101
|
Samarawickrema N, Pathmeswaran A, Wickremasinghe R, Peiris-John R, Karunaratna M, Buckley N, Dawson A, de Silva J. Fetal effects of environmental exposure of pregnant women to organophosphorus compounds in a rural farming community in Sri Lanka. Clin Toxicol (Phila) 2008; 46:489-95. [PMID: 18584359 DOI: 10.1080/15563650701837030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND The possible deleterious effects of low-grade, chronic environmental and occupational exposure to organophosphorus compounds (OPCs) are not well documented. OBJECTIVE To investigate the possible effects of low-level, chronic exposure of pregnant mothers to OPCs on the fetus by measuring OPC levels, and using markers of OPC exposure, oxidative stress and oxidative tissue damage. METHODS Toxicity was assessed by measuring (i) OPC levels in breast milk and plasma from maternal and cord blood using gas chromatography, (ii) maternal and fetal butyrylcholinesterase (BChE) activity using inhibition assays, (iii) antioxidant status of the fetus using superoxide dismutase activity assays, (iv) oxidative stress in the fetus by determining malondialdehyde (MDA) concentrations, and (v) examining for fetal DNA fragmentation using electrophoresis. Samples were obtained from consenting mothers living in a farming community in southern Sri Lanka at the end of the pesticide spray season (study group) and just before the commencement of the spray season (in-between spray season; control group). RESULTS Organophosphate residues were detected in only two subjects (chlorpyrifos in maternal and cord blood of one during the spray season and dimethoate in breast milk of another during the in between spray season), but the test employed was capable of only detecting concentrations above 0.05 mg/l. However, cord blood obtained during the spray season showed significant inhibition of BChE activity, increased oxidative stress and more DNA fragmentation when compared with cord blood obtained during the in-between spray season. CONCLUSIONS Inhibition of cord blood BChE activity indicates fetal exposure to organophosphorus compounds during times when there is a high probability of environmental drift. This provides a plausible explanation for the increased oxidative stress and high DNA fragmentation in the fetus. Long-term outcomes of such exposures are unknown.
Collapse
|
102
|
Slotkin TA, Ryde IT, Levin ED, Seidler FJ. Developmental neurotoxicity of low dose diazinon exposure of neonatal rats: effects on serotonin systems in adolescence and adulthood. Brain Res Bull 2008; 75:640-7. [PMID: 18355640 PMCID: PMC2322865 DOI: 10.1016/j.brainresbull.2007.10.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 10/15/2007] [Accepted: 10/17/2007] [Indexed: 11/17/2022]
Abstract
The developmental neurotoxicity of organophosphate pesticides targets serotonin (5HT) systems, which are involved in emotional and appetitive behaviors. We exposed neonatal rats to daily doses of diazinon on postnatal days 1-4, using doses (0.5 or 2mg/kg) spanning the threshold for barely-detectable cholinesterase inhibition. We then evaluated the effects on 5HT(1A) and 5HT(2) receptors, and on the 5HT transporter in cerebral cortical regions and the brainstem in adolescence through adulthood. Diazinon evoked a lasting deficit in 5HT(1A) receptors in males only, whereas it caused a small but significant increase in 5HT transporters in females; neither effect showed a significant regional selectivity. This pattern differed substantially from that seen in earlier work with another organophosphate, chlorpyrifos, which at pharmacodynamically similar doses spanning the threshold for cholinesterase inhibition, evoked a much more substantial, global upregulation of 5HT receptor expression; with chlorpyrifos, effects on receptors were seen in females, albeit to a lesser extent than in males, and were also regionally distinct. The effects of diazinon were nonmonotonic, showing larger alterations at the lower dose, likely reflecting positive trophic effects of cholinergic stimulation once the threshold for cholinesterase inhibition is exceeded. Our results reinforce the idea that different organophosphates have fundamentally distinct effects on the developmental trajectories of specific neurotransmitter systems, unrelated to their shared action as cholinesterase inhibitors. The effects on 5HT circuits expand the scope of behavioral endpoints that need to be considered in evaluating the developmental neurotoxicity of organophosphates.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
103
|
Slotkin TA, Bodwell BE, Levin ED, Seidler FJ. Neonatal exposure to low doses of diazinon: long-term effects on neural cell development and acetylcholine systems. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:340-8. [PMID: 18335101 PMCID: PMC2265026 DOI: 10.1289/ehp.11005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 12/13/2007] [Indexed: 05/24/2023]
Abstract
BACKGROUND The developmental neurotoxicity of organophosphate pesticides involves mechanisms other than their shared property of cholinesterase inhibition. OBJECTIVES We gave diazinon (DZN) to newborn rats on postnatal days 1-4, using doses (0.5 or 2 mg/kg) spanning the threshold for barely detectable cholinesterase inhibition. METHODS We then evaluated the lasting effects on indices of neural cell number and size, and on functional markers of acetylcholine (ACh) synapses (choline acetyltransferase, presynaptic high-affinity choline transporter, nicotinic cholinergic receptors) in a variety of brain regions. RESULTS DZN exposure produced a significant overall increase in cell-packing density in adolescence and adulthood, suggestive of neuronal loss and reactive gliosis; however, some regions (temporal/occipital cortex, striatum) showed evidence of net cell loss, reflecting a greater sensitivity to neurotoxic effects of DZN. Deficits were seen in ACh markers in cerebrocortical areas and the hippocampus, regions enriched in ACh projections. In contrast, there were no significant effects in the midbrain, the major locus for ACh cell bodies. The striatum showed a unique pattern, with robust initial elevations in the ACh markers that regressed in adulthood to normal or subnormal values. CONCLUSIONS These results indicate that developmental exposures to apparently nontoxic doses of DZN compromise neural cell development and alter ACh synaptic function in adolescence and adulthood. The patterns seen here differ substantially from those seen in earlier work with chlorpyrifos, reinforcing the concept that the various organophosphates have fundamentally different effects on the developmental trajectories of specific neurotransmitter systems, unrelated to their shared action as cholinesterase inhibitors.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | |
Collapse
|
104
|
Marty MS, Domoradzki JY, Hansen SC, Timchalk C, Bartels MJ, Mattsson JL. The Effect of Route, Vehicle, and Divided Doses on the Pharmacokinetics of Chlorpyrifos and Its Metabolite Trichloropyridinol in Neonatal Sprague-Dawley Rats. Toxicol Sci 2007; 100:360-73. [PMID: 17928393 DOI: 10.1093/toxsci/kfm239] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mary Sue Marty
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI 48674, USA.
| | | | | | | | | | | |
Collapse
|
105
|
Betancourt AM, Filipov NM, Carr RL. Alteration of neurotrophins in the hippocampus and cerebral cortex of young rats exposed to chlorpyrifos and methyl parathion. Toxicol Sci 2007; 100:445-55. [PMID: 17893397 DOI: 10.1093/toxsci/kfm248] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Exposure to either chlorpyrifos (CPS) or methyl parathion (MPS) results in the inhibition of acetylcholinesterase and leads to altered neuronal activity which normally regulates critical genes such as the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). The effects of postnatal exposure to CPS and MPS on the expression of messenger RNA (mRNA) and protein levels for NGF and BDNF were investigated in the frontal cerebral cortex (cortex) and hippocampus of rats. Oral administration of CPS (4.0 or 6.0 mg/kg), MPS (0.6 or 0.9 mg/kg), or the safflower oil vehicle was performed daily from postnatal day 10 (PND10) through PND20. Exposure induced significant effects on growth and cholinesterase activity. Increased NGF protein levels were observed in the hippocampus but not the cortex on PND20 with some reduction occurring on PND28 in both regions. These changes did not correlate with the changes in NGF mRNA. BDNF mRNA was increased in both regions on PND20 and PND28, whereas BDNF protein levels were increased on PND20. On PND12, c-fos mRNA, a marker of neuronal activation, was increased in both regions. Total BDNF protein was increased in the hippocampus but decreased in the cortex. No changes in NGF protein were observed. These results indicate that repeated developmental OP exposure during the postnatal period alters NGF and BDNF in the cortex and the hippocampus and the patterns of these alterations differ between regions.
Collapse
Affiliation(s)
- Angela M Betancourt
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | |
Collapse
|
106
|
Györi J, Varró P, Zielinska E, Banczerowski-Pelyhe I, Világi I. Bensultap decreases neuronal excitability in molluscan and mammalian central nervous system. Toxicol In Vitro 2007; 21:1050-7. [PMID: 17507197 DOI: 10.1016/j.tiv.2007.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 03/22/2007] [Accepted: 03/22/2007] [Indexed: 11/22/2022]
Abstract
Electrophysiological experiments were performed on in vitro neuronal preparations from terrestrial snail and rat brain slices, to determine the effect of the insecticide bensultap. Although bensultap has low toxicity in mammals, our results showed that bensultap altered the synaptic transmission in the vertebrate as well as in the invertebrate central nervous system. Bensultap caused a significant decrease of the ACh-induced current. The effect depended on the preapplication time and the concentration of the chemical. Bensultap also had an effect on the kinetic parameters of the ACh-induced current; the desensitization time was altered in a concentration-dependent manner. In the rat brain slice preparations, we observed an increase in the amplitude of the evoked responses after a 30 min treatment. There was no effect on paired-pulse depression, but LTP-induction was significantly inhibited by bensultap. The efficacy of synaptic transmission was modified by bensultap through effects on both input integration and output organization.
Collapse
Affiliation(s)
- János Györi
- Balaton Limnological Research Institute, Hungarian Academy of Sciences, 8237-Tihany, Klebelsberg Kuno ut 3, Hungary.
| | | | | | | | | |
Collapse
|
107
|
Gupta SC, Siddique HR, Mathur N, Mishra RK, Mitra K, Saxena DK, Chowdhuri DK. Adverse effect of organophosphate compounds, dichlorvos and chlorpyrifos in the reproductive tissues of transgenic Drosophila melanogaster: 70kDa heat shock protein as a marker of cellular damage. Toxicology 2007; 238:1-14. [PMID: 17618723 DOI: 10.1016/j.tox.2007.05.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 05/07/2007] [Accepted: 05/08/2007] [Indexed: 02/04/2023]
Abstract
The study highlights the adverse effects of organophosphate compounds dichlorvos and chlorpyrifos on reproduction in Drosophila. Freshly eclosed first instar larvae of Drosophila melanogaster transgenic for hsp70 (hsp70-lacZ) Bg(9) were fed on 0.015-150.0ppb dichlorvos and chlorpyrifos mixed food. Virgin flies eclosing from the normal and contaminated food were pair-mated to examine the effect of the test chemicals on reproduction of the exposed organisms. Expression of hsp70, sex peptide (SP or Acp70A), accessory gland protein (Acp36DE) and tissue damage was examined in reproductive organs of adult fly. Exposed organisms exhibited a dose-dependent significantly reduced reproductive outcome and males were found to be more sensitive than females. Hsp70 expression was restricted only within the testis lobes of male fly while it was not induced in the ovary of the female. In concurrence with absence of hsp70 expression in the accessory glands of male fly, tissue damage was evident in them. Acp70A and Acp36DE expression were found to be significantly downregulated at the higher concentrations of the test chemicals. The study suggests that (i) dichlorvos is more deleterious to fly reproduction compared to chlorpyrifos with an adverse effect on Acp70A and Acp36DE expression required to facilitate normal reproduction; (ii) hsp70 may be used as a marker of cellular damage against dichlorvos and chlorpyrifos in Drosophila.
Collapse
Affiliation(s)
- Subash C Gupta
- Embryotoxicology Section, Industrial Toxicology Research Centre, Lucknow 226001, India
| | | | | | | | | | | | | |
Collapse
|
108
|
Slotkin TA, Seidler FJ, Fumagalli F. Exposure to organophosphates reduces the expression of neurotrophic factors in neonatal rat brain regions: similarities and differences in the effects of chlorpyrifos and diazinon on the fibroblast growth factor superfamily. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:909-16. [PMID: 17589599 PMCID: PMC1892141 DOI: 10.1289/ehp.9901] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 02/27/2007] [Indexed: 05/16/2023]
Abstract
BACKGROUND The fibroblast growth factor (FGF) superfamily of neurotrophic factors plays critical roles in neural cell development, brain assembly, and recovery from neuronal injury. OBJECTIVES We administered two organophosphate pesticides, chlorpyrifos and diazinon, to neonatal rats on postnatal days 1-4, using doses below the threshold for systemic toxicity or growth impairment, and spanning the threshold for barely detectable cholinesterase inhibition: 1 mg/kg/day chlorpyrifos and 1 or 2 mg/kg/day diazinon. METHODS Using microarrays, we then examined the regional expression of mRNAs encoding the FGFs and their receptors (FGFRs) in the forebrain and brain stem. RESULTS Chlorpyrifos and diazinon both markedly suppressed fgf20 expression in the forebrain and fgf2 in the brain stem, while elevating brain stem fgfr4 and evoking a small deficit in brain stem fgf22. However, they differed in that the effects on fgf2 and fgfr4 were significantly larger for diazinon, and the two agents also showed dissimilar, smaller effects on fgf11, fgf14, and fgfr1. CONCLUSIONS The fact that there are similarities but also notable disparities in the responses to chlorpyrifos and diazinon, and that robust effects were seen even at doses that do not inhibit cholinesterase, supports the idea that organophosphates differ in their propensity to elicit developmental neurotoxicity, unrelated to their anticholinesterase activity. Effects on neurotrophic factors provide a mechanistic link between organophosphate injury to developing neurons and the eventual, adverse neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
109
|
Slotkin TA, Seidler FJ. Comparative developmental neurotoxicity of organophosphates in vivo: transcriptional responses of pathways for brain cell development, cell signaling, cytotoxicity and neurotransmitter systems. Brain Res Bull 2007; 72:232-74. [PMID: 17452286 PMCID: PMC1945108 DOI: 10.1016/j.brainresbull.2007.01.005] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 12/15/2006] [Accepted: 01/09/2007] [Indexed: 11/17/2022]
Abstract
Organophosphates affect mammalian brain development through a variety of mechanisms beyond their shared property of cholinesterase inhibition. We used microarrays to characterize similarities and differences in transcriptional responses to chlorpyrifos and diazinon, assessing defined gene groupings for the pathways known to be associated with the mechanisms and/or outcomes of chlorpyrifos-induced developmental neurotoxicity. We exposed neonatal rats to daily doses of chlorpyrifos (1mg/kg) or diazinon (1 or 2mg/kg) on postnatal days 1-4 and evaluated gene expression profiles in brainstem and forebrain on day 5; these doses produce little or no cholinesterase inhibition. We evaluated pathways for general neural cell development, cell signaling, cytotoxicity and neurotransmitter systems, and identified significant differences for >60% of 252 genes. Chlorpyrifos elicited major transcriptional changes in genes involved in neural cell growth, development of glia and myelin, transcriptional factors involved in neural cell differentiation, cAMP-related cell signaling, apoptosis, oxidative stress, excitotoxicity, and development of neurotransmitter synthesis, storage and receptors for acetylcholine, serotonin, norepinephrine and dopamine. Diazinon had similar effects on many of the same processes but also showed major differences from chlorpyrifos. Our results buttress the idea that different organophosphates target multiple pathways involved in neural cell development but also that they deviate in key aspects that may contribute to disparate neurodevelopmental outcomes. Equally important, these pathways are compromised at exposures that are unrelated to biologically significant cholinesterase inhibition and its associated signs of systemic toxicity. The approach used here demonstrates how planned comparisons with microarrays can be used to screen for developmental neurotoxicity.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
110
|
Jameson RR, Seidler FJ, Slotkin TA. Nonenzymatic functions of acetylcholinesterase splice variants in the developmental neurotoxicity of organophosphates: chlorpyrifos, chlorpyrifos oxon, and diazinon. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:65-70. [PMID: 17366821 PMCID: PMC1797835 DOI: 10.1289/ehp.9487] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND Organophosphate pesticides affect mammalian brain development through mechanisms separable from the inhibition of acetylcholinesterase (AChE) enzymatic activity and resultant cholinergic hyperstimulation. In the brain, AChE has two catalytically similar splice variants with distinct functions in development and repair. The rare, read-through isoform, AChE-R, is preferentially induced by injury and appears to promote repair and protect against neurodegeneration. Overexpression of the more abundant, synaptic isoform, AChE-S, enhances neurotoxicity. OBJECTIVES We exposed differentiating PC12 cells, a model for developing neurons, to 30 microM chlorpyrifos (CPF) or diazinon (DZN), or CPF oxon, the active metabolite that irreversibly inhibits AChE enzymatic activity, in order to determine whether they differentially induce the formation of AChE-S as a mechanistic predictor of developmental neurotoxicity. We then administered CPF or DZN to neonatal rats on postnatal days 1-4 using daily doses spanning the threshold for AChE inhibition (0-20%); we then evaluated AChE gene expression in forebrain and brainstem on post-natal day 5. RESULTS In PC12 cells, after 48 hr of exposure, CPF, CPF oxon, and DZN enhanced gene expression for AChE-R by about 20%, whereas CPF and DZN, but not CPF oxon, increased AChE-S expression by 20-40%. Thus, despite the fact that CPF oxon is a much more potent AChE inhibitor, it is the native compound (CPF) that induces expression of the neurotoxic AChE-S isoform. For in vivo exposures, 1 mg/kg CPF had little or no effect, but 0.5 or 2 mg/kg DZN induced both AChE-R and AChE-S, with a greater effect in males. CONCLUSIONS Our results indicate that nonenzymatic functions of AChE variants may participate in and be predictive of the relative developmental neurotoxicity of organophosphates, and that the various organophosphates differ in the degree to which they activate this mechanism.
Collapse
Affiliation(s)
| | | | - Theodore A. Slotkin
- Address correspondence to T.A. Slotkin, Box 3813 DUMC, Duke University Medical Center, Durham, NC 27710 USA. Telephone: (919) 681-8015. Fax: (919) 684-8197. E-mail:
| |
Collapse
|
111
|
Rohlman DS, Lasarev M, Anger WK, Scherer J, Stupfel J, McCauley L. Neurobehavioral performance of adult and adolescent agricultural workers. Neurotoxicology 2006; 28:374-80. [PMID: 17141876 DOI: 10.1016/j.neuro.2006.10.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 09/06/2006] [Accepted: 10/30/2006] [Indexed: 11/21/2022]
Abstract
There are many occupational hazards associated with working in agriculture including risk of injury and exposure to pesticides. Research examining neurobehavioral effects of pesticide exposure have focused primarily on the acute effects in adults working in agriculture. Organophosphate poisoned populations have shown a consistent pattern of deficits when compared to a non-exposed or non-poisoned population on measures of motor speed and coordination, sustained attention, and information processing speed. Fewer studies have examined the effect of long-term low-level exposure on nervous system functioning in agricultural workers. Pesticides are thought to pose a considerably higher risk to children than to adults, yet little is known about the extent or magnitude of health problems related to occupational exposure to pesticides in children and adolescents. The present study compared the neurobehavioral performance of adolescents and adults working in agriculture and examined the impact of years working in agriculture on neurobehavioral performance. One hundred seventy-five Hispanic adolescent and adults completed a neurobehavioral test battery consisting of 10 computer-based tests measuring attention, response speed, coordination and memory. Age, gender, school experience, and years working in agriculture all impacted performance on the neurobehavioral tests. Comparison of adult and adolescents did not reveal decreased neurobehavioral performance in adolescents. On several tests the adolescents performed better than adult counterparts. The adolescents and adults were engaged in comparable agricultural working environments at the time of the neurobehavioral testing. These findings suggest that, at the time of exposure to pesticides, adolescents are not more vulnerable to the effects of working in agriculture. Evidence from this study suggests that cumulative exposure to low levels of pesticides over many years of agricultural work is associated with neurological impairment as measured by the Selective Attention, Symbol-Digit, Reaction Time tests. Experience handling pesticides was also associated with deficits in neurobehavioral performance.
Collapse
Affiliation(s)
- Diane S Rohlman
- Center for Research on Occupational and Environmental Toxicology (CROET), L606, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | | | | | | | |
Collapse
|
112
|
Slotkin TA, Tate CA, Ryde IT, Levin ED, Seidler FJ. Organophosphate insecticides target the serotonergic system in developing rat brain regions: disparate effects of diazinon and parathion at doses spanning the threshold for cholinesterase inhibition. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:1542-6. [PMID: 17035140 PMCID: PMC1626396 DOI: 10.1289/ehp.9337] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 07/27/2006] [Indexed: 05/12/2023]
Abstract
BACKGROUND In the developing brain, serotonin (5HT) systems are among the most sensitive to disruption by organophosphates. OBJECTIVES We exposed neonatal rats to daily doses of diazinon or parathion on postnatal days (PND)1-4 and evaluated 5HT receptors and the 5HT transporter in brainstem and forebrain on PND5, focusing on doses of each agent below the maximum tolerated dose and spanning the threshold for cholinesterase inhibition: 0.5, 1, or 2 mg/kg for diazinon, and 0.02, 0.05, and 0.1 mg/kg for parathion. RESULTS Diazinon evoked up-regulation of 5HT1A and 5HT2 receptor expression even at doses devoid of effects on cholinesterase activity, a pattern similar to that seen earlier for another organophosphate, chlorpyrifos. In contrast, parathion decreased 5HT1A receptors, again at doses below those required for effects on cholinesterase. The two agents also differed in their effects on the 5HT transporter. Diazinon evoked a decrease in the brainstem and an increase in the forebrain, again similar to that seen for chlorpyrifos; this pattern is typical of damage of nerve terminals and reactive sprouting. Parathion had smaller, nonsignificant effects. CONCLUSIONS Our results buttress the idea that, in the developing brain, the various organophosphates target specific neurotransmitter systems differently from each other and without the requirement for cholinesterase inhibition, their supposed common mechanism of action.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | |
Collapse
|
113
|
de Castro VLSS, de Mello MA, Diniz C, Morita L, Zucchi T, Poli P. Neurodevelopmental effects of perinatal fenarimol exposure on rats. Reprod Toxicol 2006; 23:98-105. [PMID: 17070007 DOI: 10.1016/j.reprotox.2006.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 08/12/2006] [Accepted: 09/06/2006] [Indexed: 11/24/2022]
Abstract
Knowledge about the potential toxic effects of fenarimol, a widely used fungicide, is still limited. Fenarimol is an aromatase inhibitor and therefore can affect estrogen/androgen levels in vivo in rodents. In view of these facts, the aim of the present work was to study the effects of fenarimol maternal exposure during different critical phases in the development of central nervous system in rat pups, on early physical and neurobehavioral endpoints essential to their development. For that, the effects of the fungicide fenarimol (150 and 300 mg/kg) were examined at three different developmental stages in the rat: during the first 6 days of gestation, prenatal (15-21 days), or first 6 days of lactation. Three categories of the impact of fenarimol on neonatal growth and neurobehavioral development of offspring were assessed: (1) physical, (2) reflex and strength, and (3) motor coordination. Findings on the pups' physical development did not indicate any significant alterations of the postnatal age at which specific developmental milestones were observed (pinna detachment, development of the fur, eruption of the incisor teeth, opening of the ears and eyes and testes descent). However, there was a reduced rate of weight gain in pups of mothers treated during lactation related to the earlier testing time periods (1-23 days of life). The study of the functional state of the rat pup nervous systems at different stages of postnatal development revealed some neurodevelopmental delays in righting reflex, climbing and grip response and locomotion (20-90 days of life) in the treated groups. Taken together, findings of this study emphasize that, as a result of fenarimol maternal exposure, some neuromuscular and behavioral deficits in nursing pups may occur principally during the last gestational period and lactation. These results could be the basis for further studies on molecular actions of fenarimol in order to predict better the biological consequences of this fungicide.
Collapse
Affiliation(s)
- Vera L S S de Castro
- Embrapa Meio Ambiente, Laboratório de Ecotoxicologia, Rodovia SP 340, km 127.5, 13820-000 Jaguariúna, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
114
|
De Silva HJ, Samarawickrema NA, Wickremasinghe AR. Toxicity due to organophosphorus compounds: what about chronic exposure? Trans R Soc Trop Med Hyg 2006; 100:803-6. [PMID: 16806335 DOI: 10.1016/j.trstmh.2006.05.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The inappropriate use of toxic chemicals is common in developing countries, where it leads to excessive exposure and high risks of unintentional poisoning. The risks are particularly high with the pesticides used in agriculture, where poor rural populations live and work in close proximity to these compounds, which are often stored in and around the home. It is estimated that 99% of all deaths from pesticide poisoning occur in developing countries. Whilst the acute toxicity of pesticides has been well documented, there is still relatively little known of the effects on health of chronic pesticide exposure. Organophosphate insecticides have been extensively used in agriculture in developing countries, with little protection for the communities and individuals thus exposed. Given the indisputable chronic exposure of vulnerable groups to organophosphate compounds, including pregnant women, the fetus and young children, the potential for widespread adverse effects is considerable. Thus, whilst there is some evidence that chronic exposure may have adverse effects on health, there is an urgent need for high-quality observational and interventional studies of both occupational and environmental exposure to these compounds.
Collapse
Affiliation(s)
- H J De Silva
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka.
| | | | | |
Collapse
|
115
|
Kofman O, Sher T. Postnatal exposure to diisopropylfluorophosphate enhances discrimination learning in adult mice. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30:914-8. [PMID: 16616984 DOI: 10.1016/j.pnpbp.2006.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Visual discrimination and reversal learning were tested in adult C57Bl/6 mice that had been treated on postnatal days (PND) 4-10 with diisopropylfluorophosphate (DFP), an acetylcholinesterase inhibitor. DFP-treated mice attained the learning criterion in the Y maze significantly earlier than saline-treated mice. Female mice treated with DFP showed a more rapid decline in errors in the initial discrimination task, compared to female mice treated with saline. There was no effect of DFP treatment on learning the reverse discrimination. The data suggest that long-lasting effects of treatment with an acetylcholinesterase inhibitor can improve discrimination learning, similarly to the improvement reported by acute administration in adults.
Collapse
Affiliation(s)
- Ora Kofman
- Department of Behavioral Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O. Box 653, Beersheva, Israel.
| | | |
Collapse
|
116
|
Kofman O, Berger A, Massarwa A, Friedman A, Jaffar AA. Motor inhibition and learning impairments in school-aged children following exposure to organophosphate pesticides in infancy. Pediatr Res 2006; 60:88-92. [PMID: 16788088 DOI: 10.1203/01.pdr.0000219467.47013.35] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Despite the critical role of acetylcholinesterase (AChE) in cortical function and development, no long-term studies have been conducted in humans on the long-term sequelae of the disruption of the cholinergic system in early childhood. We report a neuropsychological assessment of healthy school-aged children, who had been hospitalized in infancy following exposure to organophosphate pesticides, compared with children exposed to other toxins such as kerosene, and age- and sex-matched non-exposed children. Although overall, the children seem to have overcome the acute one-time exposure incident, and they all attend regular schools, a finer assessment of specific cognitive abilities indicates they are impaired compared with the matched controls. Specifically, the children who had been exposed to organophosphate pesticides had a deficit in inhibitory motor control. Children with pesticide or kerosene poisoning had a retrieval deficit on the acquisition phase of a verbal learning task.
Collapse
Affiliation(s)
- Ora Kofman
- Department of Behavioral Sciences, Ben-Gurion University of the Negev, Beersheva, Israel.
| | | | | | | | | |
Collapse
|
117
|
Ricceri L, Venerosi A, Capone F, Cometa MF, Lorenzini P, Fortuna S, Calamandrei G. Developmental neurotoxicity of organophosphorous pesticides: fetal and neonatal exposure to chlorpyrifos alters sex-specific behaviors at adulthood in mice. Toxicol Sci 2006; 93:105-13. [PMID: 16760416 DOI: 10.1093/toxsci/kfl032] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Developmental exposure to the organophosphorous insecticide chlorpyrifos (CPF) induces long-term effects on brain and behavior in laboratory rodents. We evaluated in adult mice the behavioral effects of either fetal and/or neonatal CPF exposure at doses not inhibiting fetal and neonatal brain cholinesterase. CPF (3 or 6 mg/kg) was given by oral treatment to pregnant females on gestational days 15-18 and offspring were treated sc (1 or 3 mg/kg) on postnatal days (PNDs) 11-14. Serum and brain acetylcholinesterase (AChE) activity was evaluated at birth and 24 h from termination of postnatal treatments. On PND 70, male mice were assessed for spontaneous motor activity in an open-field test and in a socioagonistic encounter with an unfamiliar conspecific. Virgin females underwent a maternal induction test following presentation of foster pups. Both sexes were subjected to a plus-maze test to evaluate exploration and anxiety levels. Gestational and postnatal CPF exposure (higher doses) affected motor activity in the open field and enhanced synergically agonistic behavior. Postnatal CPF exposure increased maternal responsiveness toward pups in females. Mice of both sexes exposed to postnatal CPF showed reduced anxiety response in the plus-maze, an effect greater in females. Altogether, developmental exposure to CPF at doses that do not cause brain AChE inhibition induces long-term alterations in sex-specific behavior patterns of the mouse species. Late neonatal exposure on PNDs 11-14 was the most effective in causing behavioral changes. These findings support the hypothesis that developmental CPF may represent a risk factor for increased vulnerability to neurodevelopmental disorders in humans.
Collapse
Affiliation(s)
- Laura Ricceri
- Section of Behavioral Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
118
|
Venerosi A, Calamandrei G, Ricceri L. A social recognition test for female mice reveals behavioral effects of developmental chlorpyrifos exposure. Neurotoxicol Teratol 2006; 28:466-71. [PMID: 16814983 DOI: 10.1016/j.ntt.2006.05.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 04/27/2006] [Accepted: 05/13/2006] [Indexed: 11/20/2022]
Abstract
CD-1 mice were exposed to the organophosphate pesticide chlorpyrifos (CPF) both prenatally (gestational days 15-18; doses 0, 3 or 6 mg/kg) and postnatally (postnatal days 11-14, doses 0, 1 or 3 mg/kg). When four-month-olds, females underwent a social recognition test in which ultrasound vocalizations (USVs) and social investigation behavior emitted by a resident female in the presence of a female partner were measured during two subsequent 3 min sessions (interval between the two sessions 45 min). Throughout the social recognition test a marked increase in USVs was found in females prenatally treated with the highest CPF dose; USV increase was also paralleled by a selective increase in frequency and not in duration of social investigation. These results confirm that developmental exposure to CPF induces long-lasting alterations in the social behavior repertoire of the mouse, thus extending our previous observations on the effects of postnatal CPF on male agonistic behavior to the female sex. They also suggest that social recognition can be easily and rapidly assessed in the female mouse making it possible to evaluate, primarily by means of USV emission, even subtle alteration of social behavioral patterns dissociated from cognitive components of individual recognition.
Collapse
Affiliation(s)
- Aldina Venerosi
- Section of Behavioural Neuroscience, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, V.le Regina Elena 299 I-00161 Rome, Italy
| | | | | |
Collapse
|
119
|
Rothlein J, Rohlman D, Lasarev M, Phillips J, Muniz J, McCauley L. Organophosphate pesticide exposure and neurobehavioral performance in agricultural and non-agricultural Hispanic workers. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:691-6. [PMID: 16675422 PMCID: PMC1459921 DOI: 10.1289/ehp.8182] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Our understanding of the health risks of farmworkers exposed to pesticides in their work and home environments is rapidly increasing, although studies designed to examine the possible neurobehavioral effects of low-level chronic pesticide exposure are limited. We measured dialkyl phosphate urinary metabolite levels, collected environmental dust samples from a subset of homes, obtained information on work practices, and conducted neurobehavioral tests on a sample of farmworkers in Oregon. Significant correlations between urinary methyl metabolite levels and total methyl organophosphate (azinphos-methyl, phosmet, malathion) house dust levels were observed. We found the neurobehavioral performance of Hispanic immigrant farmworkers to be lower than that observed in a nonagricultural Hispanic immigrant population, and within the sample of agricultural workers there was a positive correlation between urinary organophosphate metabolite levels and poorer performance on some neurobehavioral tests. These findings add to an increasing body of evidence of the association between low levels of pesticide exposure and deficits in neurobehavioral performance.
Collapse
Affiliation(s)
- Joan Rothlein
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | | | | | |
Collapse
|
120
|
Slotkin TA, Levin ED, Seidler FJ. Comparative developmental neurotoxicity of organophosphate insecticides: effects on brain development are separable from systemic toxicity. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:746-51. [PMID: 16675431 PMCID: PMC1459930 DOI: 10.1289/ehp.8828] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A comparative approach to the differences between systemic toxicity and developmental neurotoxicity of organophosphates is critical to determine the degree to which multiple mechanisms of toxicity carry across different members of this class of insecticides. We contrasted neuritic outgrowth and cholinergic synaptic development in neonatal rats given different organophosphates (chlorpyrifos, diazinon, parathion) at doses spanning the threshold for impaired growth and viability. Animals were treated daily on postnatal days 1-4 by subcutaneous injection so as to bypass differences in first-pass activation to the oxon or catabolism to inactive products. Evaluations occurred on day 5. Parathion (maximum tolerated dose, 0.1 mg/kg) was far more systemically toxic than was chlorpyrifos or diazinon (maximum tolerated dose, 1-5 mg/kg). Below the maximum tolerated dose, diazinon impaired neuritic outgrowth in the forebrain and brainstem, evidenced by a deficit in the ratio of membrane protein to total protein. Diazinon also decreased choline acetyltransferase activity, a cholinergic neuronal marker, whereas it did not affect hemicholinium-3 binding to the presynaptic choline transporter, an index of cholinergic neuronal activity. There was no m(subscript)2(/subscript)-muscarinic acetylcholine receptor down-regulation, as would have occurred with chronic cholinergic hyperstimulation. The same pattern was found previously for chlorpyrifos. In contrast, parathion did not elicit any of these changes at its maximum tolerated dose. These results indicate a complete dichotomy between the systemic toxicity of organophosphates and their propensity to elicit developmental neurotoxicity. For parathion, the threshold for lethality lies below that necessary for adverse effects on brain development, whereas the opposite is true for chlorpyrifos and diazinon.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
121
|
Costa LG. Current issues in organophosphate toxicology. Clin Chim Acta 2006; 366:1-13. [PMID: 16337171 DOI: 10.1016/j.cca.2005.10.008] [Citation(s) in RCA: 415] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 10/11/2005] [Accepted: 10/12/2005] [Indexed: 10/25/2022]
Abstract
Organophosphates (OPs) are one of the main classes of insecticides, in use since the mid 1940s. OPs can exert significant adverse effects in non-target species including humans. Because of the phosphorylation of acetylcholinesterase, they exert primarily a cholinergic toxicity, however, some can also cause a delayed polyneuropathy. Currently debated and investigated issues in the toxicology of OPs are presented in this review. These include: 1) possible long-term effects of chronic low-level exposures; 2) genetic susceptibility to OP toxicity; 3) developmental toxicity and neurotoxicity; 4) common mechanism of action; 5) mechanisms of delayed neurotoxicity; and 6) possible additional OP targets. Continuing and recent debates, and molecular advances in these areas, and their contributions to our understanding of the toxicology of OPs are discussed.
Collapse
Affiliation(s)
- Lucio G Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100 Seattle, WA 98105, USA.
| |
Collapse
|
122
|
Kofman O, Ben-Bashat G. Diisopropylfluorophosphate administration in the pre-weanling period induces long-term changes in anxiety behavior and passive avoidance in adult mice. Psychopharmacology (Berl) 2006; 183:452-61. [PMID: 16283257 DOI: 10.1007/s00213-005-0208-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 09/14/2005] [Indexed: 01/11/2023]
Abstract
The developing brain may be particularly vulnerable to exposure to acetylcholinesterase (AChE) inhibitors because of the role of AChE on neuronal development and the effects of cholinergic pathways in mediating behavioral and hormonal responses to stress. C57BL/65 mice of both sexes were injected with 1 mg/kg s.c. diisopropylfluorophosphate (DFP) or saline in three separate experiments, on postnatal days (PNDs) 4-10, 14-20, or 30-36. Anxiety and conditioned avoidance were assessed on the elevated-plus maze (EPM) and step-down passive avoidance (PA) paradigms, respectively, at age 4-5 months. In addition, locomotion and reactivity to pain on the hot plate were assessed. Mice treated on PNDs 4-10 or PNDs 14-20 spent relatively more time and made more entries to the open arms on the first, but not second, exposure to the EPM. Females, but not males, treated with DFP showed deficits in PA retention after 24 h when treated on PNDs 4-10 and on PNDs 14-20. Mice treated on PNDs 30-36 were not impaired in either behavior. Administration of DFP in the preweanling period did not affect locomotor activity or pain reactivity. The results suggest that preweanling exposure to DFP results in anxiolysis in novel conflict situations but exacerbated context-enhanced anxiety.
Collapse
Affiliation(s)
- Ora Kofman
- Department of Behavioral Sciences, Ben-Gurion University of the Negev, 653, Beersheva, Israel.
| | | |
Collapse
|
123
|
Kiss P, Tamas A, Lubics A, Szalai M, Szalontay L, Lengvari I, Reglodi D. Development of neurological reflexes and motor coordination in rats neonatally treated with monosodium glutamate. Neurotox Res 2005; 8:235-44. [PMID: 16371318 DOI: 10.1007/bf03033977] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Monosodium glutamate (MSG) treatment of neonatal rats causes neuronal degeneration in various brain areas and leads to several neurochemical, endocrinological and behavioral alterations. However, relatively little is known about the development of neurological reflexes and motor coordination of these animals. Therefore, the aim of the present study was to examine the neurobehavioral development of newborn rats treated with MSG. Rats received MSG at postnatal days 1, 3, 5, 7, and 9. Appearance of neural reflexes and reflex performance as well as motor coordination were examined for 5 weeks after birth. The efficacy of MSG treatment was confirmed by histological examination of the arcuate nucleus. We found that MSG treatment delayed the appearance of forelimb placing, forelimb grasp and righting reflexes, besides the retarded somatic development. The treated pups performed surface righting in significantly longer times. Also, worse performance was observed in the foot-fault and rota-rod tests. However, MSG-treated rats reached control levels by the end of the fifth postnatal week. These results show that MSG treatment does not cause permanent alterations in the neurobehavioral development, only delays the appearance of some reflexes and leads to temporary changes in reflex performance and motor coordination signs.
Collapse
Affiliation(s)
- P Kiss
- Department of Anatomy, Neurohumoral Regulations Research Group of the Hungarian Academy of Sciences, University of Pecs, Hungary
| | | | | | | | | | | | | |
Collapse
|
124
|
Slotkin TA, Southard MC, Adam SJ, Cousins MM, Seidler FJ. Alpha7 nicotinic acetylcholine receptors targeted by cholinergic developmental neurotoxicants: nicotine and chlorpyrifos. Brain Res Bull 2005; 64:227-35. [PMID: 15464859 DOI: 10.1016/j.brainresbull.2004.07.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 06/27/2004] [Accepted: 07/19/2004] [Indexed: 11/29/2022]
Abstract
Alpha7 nicotinic acetylcholine receptors (nAChRs) play a role in axonogenesis, synaptogenesis and synaptic plasticity, and are therefore potential targets for developmental neurotoxicants. We administered nicotine to neonatal rats during discrete periods spanning the onset and peak of axonogenesis/synaptogenesis, focusing on three brain regions with disparate distributions of cell bodies and neural projections: brainstem, forebrain and cerebellum. Nicotine treatment on postnatal days (PN) 1-4 had little or no effect on alpha7 nAChRs but treatment during the second (PN11-14) or third (PN21-24) weeks elicited significant decrements in receptor expression in brainstem and cerebellum, regions containing cell bodies that project to the forebrain. Exposure to chlorpyrifos, a neurotoxicant pesticide that acts partially through cholinergic mechanisms, also elicited deficits in alpha7 nAChRs during the second postnatal week but not the first week. For both nicotine and chlorpyrifos, the effects on alpha7 nAChRs were distinct from those on the alpha4beta2 subtype. Continuous prenatal nicotine exposure, which elicits subsequent, postnatal deficits in axonogenesis and synaptogenesis, also produced delayed-onset changes in alpha7 nAChRs, characterized by reductions in the forebrain and upregulation in the brainstem and cerebellum, a pattern consistent with impaired axonogenesis/synaptogenesis and reactive sprouting. Males were more sensitive to the persistent effects of prenatal nicotine exposure on alpha7 nAChRs, a pattern that mimics neurobehavioral deficits resulting from this treatment. The present findings reinforce the mechanistic involvement of alpha7 nAChRs in the actions of developmental neurotoxicants, and its biomarker potential for neuroteratogens that target neuritic outgrowth.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Box 3813 DUMC, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
125
|
Aldridge JE, Meyer A, Seidler FJ, Slotkin TA. Alterations in central nervous system serotonergic and dopaminergic synaptic activity in adulthood after prenatal or neonatal chlorpyrifos exposure. ENVIRONMENTAL HEALTH PERSPECTIVES 2005; 113:1027-31. [PMID: 16079074 PMCID: PMC1280344 DOI: 10.1289/ehp.7968] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Exposure to chlorpyrifos (CPF) alters neuronal development of serotonin (5HT) and dopamine systems, and we recently found long-term alterations in behaviors related to 5HT function. To characterize the synaptic mechanisms underlying these effects, we exposed developing rats to CPF regimens below the threshold for systemic toxicity, in three treatment windows: gestational days (GD) 17-20, postnatal days (PN) 1-4, or PN11-14. In early adulthood (PN60), we assessed basal neurotransmitter content and synaptic activity (turnover) in brain regions containing the major 5HT and dopamine projections. CPF exposure on GD17-20 or PN1-4 evoked long-term increases in 5HT turnover across multiple regions; the effects were not secondary to changes in neurotransmitter content, which was unaffected or even decreased. When the treatment window was shifted to PN11-14, there were no long-term effects. Dopamine turnover also showed significant increases after CPF exposure on GD17-20, but only when the dose was raised above the threshold for overt toxicity; however, hippocampal dopamine content was profoundly subnormal after exposures below or above the acute, toxic threshold, suggesting outright neurotoxicity. These results indicate that, in a critical developmental period, apparently nontoxic exposures to CPF produce lasting activation of 5HT systems in association with 5HT-associated behavioral anomalies.
Collapse
Affiliation(s)
- Justin E Aldridge
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
126
|
Slotkin TA, Oliver CA, Seidler FJ. Critical periods for the role of oxidative stress in the developmental neurotoxicity of chlorpyrifos and terbutaline, alone or in combination. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 157:172-80. [PMID: 15963356 DOI: 10.1016/j.devbrainres.2005.04.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 04/04/2005] [Accepted: 04/04/2005] [Indexed: 10/25/2022]
Abstract
The developmental neurotoxicity of chlorpyrifos (CPF) involves mechanisms other than inhibition of cholinesterase. In the current study, we examined the ability of CPF to evoke lipid peroxidation in the developing brain of fetal and neonatal rats. CPF given to pregnant rats on gestational days 17-20 or to neonatal rats on postnatal days 1-4, failed to elicit increases in thiobarbituric acid-reactive species (TBARS) in brain regions even when the dose was raised above the threshold for systemic toxicity and hepatic damage. In contrast, CPF administration during the second postnatal week, the peak period of neuronal cell differentiation and synaptogenesis, did evoke significant increases in TBARS even at a dose devoid of systemic toxicity. Terbutaline, which is chemically unrelated to CPF and which stimulates neuronal cell metabolism through direct actions on beta-adrenoceptors, also elicited oxidative damage in the developing brain with greater sensitivity in the second postnatal week. These results indicate that diverse compounds can exert convergent effects on brain development through their shared potential to elicit oxidative stress, and that the net outcome is dependent upon specific developmental stages in which metabolic demand is especially high. Furthermore, given the common use of terbutaline in the therapy of preterm labor, and the nearly ubiquitous exposure of the human population to organophosphorus pesticides, the combined oxidative burden of exposure to both agents may contribute to the worsened neurodevelopmental outcomes noted in animal models of such dual exposures.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
127
|
Nguon K, Baxter MG, Sajdel-Sulkowska EM. Perinatal exposure to polychlorinated biphenyls differentially affects cerebellar development and motor functions in male and female rat neonates. THE CEREBELLUM 2005; 4:112-22. [PMID: 16035193 DOI: 10.1080/14734220510007860] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Perinatal exposure to polychlorinated biphenyls (PCBs) interacts with genetics and impacts the course of the central nervous system (CNS) development in both humans and animals. To test the hypothesis that the neurobehavioral impairments, and specifically motor dysfunctions following perinatal PCB exposure in rats are associated with changes in a specific brain region, the cerebellum, we compared neurodevelopment, motor behavior, cerebellar structure, and protein expression in rat neonates exposed to the PCB mixture Aroclor 1254 (A1254, 10.0 mg/kg/day) from gestational day 11 until postnatal day (P) 21 with that of controls. Body mass of PCB-exposed pups was not affected at birth, but was significantly lower than that of controls between birth and weaning; by P21 the difference was greater in females than in males. A1254 exposure delayed ear unfolding and impaired performance on the following behavioral tests: (1) righting response on P3-P6; (2) negative geotaxis on P5-P7; (3) startle response on P10-P12; and (4) a rotorod on P12, with PCB-male pups more severely affected than female. Changes in the behavior of PCB pups were associated with changes in cerebellar structure and protein expression. Cerebellar mass was more reduced in PCB-male than PCB-female pups. Analysis of selected cerebellar proteins revealed an increase in GFAP expression, greater in male than in female, and a decrease in L1 expression in both sexes. These results suggest that PCB exposure affects behavior and cerebellar development differently in male and female rat neonates, with greater effects in males. Further studies of neonatal PCB exposure will establish whether the environmental pollutants can contribute to the sex-related preponderance of certain neuropsychiatric disorders.
Collapse
Affiliation(s)
- K Nguon
- Department of Psychiatry, Brigham & Women's Hospital, Boston, MA, USA
| | | | | |
Collapse
|
128
|
Lubics A, Reglodi D, Tamás A, Kiss P, Szalai M, Szalontay L, Lengvári I. Neurological reflexes and early motor behavior in rats subjected to neonatal hypoxic-ischemic injury. Behav Brain Res 2005; 157:157-65. [PMID: 15617782 DOI: 10.1016/j.bbr.2004.06.019] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Revised: 06/18/2004] [Accepted: 06/23/2004] [Indexed: 11/19/2022]
Abstract
Severe perinatal hypoxia-ischemia is an important cause of brain injury in both full-term and premature newborns, with a high risk of future behavioral and neurological deficits. The most commonly used animal model of neonatal hypoxia-ischemia is the unilateral ligation of the common carotid artery followed by exposure to hypoxia in 7-day-old rats. In spite of the wide use of this model, lot of contradictions and discrepancies exist between the results obtained by different laboratories regarding behavioral deficits and there are no data regarding the possible delay of the appearance of neurological reflexes and the time-course of reflex performances following neonatal hypoxic-ischemic injury in rats. In the present study we showed that neonatal hypoxia-ischemia retarded the development of somatic growth and several neurological reflexes (ear twitch, grasping, gait and negative geotaxis). Hypoxic animals also displayed retarded performance in righting, geotaxis and gait reflexes. Although hypoxic pups performed worse in most tests for motor coordination, they reached normal levels by 5 weeks of age except in the footfault test. In the open-field, hypoxic animals were generally more active, except at 3 weeks, when activity of normal pups increased enormously as well. Brain areas were significantly reduced in hypoxic animals, but no close correlation was found with behavioral deficits.
Collapse
Affiliation(s)
- Andrea Lubics
- Department of Anatomy, Neurohumoral Regulations Research Group of the Hungarian Academy of Sciences, Pécs University, Szigeti u 12, 7624 Pecs, Hungary.
| | | | | | | | | | | | | |
Collapse
|
129
|
Costa LG, Cole TB, Vitalone A, Furlong CE. Measurement of paraoxonase (PON1) status as a potential biomarker of susceptibility to organophosphate toxicity. Clin Chim Acta 2005; 352:37-47. [PMID: 15653099 DOI: 10.1016/j.cccn.2004.09.019] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 09/15/2004] [Accepted: 09/17/2004] [Indexed: 10/26/2022]
Abstract
Organophosphorus (OP) compounds are still among the most widely used insecticides, and their main mechanism of acute toxicity is associated with inhibition of acetylcholinesterase. Measurements of urine metabolites and of blood cholinesterase activity are established biomarkers of exposure to OPs and of early biological effects. In recent years, increasing attention has been given to biomarkers of susceptibility to OP toxicity. Here we discuss the polymorphisms of paraoxonase (PON1), a liver and serum enzyme that hydrolyzes a number of OP compounds, and its role in modulating the toxicity of OPs. We stress the importance of determining PON1 status, which encompasses the PON1192Q/R polymorphism (that affects catalytic ability toward different substrates) and PON1 levels (which are modulated in part by a C-108T polymorphism) over straight genotyping. Epidemiological studies on OP-exposed workers that include assessment of PON1 status to validate in human populations the role of PON1 as a determinant of susceptibility to OPs, as indicated by animal studies, are needed. Documentation of exposure and of early health effects would be most relevant to increase the predictive value of the test.
Collapse
Affiliation(s)
- Lucio G Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100 Seattle, WA 98105, USA.
| | | | | | | |
Collapse
|
130
|
Aldridge JE, Levin ED, Seidler FJ, Slotkin TA. Developmental exposure of rats to chlorpyrifos leads to behavioral alterations in adulthood, involving serotonergic mechanisms and resembling animal models of depression. ENVIRONMENTAL HEALTH PERSPECTIVES 2005; 113:527-31. [PMID: 15866758 PMCID: PMC1257542 DOI: 10.1289/ehp.7867] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Developmental exposure to chlorpyrifos (CPF) causes persistent changes in serotonergic (5HT) systems. We administered 1 mg/kg/day CPF to rats on postnatal days 1-4, a regimen below the threshold for systemic toxicity. When tested in adulthood, CPF-exposed animals showed abnormalities in behavioral tests that involve 5HT mechanisms. In the elevated plus maze, males treated with CPF spent more time in the open arms, an effect seen with 5HT deficiencies in animal models of depression. Similarly, in an anhedonia test, the CPF-exposed group showed a decreased preference for chocolate milk versus water. Developmental CPF exposure also has lasting effects on cognitive function. We replicated our earlier finding that developmental CPF exposure ablates the normal sex differences in 16-arm radial maze learning and memory: during acquisition training, control male rats typically perform more accurately than do control females, but CPF treatment eliminated this normal sex difference. Females exposed to CPF showed a reduction in working and reference memory errors down to the rate of control males. Conversely, CPF-exposed males exhibited an increase in working and reference memory errors. After radial-arm acquisition training, we assessed the role of 5HT by challenging the animals with the 5HT2 receptor antagonist ketanserin. Ketanserin did not affect performance in controls but elicited dose-dependent increases in working and reference memory errors in the CPF group, indicating an abnormal dependence on 5HT systems. Our results indicate that neonatal CPF exposures, classically thought to be subtoxic, produce lasting changes in 5HT-related behaviors that resemble animal models of depression.
Collapse
Affiliation(s)
- Justin E Aldridge
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27701, USA
| | | | | | | |
Collapse
|
131
|
Garcia SJ, Seidler FJ, Slotkin TA. Developmental neurotoxicity of chlorpyrifos: targeting glial cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2005; 19:455-461. [PMID: 21783512 DOI: 10.1016/j.etap.2004.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The pesticide chlorpyrifos (CPF) causes neurobehavioral damage, even at doses that do not elicit acute cholinergic toxicity. CPF disrupts the developing brain during glial proliferation and differentiation. Since glial cells play critical roles in brain development and function, we hypothesized that CPF neurotoxicity involves alteration of glial cell development. CPF effects in C6 glioma cells mirrored effects in the intact brain: inhibited DNA synthesis; interfered with adenylyl cyclase (AC) signaling; obstructed DNA binding to transcription factors involved in cell differentiation; and enhanced reactive oxygen species (ROS) formation. CPF was administered to prenatal and neonatal rats and examined for markers of astrocytes, oligodendrocytes, and neurons. Widespread effects were elicited by exposure during the peak period of gliogenesis. Males were preferentially targeted during postnatal exposures while females experienced delayed effects following gestational exposure, commensurate with behavioral outcomes. Alterations in glial cell development contribute to CPF neurotoxicity, extending vulnerability to myelination, synaptic plasticity, and architectural modeling, which continue into adolescence.
Collapse
Affiliation(s)
- Stephanie J Garcia
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, NC 27710, USA
| | | | | |
Collapse
|
132
|
Roy TS, Sharma V, Seidler FJ, Slotkin TA. Quantitative morphological assessment reveals neuronal and glial deficits in hippocampus after a brief subtoxic exposure to chlorpyrifos in neonatal rats. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 155:71-80. [PMID: 15763277 DOI: 10.1016/j.devbrainres.2004.12.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 12/08/2004] [Accepted: 12/09/2004] [Indexed: 11/22/2022]
Abstract
Neurochemical and behavioral studies indicate that the widely used organophosphorus insecticide, chlorpyrifos (CPF), evokes neurobehavioral teratogenicity with a wide window of vulnerability, ranging from embryonic life through postnatal development. Few studies have detailed morphological damage that corresponds to the operational deficits. We administered 5 mg/kg of CPF sc daily on postnatal days (PN) 11-14, a regimen that is devoid of systemic toxicity, but that elicits long-term cognitive impairment and disruption of cholinergic, catecholaminergic, and serotonergic synaptic function. On PN15 and 20, we conducted quantitative morphologic examinations of neurons and glia in CA1, CA3, and dentate gyrus regions of the hippocampus. Although hippocampal morphology after CPF exposure was normal on gross observation, morphometric analysis revealed a significant overall reduction in the total number of neurons and glia. Superimposed on this basic effect, CPF elicited a delayed-onset increase in the neuron/glia ratio that emerged by PN20, connoting selective gliotoxicity. The alterations in cell numbers were accompanied by significant perikaryal swelling and by enhanced development of astrocytic processes. Layer thickness also showed delayed-onset effects of CPF, with thinning of the CA1 and CA3 layers and enlargement of the dentate gyrus. Our results indicate that there are subtle morphological changes in the juvenile rat brain after neonatal CPF exposure that are detectable only with quantitative analysis and that correlate with regional and cell-specific targets identified earlier in neurochemical studies. The simultaneous targeting of neurons and glia by CPF is likely to play an important role in its developmental neurotoxicant effects.
Collapse
Affiliation(s)
- Tara Sankar Roy
- Department of Pharmacology and Cancer Biology, Box 3813 DUMC, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
133
|
Aldridge JE, Meyer A, Seidler FJ, Slotkin TA. Developmental exposure to terbutaline and chlorpyrifos: pharmacotherapy of preterm labor and an environmental neurotoxicant converge on serotonergic systems in neonatal rat brain regions. Toxicol Appl Pharmacol 2005; 203:132-44. [PMID: 15710174 DOI: 10.1016/j.taap.2004.08.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 08/04/2004] [Indexed: 11/29/2022]
Abstract
Developmental exposure to unrelated neurotoxicants can nevertheless produce similar neurobehavioral outcomes. We examined the effects of developmental exposure to terbutaline, a tocolytic beta2-adrenoceptor agonist used to arrest preterm labor, and chlorpyrifos (CPF), a widely used organophosphate pesticide, on serotonin (5HT) systems. Treatments were chosen to parallel periods typical of human developmental exposures, terbutaline (10 mg/kg) on postnatal days (PN) 2-5 and CPF (5 mg/kg) on PN11-14, with assessments conducted on PN45, comparing each agent alone as well as sequential administration of both. Although neither treatment affected growth or viability, each elicited similar alterations in factors that are critical to the function of the 5HT synapse: 5HT1A receptors, 5HT2 receptors, and the presynaptic 5HT transporter (5HTT). Either agent elicited global increases in 5HT receptors and the 5HTT in brain regions possessing 5HT cell bodies (midbrain, brainstem) as well as in the hippocampus, which contains 5HT projections. For both terbutaline and CPF, males were affected more than females, although there were some regional disparities in the sex selectivity between the two agents. Both altered 5HT receptor-mediated cell signaling, suppressing stimulatory effects on adenylyl cyclase and enhancing inhibitory effects. When animals were exposed sequentially to both agents, the outcomes were no more than additive and, for many effects, less than additive, suggesting convergence of the two agents on a common set of developmental mechanisms. Our results indicate that 5HT systems represent a target for otherwise unrelated neuroteratogens.
Collapse
MESH Headings
- Adenylyl Cyclase Inhibitors
- Adenylyl Cyclases/metabolism
- Animals
- Animals, Newborn
- Brain/drug effects
- Brain/metabolism
- Chlorpyrifos/administration & dosage
- Chlorpyrifos/toxicity
- Female
- Insecticides/administration & dosage
- Insecticides/toxicity
- Male
- Membrane Glycoproteins/metabolism
- Membrane Transport Proteins/metabolism
- Nerve Tissue Proteins/metabolism
- Pregnancy
- Prenatal Exposure Delayed Effects
- Rats
- Rats, Sprague-Dawley
- Receptors, Serotonin, 5-HT1/drug effects
- Receptors, Serotonin, 5-HT1/metabolism
- Receptors, Serotonin, 5-HT2/drug effects
- Receptors, Serotonin, 5-HT2/metabolism
- Serotonin
- Serotonin Plasma Membrane Transport Proteins
- Sex Factors
- Teratogens/toxicity
- Terbutaline/administration & dosage
- Terbutaline/toxicity
- Tocolytic Agents/administration & dosage
- Tocolytic Agents/toxicity
Collapse
Affiliation(s)
- Justin E Aldridge
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
134
|
Meyer A, Seidler FJ, Aldridge JE, Slotkin TA. Developmental exposure to terbutaline alters cell signaling in mature rat brain regions and augments the effects of subsequent neonatal exposure to the organophosphorus insecticide chlorpyrifos. Toxicol Appl Pharmacol 2005; 203:154-66. [PMID: 15710176 DOI: 10.1016/j.taap.2004.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Accepted: 08/12/2004] [Indexed: 11/25/2022]
Abstract
Exposure to apparently unrelated neurotoxicants can nevertheless converge on common neurodevelopmental events. We examined the long-term effects of developmental exposure of rats to terbutaline, a beta-adrenoceptor agonist used to arrest preterm labor, and the organophosphorus insecticide chlorpyrifos (CPF) separately and together. Treatments mimicked the appropriate neurodevelopmental stages for human exposures: terbutaline on postnatal days (PN) 2-5 and CPF on PN11-14, with assessments conducted on PN45. Although neither treatment affected growth or viability, each elicited alterations in CNS cell signaling mediated by adenylyl cyclase (AC), a transduction pathway shared by numerous neuronal and hormonal signals. Terbutaline altered signaling in the brainstem and cerebellum, with gender differences particularly notable in the cerebellum (enhanced AC in males, suppressed in females). By itself, CPF exposure elicited deficits in AC signaling in the midbrain, brainstem, and striatum. However, sequential exposure to terbutaline followed by CPF produced larger alterations and involved a wider spectrum of brain regions than were obtained with either agent alone. In the cerebral cortex, adverse effects of the combined treatment intensified between PN45 and PN60, suggesting that exposures alter the long-term program for development of synaptic communication, leading to alterations in AC signaling that emerge even after adolescence. These findings indicate that terbutaline, like CPF, is a developmental neurotoxicant, and reinforce the idea that its use in preterm labor may create a subpopulation that is sensitized to long-term CNS effects of organophosphorus insecticides.
Collapse
Affiliation(s)
- Armando Meyer
- Centro de Estudos da Saúde do Trabalhador e Ecologia Humana (AM), Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
135
|
Nguon K, Ladd B, Baxter MG, Sajdel-Sulkowska EM. Sexual dimorphism in cerebellar structure, function, and response to environmental perturbations. PROGRESS IN BRAIN RESEARCH 2005; 148:341-51. [PMID: 15661202 DOI: 10.1016/s0079-6123(04)48027-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sexual dimorphism of CNS structure and function has been observed in humans and animals, but remains relatively unrecognized in the context of the cerebellum. Recent research in our laboratory has examined whether these gender differences extend to cerebellar structure and function, as well as the impact of environmental factors on the developing cerebellum. Perinatal exposure to both chemical and physical perturbations in the environment (in our experiments, PCBs or hypergravity) affects growth, neurodevelopment, and motor coordination differently in males and females. These neurodevelopmental and behavioral effects are accompanied by sex-related changes in cerebellar mass and cerebellar protein expression. Exposure to chemical toxins (PCBs) resulted in more dramatic neurodevelopmental and behavioral changes in male neonates. It is possible that gender-related differences in male and female cerebellar structure and function are related to sex-specific development of the cerebellum and sex-specific distribution of specific receptors, local synthesis of trophic factors, and maturation of the pituitary hypophesial axis. These sex-related differences may underlie the sex-specific preponderance of certain neuropsychiatric disorders, and must be incorporated in the design of future basic and clinical investigations.
Collapse
Affiliation(s)
- K Nguon
- Department of Psychiatry, Brigham and Women's Hosp., 221 Longwood Ave., Boston, MA 02115, USA
| | | | | | | |
Collapse
|
136
|
Slotkin TA. Cholinergic systems in brain development and disruption by neurotoxicants: nicotine, environmental tobacco smoke, organophosphates. Toxicol Appl Pharmacol 2004; 198:132-51. [PMID: 15236950 DOI: 10.1016/j.taap.2003.06.001] [Citation(s) in RCA: 402] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2003] [Accepted: 06/09/2003] [Indexed: 12/22/2022]
Abstract
Acetylcholine and other neurotransmitters play unique trophic roles in brain development. Accordingly, drugs and environmental toxicants that promote or interfere with neurotransmitter function evoke neurodevelopmental abnormalities by disrupting the timing or intensity of neurotrophic actions. The current review discusses three exposure scenarios involving acetylcholine systems: nicotine from maternal smoking during pregnancy, exposure to environmental tobacco smoke (ETS), and exposure to the organophosphate insecticide, chlorpyrifos (CPF). All three have long-term, adverse effects on specific processes involved in brain cell replication and differentiation, synaptic development and function, and ultimately behavioral performance. Many of these effects can be traced to the sequence of cellular events surrounding the trophic role of acetylcholine acting on its specific cellular receptors and associated signaling cascades. However, for chlorpyrifos, additional noncholinergic mechanisms appear to be critical in establishing the period of developmental vulnerability, the sites and type of neural damage, and the eventual outcome. New findings indicate that developmental neurotoxicity extends to late phases of brain maturation including adolescence. Novel in vitro and in vivo exposure models are being developed to uncover heretofore unsuspected mechanisms and targets for developmental neurotoxicants.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
137
|
Slotkin TA. Guidelines for Developmental Neurotoxicity and Their Impact on Organophosphate Pesticides: A Personal View from an Academic Perspective. Neurotoxicology 2004; 25:631-40. [PMID: 15183016 DOI: 10.1016/s0161-813x(03)00050-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2002] [Accepted: 03/03/2003] [Indexed: 11/26/2022]
Abstract
The appropriate regulation of drugs, chemicals and environmental contaminants requires the establishment of clear and accepted guidelines for developmental neurotoxicity. Ideally, these guidelines should encompass the ability to assess widely disparate classes of compounds through routine tests, with high throughput and low cost. Increasingly, however, the progress in primary research from academic laboratories deviates from this goal, focusing instead on categorizing novel effects of toxicants, development of new testing paradigms, and extension of techniques into molecular biology. The differing objectives of academic science as opposed to those of regulatory agencies or industry, are driven in part, by the priorities of the agencies that fund primary research. Recent work on organophosphate pesticides (OPs) such as chlorpyrifos (CPF) illustrate this dichotomy. Originally, OPs were thought to affect brain development through their ability to elicit cholinesterase inhibition and consequent cholinergic hyperstimulation. This common mechanism allowed for parallels to be drawn between standard measures of systemic toxicity, gross morphological examinations, and exposure testing utilizing an easily-assessed surrogate endpoint, plasma cholinesterase activity. In the past decade, however, it has become increasingly evident that CPF, and probably other OPs, have direct effects on cellular processes that are unique to brain development, and that these effects are mechanistically unrelated to inhibition of cholinesterase. The identification and pursuit of these mechanisms and their consequences for brain development represent new and exciting scientific findings, while at the same obscuring the ability to sustain a uniform approach to neurotoxicity guidelines or biomarkers of exposure. In the future, a new set of test paradigms, relying on primary work in cell culture, invertebrates, or non-mammalian models, followed by more targeted examinations of specific processes in mammalian models, may unite cutting-edge academic research with the need for establishing flexible guidelines for developmental neurotoxicity.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
138
|
Rhodes MC, Seidler FJ, Qiao D, Tate CA, Cousins MM, Slotkin TA. Does pharmacotherapy for preterm labor sensitize the developing brain to environmental neurotoxicants? Cellular and synaptic effects of sequential exposure to terbutaline and chlorpyrifos in neonatal rats. Toxicol Appl Pharmacol 2004; 195:203-17. [PMID: 14998686 DOI: 10.1016/j.taap.2003.11.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Accepted: 11/10/2003] [Indexed: 11/29/2022]
Abstract
It is increasingly clear that environmental toxicants target specific human subpopulations. In the current study, we examined the effects of prior developmental exposure to a beta(2)-adrenoceptor agonist used to arrest preterm labor, terbutaline, on the subsequent effects of exposure to the organophosphate insecticide, chlorpyrifos (CPF). Neonatal rats were given terbutaline on postnatal day (PN) 2-5, followed by CPF on PN11-14. Although neither treatment affected growth or viability, each elicited alterations in indices of brain cell differentiation and cholinergic innervation in the immediate posttreatment period (PN15), persisting into adulthood (PN60). Biomarkers of brain cell number (DNA concentration and content), cell size (protein/DNA ratio) and neuritic projections (membrane/total protein) were affected by either agent alone, with patterns consistent with neuronal and neuritic damage accompanied by reactive gliosis. The combined exposure augmented these effects by both additive and synergistic mechanisms. Similarly, choline acetyltransferase (ChAT), a constitutive marker for cholinergic nerve terminals, was affected only by combined exposure to both terbutaline and CPF. Indices of cholinergic synaptic activity [hemicholinium-3 and m(2)-muscarinic acetylcholine receptor binding] showed impairment after exposure to either terbutaline or CPF but the effects were more severe when the treatments were combined. These findings suggest that terbutaline, like CPF, is a developmental neurotoxicant, and that its use in the therapy of preterm labor may create a subpopulation that is sensitized to the adverse neural effects of a subsequent exposure to organophosphate insecticides.
Collapse
Affiliation(s)
- Melissa C Rhodes
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
139
|
Vidair CA. Age dependence of organophosphate and carbamate neurotoxicity in the postnatal rat: extrapolation to the human. Toxicol Appl Pharmacol 2004; 196:287-302. [PMID: 15081274 DOI: 10.1016/j.taap.2003.12.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Accepted: 12/18/2003] [Indexed: 10/26/2022]
Abstract
One important aspect of risk assessment for the organophosphate and carbamate pesticides is to determine whether their neurotoxicity occurs at lower dose levels in human infants compared to adults. Because these compounds probably exert their neurotoxic effects through the inhibition of acetylcholinesterase (AChE), the above question can be narrowed to whether the cholinesterase inhibition and neurotoxicity they produce is age-dependent, both in terms of the effects produced and potency. The rat is the animal model system most commonly used to address these issues. This paper first discusses the adequacy of the postnatal rat to serve as a model for neurodevelopment in the postnatal human, concluding that the two species share numerous pathways of postnatal neurodevelopment, and that the rat in the third postnatal week is the neurodevelopmental equivalent of the newborn human. Then, studies are discussed in which young and adult rats were dosed by identical routes with organophosphates or carbamates. Four pesticides were tested in rat pups in their third postnatal week: aldicarb, chlorpyrifos, malathion, and methamidophos. The first three, but not methamidophos, caused neurotoxicity at dose levels that ranged from 1.8- to 5.1-fold lower (mean 2.6-fold lower) in the 2- to 3-week-old rat compared to the adult. This estimate in the rat, based on a limited data set of three organophosphates and a single carbamate, probably represents the minimum difference in the neurotoxicity of an untested cholinesterase-inhibiting pesticide that should be expected between the human neonate and adult. For the organophosphates, the greater sensitivity of postnatal rats, and, by analogy, that expected for human neonates, is correlated with generally lower levels of the enzymes involved in organophosphate deactivation.
Collapse
Affiliation(s)
- Charles A Vidair
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA 94612, USA.
| |
Collapse
|
140
|
Roy TS, Seidler FJ, Slotkin TA. Morphologic effects of subtoxic neonatal chlorpyrifos exposure in developing rat brain: regionally selective alterations in neurons and glia. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 148:197-206. [PMID: 14766197 DOI: 10.1016/j.devbrainres.2003.12.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/18/2003] [Indexed: 10/26/2022]
Abstract
The widely used organophosphate insecticide, chlorpyrifos (CPF), elicits neurobehavioral teratogenesis with exposure windows ranging from the embryonic neural tube stage through postnatal development. To explore the morphologic changes occurring in late-stage exposure, newborn rats were given 5 mg/kg of CPF s.c. daily on postnatal days (PN) 11-14, a regimen that is devoid of systemic toxicity, but that elicits long-term cognitive impairment. On PN15 and 20, we examined the septal nucleus, striatum and somatosensory cortex. Across all three regions, CPF elicited a significant decrease in the number of glial cells. Superimposed on this basic pattern, there were region-specific alterations in the number and type of neurons, and neuronal perikaryal dimensions. In the septal nucleus, the CPF group exhibited an increase in the number of neurons on PN20, representing a delay in the normal maturational decline; there was a parallel decrease in the glial/neuronal ratio. In the striatum, the number of neurons per unit area was reduced in the CPF group, accompanied by perikaryal hypertrophy, as evidenced by an increase in the average neuronal cell diameter. In the somatosensory cortex, the distribution of cell sizes indicated a decrease in the proportion of small, nonpyramidal cells. Thus, there are subtle morphological changes in the juvenile rat brain after neonatal CPF exposure that are detectable with quantitative analysis and that correlate with later emergence of behavioral alterations. Furthermore, the current findings support the hypothesis that CPF interferes with gliogenesis, a relatively late event in brain development; accordingly, the vulnerable period for adverse effects of CPF is likely to extend into childhood or adolescence.
Collapse
Affiliation(s)
- Tara Sankar Roy
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Box 3813 DUMC, Durham, NC 27710, USA
| | | | | |
Collapse
|
141
|
Qiao D, Seidler FJ, Abreu-Villaça Y, Tate CA, Cousins MM, Slotkin TA. Chlorpyrifos exposure during neurulation: cholinergic synaptic dysfunction and cellular alterations in brain regions at adolescence and adulthood. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 148:43-52. [PMID: 14757517 DOI: 10.1016/j.devbrainres.2003.10.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The developmental neurotoxicity of chlorpyrifos (CPF) involves multiple mechanisms, thus rendering the immature brain susceptible to adverse effects over a wide window of vulnerability. Earlier work indicated that CPF exposure at the neural tube stage elicits apoptosis and disrupts mitotic patterns in the brain primordium but that rapid recovery ensues before birth. In the current study, we assessed whether defects in cholinergic synaptic activity emerge later in development. CPF was given to pregnant rats on gestational days 9-12, using regimens devoid of overt maternal or fetal toxicity. We then examined subsequent development of acetylcholine systems and compared the effects to those on general biomarkers of cell development. Choline acetyltransferase (ChAT), a constitutive marker for cholinergic nerve terminals, was increased in the hippocampus and striatum in adolescence and adulthood. In contrast, hemicholinium-3 (HC-3) binding to the presynaptic choline transporter, an index of nerve impulse activity, was markedly subnormal. Furthermore, m2-muscarinic cholinergic receptor binding was significantly reduced, instead of showing the expected compensatory upregulation for reduced neural input. CPF also elicited delayed-onset alterations in biomarkers of cell packing density, cell number, cell size and neuritic projections, involving brain regions both with and without reductions in indices of cholinergic activity. In combination with earlier results, the current findings indicate that the developing brain, and especially the hippocampus, is adversely affected by CPF regardless of whether exposure occurs early or late in brain development, and that defects emerge in adolescence or adulthood even in situations where normative values are initially restored in the immediate post-exposure period.
Collapse
Affiliation(s)
- Dan Qiao
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Box 3813 DUMC Rm c162, LSRC Building Research Drive, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
142
|
Ricceri L, Markina N, Valanzano A, Fortuna S, Cometa MF, Meneguz A, Calamandrei G. Developmental exposure to chlorpyrifos alters reactivity to environmental and social cues in adolescent mice. Toxicol Appl Pharmacol 2003; 191:189-201. [PMID: 13678652 DOI: 10.1016/s0041-008x(03)00229-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neonatal mice were treated daily on postnatal days (pnds) 1 through 4 or 11 through 14 with the organophosphate pesticide chlorpyrifos (CPF), at doses (1 or 3 mg/kg) that do not evoke systemic toxicity. Brain acetylcholinesterase (AChE) activity was evaluated within 24 h from termination of treatments. Pups treated on pnds 1-4 underwent ultrasonic vocalization tests (pnds 5, 8, and 11) and a homing test (orientation to home nest material, pnd 10). Pups in both treatment schedules were then assessed for locomotor activity (pnd 25), novelty-seeking response (pnd 35), social interactions with an unfamiliar conspecific (pnd 45), and passive avoidance learning (pnd 60). AChE activity was reduced by 25% after CPF 1-4 but not after CPF 11-14 treatment. CPF selectively affected only the G(4) (tetramer) molecular isoform of AChE. Behavioral analysis showed that early CPF treatment failed to affect neonatal behaviors. Locomotor activity on pnd 25 was increased in 11-14 CPF-treated mice at both doses, and CPF-treated animals in both treatment schedules were more active when exposed to environmental novelty in the novelty-seeking test. All CPF-treated mice displayed more agonistic responses, and such effect was more marked in male mice exposed to the low CPF dose on pnds 11-14. Passive avoidance learning was not affected by CPF. These data indicate that developmental exposure to CPF induces long-term behavioral alterations in the mouse species and support the involvement of neural systems in addition to the cholinergic system in the delayed behavioral toxicity of CPF.
Collapse
Affiliation(s)
- Laura Ricceri
- Laboratorio di Fisiopatologia, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
143
|
Costa LG, Cole TB, Jarvik GP, Furlong CE. Functional genomic of the paraoxonase (PON1) polymorphisms: effects on pesticide sensitivity, cardiovascular disease, and drug metabolism. Annu Rev Med 2003; 54:371-92. [PMID: 12525679 DOI: 10.1146/annurev.med.54.101601.152421] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review focuses on the functional genomics of the human paraoxonase (PON1) polymorphisms. Levels and genetic variability of the PON1 position 192 isoforms (Gln/Arg) influence sensitivity to specific insecticides or nerve agents and risk for cardiovascular disease. A more recent area of investigation, the role of PON1 in drug metabolism, is also discussed. We emphasize the importance of considering both PON1 isoforms and PON1 levels in disease/sensitivity association studies.
Collapse
Affiliation(s)
- Lucio G Costa
- Department of Environmental Health, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | |
Collapse
|
144
|
Zayed SMAD, Farghaly M, El-Maghraby S. Fate of 14C-chlorpyrifos in stored soybeans and its toxicological potential to mice. Food Chem Toxicol 2003; 41:767-72. [PMID: 12738182 DOI: 10.1016/s0278-6915(03)00007-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Grains of soybeans were treated with [ethyl-1-4C]chlorpyrifos at a dose of 15 ppm and its triplet. During the 30-week storage period, the penetration and distribution of insecticide residues were studied. The amount of surface residues on stored soybeans, internal extractables and bound residues were determined. Surface residues were found to decrease with the increase in time of storage, whereas internal residues showed a gradual increase with time to reach 40-52% of applied dose after 30 weeks. Non-extractable residues showed a relatively slow but definite increase with time. The degradation products include, in addition to the parent insecticide which constitutes 50% of the total residues, the oxygen-analogue of chlorpyrifos, desethyl chlorpyrifos and 3,5,6-trichloropyridinol. Feeding mice for 90 days with a diet mixed with total internal chlorpyrifos residues in stored soybeans led to considerably inhibited plasma and red blood cells-cholinesterase activity by 78 and 46%, respectively, during the experimental period. Blood picture, liver and kidney function of treated mice were significantly affected during the feeding period.
Collapse
|
145
|
Dam K, Seidler FJ, Slotkin TA. Transcriptional biomarkers distinguish between vulnerable periods for developmental neurotoxicity of chlorpyrifos: Implications for toxicogenomics. Brain Res Bull 2003; 59:261-5. [PMID: 12464398 DOI: 10.1016/s0361-9230(02)00874-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The widespread use of organophosphate insecticides has raised concern about neurotoxic effects of fetal and childhood exposures. Studies in rats show that chlorpyrifos (CPF) elicits CNS cell damage, in part, through noncholinergic mechanisms that involve alterations in the expression and function of nuclear transcription factors that control cell replication, differentiation, and apoptosis. In the current study, we examined mRNAs encoding c-fos and p53, in order to determine if changes in these factors correspond to the differential susceptibility of forebrain neurons and glia, when exposure is shifted from the early neonatal period (postnatal days 1-4) to a later period (days 11-14). The early treatment paradigm elicited a significant elevation of c-fos whereas the later treatment suppressed c-fos. Neither regimen altered forebrain p53 expression, but values were elevated in the cerebellum following the later treatment; the cerebellum develops later than the forebrain and has its peak of neurogenesis postnatally. Our results suggest that a wider profiling of mRNAs using genomic arrays would enable screening for developmental neurotoxicants, but that regional and temporal profiles will be required in order to draw mechanistic conclusions or to identify critical periods of vulnerability.
Collapse
Affiliation(s)
- Kristina Dam
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
146
|
Costa LG, Richter RJ, Li WF, Cole T, Guizzetti M, Furlong CE. Paraoxonase (PON 1) as a biomarker of susceptibility for organophosphate toxicity. Biomarkers 2003; 8:1-12. [PMID: 12519632 DOI: 10.1080/13547500210148315] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Paraoxonase (PON1) is an A-esterase capable of hydrolysing the active metabolites (oxons) of a number of organophosphorus (OP) insecticides such as parathion, diazinon and chlorpyrifos. PON1 activity is highest in liver and plasma, and among animal species significant differences exist, with birds and rabbits displaying very low and high activity, respectively. Human PON1 has two polymorphisms in the coding region (Q192R and L55M) and five polymorphisms in the promoter region. The Q192R polymorphism imparts different catalytic activity toward some OP substrates, while the polymorphism at position -108 (C/T) is the major contributor to differences in the level of PON1 expression. Animal studies have shown that PON1 is an important determinant of OP toxicity, with animal species with a low PON1 activity having an increased sensitivity to OPs. Administration of exogenous PON1 to rats or mice protects them from the toxicity of OPs. PON1 knockout mice display a high sensitivity to the toxicity of diazoxon and chlorpyrifos oxon, but not paraoxon. In vitro assayed catalytic efficiencies of purified PON(192) isoforms for hydrolysis of specific oxon substrates accurately predict the degree of in vivo protection afforded by each isoform. Low PON1 activity may also contribute to the higher sensitivity of newborns to OP toxicity.
Collapse
Affiliation(s)
- Lucio G Costa
- Department of Environmental Health, University of Washington, Seattle, Washington 98105-6099, USA.
| | | | | | | | | | | |
Collapse
|
147
|
Levin ED, Chrysanthis E, Yacisin K, Linney E. Chlorpyrifos exposure of developing zebrafish: effects on survival and long-term effects on response latency and spatial discrimination. Neurotoxicol Teratol 2003; 25:51-7. [PMID: 12633736 DOI: 10.1016/s0892-0362(02)00322-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chlorpyrifos (CPF) is a widely used insecticide, which has been shown to interfere with neurobehavioral development. Rat models have been key in demonstrating that prenatal CPF exposure causes choice accuracy deficits and motor alterations, which persist into adulthood. Complementary nonmammalian models can be useful in determining the molecular mechanisms underlying the persisting behavioral effects of developmental CPF exposure. Zebrafish with their clear chorion and extensive developmental information base provide an excellent model for assessment of molecular processes of toxicant impacted neurodevelopment. To facilitate the use of the zebrafish model and to compare it to the more typical rodent models, the behavioral phenotype of CPF toxicity in zebrafish must be well characterized. Our laboratory has developed methods for assessing spatial discrimination learning in zebrafish, which can differentiate response latency from choice accuracy in a three chambered fish tank. Low and high doses of CPF (10 and 100 ng/ml on days 1-5 postfertilization) both had significant persisting effects on both spatial discrimination and response latency over 18 weeks of testing. The high, but not the low dose, significantly accelerated mortality rates of the fish during the study from 20-38 weeks of age. Developmental exposure to either 10 or 100 ng/ml of CPF caused significant spatial discrimination impairments in zebrafish when they were adults. The impairment caused by 10 ng/ml was seen during early but not later testing, while the impairment caused by 100 ng/ml became more pronounced with continued testing. The higher dose caused a more pervasive impairment. The 10 and 100 ng/ml doses had opposite effects on response latency. The low 10 ng/ml dose significantly slowed response latency, while the high 100 ng/ml dose significant increased response latency. Both of these effects diminished with continued testing. CPF exposure during early development caused clear behavioral impairments, which lasted throughout adulthood in zebrafish. The molecular mechanisms by which early developmental CPF exposure produces these behavioral impairments expressed in adulthood can now be studied in the zebrafish model.
Collapse
Affiliation(s)
- Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Box #3412, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
148
|
Levin ED, Addy N, Baruah A, Elias A, Christopher NC, Seidler FJ, Slotkin TA. Prenatal chlorpyrifos exposure in rats causes persistent behavioral alterations. Neurotoxicol Teratol 2002; 24:733-41. [PMID: 12460655 DOI: 10.1016/s0892-0362(02)00272-6] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Use of chlorpyrifos (CPF) has been curtailed due to its developmental neurotoxicity. In rats, postnatal CPF administration produces lasting changes in cognitive performance, but less information is available about the effects of prenatal exposure. We administered CPF to pregnant rats on gestational days (GD) 17-20, a peak period of neurogenesis, using doses (1 or 5 mg/kg/day) below the threshold for fetal growth impairment. We then evaluated performance in the T-maze, Figure-8 apparatus and 16-arm radial maze, beginning in adolescence and continuing into adulthood. CPF elicited initial locomotor hyperactivity in the T-maze. Females showed slower habituation in the Fig. 8 maze; no effects were seen in males. In the radial-arm maze, females showed impaired choice accuracy for both working and reference memory and again, males were unaffected. Despite the deficits, all animals eventually learned the maze with continued training. At that point, we challenged them with the muscarinic antagonist, scopolamine, to determine the dependence of behavioral performance on cholinergic function. Whereas control females showed impairment with scopolamine, CPF-exposed females did not, implying that the delayed acquisition of the task had been accomplished through alternative mechanisms. The differences were specific to muscarinic circuits, as control and CPF groups responded similarly to the nicotinic antagonist, mecamylamine. Surprisingly, adverse effects of CPF were greater in the group receiving 1 mg/kg as compared to 5 mg/kg. Promotional effects of acetylcholine (ACh) on cell differentiation may thus help to offset CPF-induced developmental damage that occurs through other noncholinergic mechanisms. Our results indicate that late prenatal exposure to CPF induces long-term changes in cognitive performance that are distinctly gender-selective. Additional defects may be revealed by similar strategies that subject the animals to acute challenges, thus, uncovering the adaptive mechanisms that maintain basal performance.
Collapse
Affiliation(s)
- Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
149
|
Slotkin TA, Tate CA, Cousins MM, Seidler FJ. Functional alterations in CNS catecholamine systems in adolescence and adulthood after neonatal chlorpyrifos exposure. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 133:163-73. [PMID: 11882346 DOI: 10.1016/s0165-3806(02)00284-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chlorpyrifos (CPF), one of the most widely used pesticides, is a neurobehavioral teratogen in animals. We administered CPF to neonatal rats on postnatal days (PN) 1-4 (1 mg/kg) or PN11-14 (5 mg/kg), regimens devoid of overt systemic toxicity. We then examined the impact on catecholaminergic systems in adolescence (PN30) and adulthood (PN60), assessing basal neurotransmitter content and transmitter utilization rates (turnover) in brain regions comprising the major noradrenergic and dopaminergic projections. Although CPF had only sporadic effects on basal norepinephrine and dopamine content, it profoundly suppressed norepinephrine turnover across multiple regions, indicative of net reductions in presynaptic activity. Dopamine turnover showed less consistent effects, with subnormal turnover in some regions and activation in others. We also evaluated whether CPF exposure altered the ability of catecholamine systems to respond to acute cholinergic stimulation, elicited by administration of a single challenge dose of nicotine. In the normal brain, nicotine increases the utilization of norepinephrine and dopamine. With only a few exceptions, animals receiving neonatal CPF exposure showed lasting desensitization of the nicotine response; not only was the activation by nicotine blunted in the CPF group, but in some regions the nicotine response was reversed, eliciting a reduction in transmitter turnover. These results indicate that neonatal CPF exposure produces widespread deficiencies in catecholaminergic synaptic function that persist into adulthood, and that are best revealed by dynamic measures of synaptic activity and responsiveness, as opposed to static markers like basal transmitter levels. The effects seen here are likely to contribute to alterations in behavioral performance that persist or emerge long after the termination of CPF exposure.
Collapse
Affiliation(s)
- T A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Box 3813 DUMC, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
150
|
Garcia SJ, Seidler FJ, Qiao D, Slotkin TA. Chlorpyrifos targets developing glia: effects on glial fibrillary acidic protein. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 133:151-61. [PMID: 11882345 DOI: 10.1016/s0165-3806(02)00283-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The organophosphate pesticide, chlorpyrifos (CPF), is a developmental neurotoxicant. In cell cultures, CPF affects gliotypic cells to a greater extent than neuronotypic cells, suggesting that glial development is a specific target. We administered CPF to developing rats and examined the levels of glial fibrillary acidic protein (GFAP), an astrocytic marker. Prenatal CPF exposure (gestational days 17-20) elicited an increase in GFAP levels in fetal brain, but the effect was seen only at high doses that elicited maternal and fetal systemic toxicity. Early postnatal (PN) CPF treatment (PN1-4) elicited effects only in the cerebellum of male rats; GFAP was suppressed initially (PN5) and showed a rebound elevation (PN10) before returning to normal values by PN30. In contrast, when we administered CPF during the peak of gliogenesis and glial cell differentiation (PN11-14), GFAP was initially decreased across all brain regions and in both sexes; in males, subsequent elevations were seen on PN30, with the largest effect in the striatum; females also showed an increase in striatal GFAP. Our results indicate that CPF disrupts the pattern of glial development in vivo, with the maximum effect corresponding to the peak period of gliogenesis and glial cell differentiation. As glia are responsible for axonal guidance, synaptogenesis and neuronal nutrition, glial targeting suggests that these late-occurring developmental processes are vulnerable to CPF, extending the critical period for susceptibility into stages of synaptic plasticity, myelination, and architectural modeling of the developing brain.
Collapse
Affiliation(s)
- Stephanie J Garcia
- Department of Pharmacology and Cancer Biology, Box 3813, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|