis and release of ACh. PMA, a protein kinase C (PKC) activator, and dbcAMP, a protein kinase A (PKA) activator, also increased ChAT activity and ACh synthesis by up-regulating ChAT gene expression. FK506 inhibited PHA-induced up-regulation of ChAT mRNA expression, suggesting the involvement of calcineurin-mediated pathways in ChAT gene transcription. SIGNIFICANCE Activation of PKC and PKA up-regulates ACh synthesis in T cells, and immunological activation triggers ChAT gene transcription through calcineurin-mediated pathways.
Collapse
|
144
|
Gilboa-Geffen A, Hartmann G, Soreq H. Stressing hematopoiesis and immunity: an acetylcholinesterase window into nervous and immune system interactions. Front Mol Neurosci 2012; 5:30. [PMID: 22448158 PMCID: PMC3305920 DOI: 10.3389/fnmol.2012.00030] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 02/22/2012] [Indexed: 01/08/2023] Open
Abstract
Hematopoietic stem cells (HSCs) differentiate and generate all blood cell lineages while maintaining self-renewal ability throughout life. Systemic responses to stressful insults, either psychological or physical exert both stimulating and down-regulating effects on these dynamic members of the immune system. Stress-facilitated division and re-oriented differentiation of progenitor cells modifies hematopoietic cell type composition, while enhancing cytokine production and promoting inflammation. Inversely, stress-induced increases in the neurotransmitter acetylcholine (ACh) act to mitigate inflammatory response and regain homeostasis. This signaling process is terminated when ACh is hydrolyzed by acetylcholinesterase (AChE). Alternative splicing, which is stress-modified, changes the composition of AChE variants, modifying their terminal sequences, susceptibility for microRNA suppression, and sub-cellular localizations. Intriguingly, the effects of stress and AChE variants on hematopoietic development and inflammation in health and disease are both subject to small molecule as well as oligonucleotide-mediated manipulations in vitro and in vivo. The therapeutic agents can thus be targeted to the enzyme protein, its encoding mRNA transcripts, or the regulator microRNA-132, opening new venues for therapeutic interference with multiple nervous and immune system diseases.
Collapse
Affiliation(s)
- Adi Gilboa-Geffen
- The Edmond and Lily Safra Center for Brain Sciences and the Institute of Life Sciences, The Hebrew University of Jerusalem Jerusalem, Israel
| | | | | |
Collapse
|
145
|
Abstract
G-protein-coupled receptors (GPCRs), which represent the largest gene family in the human genome, play a crucial role in multiple physiological functions as well as in tumor growth and metastasis. For instance, various molecules like hormones, lipids, peptides and neurotransmitters exert their biological effects by binding to these seven-transmembrane receptors coupled to heterotrimeric G-proteins, which are highly specialized transducers able to modulate diverse signaling pathways. Furthermore, numerous responses mediated by GPCRs are not dependent on a single biochemical route, but result from the integration of an intricate network of transduction cascades involved in many physiological activities and tumor development. This review highlights the emerging information on the various responses mediated by a selected choice of GPCRs and the molecular mechanisms by which these receptors exert a primary action in cancer progression. These findings provide a broad overview on the biological activity elicited by GPCRs in tumor cells and contribute to the identification of novel pharmacological approaches for cancer patients.
Collapse
|
146
|
Mediatophore regulates acetylcholine release from T cells. J Neuroimmunol 2012; 244:16-22. [DOI: 10.1016/j.jneuroim.2011.12.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/21/2011] [Accepted: 12/15/2011] [Indexed: 11/23/2022]
|
147
|
Yanagita M, Kobayashi R, Kojima Y, Mori K, Murakami S. Nicotine modulates the immunological function of dendritic cells through peroxisome proliferator-activated receptor-γ upregulation. Cell Immunol 2012; 274:26-33. [PMID: 22425227 DOI: 10.1016/j.cellimm.2012.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 01/27/2012] [Accepted: 02/20/2012] [Indexed: 12/29/2022]
Abstract
We examined the effects of nicotine on differentiation and function of monocyte-derived human dendritic cells (DCs). NiDCs, which were the DCs differentiated in the presence of nicotine, showed lower levels of CD1a. Secretion of IL-12 and TNF-α by lipopolysaccharide (LPS)-stimulated NiDCs was significantly suppressed compared to monocyte-derived DCs grown without nicotine. NiDCs displayed a diminished capacity to induce allogeneic T cell proliferation with a reduced production of IFN-γ, and maintained/enhanced LPS-mediated expression of coinhibitory molecules. Interestingly, NiDCs enhanced the expression of nuclear receptor peroxisome proliferator-activated receptors γ (PPAR γ), which has immunomodulatory properties. Expression of PPAR γ and PPAR γ-target genes was significantly inhibited by pretreatment with d-tubocurarine, antagonist of non-selective nicotinic acetylcholine receptors (nAChR). In addition, reduction of Th1 responses was inhibited after blocking nAChR-mediated signal. These data suggest the effect of nicotine on altering DC immunogenicity by impeding Th1 immunity is partially mediated by upregulation of PPAR γ.
Collapse
Affiliation(s)
- Manabu Yanagita
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Yamadaoka 1-8, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
148
|
Gomes HJP, Souza RLR, Prevedello FC, Mira MT, Chautard-Freire-Maia EA. Investigation of Association between Susceptibility to Leprosy and SNPs inside and near the BCHE Gene of Butyrylcholinesterase. J Trop Med 2012; 2012:184819. [PMID: 22523498 PMCID: PMC3316951 DOI: 10.1155/2012/184819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/16/2011] [Accepted: 12/13/2011] [Indexed: 11/17/2022] Open
Abstract
Leprosy is a chronic disease caused by Mycobacterium leprae and affects the skin and the peripheral nervous system. Butyrylcholinesterase is coded by the BCHE gene, and the atypical allele (70G; rs1799807) has been investigated as a leprosy risk factor, with conflicting results. The present study estimated the frequencies of variants of rs1799807 and of five additional SNPs at the BCHE gene or near it: rs1126680, rs1803274, rs2863381, rs4440084, and rs4387996. A total of 167 patients and 150 healthy controls were genotyped by TaqMan PCR. Significantly higher allelic (70G) and genotypic (70DG) frequencies in rs1799807 were found in the patient group, with odds ratio (OR) of 6.33 (1.40 to 28.53) for the heterozygote. This finding was replicated in a comparison of the cases against a control group of 361 blood donors. The present data suggest that the atypical BChE variant may predispose to leprosy per se.
Collapse
Affiliation(s)
- Henrique J. P. Gomes
- Department of Genetics, Federal University of Paraná, P.O. Box 19071, 81531-980 Curitiba, PR, Brazil
| | - Ricardo L. R. Souza
- Department of Genetics, Federal University of Paraná, P.O. Box 19071, 81531-980 Curitiba, PR, Brazil
| | - Flávia Costa Prevedello
- Core for Advanced Molecular Investigation, Medical School, Pontifical Catholic University of Paraná, Imaculada Conceição, 1155, 80215-901 Curitiba, PR, Brazil
| | - Marcelo Távora Mira
- Core for Advanced Molecular Investigation, Medical School, Pontifical Catholic University of Paraná, Imaculada Conceição, 1155, 80215-901 Curitiba, PR, Brazil
| | | |
Collapse
|
149
|
Cholinergic regulation of airway inflammation and remodelling. J Allergy (Cairo) 2012; 2012:681258. [PMID: 22291719 PMCID: PMC3265096 DOI: 10.1155/2012/681258] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/10/2011] [Indexed: 12/12/2022] Open
Abstract
Acetylcholine is the predominant parasympathetic neurotransmitter in the airways that regulates bronchoconstriction and mucus secretion. Recent findings suggest that acetylcholine regulates additional functions in the airways, including inflammation and remodelling during inflammatory airway diseases. Moreover, it has become apparent that acetylcholine is synthesized by nonneuronal cells and tissues, including inflammatory cells and structural cells. In this paper, we will discuss the regulatory role of acetylcholine in inflammation and remodelling in which we will focus on the role of the airway smooth muscle cell as a target cell for acetylcholine that modulates inflammation and remodelling during respiratory diseases such as asthma and COPD.
Collapse
|
150
|
Abstract
The biological role of acetylcholine and the cholinergic system is revisited based particularly on scientific research early and late in the last century. On the one hand, acetylcholine represents the classical neurotransmitter, whereas on the other hand, acetylcholine and the pivotal components of the cholinergic system (high-affinity choline uptake, choline acetyltransferase and its end product acetylcholine, muscarinic and nicotinic receptors and esterase) are expressed by more or less all mammalian cells, i.e. by the majority of cells not innervated by neurons at all. Moreover, it has been demonstrated that acetylcholine and "cholinergic receptors" are expressed in non-neuronal organisms such as plants and protists. Acetylcholine is even synthesized by bacteria and algae representing an extremely old signalling molecule on the evolutionary timescale. The following article summarizes examples, in which non-neuronal acetylcholine is released from primitive organisms as well as from mammalian non-neuronal cells and binds to muscarinic receptors to modulate/regulate phenotypic cell functions via auto-/paracrine pathways. The examples demonstrate that non-neuronal acetylcholine and the non-neuronal cholinergic system are vital for various types of cells such as epithelial, endothelial and immune cells.
Collapse
Affiliation(s)
- Ignaz Karl Wessler
- Institut für Pathologie, Universitätsmedizin Mainz, Johannes-Gutenberg Universität Mainz, Germany.
| | | |
Collapse
|