101
|
Haddock AN, Labuzan SA, Haynes AE, Hayes CS, Kakareka KM, Waddell DS. Dual-specificity phosphatase 4 is upregulated during skeletal muscle atrophy and modulates extracellular signal-regulated kinase activity. Am J Physiol Cell Physiol 2019; 316:C567-C581. [DOI: 10.1152/ajpcell.00234.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Skeletal muscle atrophy results from disparate physiological conditions, including denervation, corticosteroid treatment, and aging. The purpose of this study was to describe and characterize the function of dual-specificity phosphatase 4 (Dusp4) in skeletal muscle after it was found to be induced in response to neurogenic atrophy. Quantitative PCR and Western blot analysis revealed that Dusp4 is expressed during myoblast proliferation but rapidly disappears as muscle cells differentiate. The Dusp4 regulatory region was cloned and found to contain a conserved E-box element that negatively regulates Dusp4 reporter gene activity in response to myogenic regulatory factor expression. In addition, the proximal 3′-untranslated region of Dusp4 acts in an inhibitory manner to repress reporter gene activity as muscle cells progress through the differentiation process. To determine potential function, Dusp4 was fused with green fluorescent protein, expressed in C2C12 cells, and found to localize to the nucleus of proliferating myoblasts. Furthermore, Dusp4 overexpression delayed C2C12 muscle cell differentiation and resulted in repression of a MAP kinase signaling pathway reporter gene. Ectopic expression of a Dusp4 dominant negative mutant blocked muscle cell differentiation and attenuated MAP kinase signaling by preferentially targeting the ERK1/2 branch, but not the p38 branch, of the MAP kinase signaling cascade in skeletal muscle cells. The findings presented in this study provide the first description of Dusp4 in skeletal muscle and suggest that Dusp4 may play an important role in the regulation of muscle cell differentiation by regulating MAP kinase signaling.
Collapse
Affiliation(s)
- Ashley N. Haddock
- Department of Biology, University of North Florida, Jacksonville, Florida
| | - Sydney A. Labuzan
- Department of Biology, University of North Florida, Jacksonville, Florida
| | - Amy E. Haynes
- Department of Biology, University of North Florida, Jacksonville, Florida
| | - Caleb S. Hayes
- Department of Biology, University of North Florida, Jacksonville, Florida
| | - Karina M. Kakareka
- Department of Biology, University of North Florida, Jacksonville, Florida
| | - David S. Waddell
- Department of Biology, University of North Florida, Jacksonville, Florida
| |
Collapse
|
102
|
Lv W, Wu J, Xu Z, Dai H, Ma Z, Wang Z. The putative histone-like transcription factor FgHltf1 is required for vegetative growth, sexual reproduction, and virulence in Fusarium graminearum. Curr Genet 2019; 65:981-994. [DOI: 10.1007/s00294-019-00953-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022]
|
103
|
In silico analysis and gene expression of heat stress responses genes in Hordeum vulgare L. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
104
|
Panahi B, Mohammadi SA, Ruzicka K, Abbasi Holaso H, Zare Mehrjerdi M. Genome-wide identification and co-expression network analysis of nuclear factor-Y in barley revealed potential functions in salt stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:485-495. [PMID: 30956430 PMCID: PMC6419857 DOI: 10.1007/s12298-018-00637-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/05/2018] [Accepted: 12/25/2018] [Indexed: 05/25/2023]
Abstract
Nuclear factor-Ys (NF-Ys) were previously shown to have important regulatory impacts in different developmental and physiological process. However, in barley the function of the NF-Y genes at system levels is not well known. To identify barley NF-Ys, Arabidopsis and wheat NF-Y protein sequences were retrieved and the BLAST program along with the hidden Markov model were used. Multiple sequence alignments of identified NF-Ys were constructed using ClustalW. Expression patterns of the NF-Ys at different physiological and developmental conditions were also surveyed based on microarray datasets in public databases and subsequently co-expression network were constructed. Validation of in silico expression analysis was performed by real-time qPCR under salt stress condition. In total, 23 barley NF-Ys (8 NF-YA, 11 NF-YB and 4 NF-YC) were identified. Based on the sequence homology, the subunits of the NF-Y complex were divided into three to five groups. Structural analysis highlighted the conserved domains of HvNF-YA, HvNF-YB and HvNF-YC. Co-expression network analysis indicated the potential functions of HvNF-Ys in photosynthesis, starch biosynthesis and osmotic stress tolerance. The results of qRT-PCR also confirmed the HvNF-Ys roles in adaptation responses of barley to salt stress. We identified some potential candidate genes which could be used for improvements of cereals tolerance to salinity stress.
Collapse
Affiliation(s)
- Bahman Panahi
- Department of Genomics, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Seyyed Abolghasem Mohammadi
- Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz, Iran
- Center of Excellence in Cereal Molecular Breeding, University of Tabriz, Tabriz, Iran
| | - Kamil Ruzicka
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, Prague 6, Czech Republic
| | | | | |
Collapse
|
105
|
Zhang H, Zhu S, Liu T, Wang C, Cheng Z, Zhang X, Chen L, Sheng P, Cai M, Li C, Wang J, Zhang Z, Chai J, Zhou L, Lei C, Guo X, Wang J, Wang J, Jiang L, Wu C, Wan J. DELAYED HEADING DATE1 interacts with OsHAP5C/D, delays flowering time and enhances yield in rice. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:531-539. [PMID: 30107076 PMCID: PMC6335081 DOI: 10.1111/pbi.12996] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 05/03/2023]
Abstract
Heading date is an important agronomic trait affecting crop yield. The GRAS protein family is a plant-specific super family extensively involved in plant growth and signal transduction. However, GRAS proteins are rarely reported have a role in regulating rice heading date. Here, we report a GRAS protein DHD1 (Delayed Heading Date1) delays heading and enhances yield in rice. Biochemical assays showed DHD1 physically interacts with OsHAP5C/D both in vitro and in vivo. DHD1 and OsHAP5C/D located in the nucleus and showed that rhythmic expression. Both DHD1 and OsHAP5C/D affect heading date by regulating expression of Ehd1. We propose that DHD1 interacts with OsHAP5C/D to delay heading date by inhibiting expression of Ehd1.
Collapse
Affiliation(s)
- Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Tianzhen Liu
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Chunming Wang
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Liping Chen
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Peike Sheng
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Maohong Cai
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Jiachang Wang
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Zhe Zhang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Juntao Chai
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Liang Zhou
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Chuanyin Wu
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
106
|
Yang X, Vingron M. Classifying human promoters by occupancy patterns identifies recurring sequence elements, combinatorial binding, and spatial interactions. BMC Biol 2018; 16:138. [PMID: 30442124 PMCID: PMC6238301 DOI: 10.1186/s12915-018-0585-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 10/04/2018] [Indexed: 12/14/2022] Open
Abstract
Background Characterizing recurring sequence patterns in human promoters has been a challenging undertaking even nowadays where a near-complete overview of promoters exists. However, with the more recent availability of genomic location (ChIP-seq) data, one can approach that question through the identification of characteristic patterns of transcription factor occupancy and histone modifications. Results Based on the ENCODE annotation and integration of sequence motifs as well as three-dimensional chromatin data, we have undertaken a re-analysis of occupancy and sequence patterns in human promoters. We identify clear groups of CAAT-box and E-box sequence motif containing promoters, as well as a group of promoters whose interaction with an enhancer appears to be mediated by CCCTC-binding factor (CTCF) binding on the promoter. We also extend our analysis to inactive promoters, showing that only a surprisingly small number of inactive promoters is repressed by the polycomb complex. We also identify combinatorial patterns of transcription factor interactions indicated by the ChIP-seq signals. Conclusion Our analysis defines subgroups of promoters characterized by stereotypic patterns of transcription factor occupancy, and combinations of specific sequence patterns which are required for their binding. This grouping provides new hypotheses concerning the assembly and dynamics of transcription factor complexes at their respective promoter groups, as well as questions on the evolutionary origin of these groups. Electronic supplementary material The online version of this article (10.1186/s12915-018-0585-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinyi Yang
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany, Ihnestraße 63-73, Berlin, 14195, Germany
| | - Martin Vingron
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany, Ihnestraße 63-73, Berlin, 14195, Germany.
| |
Collapse
|
107
|
Quan S, Niu J, Zhou L, Xu H, Ma L, Qin Y. Identification and characterization of NF-Y gene family in walnut (Juglans regia L.). BMC PLANT BIOLOGY 2018; 18:255. [PMID: 30352551 PMCID: PMC6199752 DOI: 10.1186/s12870-018-1459-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 10/03/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND The eukaryotic transcription factor NF-Y (which consists of NF-YA, NF-YB and NF-YC subunits) is involved in many important plant development processes. There are many reports about the NF-Y family in Arabidopsis and other plant species. However, there are no reports about the NF-Y family in walnut (Juglans regia L.). RESULTS Thirty-three walnut NF-Y genes (JrNF-Ys) were identified and mapped on the walnut genome. The JrNF-Y gene family consisted of 17 NF-YA genes, 9 NF-YB genes, and 7 NF-YC genes. The structural features of the JrNF-Y genes were investigated by comparing their evolutionary relationship and motif distributions. The comparisons indicated the NF-Y gene structure was both conserved and altered during evolution. Functional prediction and protein interaction analysis were performed by comparing the JrNF-Y protein structure with that in Arabidopsis. Two differentially expressed JrNF-Y genes were identified. Their expression was compared with that of three JrCOs and two JrFTs using quantitative real-time PCR (qPCR). The results revealed that the expression of JrCO2 was positively correlated with the expression of JrNF-YA11 and JrNF-YA12. In contrast, JrNF-CO1 and JrNF-YA12 were negatively correlated. CONCLUSIONS Thirty-three JrNF-Ys were identified and their evolutionary, structure, biological function and expression pattern were analyzed. Two of the JrNF-Ys were screened out, their expression was differentially expressed in different development periods of female flower buds, and in different tissues (female flower buds and leaf buds). Based on prediction and experimental data, JrNF-Ys may be involved in flowering regulation by co-regulate the expression of flowering genes with other transcription factors (TFs). The results of this study may make contribution to the further investigation of JrNF-Y family.
Collapse
Affiliation(s)
- Shaowen Quan
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832003 China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, Xinjiang, 832003 China
| | - Jianxin Niu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832003 China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, Xinjiang, 832003 China
| | - Li Zhou
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832003 China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, Xinjiang, 832003 China
| | - Hang Xu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832003 China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, Xinjiang, 832003 China
| | - Li Ma
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832003 China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, Xinjiang, 832003 China
| | - Yang Qin
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832003 China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, Xinjiang, 832003 China
| |
Collapse
|
108
|
Chu HD, Nguyen KH, Watanabe Y, Le DT, Pham TLT, Mochida K, Tran LSP. Identification, Structural Characterization and Gene Expression Analysis of Members of the Nuclear Factor-Y Family in Chickpea ( Cicer arietinum L.) under Dehydration and Abscisic Acid Treatments. Int J Mol Sci 2018; 19:ijms19113290. [PMID: 30360493 PMCID: PMC6275023 DOI: 10.3390/ijms19113290] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 01/25/2023] Open
Abstract
In plants, the Nuclear Factor-Y (NF-Y) transcription factors (TFs), which include three distinct types of NF-YA, NF-YB, and NF-YC TFs, have been identified to play key roles in the regulation of various plant growth and developmental processes under both normal and environmental stress conditions. In this work, a total of 40 CaNF-Y-encoding genes, including eight CaNF-YAs, 21 CaNF-YBs, and 11 CaNF-YCs, were identified in chickpea, and their major gene and protein characteristics were subsequently obtained using various web-based tools. Of our interest, a phylogenetically-based analysis predicted 18 CaNF-Ys (eight CaNF-YAs, seven CaNF-YBs, and three CaNF-YCs) that potentially play roles in chickpea responses to dehydration according to their close relationship with the well-characterized GmNF-Ys in soybean. These results were in good agreement with the enrichment of drought-responsive cis-regulatory motifs and expression patterns obtained from in silico analyses using publically available transcriptome data. Most of the phylogenetically predicted drought-responsive CaNF-Y genes (15 of 18) were quantitatively validated to significantly respond to dehydration treatment in leaves and/or roots, further supporting the results of in silico analyses. Among these CaNF-Y genes, the transcript levels of CaNF-YA01 and CaNF-YC10 were the most highly accumulated in leaves (by approximately eight-fold) and roots (by approximately 18-fold), respectively, by dehydration. Furthermore, 12 of the 18 CaNF-Y genes were found to be responsive to the most well-known stress hormone, namely abscisic acid (ABA), in leaves and/or roots, suggesting that these genes may act in chickpea response to dehydration in ABA-dependent manner. Taken together, our study has provided a comprehensive and fundamental information for further functional analyses of selected CaNF-Y candidate genes, ultimately leading to the improvement of chickpea growth under water-limited conditions.
Collapse
Affiliation(s)
- Ha Duc Chu
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Road, North Tu Liem District, Hanoi City 122300, Vietnam.
| | - Kien Huu Nguyen
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Road, North Tu Liem District, Hanoi City 122300, Vietnam.
- Plant Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| | - Yasuko Watanabe
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| | - Dung Tien Le
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Road, North Tu Liem District, Hanoi City 122300, Vietnam.
| | - Thu Ly Thi Pham
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Road, North Tu Liem District, Hanoi City 122300, Vietnam.
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan.
| | - Lam-Son Phan Tran
- Plant Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
109
|
Zotova L, Kurishbayev A, Jatayev S, Khassanova G, Zhubatkanov A, Serikbay D, Sereda S, Sereda T, Shvidchenko V, Lopato S, Jenkins C, Soole K, Langridge P, Shavrukov Y. Genes Encoding Transcription Factors TaDREB5 and TaNFYC-A7 Are Differentially Expressed in Leaves of Bread Wheat in Response to Drought, Dehydration and ABA. FRONTIERS IN PLANT SCIENCE 2018; 9:1441. [PMID: 30319682 PMCID: PMC6171087 DOI: 10.3389/fpls.2018.01441] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/10/2018] [Indexed: 05/18/2023]
Abstract
Two groups of six spring bread wheat varieties with either high or low grain yield under the dry conditions of Central and Northern Kazakhstan were selected for analysis. Experiments were set up with the selected wheat varieties in controlled environments as follows: (1) slowly progressing drought imposed on plants in soil, (2) rapid dehydration of whole plants grown in hydroponics, (3) dehydration of detached leaves, and (4) ABA treatment of whole plants grown in hydroponics. Representatives of two different families of transcription factors (TFs), TaDREB5 and TaNFYC-A7, were found to be linked to yield-under-drought using polymorphic Amplifluor-like SNP marker assays. qRT-PCR revealed differing patterns of expression of these genes in the leaves of plants subjected to the above treatments. Under drought, TaDREB5 was significantly up-regulated in leaves of all high-yielding varieties tested and down-regulated in all low-yielding varieties, and the level of expression was independent of treatment type. In contrast, TaNFYC-A7 expression levels showed different responses in the high- and low-yield groups of wheat varieties. TaNFYC-A7 expression under dehydration (treatments 2 and 3) was higher than under drought (treatment 1) in all high-yielding varieties tested, while in all low-yielding varieties the opposite pattern was observed: the expression levels of this gene under drought were higher than under dehydration. Rapid dehydration of detached leaves and intact wheat plants grown in hydroponics produced similar changes in gene expression. ABA treatment of whole plants caused rapid stomatal closure and a rise in the transcript level of both genes during the first 30 min, which decreased 6 h after treatment. At this time-point, expression of TaNFYC-A7 was again significantly up-regulated compared to untreated controls, while TaDREB5 returned to its initial level of expression. These findings reveal significant differences in the transcriptional regulation of two drought-responsive and ABA-dependent TFs under slowly developing drought and rapid dehydration of wheat plants. The results obtained suggest that correlation between grain yield in dry conditions and TaNFYC-A7 expression levels in the examined wheat varieties is dependent on the length of drought development and/or strength of drought; while in the case of TaDREB5, no such dependence is observed.
Collapse
Affiliation(s)
- Lyudmila Zotova
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Akhylbek Kurishbayev
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Gulmira Khassanova
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Askar Zhubatkanov
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Dauren Serikbay
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Sergey Sereda
- Karaganda Research Institute of Plant Industry and Breeding, Karaganda, Kazakhstan
| | - Tatiana Sereda
- Karaganda Research Institute of Plant Industry and Breeding, Karaganda, Kazakhstan
| | - Vladimir Shvidchenko
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Sergiy Lopato
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Colin Jenkins
- College of Science and Engineering, Biological Sciences, Flinders University, Bedford Park, SA, Australia
| | - Kathleen Soole
- College of Science and Engineering, Biological Sciences, Flinders University, Bedford Park, SA, Australia
| | - Peter Langridge
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
110
|
Wu W, Fan H, Jiang Y, Liao L, Li L, Zhao J, Zhang H, Shrestha C, Xie Z. Regulation of 25-hydroxyvitamin D-1-hydroxylase and 24-hydroxylase in keratinocytes by PTH and FGF23. Exp Dermatol 2018; 27:1201-1209. [PMID: 30066343 DOI: 10.1111/exd.13760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/26/2018] [Accepted: 07/19/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Wenlin Wu
- Department of Endocrinology and Metabolism; The Second Xiang-Ya Hospital; Central South University; Changsha China
| | - Hong Fan
- Department of Endocrinology and Metabolism; The Peace Hospital Attached to Chang-Zhi Medical College; Chang-Zhi China
| | - Yi Jiang
- Department of Pathology; The Second Xiang-Ya Hospital; Central South University; Changsha China
| | - Liyan Liao
- Department of Pathology; The Second Xiang-Ya Hospital; Central South University; Changsha China
| | - Lusha Li
- Department of Endocrinology and Metabolism; The Second Xiang-Ya Hospital; Central South University; Changsha China
| | - Juan Zhao
- Department of Endocrinology and Metabolism; The Second Xiang-Ya Hospital; Central South University; Changsha China
| | - Huiling Zhang
- Department of Endocrinology and Metabolism; The Second Xiang-Ya Hospital; Central South University; Changsha China
| | - Chandrama Shrestha
- Department of Endocrinology and Metabolism; The Second Xiang-Ya Hospital; Central South University; Changsha China
| | - Zhongjian Xie
- Department of Endocrinology and Metabolism; The Second Xiang-Ya Hospital; Central South University; Changsha China
| |
Collapse
|
111
|
Multiple Evolutionarily Conserved Domains of Cap2 Are Required for Promoter Recruitment and Iron Homeostasis Gene Regulation. mSphere 2018; 3:3/4/e00370-18. [PMID: 30068562 PMCID: PMC6070739 DOI: 10.1128/msphere.00370-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron is required for growth and metabolism by virtually all organisms. The human fungal pathogen Candida albicans has evolved multiple strategies to acquire iron. The Cap2/Hap43 transcriptional regulator, essential for robust virulence of C. albicans, controls iron homeostasis gene expression by promoter binding and repression of iron utilization genes. The expression of iron uptake genes is also dependent on Cap2, although Cap2 was not recruited to its promoters. Cap2, bearing the conserved bipartite HAP4L-bZIP domain, also contains multiple blocks of amino acids that form the highly conserved carboxyl-terminal region. In this study, we sought to identify the requirements of the different domains for Cap2 function. We constructed a series of mutants bearing either point mutations or deletions in the conserved domains and examined Cap2 activity. Deletion of the highly conserved extreme C-terminal region did not impair expression of Cap2 mutant protein but impaired cell growth and expression of iron homeostasis genes under iron-depleted conditions. Mutations in the amino-terminal HAP4L and basic leucine zipper (bZIP) domains also impaired growth and gene expression. Furthermore, chromatin immunoprecipitation (ChIP) assays showed that the HAP4L domain and the bZIP domain are both essential for Cap2 recruitment to ACO1 and CYC1 promoters. Unexpectedly, the C-terminal conserved region was also essential for Cap2 promoter recruitment. Thus, our results suggest that Cap2 employs multiple evolutionarily conserved domains, including the C-terminal domain for its transcriptional activity.IMPORTANCE Iron is an essential micronutrient for living cells. Candida albicans, the predominant human fungal pathogen, thrives under diverse environments with vastly different iron levels in the mammalian host. Therefore, to tightly control iron homeostasis, C. albicans has evolved a set of transcriptional regulators that cooperate to either upregulate or downregulate transcription of iron uptake genes or iron utilization genes. Cap2/Hap43, a critical transcriptional regulator, contains multiple conserved protein domains. In this study, we carried out mutational analyses to identify the functional roles of the conserved protein domains in Cap2. Our results show that the bZIP, HAP4L, and the C-terminal domain are each required for Cap2 transcriptional activity. Thus, Cap2 employs multiple, disparate protein domains for regulation of iron homeostasis in C. albicans.
Collapse
|
112
|
Cho CJ, Jung J, Jiang L, Lee EJ, Kim DS, Kim BS, Kim HS, Jung HY, Song HJ, Hwang SW, Park Y, Jung MK, Pack CG, Myung SJ, Chang S. Combinatory RNA-Sequencing Analyses Reveal a Dual Mode of Gene Regulation by ADAR1 in Gastric Cancer. Dig Dis Sci 2018; 63:1835-1850. [PMID: 29691780 DOI: 10.1007/s10620-018-5081-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/16/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Adenosine deaminase acting on RNA 1 (ADAR1) is known to mediate deamination of adenosine-to-inosine through binding to double-stranded RNA, the phenomenon known as RNA editing. Currently, the function of ADAR1 in gastric cancer is unclear. AIMS This study was aimed at investigating RNA editing-dependent and editing-independent functions of ADAR1 in gastric cancer, especially focusing on its influence on editing of 3' untranslated regions (UTRs) and subsequent changes in expression of messenger RNAs (mRNAs) as well as microRNAs (miRNAs). METHODS RNA-sequencing and small RNA-sequencing were performed on AGS and MKN-45 cells with a stable ADAR1 knockdown. Changed frequencies of editing and mRNA and miRNA expression were then identified by bioinformatic analyses. Targets of RNA editing were further validated in patients' samples. RESULTS In the Alu region of both gastric cell lines, editing was most commonly of the A-to-I type in 3'-UTR or intron. mRNA and protein levels of PHACTR4 increased in ADAR1 knockdown cells, because of the loss of seed sequences in 3'-UTR of PHACTR4 mRNA that are required for miRNA-196a-3p binding. Immunohistochemical analyses of tumor and paired normal samples from 16 gastric cancer patients showed that ADAR1 expression was higher in tumors than in normal tissues and inversely correlated with PHACTR4 staining. On the other hand, decreased miRNA-148a-3p expression in ADAR1 knockdown cells led to increased mRNA and protein expression of NFYA, demonstrating ADAR1's editing-independent function. CONCLUSIONS ADAR1 regulates post-transcriptional gene expression in gastric cancer through both RNA editing-dependent and editing-independent mechanisms.
Collapse
Affiliation(s)
- Charles J Cho
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea
| | - Jaeeun Jung
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Lushang Jiang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea
| | - Eun Ji Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea
| | - Dae-Soo Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Byung Sik Kim
- Department of Gastric Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea
| | - Hee Sung Kim
- Department of Gastric Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea
| | - Hwoon-Yong Jung
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea
| | - Ho-June Song
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea
| | - Sung Wook Hwang
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea
| | - Yangsoon Park
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea
| | - Min Kyo Jung
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea
| | - Chan Gi Pack
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea
| | - Seung-Jae Myung
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea. .,Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea. .,Department of Gastroenterology and Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea.
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea.
| |
Collapse
|
113
|
Pereira SLS, Martins CPS, Sousa AO, Camillo LR, Araújo CP, Alcantara GM, Camargo DS, Cidade LC, de Almeida AAF, Costa MGC. Genome-wide characterization and expression analysis of citrus NUCLEAR FACTOR-Y (NF-Y) transcription factors identified a novel NF-YA gene involved in drought-stress response and tolerance. PLoS One 2018; 13:e0199187. [PMID: 29906271 PMCID: PMC6003680 DOI: 10.1371/journal.pone.0199187] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/01/2018] [Indexed: 01/03/2023] Open
Abstract
Nuclear factor Y (NF-Y) is a ubiquitous transcription factor found in eukaryotes. It is composed of three distinct subunits called NF-YA, NF-YB and NF-YC. NF-Ys have been identified as key regulators of multiple pathways in the control of development and tolerance to biotic and abiotic factors. The present study aimed to identify and characterize the complete repertoire of genes coding for NF-Y in citrus, as well as to perform the functional characterization of one of its members, namely CsNFYA5, in transgenic tobacco plants. A total of 22 genes coding for NF-Y were identified in the genomes of sweet orange (Citrus sinensis) and Clementine mandarin (C. clementina), including six CsNF-YAs, 11 CsNF-YBs and five CsNF-YCs. Phylogenetic analyses showed that there is a NF-Y orthologous in the Clementine genome for each sweet orange NF-Y gene; this was not observed when compared to Arabidopsis thaliana. CsNF-Y proteins shared the same conserved domains with their orthologous proteins in other organisms, including mouse. Analysis of gene expression by RNA-seq and EST data demonstrated that CsNF-Ys have a tissue-specific and stress inducible expression profile. qRT-PCR analysis revealed that CsNF-YA5 exhibits differential expression in response to water deficit in leaves and roots of citrus plants. Overexpression of CsNF-YA5 in transgenic tobacco plants contributed to the reduction of H2O2 production under dehydration conditions and increased plant growth and photosynthetic rate under normal conditions and drought stress. These biochemical and physiological responses to drought stress promoted by CsNF-YA5 may confer a productivity advantage in environments with frequent short-term soil water deficit.
Collapse
Affiliation(s)
- Suzam L. S. Pereira
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Cristina P. S. Martins
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Aurizangela O. Sousa
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Luciana R. Camillo
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Caroline P. Araújo
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Grazielle M. Alcantara
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Danielle S. Camargo
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Luciana C. Cidade
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Alex-Alan F. de Almeida
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Marcio G. C. Costa
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| |
Collapse
|
114
|
Wang B, Li Z, Ran Q, Li P, Peng Z, Zhang J. ZmNF-YB16 Overexpression Improves Drought Resistance and Yield by Enhancing Photosynthesis and the Antioxidant Capacity of Maize Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:709. [PMID: 29896208 PMCID: PMC5986874 DOI: 10.3389/fpls.2018.00709] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 05/09/2018] [Indexed: 05/22/2023]
Abstract
ZmNF-YB16 is a basic NF-YB superfamily member and a member of a transcription factor complex composed of NF-YA, NF-YB, and NF-YC in maize. ZmNF-YB16 was transformed into the inbred maize line B104 to produce homozygous overexpression lines. ZmNF-YB16 overexpression improves dehydration and drought stress resistance in maize plants during vegetative and reproductive stages by maintaining higher photosynthesis and increases the maize grain yield under normal and drought stress conditions. Based on the examination of differentially expressed genes between the wild-type (WT) and transgenic lines by quantitative real time PCR (qRT-PCR), ZmNF-YB16 overexpression increased the expression of genes encoding antioxidant enzymes, the antioxidant synthase, and molecular chaperones associated with the endoplasmic reticulum (ER) stress response, and improved protection mechanism for photosynthesis system II. Plants that overexpression ZmNF-YB16 showed a higher rate of photosynthesis and antioxidant enzyme activity, better membrane stability and lower electrolyte leakage under control and drought stress conditions. These results suggested that ZmNF-YB16 played an important role in drought resistance in maize by regulating the expression of a number of genes involved in photosynthesis, the cellular antioxidant capacity and the ER stress response.
Collapse
Affiliation(s)
| | | | | | | | | | - Juren Zhang
- School of Life Sciences, Shandong University, Jinan, China
| |
Collapse
|
115
|
Belluti S, Semeghini V, Basile V, Rigillo G, Salsi V, Genovese F, Dolfini D, Imbriano C. An autoregulatory loop controls the expression of the transcription factor NF-Y. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:509-518. [DOI: 10.1016/j.bbagrm.2018.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/14/2018] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
|
116
|
Begum G, Otsu M, Ahmed U, Ahmed Z, Stevens A, Fulton D. NF-Y-dependent regulation of glutamate receptor 4 expression and cell survival in cells of the oligodendrocyte lineage. Glia 2018; 66:1896-1914. [PMID: 29704264 PMCID: PMC6220837 DOI: 10.1002/glia.23446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 03/14/2018] [Accepted: 04/11/2018] [Indexed: 12/15/2022]
Abstract
Glutamate receptor subunit 4 (GluA4) is highly expressed by neural cells sensitive to excitotoxicity, and is the predominant subunit expressed by oligodendrocyte precursor cells (OPC) during a key period of vulnerability to hypoxic‐ischemic injury. Therefore, transcriptional networks downstream of excitotoxic GluA4 activation represent a promising area for therapeutic intervention. In this work, we identify the CCAAT binding transcription factor NF‐Yb as a novel transcriptional regulator of Gria4 (GluA4 gene), and a controller of excitotoxic death in the oligodendroglial lineage. We describe a novel regulatory region within Gria4 containing CCAAT sequences whose binding by NF‐Yb is regulated by excitotoxicity. Excitotoxicity‐induced alterations in NF‐Yb binding are associated with changes in Gria4 transcription, while knockdown of NF‐Yb alters the transcription of reporter constructs containing this regulatory region. Data from immortalized and primary OPC reveal that RNAi and pharmacological disruption of NF‐Yb alter Gria4 transcription, with the latter inducing apoptosis and influencing a set of apoptotic genes similarly regulated during excitotoxicity. These data provide the first definition of a trans‐acting mechanism regulating Gria4, and identify the NF‐Y network as a potential source of pharmacological targets for promoting OPC survival.
Collapse
Affiliation(s)
- Ghazala Begum
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Masahiro Otsu
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Usman Ahmed
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Zubair Ahmed
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Adam Stevens
- Division of Developmental Biology & Medicine, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester M13 9PL, United Kingdom
| | - Daniel Fulton
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
117
|
Boulard C, Thévenin J, Tranquet O, Laporte V, Lepiniec L, Dubreucq B. LEC1 (NF-YB9) directly interacts with LEC2 to control gene expression in seed. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:443-450. [PMID: 29580949 DOI: 10.1016/j.bbagrm.2018.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/27/2018] [Accepted: 03/12/2018] [Indexed: 12/18/2022]
Abstract
The LAFL transcription factors LEC2, ABI3, FUS3 and LEC1 are master regulators of seed development. LEC2, ABI3 and FUS3 are closely related proteins that contain a B3-type DNA binding domain. We have previously shown that LEC1 (a NF-YB type protein) can increase LEC2 and ABI3 but not FUS3 activity. Interestingly, FUS3, LEC2 and ABI3 contain a B2 domain, the function of which remains elusive. We showed that LEC1 and LEC2 partially co-localised in the nucleus of developing embryos. By comparing protein sequences from various species, we identified within the B2 domains a set of highly conserved residues (i.e. TKxxARxxRxxAxxR). This domain directly interacts with LEC1 in yeast. Mutations of the conserved amino acids of the motif in the B2 domain abolished this interaction both in yeast and in moss protoplasts and did not alter the nuclear localisation of LEC2 in planta. Conversely, the mutations of key amino acids for the function of LEC1 in planta (D86K) prevented the interaction with LEC2. These results provide molecular evidences for the binding of LEC1 to B2-domain containing transcription factors, to form heteromers, involved in the control of gene expression.
Collapse
Affiliation(s)
- C Boulard
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - J Thévenin
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - O Tranquet
- UR1268 BIA, INRA Angers, Nantes Rue de la Geraudiere, 44316 Nantes Cedex 3, France
| | - V Laporte
- UR1268 BIA, INRA Angers, Nantes Rue de la Geraudiere, 44316 Nantes Cedex 3, France
| | - L Lepiniec
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - B Dubreucq
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France.
| |
Collapse
|
118
|
Cicchillitti L, Manni I, Mancone C, Regazzo G, Spagnuolo M, Alonzi T, Carlomosti F, Dell'Anna ML, Dell'Omo G, Picardo M, Ciana P, Capogrossi MC, Tripodi M, Magenta A, Rizzo MG, Gurtner A, Piaggio G. The laminA/NF-Y protein complex reveals an unknown transcriptional mechanism on cell proliferation. Oncotarget 2018; 8:2628-2646. [PMID: 27793050 PMCID: PMC5356829 DOI: 10.18632/oncotarget.12914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/10/2016] [Indexed: 12/02/2022] Open
Abstract
Lamin A is a component of the nuclear matrix that also controls proliferation by largely unknown mechanisms. NF-Y is a ubiquitous protein involved in cell proliferation composed of three subunits (-YA -YB -YC) all required for the DNA binding and transactivation activity. To get clues on new NF-Y partner(s) we performed a mass spectrometry screening of proteins that co-precipitate with the regulatory subunit of the complex, NF-YA. By this screening we identified lamin A as a novel putative NF-Y interactor. Co-immunoprecipitation experiments and confocal analysis confirmed the interaction between the two endogenous proteins. Interestingly, this association occurs on euchromatin regions, too. ChIP experiments demonstrate lamin A enrichment in several promoter regions of cell cycle related genes in a NF-Y dependent manner. Gain and loss of function experiments reveal that lamin A counteracts NF-Y transcriptional activity. Taking advantage of a recently generated transgenic reporter mouse, called MITO-Luc, in which an NF-Y–dependent promoter controls luciferase expression, we demonstrate that lamin A counteracts NF-Y transcriptional activity not only in culture cells but also in living animals. Altogether, our data demonstrate the occurrence of lamin A/NF-Y interaction and suggest a possible role of this protein complex in regulation of NF-Y function in cell proliferation.
Collapse
Affiliation(s)
- Lucia Cicchillitti
- Department of Research, Advanced Diagnostics and Technological Innovation, SAFU Unit, Translational Research Area, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Isabella Manni
- Department of Research, Advanced Diagnostics and Technological Innovation, SAFU Unit, Translational Research Area, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Carmine Mancone
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Department of Epidemiology and Preclinical Research, 00149 Rome, Italy.,Department of Cellular Biotechnologies and Haematology, Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy
| | - Giulia Regazzo
- Department of Research, Advanced Diagnostics and Technological Innovation, Genomic and Epigenetic Unit, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Manuela Spagnuolo
- Department of Research, Advanced Diagnostics and Technological Innovation, Genomic and Epigenetic Unit, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Tonino Alonzi
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Department of Epidemiology and Preclinical Research, 00149 Rome, Italy
| | - Fabrizio Carlomosti
- Fondazione Luigi Maria Monti, Istituto Dermopatico dell'Immacolata-IRCCS, Laboratorio di Patologia Vascolare, 00167 Rome, Italy
| | - Maria Lucia Dell'Anna
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, 00144 Rome, Italy
| | - Giulia Dell'Omo
- Department of Oncology and Hemato-Oncology and Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Mauro Picardo
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Paolo Ciana
- Center of Excellence on Neurodegenerative Diseases, Department of Oncology and Hemato-Oncology, University of Milan, 20133 Milan, Italy
| | - Maurizio C Capogrossi
- Fondazione Luigi Maria Monti, Istituto Dermopatico dell'Immacolata-IRCCS, Laboratorio di Patologia Vascolare, Via dei Monti di Creta 104, Rome 00167, Italy Rome, Italy
| | - Marco Tripodi
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Department of Epidemiology and Preclinical Research, 00149 Rome, Italy.,Department of Cellular Biotechnologies and Haematology, Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandra Magenta
- Fondazione Luigi Maria Monti, Istituto Dermopatico dell'Immacolata-IRCCS, Laboratorio di Patologia Vascolare, Via dei Monti di Creta 104, Rome 00167, Italy Rome, Italy
| | - Maria Giulia Rizzo
- Department of Research, Advanced Diagnostics and Technological Innovation, Genomic and Epigenetic Unit, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Aymone Gurtner
- Department of Research, Advanced Diagnostics and Technological Innovation, SAFU Unit, Translational Research Area, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Giulia Piaggio
- Department of Research, Advanced Diagnostics and Technological Innovation, SAFU Unit, Translational Research Area, Regina Elena National Cancer Institute, 00144 Rome, Italy
| |
Collapse
|
119
|
Tay SS, Kuah MK, Shu-Chien AC. Transcriptional activation of zebrafish fads2 promoter and its transient transgene expression in yolk syncytial layer of zebrafish embryos. Sci Rep 2018; 8:3874. [PMID: 29497119 PMCID: PMC5832746 DOI: 10.1038/s41598-018-22157-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 02/16/2018] [Indexed: 12/12/2022] Open
Abstract
The front-end desaturases (Fads) are rate-limiting enzymes responsible for production of long-chain polyunsaturated fatty acids (LC-PUFA). The full spectrum of the transcriptional regulation of fads is still incomplete, as cloning of fads promoter is limited to a few species. Here, we described the cloning and characterisation of the zebrafish fads2 promoter. Using 5'-deletion and mutation analysis on this promoter, we identified a specific region containing the sterol regulatory element (SRE) which is responsible for the activation of the fads2 promoter. In tandem, two conserved CCAAT boxes were also present adjacent to the SRE and mutation of either of these binding sites attenuates the transcriptional activation of the fads2 promoter. An in vivo analysis employing GFP reporter gene in transiently transfected zebrafish embryos showed that this 1754 bp upstream region of the fads2 gene specifically directs GFP expression in the yolk syncytial layer (YSL) region. This indicates a role for LC-PUFA in the transport of yolk lipids through this tissue layer. In conclusion, besides identifying novel core elements for transcriptional activation in zebrafish fads2 promoter, we also reveal a potential role for fads2 or LC-PUFA in YSL during development.
Collapse
Affiliation(s)
- Shu-Shen Tay
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Meng-Kiat Kuah
- Centre for Chemical Biology, Universiti Sains Malaysia, Sains@USM, Block B No. 10, Persiaran Bukit Jambul, 11900, Bayan Lepas, Penang, Malaysia
| | - Alexander Chong Shu-Chien
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia. .,Centre for Chemical Biology, Universiti Sains Malaysia, Sains@USM, Block B No. 10, Persiaran Bukit Jambul, 11900, Bayan Lepas, Penang, Malaysia.
| |
Collapse
|
120
|
Espinola SM, Cancela MP, Brisolara Corrêa L, Zaha A. Evolutionary fates of universal stress protein paralogs in Platyhelminthes. BMC Evol Biol 2018; 18:10. [PMID: 29390964 PMCID: PMC5793430 DOI: 10.1186/s12862-018-1129-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 01/23/2018] [Indexed: 11/16/2022] Open
Abstract
Background Universal stress proteins (USPs) are present in all domains of life. Their expression is upregulated in response to a large variety of stress conditions. The functional diversity found in this protein family, paired with the sequence degeneration of the characteristic ATP-binding motif, suggests a complex evolutionary pattern for the paralogous USP-encoding genes. In this work, we investigated the origin, genomic organization, expression patterns and evolutionary history of the USP gene family in species of the phylum Platyhelminthes. Results Our data showed a cluster organization, a lineage-specific distribution, and the presence of several pseudogenes among the USP gene copies identified. The absence of a well conserved -CCAATCA- motif in the promoter region was positively correlated with low or null levels of gene expression, and with amino acid changes within the ligand binding motifs. Despite evidence of the pseudogenization of various USP genes, we detected an important functional divergence at several residues, mostly located near sites that are critical for ligand interaction. Conclusions Our results provide a broad framework for the evolution of the USP gene family, based on the emergence of new paralogs that face very contrasting fates, including pseudogenization, subfunctionalization or neofunctionalization. This framework aims to explain the sequence and functional diversity of this gene family, providing a foundation for future studies in other taxa in which USPs occur. Electronic supplementary material The online version of this article (10.1186/s12862-018-1129-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sergio Martin Espinola
- Programa de Pós Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Martin Pablo Cancela
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lauís Brisolara Corrêa
- Programa de Pós Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Arnaldo Zaha
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Programa de Pós Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
121
|
|
122
|
Alkaf A, Al-Jafari A, Wani TA, Alqattan S, Zargar S. Expression of STK11 gene and its promoter activity in MCF control and cancer cells. 3 Biotech 2017; 7:362. [PMID: 29043114 PMCID: PMC5628056 DOI: 10.1007/s13205-017-1000-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 09/25/2017] [Indexed: 12/20/2022] Open
Abstract
Serine/threonine kinase gene (STK11) is identified as tumor suppressor gene whose mutation can lead to Peutz-Jeghers syndrome (PJS). STK11 is emerging as a multifunctional protein, it activates 14 different AMP-activated protein kinase (AMPK) family members, important in the regulation of cell polarity, cell cycle arrest, energy and hemostasis. Present study was designed to evaluate STK11 mRNA expression in MCF-7 cancer and MCF-10 normal breast cells lines. mRNA expression was studied by real-time PCR. Further, human STK11 promoter construct was fused to a luciferase reporter and transfected into both MCF-7 and MCF-10 cells to identify the promoter activity in these cells. STK11 mRNA was found significantly higher in MCF-7 compared to MCF-10 cells (p value < 0.0005) indicating its role in the onset of breast cancer. Interestingly, it was found that the promoter activity of STK11 gene in MCF-7 cells was also significantly higher when compared to MCF-10 cells (p value < 0.005). Positive correlation was observed in promoter activity and gene expression (p = 0.048, r2 = 0.587). This study for the first time relates the altered STK11 gene expression in breast cancer cells with altered promoter activity. The present finding may shed light on the new therapeutic approaches against breast cancer by targeting gene or its promoter.
Collapse
Affiliation(s)
- Asma Alkaf
- Department of Biochemistry, College of Science, King Saud University, Riyadh, 11495 Kingdom of Saudi Arabia
| | - Abdulaziz Al-Jafari
- Department of Biochemistry, College of Science, King Saud University, Riyadh, 11495 Kingdom of Saudi Arabia
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11495 Kingdom of Saudi Arabia
| | - Somaya Alqattan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, 11495 Kingdom of Saudi Arabia
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, Riyadh, 11495 Kingdom of Saudi Arabia
| |
Collapse
|
123
|
Skrahina V, Brock M, Hube B, Brunke S. Candida albicans Hap43 Domains Are Required under Iron Starvation but Not Excess. Front Microbiol 2017; 8:2388. [PMID: 29250054 PMCID: PMC5717023 DOI: 10.3389/fmicb.2017.02388] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022] Open
Abstract
Iron availability is a central factor in infections, since iron is a critical micronutrient for all living organisms. The host employs both iron limitation and toxicity strategies to control microbial growth, and successful pathogens are able to tightly coordinate iron homeostasis in response to changing iron levels. As a commensal and opportunistic pathogen, Candida albicans copes with both iron deficiency and excess via the precise regulation of iron acquisition, consumption and storage. The C. albicans transcription factor Hap43 is known to be required for the iron starvation response, while specific domains of its ortholog, HapX, in Aspergillus fumigatus, were recently shown to regulate iron uptake and consumptions genes under both low and high iron levels. Therefore, we investigated the contribution of C. albicans Hap43 domains in response to changing iron levels. We found the C-terminus of Hap43 to be essential for the activation of iron uptake genes during iron starvation, whereas, in contrast to A. fumigatus, Hap43 was not required in mediating adaptation to iron resistance. These data indicate that the generally conserved metal acquisition systems in fungal pathogens can show individual adaptations to the host environment.
Collapse
Affiliation(s)
- Volha Skrahina
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Matthias Brock
- Fungal Genetics and Biology Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Friedrich Schiller University, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| |
Collapse
|
124
|
Bi C, Ma Y, Wang XF, Zhang DP. Overexpression of the transcription factor NF-YC9 confers abscisic acid hypersensitivity in Arabidopsis. PLANT MOLECULAR BIOLOGY 2017; 95:425-439. [PMID: 28924726 PMCID: PMC5688200 DOI: 10.1007/s11103-017-0661-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/13/2017] [Indexed: 05/19/2023]
Abstract
Nuclear factor Y (NF-Y) family proteins are involved in many developmental processes and responses to environmental cues in plants, but whether and how they regulate phytohormone abscisic acid (ABA) signaling need further studies. In the present study, we showed that over-expression of the NF-YC9 gene confers ABA hypersensitivity in both the early seedling growth and stomatal response, while down-regulation of NF-YC9 does not affect ABA response in these processes. We also showed that over-expression of the NF-YC9 gene confers salt and osmotic hypersensitivity in early seedling growth, which is likely to be directly associated with the ABA hypersensitivity. Further, we observed that NF-YC9 physically interacts with the ABA-responsive bZIP transcription factor ABA-INSENSITIVE5 (ABI5), and facilitates the function of ABI5 to bind and activate the promoter of a target gene EM6. Additionally, NF-YC9 up-regulates expression of the ABI5 gene in response to ABA. These findings show that NF-YC9 may be involved in ABA signaling as a positive regulator and likely functions redundantly together with other NF-YC members, and support the model that the NF-YC9 mediates ABA signaling via targeting to and aiding the ABA-responsive transcription factors such as ABI5.
Collapse
Affiliation(s)
- Chao Bi
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yu Ma
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiao-Fang Wang
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Da-Peng Zhang
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
125
|
Control of chrysanthemum flowering through integration with an aging pathway. Nat Commun 2017; 8:829. [PMID: 29018260 PMCID: PMC5635119 DOI: 10.1038/s41467-017-00812-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 07/24/2017] [Indexed: 12/04/2022] Open
Abstract
Age, as a threshold of floral competence acquisition, prevents precocious flowering when there is insufficient biomass, and ensures flowering independent of environmental conditions; however, the underlying regulatory mechanisms are largely unknown. In this study, silencing the expression of a nuclear factor gene, CmNF-YB8, from the short day plant chrysanthemum (Chrysanthemum morifolium), results in precocious transition from juvenile to adult, as well as early flowering, regardless of day length conditions. The expression of SQUAMOSA PROMOTER BINDING-LIKE (SPL) family members, SPL3, SPL5, and SPL9, is upregulated in CmNF-YB8-RNAi plants, while expression of the microRNA, cmo-MIR156, is downregulated. In addition, CmNF-YB8 is shown to bind to the promoter of the cmo-MIR156 gene. Ectopic expression of cmo-miR156, using a virus-based microRNA expression system, restores the early flowering phenotype caused by CmNF-YB8 silencing. These results show that CmNF-YB8 influences flowering time through directly regulating the expression of cmo-MIR156 in the aging pathway. The mechanisms by which plant age regulates flowering remain incompletely understood. Here the authors show that age dependent regulation of SPL transcription factors by miR156 influence flowering via control of NF-YB8 expression in Chrysanthemum.
Collapse
|
126
|
Grade CVC, Mantovani CS, Fontoura MA, Yusuf F, Brand-Saberi B, Alvares LE. CREB, NF-Y and MEIS1 conserved binding sites are essential to balance Myostatin promoter/enhancer activity during early myogenesis. Mol Biol Rep 2017; 44:419-427. [PMID: 28956216 DOI: 10.1007/s11033-017-4126-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/08/2017] [Indexed: 12/27/2022]
Abstract
Myostatin (MSTN) is a strong inhibitor of skeletal muscle growth in human and other vertebrates. Its transcription is controlled by a proximal promoter/enhancer (Mstn P/E) containing a TATA box besides CREB, NF-Y, MEIS1 and FXR transcription factor binding sites (TFBSs), which are conserved throughout evolution. The aim of this work was to investigate the role of these TFBSs on Mstn P/E activity and evaluate the potential of their putative ligands as Mstn trans regulators. Mstn P/E mutant constructs were used to establish the role of conserved TFBSs using dual-luciferase assays. Expression analyses were performed by RT-PCR and in situ hybridization in C2C12 myoblasts and E10.5 mouse embryos, respectively. Our results revealed that CREB, NF-Y and MEIS1 sites are required to balance Mstn P/E activity, keeping Mstn transcription within basal levels during myoblast proliferation. Furthermore, our data showed that NF-Y site is essential, although not sufficient, to mediate Mstn P/E transcriptional activity. In turn, CREB and MEIS1 binding sites seem to depend on the presence of NF-Y site to induce Mstn P/E. FXR appears not to confer any effect on Mstn P/E activity, except in the absence of all other conserved TFBS. Accordingly, expression studies pointed to CREB, NF-Y and MEIS1 but not to FXR factors as possible regulators of Mstn transcription in the myogenic context. Altogether, our findings indicated that CREB, NF-Y and MEIS1 conserved sites are essential to control basal Mstn transcription during early myogenesis, possibly by interacting with these or other related factors.
Collapse
Affiliation(s)
- Carla Vermeulen Carvalho Grade
- Department of Biochemistry and Tissue Biology, State University of Campinas - UNICAMP, Rua Charles Darwin s/n, Campinas, CEP 13083-863, Brazil.,Latin American Institute of Natural and Life Sciences, Federal University of the Latin American Integration - UNILA, Avenida Tarquínio Joslin dos Santos 1000, Foz do Iguaçu, CEP 85870-901, Brazil
| | - Carolina Stefano Mantovani
- Department of Biochemistry and Tissue Biology, State University of Campinas - UNICAMP, Rua Charles Darwin s/n, Campinas, CEP 13083-863, Brazil
| | - Marina Alves Fontoura
- Department of Biochemistry and Tissue Biology, State University of Campinas - UNICAMP, Rua Charles Darwin s/n, Campinas, CEP 13083-863, Brazil
| | - Faisal Yusuf
- Department of Anatomy and Molecular Embryology, Ruhr-Universität Bochum - RUB, Universitätsstr. 150 - MA 5/158, 44801, Bochum, Germany
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr-Universität Bochum - RUB, Universitätsstr. 150 - MA 5/158, 44801, Bochum, Germany
| | - Lúcia Elvira Alvares
- Department of Biochemistry and Tissue Biology, State University of Campinas - UNICAMP, Rua Charles Darwin s/n, Campinas, CEP 13083-863, Brazil.
| |
Collapse
|
127
|
Gaudry MJ, Campbell KL. Evolution of UCP1 Transcriptional Regulatory Elements Across the Mammalian Phylogeny. Front Physiol 2017; 8:670. [PMID: 28979209 PMCID: PMC5611445 DOI: 10.3389/fphys.2017.00670] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/23/2017] [Indexed: 01/22/2023] Open
Abstract
Uncoupling protein 1 (UCP1) permits non-shivering thermogenesis (NST) when highly expressed in brown adipose tissue (BAT) mitochondria. Exclusive to placental mammals, BAT has commonly been regarded to be advantageous for thermoregulation in hibernators, small-bodied species, and the neonates of larger species. While numerous regulatory control motifs associated with UCP1 transcription have been proposed for murid rodents, it remains unclear whether these are conserved across the eutherian mammal phylogeny and hence essential for UCP1 expression. To address this shortcoming, we conducted a broad comparative survey of putative UCP1 transcriptional regulatory elements in 139 mammals (135 eutherians). We find no evidence for presence of a UCP1 enhancer in monotremes and marsupials, supporting the hypothesis that this control region evolved in a stem eutherian ancestor. We additionally reveal that several putative promoter elements (e.g., CRE-4, CCAAT) identified in murid rodents are not conserved among BAT-expressing eutherians, and together with the putative regulatory region (PRR) and CpG island do not appear to be crucial for UCP1 expression. The specificity and importance of the upTRE, dnTRE, URE1, CRE-2, RARE-2, NBRE, BRE-1, and BRE-2 enhancer elements first described from rats and mice are moreover uncertain as these motifs differ substantially—but generally remain highly conserved—in other BAT-expressing eutherians. Other UCP1 enhancer motifs (CRE-3, PPRE, and RARE-3) as well as the TATA box are also highly conserved in nearly all eutherian lineages with an intact UCP1. While these transcriptional regulatory motifs are generally also maintained in species where this gene is pseudogenized, the loss or degeneration of key basal promoter (e.g., TATA box) and enhancer elements in other UCP1-lacking lineages make it unlikely that the enhancer region is pleiotropic (i.e., co-regulates additional genes). Importantly, differential losses of (or mutations within) putative regulatory elements among the eutherian lineages with an intact UCP1 suggests that the transcriptional control of gene expression is not highly conserved in this mammalian clade.
Collapse
Affiliation(s)
- Michael J Gaudry
- Department of Biological Sciences, University of ManitobaWinnipeg, MB, Canada
| | - Kevin L Campbell
- Department of Biological Sciences, University of ManitobaWinnipeg, MB, Canada
| |
Collapse
|
128
|
Boulard C, Fatihi A, Lepiniec L, Dubreucq B. Regulation and evolution of the interaction of the seed B3 transcription factors with NF-Y subunits. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:1069-1078. [PMID: 28866096 DOI: 10.1016/j.bbagrm.2017.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022]
Abstract
The LAFL genes (LEC2, ABI3, FUS3, LEC1) encode transcription factors that regulate different aspects of seed development, from early to late embryogenesis and accumulation of storage compounds. These transcription factors form a complex network, with members able to interact with various other players to control the switch between embryo development and seed maturation and, at a later stage in the plant life cycle, between the mature seed and germination. In this review, we first summarize our current understanding of the role of each member in the network in the light of recent advances regarding their regulation and structure/function relationships. In a second part, we discuss new insights concerning the evolution of the LAFL genes to address the more specific question of the conservation of LEAFY COTYLEDONS 2 in both dicots and monocots and the putative origin of the network. Last we examine the current major limitations to current knowledge and future prospects to improve our understanding of this regulatory network.
Collapse
Affiliation(s)
- C Boulard
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - A Fatihi
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - L Lepiniec
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - B Dubreucq
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France.
| |
Collapse
|
129
|
Manimaran P, Venkata Reddy S, Moin M, Raghurami Reddy M, Yugandhar P, Mohanraj SS, Balachandran SM, Kirti PB. Activation-tagging in indica rice identifies a novel transcription factor subunit, NF-YC13 associated with salt tolerance. Sci Rep 2017; 7:9341. [PMID: 28839256 PMCID: PMC5570948 DOI: 10.1038/s41598-017-10022-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/02/2017] [Indexed: 12/19/2022] Open
Abstract
Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor with three distinct NF-YA, NF-YB and NF-YC subunits. It plays important roles in plant growth, development and stress responses. We have reported earlier on development of gain-of-function mutants in an indica rice cultivar, BPT-5204. Now, we screened 927 seeds from 70 Ac/Ds plants for salinity tolerance and identified one activation-tagged salt tolerant DS plant (DS-16, T3 generation) that showed enhanced expression of a novel 'histone-like transcription factor' belonging to rice NF-Y subfamily C and was named as OsNF-YC13. Localization studies using GFP-fusion showed that the protein is localized to nucleus and cytoplasm. Real time expression analysis confirmed upregulation of transcript levels of OsNF-YC13 during salt treatment in a tissue specific manner. Biochemical and physiological characterization of the DS-16 revealed enhanced K+/Na+ ratio, proline content, chlorophyll content, enzymes with antioxidant activity etc. DS-16 also showed transcriptional up-regulation of genes that are involved in salinity tolerance. In-silico analysis of OsNF-YC13 promoter region evidenced the presence of various key stress-responsive cis-regulatory elements. OsNF-YC13 subunit alone does not appear to have the capacity for direct transcription activation, but appears to interact with the B- subunits in the process of transactivation.
Collapse
Affiliation(s)
- P Manimaran
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India.
| | - S Venkata Reddy
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India
| | - Mazahar Moin
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India
| | - M Raghurami Reddy
- Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - Poli Yugandhar
- Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - S S Mohanraj
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India
| | - S M Balachandran
- Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - P B Kirti
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India.
| |
Collapse
|
130
|
Xuanyuan G, Lu C, Zhang R, Jiang J. Overexpression of StNF-YB3.1 reduces photosynthetic capacity and tuber production, and promotes ABA-mediated stomatal closure in potato (Solanum tuberosum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 261:50-59. [PMID: 28554693 DOI: 10.1016/j.plantsci.2017.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Nuclear factor Y (NF-Y) is one of the most ubiquitous transcription factors (TFs), comprising NF-YA, NF-YB and NF-YC subunits, and has been identified and reported in various aspects of development for plants and animals. In this work, StNF-YB3.1, a putative potato NF-YB subunit encoding gene, was isolated from Solanum tuberosum by rapid amplification of cDNA ends (RACE). Overexpression of StNF-YB3.1 in potato (cv. Atlantic) resulted in accelerated onset of flowering, and significant increase in leaf chlorophyll content in field trials. However, transgenic potato plants overexpressing StNF-YB3.1 (OEYB3.1) showed significant decreases in photosynthetic rate and stomatal conductance both at tuber initiation and bulking stages. OEYB3.1 lines were associated with significantly fewer tuber numbers and yield reduction. Guard cell size and stomatal density were not changed in OEYB3.1 plants, whereas ABA-mediated stomatal closure was accelerated compared to that of wild type plants because of the up-regulation of genes for ABA signaling, such as StCPK10-like, StSnRK2.6/OST1-like, StSnRK2.7-like and StSLAC1-like. We speculate that the acceleration of stomatal closure was a possible reason for the significantly decreased stomatal conductance and photosynthetic rate.
Collapse
Affiliation(s)
- Guochao Xuanyuan
- Inner Mongolia Potato Engineering and Technology Research Centre, Inner Mongolia University, Hohhot 010021, China
| | - Congming Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ruofang Zhang
- Inner Mongolia Potato Engineering and Technology Research Centre, Inner Mongolia University, Hohhot 010021, China.
| | - Jiming Jiang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
131
|
Du A, Tian W, Wei M, Yan W, He H, Zhou D, Huang X, Li S, Ouyang X. The DTH8-Hd1 Module Mediates Day-Length-Dependent Regulation of Rice Flowering. MOLECULAR PLANT 2017; 10:948-961. [PMID: 28549969 DOI: 10.1016/j.molp.2017.05.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/02/2017] [Accepted: 05/14/2017] [Indexed: 05/04/2023]
Abstract
Photoperiodic flowering is one of the most important pathways to govern flowering in rice (Oryza sativa), in which Heading date 1 (Hd1), an ortholog of the Arabidopsis CONSTANS gene, encodes a pivotal regulator. Hd1 promotes flowering under short-day conditions (SD) but represses flowering under long-day conditions (LD) by regulating the expression of Heading date 3a (Hd3a), the FLOWERING LOCUS T (FT) ortholog in rice. However, the molecular mechanism of how Hd1 changes its regulatory activity in response to day length remains largely unknown. In this study, we demonstrated that the repression of flowering in LD by Hd1 is dependent on the transcription factor DAYS TO HEADING 8 (DTH8). Loss of DTH8 function results in the activation of Hd3a by Hd1, leading to early flowering. We found that Hd1 directly interacts with DTH8 and that the formation of the DTH8-Hd1 complex is necessary for the transcriptional repression of Hd3a by Hd1 in LD, implicating that the switch of Hd1 function is mediated by DTH8 in LD rather than in SD. Furthermore, we revealed that DTH8 associates with the Hd3a promoter to modulate the level of H3K27 trimethylation (H3K27me3) at the Hd3a locus. In the presence of the DTH8-Hd1 complex, the H3K27me3 level was increased at Hd3a, whereas loss of DTH8 function resulted in decreased H3K27me3 level at Hd3a. Taken together, our findings indicate that, in response to day length, DTH8 plays a critical role in mediating the transcriptional regulation of Hd3a by Hd1 through the DTH8-Hd1 module to shape epigenetic modifications in photoperiodic flowering.
Collapse
Affiliation(s)
- Anping Du
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei Tian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Menghao Wei
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Wei Yan
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Hang He
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Da Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen 361005, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shigui Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Xinhao Ouyang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
132
|
Gago C, Drosou V, Paschalidis K, Guerreiro A, Miguel G, Antunes D, Hilioti Z. Targeted gene disruption coupled with metabolic screen approach to uncover the LEAFY COTYLEDON1-LIKE4 (L1L4) function in tomato fruit metabolism. PLANT CELL REPORTS 2017; 36:1065-1082. [PMID: 28391527 DOI: 10.1007/s00299-017-2137-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/24/2017] [Indexed: 05/22/2023]
Abstract
Functional analysis of tomato L1L4 master transcription factor resulted in important metabolic changes affecting tomato fruit quality. Tomato fruits from mutant lines bearing targeted disruption of the heterotrimeric nuclear transcription factor Y (NF-Y) transcription factor (TF) gene LEAFY-COTYLEDON1-LIKE4 (L1L4, NF-YB6), a master regulator of biosynthesis for seed storage proteins and fatty acids, were evaluated for metabolites content and morphology. Metabolic screens using LC-MS/MS-based analysis and physico-chemical methods in different L1L4 mutants of the fourth generation allowed a comparative assessment of the effects of the TF disruption. Mutagenesis resulted in fruits phenotypically similar to wild-type with subtle shape differences in the distal end protrusion and symmetry. Conversely, mutant fruits from independent lines had significant variation in moisture content, titratable acidity and overall metabolite profiles including oxalic and citric acid, fructose, β-carotene, total polyphenols and antioxidants. Lines 6, 7 and 9 were the richest in β-carotene and antioxidant activity, line 4 in ascorbic acid and lines 4 and 8 in succinic acid. The reduced content of the anti-nutrient oxalic acid in several mutant fruits suggests that L1L4 gene may regulate the accumulation of this compound during fruit development. Detailed LC-MS/MS analysis of mutant seeds showed substantial differences in bioactive compounds compared to wild-type seeds. Taken together, the results suggest that the L1L4 TF is a significant regulator of metabolites both in tomato fruit and seeds providing a molecular target for crop improvement. Elucidation of the candidate genes encoding key enzymes in the affected metabolic pathways aimed to facilitate the L1L4 gene network exploration and eventually lead to systems biology approaches in tomato fruit quality.
Collapse
Affiliation(s)
- Custódia Gago
- Meditbio, FCT, University of Algarve, Edf. 8 Campus de Gambelas, 8005-139, Faro, Portugal
| | - Victoria Drosou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 6th klm Charilaou-Thermi Rd., 57001, Thessaloniki, Thermi, Greece
| | - Konstantinos Paschalidis
- Department of Agriculture, Technological Educational Institution of Crete, 710 04, Heraklion, Crete, Greece
| | - Adriana Guerreiro
- Meditbio, FCT, University of Algarve, Edf. 8 Campus de Gambelas, 8005-139, Faro, Portugal
| | - Graça Miguel
- Meditbio, FCT, University of Algarve, Edf. 8 Campus de Gambelas, 8005-139, Faro, Portugal
| | - Dulce Antunes
- Meditbio, FCT, University of Algarve, Edf. 8 Campus de Gambelas, 8005-139, Faro, Portugal
- CEOT, FCT, University of Algarve, Edf. 8 Campus de Gambelas, 8005-139, Faro, Portugal
| | - Zoe Hilioti
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 6th klm Charilaou-Thermi Rd., 57001, Thessaloniki, Thermi, Greece.
| |
Collapse
|
133
|
Vishnoi N, Yao J. Single-cell, single-mRNA analysis of Ccnb1 promoter regulation. Sci Rep 2017; 7:2065. [PMID: 28522800 PMCID: PMC5437063 DOI: 10.1038/s41598-017-02240-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/06/2017] [Indexed: 11/09/2022] Open
Abstract
Promoter activation drives gene transcriptional output. Here we report generating site-specifically integrated single-copy promoter transgenes and measuring their expression to indicate promoter activities at single-mRNA level. mRNA counts, Pol II density and Pol II firing rates of the Ccnb1 promoter transgene resembled those of the native Ccnb1 gene both among asynchronous cells and during the cell cycle. We observed distinct activation states of the Ccnb1 promoter among G1 and G2/M cells, suggesting cell cycle-independent origin of cell-to-cell variation in Ccnb1 promoter activation. Expressing a dominant-negative mutant of NF-YA, a key transcriptional activator of the Ccnb1 promoter, increased its “OFF”/“ON” time ratios but did not alter Pol II firing rates during the “ON” period. Furthermore, comparing H3K4me2 and H3K79me2 levels at the Ccnb1 promoter transgene and the native Ccnb1 gene indicated that the enrichment of these two active histone marks did not predispose higher transcriptional activities. In summary, this experimental system enables bridging transcription imaging with molecular analysis to provide novel insights into eukaryotic transcriptional regulation.
Collapse
Affiliation(s)
- Nidhi Vishnoi
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Jie Yao
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
134
|
Shi C, Zhang Z. Screening of potentially crucial genes and regulatory factors involved in epithelial ovarian cancer using microarray analysis. Oncol Lett 2017; 14:725-732. [PMID: 28693226 PMCID: PMC5494615 DOI: 10.3892/ol.2017.6183] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/17/2017] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to screen potential genes implicated in epithelial ovarian cancer (EOC) and to further understand the molecular pathogenesis of EOC. In order to do this, datasets GSE14407 (containing 12 human ovarian cancer epithelia samples and 12 normal epithelia samples) and GSE29220 (containing 11 salivary transcriptomes from ovarian cancer patients with serous papillary adenocarcinoma and 11 matched controls) were obtained from the Gene Expression Omnibus. Differentially expressed genes (DEGs) within these datasets were screened using the Linear Models for Microarray Data package, and potential gene functions were predicted by functional and pathway enrichment analyses. Additionally, module analysis of protein-protein interaction networks was performed using MCODE software in Cytoscape. The potential microRNAs (miRNAs/miRs) and transcription factors (TFs) regulating DEGs were also analyzed, and the integrated TF-DEG and miRNA-DEG regulatory networks were visualized with Cytoscape. In total, 31 upregulated DEGs and 64 downregulated DEGs were screened. The upregulated DEGs, such as centromere protein F (CENPF) and ubiquitin like with PHD and ring finger domains 1 (UHRF1), were significantly associated with the cell cycle and were regulated by the TF nuclear transcription factor Y (NF-Y). CENPF was modulated by miR-373, and UHRF1 was regulated by miR-146a. The downregulated DEGs, such as aldehyde dehydrogenase 1 family member A2 (ALDH1A2), were distinctly involved in the response to estrogen stimulus and modulated by tumor protein 53 (TP53); protocadherin 9 (PCDH9) was regulated by TP53, miR-92b-3p and miR-137. The DEGs, including CENPF, UHRF1, ALDH1A2 and PCDH9, and a set of gene regulators, including all NFY genes, TP53, miR-373, miR-146a, miR-92b-3p and miR-137, may be involved in the pathogenesis of EOC.
Collapse
Affiliation(s)
- Can Shi
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Zhenyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
135
|
Yao DW, Luo J, He QY, Li J, Wang H, Shi HB, Xu HF, Wang M, Loor JJ. Characterization of the liver X receptor-dependent regulatory mechanism of goat stearoyl-coenzyme A desaturase 1 gene by linoleic acid. J Dairy Sci 2017; 99:3945-3957. [PMID: 26947306 DOI: 10.3168/jds.2015-10601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/13/2016] [Indexed: 01/05/2023]
Abstract
Stearoyl-coenzyme A desaturase 1 (SCD1) is a key enzyme in the biosynthesis of palmitoleic and oleic acid. Although the transcriptional regulatory mechanism of SCD1 via polyunsaturated fatty acids (PUFA) has been extensively explored in nonruminants, the existence of such mechanism in ruminant mammary gland remains unknown. In this study, we used goat genomic DNA to clone and sequence a 1,713-bp fragment of the SCD1 5' flanking region. Deletion assays revealed a core region of the promoter located between -415 and -109 bp upstream of the transcription start site, and contained the highly conserved PUFA response region. An intact PUFA response region was required for the basal transcriptional activity of SCD1. Linoleic acid reduced endogenous expression of SCD1 and sterol regulatory element binding factor-1 (SREBF1) in goat mammary epithelial cells. Further analysis indicated that both the sterol response element (SRE) and the nuclear factor Y (NF-Y) binding site in the SCD1 promoter were responsible for the inhibition effect by linoleic acid, whereas the effect was abrogated once NF-Y was deleted. In addition, SRE and NF-Y were partly responsible for the transcriptional activation induced via the liver X receptor agonist T 4506585 (Sigma-Aldrich, St. Louis, MO). When goat mammary epithelial cells were cultured with linoleic acid, addition of T 4506585 markedly increased SCD1 transcription in controls, but had no effect on cells with a deleted SRE promoter. These results demonstrated that linoleic acid can regulate SCD1 expression at the transcriptional level through SRE and NF-Y in a liver X receptor-dependent fashion in the goat mammary gland.
Collapse
Affiliation(s)
- D W Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - J Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100.
| | - Q Y He
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - J Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, P. R. China 450046
| | - H Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - H B Shi
- College of Animal Sciences, Zhejiang Sci-Tech University, Hangzhou, P. R. China 310058
| | - H F Xu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - M Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
136
|
Suske G. NF-Y and SP transcription factors — New insights in a long-standing liaison. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:590-597. [DOI: 10.1016/j.bbagrm.2016.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022]
|
137
|
Bolotin-Fukuhara M. Thirty years of the HAP2/3/4/5 complex. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:543-559. [DOI: 10.1016/j.bbagrm.2016.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 01/22/2023]
|
138
|
Han JD, Li X, Jiang CK, Wong GKS, Rothfels CJ, Rao GY. Evolutionary Analysis of the LAFL Genes Involved in the Land Plant Seed Maturation Program. FRONTIERS IN PLANT SCIENCE 2017; 8:439. [PMID: 28421087 PMCID: PMC5379062 DOI: 10.3389/fpls.2017.00439] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/14/2017] [Indexed: 06/07/2023]
Abstract
Seeds are one of the most significant innovations in the land plant lineage, critical to the diversification and adaptation of plants to terrestrial environments. From perspective of seed evo-devo, the most crucial developmental stage in this innovation is seed maturation, which includes accumulation of storage reserves, acquisition of desiccation tolerance, and induction of dormancy. Based on previous studies of seed development in the model plant Arabidopsis thaliana, seed maturation is mainly controlled by the LAFL regulatory network, which includes LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) of the NF-YB gene family, and ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 (LEAFY COTYLEDON2) of the B3-AFL gene family. In the present study, molecular evolution of these LAFL genes was analyzed, using representative species from across the major plant lineages. Additionally, to elucidate the molecular mechanisms of the seed maturation program, co-expression pattern analyses of LAFL genes were conducted across vascular plants. The results show that the origin of AFL gene family dates back to a common ancestor of bryophytes and vascular plants, while LEC1-type genes are only found in vascular plants. LAFL genes of vascular plants likely specify their co-expression in two different developmental phrases, spore and seed maturation, respectively, and expression patterns vary slightly across the major vascular plants lineages. All the information presented in this study will provide insights into the origin and diversification of seed plants.
Collapse
Affiliation(s)
- Jing-Dan Han
- School of Life Sciences, Peking UniversityBeijing, China
| | - Xia Li
- RDFZ XiShan SchoolBeijing, China
| | - Chen-Kun Jiang
- School of Life Sciences, Peking UniversityBeijing, China
| | - Gane K.-S. Wong
- Department of Biological Sciences, University of Alberta, EdmontonAB, Canada
- Department of Medicine, University of Alberta, EdmontonAB, Canada
- BGI-Shenzhen, Beishan Industrial ZoneShenzhen, China
| | - Carl J. Rothfels
- University Herbarium and Department of Integrative Biology, University of California, BerkeleyCA, USA
| | - Guang-Yuan Rao
- School of Life Sciences, Peking UniversityBeijing, China
| |
Collapse
|
139
|
Nishi-Tatsumi M, Yahagi N, Takeuchi Y, Toya N, Takarada A, Murayama Y, Aita Y, Sawada Y, Piao X, Oya Y, Shikama A, Masuda Y, Kubota M, Izumida Y, Matsuzaka T, Nakagawa Y, Sekiya M, Iizuka Y, Kawakami Y, Kadowaki T, Yamada N, Shimano H. A key role of nuclear factor Y in the refeeding response of fatty acid synthase in adipocytes. FEBS Lett 2017; 591:965-978. [PMID: 28281280 DOI: 10.1002/1873-3468.12620] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 11/10/2022]
Abstract
Fatty acid synthase (Fasn) is a key component of energy metabolism that is dynamically induced by food intake. Although extensive studies have revealed a number of transcription factors involved in the fasting/refeeding transition of Fasn expression in hepatocytes, much less evidence is available for adipocytes. Using the in vivo Ad-luc analytical system, we identified the inverted CCAAT element (ICE) around -100 nucleotides in the Fasn promoter as a critical cis-element for the refeeding response in adipocytes. Electrophoretic mobility shift assays and chromatin immunoprecipitation show that nuclear factor Y (NF-Y) binds to ICE specifically in refeeding states. Notably, the NF-Y binding to ICE is differently regulated between adipocytes and hepatocytes. These findings provide insights into the specific mechanisms controlling energy metabolism in adipocytes.
Collapse
Affiliation(s)
- Makiko Nishi-Tatsumi
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Naoya Yahagi
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshinori Takeuchi
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Naoki Toya
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Ayako Takarada
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuki Murayama
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuichi Aita
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshikazu Sawada
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Xiaoying Piao
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yukari Oya
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Akito Shikama
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yukari Masuda
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Midori Kubota
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshihiko Izumida
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshimi Nakagawa
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Motohiro Sekiya
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoko Iizuka
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Japan
| | - Yasushi Kawakami
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takashi Kadowaki
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Japan
| | - Nobuhiro Yamada
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
140
|
Greiss F, Kriegel F, Braun D. Probing the Cooperativity of Binding Networks with High-Throughput Thermophoresis. Anal Chem 2017; 89:2592-2597. [PMID: 28192944 DOI: 10.1021/acs.analchem.6b04861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The formation of supramolecular complexes is found in many natural systems and is the basis for cooperative behavior. Here, we report on the development of a high-throughput platform to measure the complex binding behavior in 500 nL volumes and 1 536-well plates. The platform enabled us to elucidate the thermodynamic properties of a heterotrimeric DNA complex that portrays the structure of a biological relevant three-way junction. In a complementing set of cooperative networks, binding constants from ∼0.1 nM to ∼10 μM were measured by sampling a high-dimensional concentration space. Each intermediate binding state was probed simultaneously with only a single fluorescent label. Through systematic base pair variations, we observed the influence of the cooperative effect on single base pair mismatches. We further found coupled binding between seemingly independent binding sites through the complex structure of the three-way junction that could not have been observed without the measurement of the entire network. These results promote automated high-throughput thermophoresis to characterize arbitrary binding networks.
Collapse
Affiliation(s)
- Ferdinand Greiss
- Systems Biophysics and ‡Physics Department, Nanosystems Initiative Munich and Center for NanoScience, Ludwig-Maximilians-Universität München , Amalienstraße 54, 80799 München, Germany
| | - Franziska Kriegel
- Systems Biophysics and ‡Physics Department, Nanosystems Initiative Munich and Center for NanoScience, Ludwig-Maximilians-Universität München , Amalienstraße 54, 80799 München, Germany
| | - Dieter Braun
- Systems Biophysics and ‡Physics Department, Nanosystems Initiative Munich and Center for NanoScience, Ludwig-Maximilians-Universität München , Amalienstraße 54, 80799 München, Germany
| |
Collapse
|
141
|
Hu T, Zhu X, Pi W, Yu M, Shi H, Tuan D. Hypermethylated LTR retrotransposon exhibits enhancer activity. Epigenetics 2017; 12:226-237. [PMID: 28165867 DOI: 10.1080/15592294.2017.1289300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
LTR retrotransposons are repetitive DNA elements comprising ∼10% of the human genome. They are silenced by hypermethylation of cytosines in CpG dinucleotides and are considered parasitic DNA serving no useful function for the host genome. However, hypermethylated LTRs contain enhancer and promoter sequences and can promote tissue-specific transcription of cis-linked genes. To resolve the apparent paradox of hypermethylated LTRs possessing transcriptional activities, we studied the ERV-9 LTR retrotransposon located at the 5' border of the transcriptionally active β-globin gene locus in human erythroid progenitor and erythroleukemia K562 cells. We found that the ERV-9 LTR, containing 65 CpGs in 1.7 kb DNA, was hypermethylated (with > 90% methylated CpGs). Hypermethylated LTR possessed transcriptional enhancer activity, since in vivo deletion of the LTR by CRISPR-cas9 suppressed transcription of the globin genes by > 50%. ChIP-qPCR and ChIP-seq studies showed that the hypermethylated LTR enhancer spanning recurrent CCAATCG and GATA motifs associated respectively with key transcription factors (TFs) NF-Y and GATA-1 and -2 at reduced levels, compared with the unmethylated LTR in transfected LTR-reporter gene plasmids. Electrophoretic mobility shift assays with methylated LTR enhancer probe showed that the methylated probe bound both NF-Y and GATA-1 and -2 with lower affinities than the unmethylated enhancer probe. Thus, hypermethylation drastically reduced, but did not totally abolish, the binding affinities of the enhancer motifs to the key TFs to assemble the LTR-pol II transcription complex that activated transcription of cis-linked genes at reduced efficiency.
Collapse
Affiliation(s)
- Tianxiang Hu
- a Department of Biochemistry and Molecular Biology , Medical College of Georgia, Augusta University , Augusta , GA , USA
| | - Xingguo Zhu
- a Department of Biochemistry and Molecular Biology , Medical College of Georgia, Augusta University , Augusta , GA , USA
| | - Wenhu Pi
- a Department of Biochemistry and Molecular Biology , Medical College of Georgia, Augusta University , Augusta , GA , USA
| | - Miao Yu
- b Georgia Cancer Center , Medical College of Georgia, Augusta University , Augusta , GA , USA
| | - Huidong Shi
- b Georgia Cancer Center , Medical College of Georgia, Augusta University , Augusta , GA , USA
| | - Dorothy Tuan
- a Department of Biochemistry and Molecular Biology , Medical College of Georgia, Augusta University , Augusta , GA , USA
| |
Collapse
|
142
|
Yang W, Lu Z, Xiong Y, Yao J. Genome-wide identification and co-expression network analysis of the OsNF-Y gene family in rice. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.cj.2016.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
143
|
Adachi S, Yoshikawa K, Yamanouchi U, Tanabata T, Sun J, Ookawa T, Yamamoto T, Sage RF, Hirasawa T, Yonemaru J. Fine Mapping of Carbon Assimilation Rate 8, a Quantitative Trait Locus for Flag Leaf Nitrogen Content, Stomatal Conductance and Photosynthesis in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:60. [PMID: 28197156 PMCID: PMC5282472 DOI: 10.3389/fpls.2017.00060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 01/11/2017] [Indexed: 05/19/2023]
Abstract
Increasing the rate of leaf photosynthesis is one important approach for increasing grain yield in rice (Oryza sativa). Exploiting the natural variation in CO2 assimilation rate (A) between rice cultivars using quantitative genetics is one promising means to identify genes contributing to higher photosynthesis. In this study, we determined precise location of Carbon Assimilation Rate 8 (CAR8) by crossing a high-yielding indica cultivar with a Japanese commercial cultivar. Fine mapping suggested that CAR8 encodes a putative Heme Activator Protein 3 (OsHAP3) subunit of a CCAAT-box-binding transcription factor called OsHAP3H. Sequencing analysis revealed that the indica allele of CAR8 has a 1-bp deletion at 322 bp from the start codon, resulting in a truncated protein of 125 amino acids. In addition, CAR8 is identical to DTH8/Ghd8/LHD1, which was reported to control rice flowering date. The increase of A is largely due to an increase of RuBP regeneration rate via increased leaf nitrogen content, and partially explained by reduced stomatal limitation via increased stomatal conductance relative to A. This allele also increases hydraulic conductivity, which would promote higher stomatal conductance. This indicates that CAR8 affects multiple physiological aspects relating to photosynthesis. The detailed analysis of molecular functions of CAR8 would help to understand the association between photosynthesis and flowering and demonstrate specific genetic mechanisms that can be exploited to improve photosynthesis in rice and potentially other crops.
Collapse
Affiliation(s)
- Shunsuke Adachi
- Department of Biological Production Science, Graduate School of Agriculture, Tokyo University of Agriculture and TechnologyFuchu, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and TechnologyFuchu, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology AgencyKawaguchi, Japan
| | - Kazuaki Yoshikawa
- Department of Biological Production Science, Graduate School of Agriculture, Tokyo University of Agriculture and TechnologyFuchu, Japan
| | - Utako Yamanouchi
- Institute of Crop Science, National Agriculture and Food Research OrganizationTsukuba, Japan
| | - Takanari Tanabata
- Department of Frontier Research, Kazusa DNA Research InstituteKisarazu, Japan
| | - Jian Sun
- Institute of Crop Science, National Agriculture and Food Research OrganizationTsukuba, Japan
- Rice Research Institute, Shenyang Agricultural UniversityShenyang, China
| | - Taiichiro Ookawa
- Department of Biological Production Science, Graduate School of Agriculture, Tokyo University of Agriculture and TechnologyFuchu, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and TechnologyFuchu, Japan
| | - Toshio Yamamoto
- Institute of Crop Science, National Agriculture and Food Research OrganizationTsukuba, Japan
| | - Rowan F. Sage
- Institute of Global Innovation Research, Tokyo University of Agriculture and TechnologyFuchu, Japan
- Department of Ecology and Evolutionary Biology, University of TorontoToronto, ON, Canada
| | - Tadashi Hirasawa
- Department of Biological Production Science, Graduate School of Agriculture, Tokyo University of Agriculture and TechnologyFuchu, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and TechnologyFuchu, Japan
| | - Junichi Yonemaru
- Institute of Crop Science, National Agriculture and Food Research OrganizationTsukuba, Japan
| |
Collapse
|
144
|
Chakravarti A, Camp K, McNabb DS, Pinto I. The Iron-Dependent Regulation of the Candida albicans Oxidative Stress Response by the CCAAT-Binding Factor. PLoS One 2017; 12:e0170649. [PMID: 28122000 PMCID: PMC5266298 DOI: 10.1371/journal.pone.0170649] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 01/09/2017] [Indexed: 11/18/2022] Open
Abstract
Candida albicans is the most frequently encountered fungal pathogen in humans, capable of causing mucocutaneous and systemic infections in immunocompromised individuals. C. albicans virulence is influenced by multiple factors. Importantly, iron acquisition and avoidance of the immune oxidative burst are two critical barriers for survival in the host. Prior studies using whole genome microarray expression data indicated that the CCAAT-binding factor is involved in the regulation of iron uptake/utilization and the oxidative stress response. This study examines directly the role of the CCAAT-binding factor in regulating the expression of oxidative stress genes in response to iron availability. The CCAAT-binding factor is a heterooligomeric transcription factor previously shown to regulate genes involved in respiration and iron uptake/utilization in C. albicans. Since these pathways directly influence the level of free radicals, it seemed plausible the CCAAT-binding factor regulates genes necessary for the oxidative stress response. In this study, we show the CCAAT-binding factor is involved in regulating some oxidative stress genes in response to iron availability, including CAT1, SOD4, GRX5, and TRX1. We also show that CAT1 expression and catalase activity correlate with the survival of C. albicans to oxidative stress, providing a connection between iron obtainability and the oxidative stress response. We further explore the role of the various CCAAT-binding factor subunits in the formation of distinct protein complexes that modulate the transcription of CAT1 in response to iron. We find that Hap31 and Hap32 can compensate for each other in the formation of an active transcriptional complex; however, they play distinct roles in the oxidative stress response during iron limitation. Moreover, Hap43 was found to be solely responsible for the repression observed under iron deprivation.
Collapse
Affiliation(s)
- Ananya Chakravarti
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Kyle Camp
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - David S. McNabb
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Inés Pinto
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
145
|
Jin SD, Lee BR, Hwang YS, Lee HJ, Rim JS, Han JY. Regulatory elements and transcriptional control of chicken vasa homologue ( CVH) promoter in chicken primordial germ cells. J Anim Sci Biotechnol 2017; 8:6. [PMID: 28101336 PMCID: PMC5237207 DOI: 10.1186/s40104-016-0133-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/07/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Primordial germ cells (PGCs), the precursors of functional gametes, have distinct characteristics and exhibit several unique molecular mechanisms to maintain pluripotency and germness in comparison to somatic cells. They express germ cell-specific RNA binding proteins (RBPs) by modulating tissue-specific cis- and trans-regulatory elements. Studies on gene structures of chicken vasa homologue (CVH), a chicken RNA binding protein, involved in temporal and spatial regulation are thus important not only for understanding the molecular mechanisms that regulate germ cell fate, but also for practical applications of primordial germ cells. However, very limited studies are available on regulatory elements that control germ cell-specific expression in chicken. Therefore, we investigated the intricate regulatory mechanism(s) that governs transcriptional control of CVH. RESULTS We constructed green fluorescence protein (GFP) or luciferase reporter vectors containing the various 5' flanking regions of CVH gene. From the 5' deletion and fragmented assays in chicken PGCs, we have identified a CVH promoter that locates at -316 to +275 base pair fragment with the highest luciferase activity. Additionally, we confirmed for the first time that the 5' untranslated region (UTR) containing intron 1 is required for promoter activity of the CVH gene in chicken PGCs. Furthermore, using a transcription factor binding prediction, transcriptome analysis and siRNA-mediated knockdown, we have identified that a set of transcription factors play a role in the PGC-specific CVH gene expression. CONCLUSIONS These results demonstrate that cis-elements and transcription factors localizing in the 5' flanking region including the 5' UTR and an intron are important for transcriptional regulation of the CVH gene in chicken PGCs. Finally, this information will contribute to research studies in areas of reproductive biology, constructing of germ cell-specific synthetic promoter for tracing primordial germ cells as well as understanding the transcriptional regulation for maintaining germness in PGCs.
Collapse
Affiliation(s)
- So Dam Jin
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 South Korea
| | - Bo Ram Lee
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 South Korea
| | - Young Sun Hwang
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 South Korea
| | - Hong Jo Lee
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 South Korea
| | - Jong Seop Rim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 South Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 South Korea
- Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Nagano 399-4598 Japan
| |
Collapse
|
146
|
Goretti D, Martignago D, Landini M, Brambilla V, Gómez-Ariza J, Gnesutta N, Galbiati F, Collani S, Takagi H, Terauchi R, Mantovani R, Fornara F. Transcriptional and Post-transcriptional Mechanisms Limit Heading Date 1 (Hd1) Function to Adapt Rice to High Latitudes. PLoS Genet 2017; 13:e1006530. [PMID: 28068345 PMCID: PMC5221825 DOI: 10.1371/journal.pgen.1006530] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/08/2016] [Indexed: 11/24/2022] Open
Abstract
Rice flowering is controlled by changes in the photoperiod that promote the transition to the reproductive phase as days become shorter. Natural genetic variation for flowering time has been largely documented and has been instrumental to define the genetics of the photoperiodic pathway, as well as providing valuable material for artificial selection of varieties better adapted to local environments. We mined genetic variation in a collection of rice varieties highly adapted to European regions and isolated distinct variants of the long day repressor HEADING DATE 1 (Hd1) that perturb its expression or protein function. Specific variants allowed us to define novel features of the photoperiodic flowering pathway. We demonstrate that a histone fold domain scaffold formed by GRAIN YIELD, PLANT HEIGHT AND HEADING DATE 8 (Ghd8) and several NF-YC subunits can accommodate distinct proteins, including Hd1 and PSEUDO RESPONSE REGULATOR 37 (PRR37), and that the resulting OsNF-Y complex containing Hd1 can bind a specific sequence in the promoter of HEADING DATE 3A (Hd3a). Artificial selection has locally favored an Hd1 variant unable to assemble in such heterotrimeric complex. The causal polymorphism was defined as a single conserved lysine in the CCT domain of the Hd1 protein. Our results indicate how genetic variation can be stratified and explored at multiple levels, and how its description can contribute to the molecular understanding of basic developmental processes. Many plant species flower in response to changes in day length and can be categorized depending on their requirements for long or short days. Rice has tropical origins and normally flowers in response to shortening days. However, artificial selection operated by ancient farmers or modern breeders adapted rice cultivation to several environments, including those typical of temperate regions characterized by long days during the cropping season. Modifications of the genetic network controlling flowering that are causal to such expansion have been the subject of extensive studies, but the full complement of genes that regulate it and the molecular bases of their activity remains unknown. We took advantage of germplasm cultivated in Europe—and highly adapted to flower under long days–to isolate widespread variants of the HEADING DATE 1 (Hd1) gene that limits flowering in temperate areas, and showed that such variants are non-functional and unable to prevent long day flowering. We identified the DNA changes causing the gene to be non-functional and used such mutant alleles as tools to demonstrate that Hd1 can bind a specific DNA sequence in the promoter of a florigenic rice gene. Mining genetic diversity becomes thus instrumental to define the molecular properties of regulatory pathways.
Collapse
Affiliation(s)
- Daniela Goretti
- Department of Biosciences, University of Milan, Via Celoria 26, Milan, Italy
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Damiano Martignago
- Department of Biosciences, University of Milan, Via Celoria 26, Milan, Italy
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, United Kingdom
| | - Martina Landini
- Department of Biosciences, University of Milan, Via Celoria 26, Milan, Italy
| | - Vittoria Brambilla
- Department of Biosciences, University of Milan, Via Celoria 26, Milan, Italy
- Department of Agricultural and Environmental Sciences–Production, Territory, Agroenergy, University of Milan, Via Celoria 2, Milan, Italy
| | - Jorge Gómez-Ariza
- Department of Biosciences, University of Milan, Via Celoria 26, Milan, Italy
| | - Nerina Gnesutta
- Department of Biosciences, University of Milan, Via Celoria 26, Milan, Italy
| | - Francesca Galbiati
- Department of Biosciences, University of Milan, Via Celoria 26, Milan, Italy
| | - Silvio Collani
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Hiroki Takagi
- Iwate Biotechnology Research Center and Laboratory of Crop Evolution, Graduate School of Agricultural Sciences, Kyoto University, Mozume, Muko, Kyoto, Japan
| | - Ryohei Terauchi
- Iwate Biotechnology Research Center and Laboratory of Crop Evolution, Graduate School of Agricultural Sciences, Kyoto University, Mozume, Muko, Kyoto, Japan
| | - Roberto Mantovani
- Department of Biosciences, University of Milan, Via Celoria 26, Milan, Italy
| | - Fabio Fornara
- Department of Biosciences, University of Milan, Via Celoria 26, Milan, Italy
- * E-mail:
| |
Collapse
|
147
|
Zhu S, Wang J, Cai M, Zhang H, Wu F, Xu Y, Li C, Cheng Z, Zhang X, Guo X, Sheng P, Wu M, Wang J, Lei C, Wang J, Zhao Z, Wu C, Wang H, Wan J. The OsHAPL1-DTH8-Hd1 complex functions as the transcription regulator to repress heading date in rice. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:553-568. [PMID: 28043949 PMCID: PMC6055584 DOI: 10.1093/jxb/erw468] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Heading date is an important agronomic trait related to crop yield. Many genes related to heading date have already been identified in rice (Oryza sativa), and a complicated, preliminary regulatory genetic network has also already been established, but the protein regulatory network is poorly understood. We have identified a novel heading date regulator, Heme Activator Protein like 1 (OsHAPL1), which inhibits flowering under long-day conditions. OsHAPL1 is a nuclear-localized protein that is highly expressed in leaves in a rhythmic manner. OsHAPL1 can physically interact with Days To Heading on chromosome 8 (DTH8), which physically interacts with Heading date 1 (Hd1) both in vitro and in vivo. OsHAPL1 forms a complex with DTH8 and Hd1 in Escherichia coli. OsHAPL1, DTH8, and Hd1 physically interact with the HAP complex, and also with general transcription factors in yeast (Saccharomyces cerevisiae). Further studies showed that OsHAPL1 represses the expression of the florigen genes and FLOWERING LOCUS T 1 (RFT1) and Hd3a through Early heading date 1 (Ehd1). We propose that OsHAPL1 functions as a transcriptional regulator and, together with DTH8, Hd1, the HAP complex, and general transcription factors, regulates the expression of target genes and then affects heading date by influencing the expression of Hd3a and RFT1 through Ehd1.
Collapse
Affiliation(s)
- Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Jiachang Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, PR China
| | - Maohong Cai
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, PR China
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, PR China
| | - Fuqing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Yang Xu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, PR China
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Peike Sheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Mingming Wu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, PR China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Chuanyin Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, PR China
- Correspondence:
| |
Collapse
|
148
|
Li Y, Zhao SL, Li JL, Hu XH, Wang H, Cao XL, Xu YJ, Zhao ZX, Xiao ZY, Yang N, Fan J, Huang F, Wang WM. Osa-miR169 Negatively Regulates Rice Immunity against the Blast Fungus Magnaporthe oryzae. FRONTIERS IN PLANT SCIENCE 2017; 8:2. [PMID: 28144248 PMCID: PMC5239796 DOI: 10.3389/fpls.2017.00002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/03/2017] [Indexed: 05/18/2023]
Abstract
miR169 is a conserved microRNA (miRNA) family involved in plant development and stress-induced responses. However, how miR169 functions in rice immunity remains unclear. Here, we show that miR169 acts as a negative regulator in rice immunity against the blast fungus Magnaporthe oryzae by repressing the expression of nuclear factor Y-A (NF-YA) genes. The accumulation of miR169 was significantly increased in a susceptible accession but slightly fluctuated in a resistant accession upon M. oryzae infection. Consistently, the transgenic lines overexpressing miR169a became hyper-susceptible to different M. oryzae strains associated with reduced expression of defense-related genes and lack of hydrogen peroxide accumulation at the infection site. Consequently, the expression of its target genes, the NF-YA family members, was down-regulated by the overexpression of miR169a at either transcriptional or translational level. On the contrary, overexpression of a target mimicry that acts as a sponge to trap miR169a led to enhanced resistance to M. oryzae. In addition, three of miR169's target genes were also differentially up-regulated in the resistant accession upon M. oryzae infection. Taken together, our data indicate that miR169 negatively regulates rice immunity against M. oryzae by differentially repressing its target genes and provide the potential to engineer rice blast resistance via a miRNA.
Collapse
Affiliation(s)
- Yan Li
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
- Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at WenjiangChengdu, China
| | - Sheng-Li Zhao
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
| | - Jin-Lu Li
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
| | - Xiao-Hong Hu
- College of Agronomy, Sichuan Agricultural University at WenjiangChengdu, China
| | - He Wang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
| | - Xiao-Long Cao
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
| | - Yong-Ju Xu
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
| | - Zhi-Xue Zhao
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
| | - Zhi-Yuan Xiao
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
| | - Nan Yang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
| | - Jing Fan
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
- Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at WenjiangChengdu, China
| | - Fu Huang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
- College of Agronomy, Sichuan Agricultural University at WenjiangChengdu, China
| | - Wen-Ming Wang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
- Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at WenjiangChengdu, China
- *Correspondence: Wen-Ming Wang,
| |
Collapse
|
149
|
NUCLEAR FACTOR Y, Subunit A (NF-YA) Proteins Positively Regulate Flowering and Act Through FLOWERING LOCUS T. PLoS Genet 2016; 12:e1006496. [PMID: 27977687 PMCID: PMC5157953 DOI: 10.1371/journal.pgen.1006496] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022] Open
Abstract
Photoperiod dependent flowering is one of several mechanisms used by plants to initiate the developmental transition from vegetative growth to reproductive growth. The NUCLEAR FACTOR Y (NF-Y) transcription factors are heterotrimeric complexes composed of NF-YA and histone-fold domain (HFD) containing NF-YB/NF-YC, that initiate photoperiod-dependent flowering by cooperatively interacting with CONSTANS (CO) to drive the expression of FLOWERING LOCUS T (FT). This involves NF-Y and CO binding at distal CCAAT and proximal “CORE” elements, respectively, in the FT promoter. While this is well established for the HFD subunits, there remains some question over the potential role of NF-YA as either positive or negative regulators of this process. Here we provide strong support, in the form of genetic and biochemical analyses, that NF-YA, in complex with NF-YB/NF-YC proteins, can directly bind the distal CCAAT box in the FT promoter and are positive regulators of flowering in an FT-dependent manner. For plants to have reproductive success, they must time their flowering with the most beneficial biotic and abiotic environmental conditions—after all, reproductive success would likely be low if flowers developed when pollinators were not present or freezing temperatures were on the horizon. Proper timing mechanisms for flowering vary significantly between different species, but can be connected to a variety of environmental cues, including water availability, temperature, and day length. Numerous labs have studied the molecular aspects of these timing mechanisms and discovered that many of these pathways converge on the gene FLOWERING LOCUS T (FT). This means that understanding precisely how this gene is regulated can teach us a lot about many plant species in both natural and agricultural settings. In the current study, we focus on day length as an essential cue for flowering in the plant species Arabidopsis thaliana. We further unravel the complexity of FT regulation by clarifying the roles of NUCLEAR FACTOR Y genes in day length perception.
Collapse
|
150
|
Gao Y, Kobayashi H, Ganss B. The Human KROX-26/ZNF22 Gene is Expressed at Sites of Tooth Formation and Maps to the Locus for Permanent Tooth Agenesis (He-Zhao Deficiency). J Dent Res 2016; 82:1002-7. [PMID: 14630903 DOI: 10.1177/154405910308201213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tooth development is mediated by sequential and reciprocal interactions between dental epithelium and mesenchyme under the molecular control of secreted growth factors and responsive transcription factors. We have previously identified the transcription factor Krox-26 as a potential regulator of tooth formation in mice. The purpose of this study was to investigate a potentially similar role for the human KROX-26 orthologue. We cloned the KROX-26 gene and found its single mRNA transcript (2.4 kb) to be expressed in multiple adult tissues. During fetal development, KROX-26 is expressed in the epithelial component of the developing tooth organ during early bud and cap stages as well as in osteoblasts of craniofacial bone and the developing tongue. The KROX-26 gene was mapped to chromosome 10q11.21, a locus that has been associated with permanent tooth agenesis (He-Zhao deficiency). These results indicate a potential function for KROX-26 in the molecular regulation of tooth formation in humans.
Collapse
Affiliation(s)
- Y Gao
- Canadian Institutes for Health Research Group in Matrix Dynamics, University of Toronto, Faculty of Dentistry, Fitzgerald Building, Room 239, 150 College Street, Toronto, ON M5S 3E2, Canada
| | | | | |
Collapse
|