101
|
MacGillavry HD, Kerr JM, Blanpied TA. Lateral organization of the postsynaptic density. Mol Cell Neurosci 2011; 48:321-31. [PMID: 21920440 DOI: 10.1016/j.mcn.2011.09.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/31/2011] [Accepted: 09/02/2011] [Indexed: 10/17/2022] Open
Abstract
Fast excitatory synaptic transmission is mediated by AMPA-type glutamate receptors (AMPARs). It is widely accepted that the number of AMPARs in the postsynaptic density (PSD) critically determines the efficiency of synaptic transmission, but an unappreciated aspect of synapse organization is the lateral positioning of AMPARs within the PSD, that is, their distribution across the face of a single synapse. Receptor lateral positioning is important in a number of processes, most notably because alignment with presynaptic release sites heavily influences the probability of receptor activation. In this review, we summarize current understanding of the mechanisms that dynamically control the subsynaptic positioning of AMPARs. This field is still at early stages, but the recent wave of developments in super-resolution microscopy, synapse tomography, and computational modeling now enable the study of lateral protein distribution and dynamics within the nanometer-scale boundaries of the PSD. We discuss data available measuring the lateral distribution of glutamate receptors and scaffold proteins within the PSD, and discuss potential mechanisms that might give rise to these patterns. Elucidating the mechanisms that underlie the lateral organization of the PSD will be critical to improve our understanding of synaptic processes whose disruption may be unexpectedly important in neurological disorders. This article is part of a Special Issue entitled Membrane Trafficking and Cytoskeletal Dynamics in 'Neuronal Function'.
Collapse
Affiliation(s)
- Harold D MacGillavry
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
102
|
Andersson MS, Hanse E. Astrocyte-mediated short-term synaptic depression in the rat hippocampal CA1 area: two modes of decreasing release probability. BMC Neurosci 2011; 12:87. [PMID: 21864406 PMCID: PMC3178542 DOI: 10.1186/1471-2202-12-87] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 08/24/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Synaptic burst activation feeds back as a short-term depression of release probability at hippocampal CA3-CA1 synapses. This short-term synaptic plasticity requires functional astrocytes and it affects both the recently active (< 1 s) synapses (post-burst depression) as well as inactive neighboring synapses (transient heterosynaptic depression). The aim of this study was to investigate and compare the components contributing to the depression of release probability in these two different scenarios. RESULTS When tested using paired-pulses, following a period of inactivity, the transient heterosynaptic depression was expressed as a reduction in the response to only the first pulse, whereas the response to the second pulse was unaffected. This selective depression of only the first response in a high-frequency burst was shared by the homosynaptic post-burst depression, but it was partially counteracted by augmentation at these recently active synapses. In addition, the expression of the homosynaptic post-burst depression included an astrocyte-mediated reduction of the pool of release-ready primed vesicles. CONCLUSIONS Our results suggest that activated astrocytes depress the release probability via two different mechanisms; by depression of vesicular release probability only at inactive synapses and by imposing a delay in the recovery of the primed pool of vesicles following depletion. These mechanisms restrict the expression of the astrocyte-mediated depression to temporal windows that are typical for synaptic burst activity.
Collapse
Affiliation(s)
- My S Andersson
- Institute of Neuroscience and Physiology, Gothenburg University, Göteborg, Sweden Box 432, Medicinaregatan 11, 405 30 Göteborg, Sweden.
| | | |
Collapse
|
103
|
Ribrault C, Sekimoto K, Triller A. From the stochasticity of molecular processes to the variability of synaptic transmission. Nat Rev Neurosci 2011; 12:375-87. [PMID: 21685931 DOI: 10.1038/nrn3025] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The variability of the postsynaptic response following a single action potential arises from two sources: the neurotransmitter release is probabilistic, and the postsynaptic response to neurotransmitter release has variable timing and amplitude. At individual synapses, the number of molecules of a given type that are involved in these processes is small enough that the stochastic (random) properties of molecular events cannot be neglected. How the stochasticity of molecular processes contributes to the variability of synaptic transmission, its sensitivity and its robustness to molecular fluctuations has important implications for our understanding of the mechanistic basis of synaptic transmission and of synaptic plasticity.
Collapse
Affiliation(s)
- Claire Ribrault
- Laboratoire Matières et Systèmes Complexes, CNRS-UMR7057, Université Paris 7, F-75205 Paris cedex 13, France
| | | | | |
Collapse
|
104
|
Sun YG, Beierlein M. Receptor saturation controls short-term synaptic plasticity at corticothalamic synapses. J Neurophysiol 2011; 105:2319-29. [DOI: 10.1152/jn.00942.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Glutamatergic synapses of layer 6 corticothalamic (CT) neurons form a major excitatory input onto thalamic relay cells, allowing neocortex to continuously control sensory information processing in thalamic circuits. CT synapses display both short- and long-term forms of use-dependent synaptic enhancement, mediated at least in part by increases in the probability of transmitter release. At some synapses, such increases in release probability are accompanied by a higher degree of multivesicular release (MVR) and larger glutamate transients at individual release sites, resulting in the saturation of postsynaptic receptors. The extent to which MVR and postsynaptic saturation interact and control short-term plasticity at CT synapses is not known. Here we examined two distinct presynaptic forms of short-term enhancement, facilitation and augmentation, at CT synapses contacting relay neurons in the ventrobasal nucleus of the mouse thalamus. We found that, in the presence of the low-affinity antagonist γ-d-glutamylglycine, to relieve postsynaptic dl-α-amino-3-hydroxy-5-methylisox azole-propionic acid (AMPA) receptor saturation, the magnitude of facilitation and augmentation increased. Whereas receptor saturation was prominent for both AMPA and N-methyl-d-aspartate receptors, desensitization of AMPA receptors did not significantly alter short-term plasticity. Our results suggest that at CT synapses the activity-dependent increase in synaptic strength is controlled by postsynaptic receptor saturation.
Collapse
Affiliation(s)
- Yan-Gang Sun
- Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, Texas
| | - Michael Beierlein
- Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, Texas
| |
Collapse
|
105
|
Ventriglia F. Effect of filaments within the synaptic cleft on the response of excitatory synapses simulated by computer experiments. Biosystems 2010; 104:14-22. [PMID: 21195740 DOI: 10.1016/j.biosystems.2010.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 12/15/2010] [Accepted: 12/22/2010] [Indexed: 11/15/2022]
Abstract
Mathematical models of the excitatory synapse are furnishing valuable information about the synaptic response. Based on Brownian-diffusion of glutamate molecules, a synapse model was utilized to investigate the synaptic response on a femto-second time scale by the use of a parallel computer. In particular, the presence of fibrils crossing the synaptic cleft was simulated, which could have a role in shaping the brain activity. To this aim the model of synapse was modified by considering trans-synaptic filaments with diameters ranging from 7 nm to 3 nm, disposed on a grid with spacing of 14 nm or 8 nm. The simulation demonstrated that the presence of filaments induced an increase in the synaptic response, most likely linked to an increment in the probability of encounter between glutamate molecules and receptors. The increase was small--from 5 to 20%, but metabolic and functional considerations provide substantive hints about the importance of these small changes for brain activity. Moreover, it was shown that the presence of filaments made more stable the response of the synapse to random variations of pre-synaptic elements. Originated by these computational results, some inferences about the biological bases of mind diseases such as autism, mental retardation and schizophrenia, are reported in the Discussion.
Collapse
Affiliation(s)
- Francesco Ventriglia
- Istituto di Cibernetica E.Caianiello del CNR, Via Campi Flegrei 34, Pozzuoli (NA), Italy.
| |
Collapse
|
106
|
Richards DA. Regulation of exocytic mode in hippocampal neurons by intra-bouton calcium concentration. J Physiol 2010; 588:4927-36. [PMID: 20962005 PMCID: PMC3036188 DOI: 10.1113/jphysiol.2010.197509] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 10/19/2010] [Indexed: 11/08/2022] Open
Abstract
Release of neurotransmitters from synaptic vesicles is a central event in synaptic transmission. Recent evidence suggests that synaptic vesicles fuse with the plasma membrane by multiple routes during exocytosis, but the regulation and physiological implications of this choice are unclear. At hippocampal synapses in culture, two modes of synaptic vesicle exocytosis can be distinguished by virtue of the rate and extent of loss of a fluorescent lipid marker (FM1-43). Here we investigate these two modes of exocytosis using fluorescence imaging of FM1-43, combined with quantitative Ca(2+) imaging using Oregon green BAPTA-1 (OGB1), to examine how the balance of exocytic mode changes during a stimulus train. Our findings are twofold: that the full fusion mode becomes progressively favoured through the course of a 5 or 10 Hz stimulus train, and that this occurs in parallel with presynaptic accumulation of calcium. Blockade of calcium accumulation with AM-EGTA also prevents the conversion of exocytic mode. This conversion of exocytic mode may provide insight as to the mechanisms underpinning short term plasticity.
Collapse
Affiliation(s)
- David A Richards
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, MLC2001, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
107
|
Mozrzymas J, Szczęsny T, Rakus D. The effect of glycogen phosphorolysis on basal glutaminergic transmission. Biochem Biophys Res Commun 2010; 404:652-5. [PMID: 21146500 DOI: 10.1016/j.bbrc.2010.12.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 12/05/2010] [Indexed: 10/18/2022]
Abstract
Astrocytic glycogen metabolism sustains neuronal activity but its impact on basal glutamatergic synaptic transmission is not clear. To address this issue, we have compared the effect of glycogen breakdown inhibition on miniature excitatory postsynaptic currents (mEPSCs) in rat hippocampal pure neuronal culture (PNC) and in astrocyte-neuronal co-cultures (ANCC). Amplitudes of mEPSC in ANCC were nearly twice as large as in PNC with no difference in current kinetics. Inhibition of glycogen phosphorylase reduced mEPSC amplitude by roughly 40% in ANCC being ineffective in PNC. Altogether, these data indicate that astrocyte-neuronal interaction enhances basal mEPSCs in ANCC mainly due to astrocytic glycogen metabolism.
Collapse
Affiliation(s)
- Jerzy Mozrzymas
- Department of Animal Molecular Physiology and Laboratory of Cellular Neurobiology, Institute of Zoology, Wrocław University, Cybulskiego 30, 50-205 Wrocław, Poland
| | | | | |
Collapse
|
108
|
Wang ZW. Origin of quantal size variation and high-frequency miniature postsynaptic currents at the Caenorhabditis elegans neuromuscular junction. J Neurosci Res 2010; 88:3425-32. [PMID: 20722072 PMCID: PMC3058485 DOI: 10.1002/jnr.22468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 04/26/2010] [Accepted: 06/20/2010] [Indexed: 11/08/2022]
Abstract
The neuromuscular junction (NMJ) of Caenorhabditis elegans has proved to be a very useful model synapse for investigating molecular mechanisms of synaptic transmission. Intriguingly, miniature postsynaptic currents (minis) at this synapse occur at an unusually high frequency (50-90 Hz in wild-type worms) and show large variation in quantal size (from <10 pA to >200 pA). It is important to understand the cellular and molecular bases for these properties of minis in order to interpret electrophysiological data from this synapse properly. Existing data suggest that several factors may contribute to the high frequency and quantal size variation, including 1) the establishment of multiple NMJs with each body-wall muscle cell, 2) diversity of postsynaptic receptors (two acetylcholine receptors and one GABA receptor), 3) association of one presynaptic site with several body-wall muscle cells, 4) effects of Ca(2+) at the presynaptic site, and 5) a possibly elevated (less negative) resting membrane potential in motoneurons. Neither the frequency nor the quantal size of minis is affected by electrical coupling of body-wall muscle cells. Furthermore, quantal size variation is not due to synchronized multivesicular release. Analyses of the C. elegans NMJ may lead to a better understanding of the mechanisms controlling the frequency and quantal size of minis of other synapses as well.
Collapse
Affiliation(s)
- Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401, USA.
| |
Collapse
|
109
|
Smejkalova T, Woolley CS. Estradiol acutely potentiates hippocampal excitatory synaptic transmission through a presynaptic mechanism. J Neurosci 2010; 30:16137-48. [PMID: 21123560 PMCID: PMC3022306 DOI: 10.1523/jneurosci.4161-10.2010] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 09/21/2010] [Accepted: 09/23/2010] [Indexed: 11/21/2022] Open
Abstract
Although recent evidence suggests that the hippocampus is a source of 17β-estradiol (E2), the physiological role of this neurosteroid E2, as distinct from ovarian E2, is unknown. One likely function of neurosteroid E2 is to acutely potentiate excitatory synaptic transmission, but the mechanism of this effect is not well understood. Using whole-cell voltage-clamp recording of synaptically evoked EPSCs in adult rat hippocampal slices, we show that, in contrast to the conclusions of previous studies, E2 potentiates excitatory transmission through a presynaptic mechanism. We find that E2 acutely potentiates EPSCs by increasing the probability of glutamate release specifically at inputs with low initial release probability. This effect is mediated by estrogen receptor β (ERβ) acting as a monomer, whereas ERα is not required. We further show that the E2-induced increase in glutamate release is attributable primarily to increased individual vesicle release probability and is associated with higher average cleft glutamate concentration. These two findings together argue strongly that E2 promotes multivesicular release, which has not been shown before in the adult hippocampus. The rapid time course of acute EPSC potentiation and its concentration dependence suggest that locally synthesized neurosteroid E2 may activate this effect in vivo.
Collapse
Affiliation(s)
- Tereza Smejkalova
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| | - Catherine S. Woolley
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
110
|
Xue L, Wu LG. Post-tetanic potentiation is caused by two signalling mechanisms affecting quantal size and quantal content. J Physiol 2010; 588:4987-94. [PMID: 21041528 DOI: 10.1113/jphysiol.2010.196964] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A high-frequency action potential train induces post-tetanic potentiation (PTP) of transmission at many synapses by increasing the intra-terminal calcium concentration, which may increase the quantal content by activation of protein kinase C (PKC). A recent study found that an increase of the mEPSC size, caused by compound vesicle fusion, parallels PTP, suggesting that the quantal size increase also contributes to the PTP generation. However, the strength of this suggestion is somewhat undermined by recent studies suggesting that vesicles responsible for spontaneous and evoked EPSCs may originate from different pools. Furthermore, it is unclear whether the quantal size increase is also mediated by PKC. The present work addressed these issues at a large calyx of Held synapse. We found that PTP was caused by both a PKC-dependent increase of the quantal content and a PKC-independent increase of the quantal size. In addition, we found that mEPSCs and EPSCs were subjected to similar up- and down-regulation, which verifies the basic assumption of quantal analysis--the same mechanism controls the quantal size of spontaneous and evoked release. This verification supports the use of quantal analysis at central synapses. However, unlike the traditional quantal analysis that attributes the quantal size change to a postsynaptic mechanism, the present work, together with one of our previous studies, suggests that the quantal size increase is caused by a presynaptic mechanism, the compound fusion among vesicles that forms large compound vesicles.
Collapse
Affiliation(s)
- Lei Xue
- National Institute of Neurological Disorders and Stroke, 35 Convent Drive, Bldg 35, Bethesda, MD 20892, USA
| | | |
Collapse
|
111
|
SNARE force synchronizes synaptic vesicle fusion and controls the kinetics of quantal synaptic transmission. J Neurosci 2010; 30:10272-81. [PMID: 20685972 DOI: 10.1523/jneurosci.1551-10.2010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuronal communication relies on rapid and discrete intercellular signaling but neither the molecular mechanisms of the exocytotic machinery that define the timing of the action potential-evoked response nor those controlling the kinetics of transmitter release from single synaptic vesicles are known. Here, we investigate how interference with the putative force transduction between the complex-forming SNARE (soluble N-ethylamide-sensitive factor attachment protein receptor) domain and the transmembrane anchor of synaptobrevin II (SybII) affects action potential-evoked currents and spontaneous, quantal transmitter release at mouse hippocampal synapses. The results indicate that SybII-generated membrane stress effectively determines the kinetics of the action potential-evoked response and show that SNARE force modulates the concentration profile of cleft glutamate by controlling the rate of transmitter release from the single synaptic vesicle. Thus, multiple SybII actions determine the exquisite temporal regulation of neuronal signaling.
Collapse
|
112
|
Stubblefield EA, Benke TA. Distinct AMPA-type glutamatergic synapses in developing rat CA1 hippocampus. J Neurophysiol 2010; 104:1899-912. [PMID: 20685930 DOI: 10.1152/jn.00099.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We assessed synaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR) properties during synaptogenesis to describe the development of individual glutamatergic synapses on rat hippocampal CA1 principal neurons. Pharmacologically isolated AMPAR-mediated glutamatergic synaptic currents [evoked by stimulation of the Schaffer Collateral pathway, excitatory postsynaptic currents (EPSCs)], had significantly greater inward-rectification at ages P5-7 compared with P8-18. These inward rectifying EPSCs demonstrated paired-pulse dependent unblocking at positive holding potentials, consistent with voltage-dependent internal polyamine block. Measurements of paired-pulse facilitation did not support altered presynaptic properties associated with inward rectification. Using asynchronous EPSCs (aEPSCs) to analyze populations of individual synapses, we found that quantal amplitudes (Q) increased across early postnatal development (P5-P18) and were directly modulated by increases in the number of activated receptors. Quantal AMPAR decay kinetics (aEPSC τ(decay)s) exhibited the highest coefficient of variation (CV) from P5 to 7 and became markedly less variable at P8-18. At P5-7, faster quantal kinetics coexisted with much slower kinetics; only slower quantal kinetics were found at P8-18. This supports diverse quantal synaptic properties limited to P5-7. Multivariate cluster analysis of Q, CV(τ decay), and median τ(decay) supported a segregation of neurons into two distinct age groups of P5-7 and P8-18, similar to the age-related segregation suggested by inward rectification. Taken together, these findings support synaptic, calcium permeable AMPARs at a subset of synapses onto CA1 pyramidal neurons exclusively at P5-7. These distinct synapses coexist with those sharing the properties of more mature synapses. These synapses disappear after P7 as activated receptor numbers increase with age.
Collapse
|
113
|
Quantal analysis reveals a functional correlation between presynaptic and postsynaptic efficacy in excitatory connections from rat neocortex. J Neurosci 2010; 30:1441-51. [PMID: 20107071 DOI: 10.1523/jneurosci.3244-09.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
At many central synapses, the presynaptic bouton and postsynaptic density are structurally correlated. However, it is unknown whether this correlation extends to the functional properties of the synapses. To investigate this, we made recordings from synaptically coupled pairs of pyramidal neurons in rat visual cortex. The mean peak amplitude of EPSPs recorded from pairs of L2/3 neurons ranged between 40 microV and 2.9 mV. EPSP rise times were consistent with the majority of the synapses being located on basal dendrites; this was confirmed by full anatomical reconstructions of a subset of connected pairs. Over a third of the connections could be described using a quantal model that assumed simple binomial statistics. Release probability (P(r)) and quantal size (Q), as measured at the somatic recording site, showed considerable heterogeneity between connections. However, across the population of connections, values of P(r) and Q for individual connections were positively correlated with one another. This correlation also held for inputs to layer 5 pyramidal neurons from both layer 2/3 and neighboring layer 5 pyramidal neurons, suggesting that during development of cortical connections presynaptic and postsynaptic strengths are dependently scaled. For 2/3 to 2/3 connections, mean EPSP amplitude was correlated with both Q and P(r) values but uncorrelated with N, the number of functional release sites mediating the connection. The efficacy of a cortical connection is thus set by coordinated presynaptic and postsynaptic strength.
Collapse
|
114
|
Realistic modelling of receptor activation in hippocampal excitatory synapses: analysis of multivesicular release, release location, temperature and synaptic cross-talk. Brain Struct Funct 2010; 215:49-65. [PMID: 20526850 DOI: 10.1007/s00429-010-0273-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 05/18/2010] [Indexed: 10/19/2022]
Abstract
Chemically mediated synaptic transmission results from fusion of synaptic vesicles with the presynaptic plasma membrane, subsequent release of the vesicular content into the cleft and binding to postsynaptic receptors. Previous modelling studies of excitatory neurotransmitter glutamate were based on simplified geometries failing to account for the biologically realistic synaptic environment, in particular, the presence of astrocytes, the geometry of extracellular space, and the neurotransmitter uptake mechanism. Using 3-dimensional reconstructions of hippocampal glutamatergic synapses including the surrounding astrocytic processes we have developed a biologically realistic model to analyse receptor activation in different conditions. We used the finite element method to simulate glutamate release, analyse glutamate diffusion following single and multiple vesicle release and binding at the postsynaptic site to AMPA and NMDA receptors. We demonstrate that: (1) the transmitter diffusion is highly temperature-sensitive; (2) release conditions and geometry more specifically affect AMPARs than NMDARs; (3) the sensitivities of AMPARs and NMDARs to simultaneous vesicular release are different; (4) in the case of multivesicle neurotransmitter release with variable delays, the binding of glutamate to AMPARs is additive up to 1 ms after the release, then becomes independent, but to NMDARs the binding is additive up to 33 ms; (5) the number of AMPARs varies more than the number of NMDRs in response to the input firing patterns; (6) the presence of astrocytes effectively blocks synaptic cross-talk; and (7) synaptic cross-talk, mediated by NMDARs but not AMPARs, is only possible after quasi-simultaneous multivesicular release at physiological temperature (35 degrees C) without intervening astrocytes, but not at 25 degrees C. Our simulations demonstrate the importance of temperature and ultrastructural synaptic environment in synaptic transmission and synaptic cross-talk.
Collapse
|
115
|
Paukert M, Huang YH, Tanaka K, Rothstein JD, Bergles DE. Zones of enhanced glutamate release from climbing fibers in the mammalian cerebellum. J Neurosci 2010; 30:7290-9. [PMID: 20505095 PMCID: PMC2894469 DOI: 10.1523/jneurosci.5118-09.2010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 03/23/2010] [Accepted: 04/05/2010] [Indexed: 11/21/2022] Open
Abstract
Purkinje cells in the mammalian cerebellum are remarkably homogeneous in shape and orientation, yet they exhibit regional differences in gene expression. Purkinje cells that express high levels of zebrin II (aldolase C) and the glutamate transporter EAAT4 cluster in parasagittal zones that receive input from distinct groups of climbing fibers (CFs); however, the physiological properties of CFs that target these molecularly distinct Purkinje cells have not been determined. Here we report that CFs that innervate Purkinje cells in zebrin II-immunoreactive (Z(+)) zones release more glutamate per action potential than CFs in Z(-) zones. CF terminals in Z(+) zones had larger pools of release-ready vesicles, exhibited enhanced multivesicular release, and produced larger synaptic glutamate transients. As a result, CF-mediated EPSCs in Purkinje cells decayed more slowly in Z(+) zones, which triggered longer-duration complex spikes containing a greater number of spikelets. The differences in the duration of CF EPSCs between Z(+) and Z(-) zones persisted in EAAT4 knock-out mice, indicating that EAAT4 is not required for maintaining this aspect of CF function. These results indicate that the organization of the cerebellum into discrete longitudinal zones is defined not only by molecular phenotype of Purkinje cells within zones, but also by the physiological properties of CFs that project to these distinct regions. The enhanced release of glutamate from CFs in Z(+) zones may alter the threshold for synaptic plasticity and prolong inhibition of cerebellar output neurons in deep cerebellar nuclei.
Collapse
Affiliation(s)
| | | | - Kohichi Tanaka
- School of Biomedical Science and Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-Ku, Tokyo 113-8510, Japan
| | - Jeffrey D. Rothstein
- The Solomon H. Snyder Department of Neuroscience and
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and
| | | |
Collapse
|
116
|
Ciliary neurotrophic factor protects striatal neurons against excitotoxicity by enhancing glial glutamate uptake. PLoS One 2010; 5:e8550. [PMID: 20062544 PMCID: PMC2798716 DOI: 10.1371/journal.pone.0008550] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 12/09/2009] [Indexed: 11/19/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) is a potent neuroprotective cytokine in different animal models of glutamate-induced excitotoxicity, although its action mechanisms are still poorly characterized. We tested the hypothesis that an increased function of glial glutamate transporters (GTs) could underlie CNTF-mediated neuroprotection. We show that neuronal loss induced by in vivo striatal injection of the excitotoxin quinolinic acid (QA) was significantly reduced (by ∼75%) in CNTF-treated animals. In striatal slices, acute QA application dramatically inhibited corticostriatal field potentials (FPs), whose recovery was significantly higher in CNTF rats compared to controls (∼40% vs. ∼7%), confirming an enhanced resistance to excitotoxicity. The GT inhibitor dl-threo-β-benzyloxyaspartate greatly reduced FP recovery in CNTF rats, supporting the role of GT in CNTF-mediated neuroprotection. Whole-cell patch-clamp recordings from striatal medium spiny neurons showed no alteration of basic properties of striatal glutamatergic transmission in CNTF animals, but the increased effect of a low-affinity competitive glutamate receptor antagonist (γ-d-glutamylglycine) also suggested an enhanced GT function. These data strongly support our hypothesis that CNTF is neuroprotective via an increased function of glial GTs, and further confirms the therapeutic potential of CNTF for the clinical treatment of progressive neurodegenerative diseases involving glutamate overflow.
Collapse
|
117
|
Scimemi A, Beato M. Determining the neurotransmitter concentration profile at active synapses. Mol Neurobiol 2009; 40:289-306. [PMID: 19844813 PMCID: PMC2777263 DOI: 10.1007/s12035-009-8087-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 09/30/2009] [Indexed: 10/29/2022]
Abstract
Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission.
Collapse
Affiliation(s)
- Annalisa Scimemi
- Synaptic Physiology Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3701, USA.
| | | |
Collapse
|
118
|
Filosa A, Paixão S, Honsek SD, Carmona MA, Becker L, Feddersen B, Gaitanos L, Rudhard Y, Schoepfer R, Klopstock T, Kullander K, Rose CR, Pasquale EB, Klein R. Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nat Neurosci 2009; 12:1285-92. [PMID: 19734893 PMCID: PMC3922060 DOI: 10.1038/nn.2394] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 08/05/2009] [Indexed: 01/05/2023]
Abstract
Astrocytes are critical participants in synapse development and function, but their role in synaptic plasticity is unclear. Eph receptors and their ephrin ligands have been suggested to regulate neuron-glia interactions, and EphA4-mediated ephrin reverse signaling is required for synaptic plasticity in the hippocampus. Here we show that long-term potentiation (LTP) at the CA3-CA1 synapse is modulated by EphA4 in the postsynaptic CA1 cell and by ephrin-A3, a ligand of EphA4 that is found in astrocytes. Lack of EphA4 increased the abundance of glial glutamate transporters, and ephrin-A3 modulated transporter currents in astrocytes. Pharmacological inhibition of glial glutamate transporters rescued the LTP defects in EphA4 (Epha4) and ephrin-A3 (Efna3) mutant mice. Transgenic overexpression of ephrin-A3 in astrocytes reduces glutamate transporter levels and produces focal dendritic swellings possibly caused by glutamate excitotoxicity. These results suggest that EphA4/ephrin-A3 signaling is a critical mechanism for astrocytes to regulate synaptic function and plasticity.
Collapse
Affiliation(s)
- Alessandro Filosa
- Department of Molecular Neurobiology, Max-Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Sónia Paixão
- Department of Molecular Neurobiology, Max-Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Silke D. Honsek
- Institute for Neurobiology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Maria A. Carmona
- Burnham Institute for Medical Research, 10901 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, D-85764 Munich, Germany
- Friedrich-Baur-Institute, Dept. of Neurology, University of Munich, Ziemssenstr. 1, D-80336 Munich, Germany
| | - Berend Feddersen
- Friedrich-Baur-Institute, Dept. of Neurology, University of Munich, Ziemssenstr. 1, D-80336 Munich, Germany
| | - Louise Gaitanos
- Department of Molecular Neurobiology, Max-Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - York Rudhard
- Laboratory for Molecular Pharmacology, University College London, WC1E 6BT, London, UK
| | - Ralf Schoepfer
- Laboratory for Molecular Pharmacology, University College London, WC1E 6BT, London, UK
| | - Thomas Klopstock
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, D-85764 Munich, Germany
- Friedrich-Baur-Institute, Dept. of Neurology, University of Munich, Ziemssenstr. 1, D-80336 Munich, Germany
| | - Klas Kullander
- Department of Neuroscience, Uppsala University, Box 587, 75123 Uppsala, Sweden
| | - Christine R. Rose
- Institute for Neurobiology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Elena B. Pasquale
- Burnham Institute for Medical Research, 10901 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Rüdiger Klein
- Department of Molecular Neurobiology, Max-Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
119
|
Richards DA. Vesicular release mode shapes the postsynaptic response at hippocampal synapses. J Physiol 2009; 587:5073-80. [PMID: 19752123 DOI: 10.1113/jphysiol.2009.175315] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Release of neurotransmitters from synaptic vesicles is a central event in synaptic transmission. Recent evidence suggests that synaptic vesicles fuse with the plasma membrane by multiple routes during exocytosis, but the regulation and physiological implications of this choice are unclear. At hippocampal synapses, two modes of synaptic vesicle exocytosis can be distinguished by virtue of the rate and extent of loss of a fluorescent lipid marker (FM1-43). Here these two modes of exocytosis were investigated with a combination of electrophysiological recording and fluorescence imaging. It is shown that these exocytic modes result in distinct postsynaptic consequences, such that so-called 'kiss-and-run' exocytosis results in negligible activation of AMPA receptors, compared to the robust postsynaptic responses elicited by apparent full fusion. In contrast NMDA receptors are robustly activated by this form of glutamate delivery. Addition of cyclothiazide, which blocks AMPA receptor desensitization, reveals that the relatively slow rate of release of glutamate during kiss-and-run exocytosis shifts the population of AMPA receptors into a desensitized state, rather than simply being insufficient for receptor activation. These findings provide further support for the existence of a fusion pore mediated mode of exocytosis, and demonstrate that these two exocytic modes directly affect the throughput of synaptic transmission.
Collapse
Affiliation(s)
- David A Richards
- Department of Neurology, University of Cincinnati, Vontz Center for Molecular Studies, 3125 Eden Avenue, Cincinnati, OH 45267, USA.
| |
Collapse
|
120
|
Omrani A, Melone M, Bellesi M, Safiulina V, Aida T, Tanaka K, Cherubini E, Conti F. Up-regulation of GLT-1 severely impairs LTD at mossy fibre--CA3 synapses. J Physiol 2009; 587:4575-88. [PMID: 19651762 DOI: 10.1113/jphysiol.2009.177881] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glutamate transporters are responsible for clearing synaptically released glutamate from the extracellular space. By this action, they maintain low levels of ambient glutamate, thus preventing excitotoxic damage, and contribute to shaping synaptic currents. We show that up-regulation of the glutamate transporter GLT-1 by ceftriaxone severely impaired mGluR-dependent long-term depression (LTD), induced at rat mossy fibre (MF)-CA3 synapses by repetitive stimulation of afferent fibres. This effect involved GLT-1, since LTD was rescued by the selective GLT-1 antagonist dihydrokainate (DHK). DHK per se produced a modest decrease in fEPSP amplitude that rapidly regained control levels after DHK wash out. Moreover, the degree of fEPSP inhibition induced by the low-affinity glutamate receptor antagonist gamma-DGG was similar during basal synaptic transmission but not during LTD, indicating that in ceftriaxone-treated rats LTD induction did not alter synaptic glutamate transient concentration. Furthermore, ceftriaxone-induced GLT-1 up-regulation significantly reduced the magnitude of LTP at MF-CA3 synapses but not at Schaffer collateral-CA1 synapses. Postembedding immunogold studies in rats showed an increased density of gold particles coding for GLT-1a in astrocytic processes and in mossy fibre terminals; in the latter, gold particles were located near and within the active zones. In both CEF-treated and untreated GLT-1 KO mice used for verifying the specificity of immunostaining, the density of gold particles in MF terminals was comparable to background levels. The enhanced expression of GLT-1 at release sites may prevent activation of presynaptic receptors, thus revealing a novel mechanism by which GLT-1 regulates synaptic plasticity in the hippocampus.
Collapse
Affiliation(s)
- Azar Omrani
- Neuroscience Programme, International School for Advanced Studies, Via Beirut 2-4, 34014 Trieste, Italy
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Li Y, Krupa B, Kang JS, Bolshakov VY, Liu G. Glycine site of NMDA receptor serves as a spatiotemporal detector of synaptic activity patterns. J Neurophysiol 2009; 102:578-89. [PMID: 19439669 DOI: 10.1152/jn.91342.2008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calcium influx associated with the opening of N-methyl-D-aspartate (NMDA) receptor channels is the major signal triggering synaptic and developmental plasticity. Controlling the NMDA receptor function is therefore critical for many functions of the brain. We explored the mechanisms of synaptic activation of the NMDAR glycine site by endogenous coagonist using whole cell voltage-clamp recordings from hippocampal neurons in mixed cultures, containing both neurons and glial cells, and, under more physiological conditions, in hippocampal slices. Here we show that the glycine site of the NMDA receptor at hippocampal synapses, both in culture and acute brain slices, is not saturated by the ambient coagonist concentration and is modulated through activity-dependent coagonist release. Augmentation of the NMDA receptor-mediated synaptic responses by local glutamate-induced coagonist release is spatially restricted and determined by spatiotemporal summation of synaptic events at neighboring synaptic inputs on a single dendritic branch. Therefore different spatiotemporal patterns of presynaptic activity could be translated into different levels of the NMDAR activation in specific afferent projections. These results suggest that the NMDA receptor glycine site may serve as a detector of the spatiotemporal characteristics of presynaptic activity patterns.
Collapse
Affiliation(s)
- Yan Li
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
122
|
Yamashita T, Kanda T, Eguchi K, Takahashi T. Vesicular glutamate filling and AMPA receptor occupancy at the calyx of Held synapse of immature rats. J Physiol 2009; 587:2327-39. [PMID: 19332485 DOI: 10.1113/jphysiol.2008.167759] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
At central glutamatergic synapses, neurotransmitter often saturates postsynaptic AMPA receptors (AMPARs), thereby restricting the dynamic range of synaptic efficacy. Here, using simultaneous pre- and postsynaptic whole-cell recordings, at the calyx of Held synapse of immature rats, we have investigated the mechanism by which transmitter glutamate saturates postsynaptic AMPARs. When we loaded L-glutamate (1-100 mM) into presynaptic terminals, the quantal EPSC (qEPSC) amplitude changed in a concentration-dependent manner. At physiological temperature (36-37 degrees C), the qEPSC amplitude increased when intraterminal L-glutamate concentration was elevated from 1 mM to 10 mM, but it reached a plateau at 10 mM. This plateau persisted after bath-application of the low affinity AMPAR antagonist kynurenate, suggesting that it was caused by saturation of vesicular filling with glutamate rather than by saturation of postsynaptic AMPARs. In contrast to qEPSCs, action potential-evoked EPSCs remained unchanged by increasing intraterminal L-glutamate from 1 mM to 100 mM , even at room temperature, indicating that multi-quantal glutamate saturated postsynaptic AMPARs. This saturation could be relieved by blocking AMPAR desensitization using cyclothiazide (100 microM). The concentration of ambient glutamate in the slice, estimated from NMDA receptor current fluctuations, was 55 nM; this was far below the concentration required for AMPAR desensitization. We conclude that rapid AMPAR desensitization, caused by glutamate released from multiple vesicles during synaptic transmission, underlies postsynaptic AMPAR saturation at this immature calyceal synapse before the onset of hearing.
Collapse
Affiliation(s)
- Takayuki Yamashita
- Okinawa Institute of Science and Technology Promotion Corporation, Okinawa 904-2234, Japan.
| | | | | | | |
Collapse
|
123
|
Distinctive quantal properties of neurotransmission at excitatory and inhibitory autapses revealed using variance-mean analysis. J Neurosci 2009; 28:13563-73. [PMID: 19074030 DOI: 10.1523/jneurosci.3350-08.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Normal brain function depends on an interplay between glutamatergic and GABAergic synaptic transmission, yet questions remain about the biophysical differences between these two classes of synapse. By taking advantage of a simple culture system, we present here a detailed comparison of excitatory and inhibitory neurotransmission under identical conditions using the variance-mean (V-M) method of quantal analysis. First, we validate V-M analysis for glutamatergic autapses formed by isolated hippocampal pyramidal neurons in culture, confirming that the analysis accurately predicts the quantal amplitude (Q). We also show that V-M analysis is only weakly sensitive to intersite and intrasite quantal variance and to the known inhomogeneities in release probability (P(r)). Next, by repeating the experiments with GABAergic autapses, we confirm that V-M analysis provides an accurate account of inhibitory neurotransmission in this system. Mean P(r), provided by V-M analysis, shows a dependence on extracellular Ca(2+) concentration that is nearly identical for both excitatory and inhibitory autapses. Finally, the V-M method allows us to compare the locus of short-term synaptic plasticity at these connections. Glutamatergic autapses exhibit paired-pulse depression that depends mainly on changes in P(r), whereas depression at GABAergic autapses appears to depend primarily on changes in the number of release sites. We conclude that, apart from differences in the mechanisms of short-term plasticity, the basic quantal properties of excitatory and inhibitory connections in this hippocampal system are remarkably similar.
Collapse
|
124
|
Santos MS, Li H, Voglmaier SM. Synaptic vesicle protein trafficking at the glutamate synapse. Neuroscience 2009; 158:189-203. [PMID: 18472224 PMCID: PMC2667334 DOI: 10.1016/j.neuroscience.2008.03.029] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 02/25/2008] [Accepted: 03/08/2008] [Indexed: 11/27/2022]
Abstract
Expression of the integral and associated proteins of synaptic vesicles is subject to regulation over time, by region, and in response to activity. The process by which changes in protein levels and isoforms result in different properties of neurotransmitter release involves protein trafficking to the synaptic vesicle. How newly synthesized proteins are incorporated into synaptic vesicles at the presynaptic bouton is poorly understood. During synaptogenesis, synaptic vesicle proteins sort through the secretory pathway and are transported down the axon in precursor vesicles that undergo maturation to form synaptic vesicles. Changes in protein content of synaptic vesicles could involve the formation of new vesicles that either mix with the previous complement of vesicles or replace them, presumably by their degradation or inactivation. Alternatively, new proteins could individually incorporate into existing synaptic vesicles, changing their functional properties. Glutamatergic vesicles likely express many of the same integral membrane proteins and share certain common mechanisms of biogenesis, recycling, and degradation with other synaptic vesicles. However, glutamatergic vesicles are defined by their ability to package glutamate for release, a property conferred by the expression of a vesicular glutamate transporter (VGLUT). VGLUTs are subject to regional, developmental, and activity-dependent changes in expression. In addition, VGLUT isoforms differ in their trafficking, which may target them to different pathways during biogenesis or after recycling, which may in turn sort them to different vesicle pools. Emerging data indicate that differences in the association of VGLUTs and other synaptic vesicle proteins with endocytic adaptors may influence their trafficking. These observations indicate that independent regulation of synaptic vesicle protein trafficking has the potential to influence synaptic vesicle protein composition, the maintenance of synaptic vesicle pools, and the release of glutamate in response to changing physiological requirements.
Collapse
Affiliation(s)
- M S Santos
- Department of Psychiatry, University of California School of Medicine, 401 Parnassus Avenue, LPPI-A101, San Francisco, CA 94143-0984, USA
| | | | | |
Collapse
|
125
|
Abstract
Silent synapses abound in the young brain, representing an early step in the pathway of experience-dependent synaptic development. Discovered amidst the debate over whether long-term potentiation reflects a presynaptic or a postsynaptic modification, silent synapses--which in the hippocampal CA1 subfield are characterized by the presence of NMDA receptors but not AMPA receptors--have stirred some mechanistic controversy of their own. Out of this literature has emerged a model for synapse unsilencing that highlights the central role for postsynaptic AMPA-receptor trafficking in the expression of excitatory synaptic plasticity.
Collapse
Affiliation(s)
- Geoffrey A Kerchner
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16th Street, San Francisco, California 94143-2140, USA
| | | |
Collapse
|
126
|
Bagnall MW, McElvain LE, Faulstich M, du Lac S. Frequency-independent synaptic transmission supports a linear vestibular behavior. Neuron 2008; 60:343-52. [PMID: 18957225 PMCID: PMC2614234 DOI: 10.1016/j.neuron.2008.10.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 09/28/2008] [Accepted: 10/07/2008] [Indexed: 10/21/2022]
Abstract
The vestibular system is responsible for transforming head motion into precise eye, head, and body movements that rapidly stabilize gaze and posture. How do central excitatory synapses mediate behavioral outputs accurately matched to sensory inputs over a wide dynamic range? Here we demonstrate that vestibular afferent synapses in vitro express frequency-independent transmission that spans their in vivo dynamic range (5-150 spikes/s). As a result, the synaptic charge transfer per unit time is linearly related to vestibular afferent activity in both projection and intrinsic neurons of the vestibular nuclei. Neither postsynaptic glutamate receptor desensitization nor saturation affect the relative amplitude or frequency-independence of steady-state transmission. Finally, we show that vestibular nucleus neurons can transduce synaptic inputs into linear changes in firing rate output without relying on one-to-one calyceal transmission. These data provide a physiological basis for the remarkable linearity of vestibular reflexes.
Collapse
Affiliation(s)
- Martha W Bagnall
- Neurosciences Graduate Program, University of California San Diego, San Diego, CA 92093, USA
| | | | | | | |
Collapse
|
127
|
Atasoy D, Ertunc M, Moulder KL, Blackwell J, Chung C, Su J, Kavalali ET. Spontaneous and evoked glutamate release activates two populations of NMDA receptors with limited overlap. J Neurosci 2008; 28:10151-66. [PMID: 18829973 PMCID: PMC2578837 DOI: 10.1523/jneurosci.2432-08.2008] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 07/26/2008] [Accepted: 08/20/2008] [Indexed: 11/21/2022] Open
Abstract
In a synapse, spontaneous and action-potential-driven neurotransmitter release is assumed to activate the same set of postsynaptic receptors. Here, we tested this assumption using (+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate (MK-801), a well characterized use-dependent blocker of NMDA receptors. NMDA-receptor-mediated spontaneous miniature EPSCs (NMDA-mEPSCs) were substantially decreased by MK-801 within 2 min in a use-dependent manner. In contrast, MK-801 application at rest for 10 min did not significantly impair the subsequent NMDA-receptor-mediated evoked EPSCs (NMDA-eEPSCs). Brief stimulation in the presence of MK-801 significantly depressed evoked NMDA-eEPSCs but only mildly affected the spontaneous NMDA-mEPSCs detected on the same cell. Optical imaging of synaptic vesicle fusion showed that spontaneous and evoked release could occur at the same synapse albeit without correlation between their kinetics. In addition, modeling glutamate diffusion and NMDA receptor activation revealed that postsynaptic densities larger than approximately 0.2 microm(2) can accommodate two populations of NMDA receptors with nonoverlapping responsiveness. Collectively, these results support the premise that spontaneous and evoked neurotransmissions activate distinct sets of NMDA receptors and signal independently to the postsynaptic side.
Collapse
Affiliation(s)
| | | | - Krista L. Moulder
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - Justin Blackwell
- Department of Mathematics, University of Texas at Arlington, Arlington, Texas 76019-0408
| | | | - Jianzhong Su
- Department of Mathematics, University of Texas at Arlington, Arlington, Texas 76019-0408
| | - Ege T. Kavalali
- Departments of Neuroscience and
- Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| |
Collapse
|
128
|
Di Maio V. Regulation of information passing by synaptic transmission: a short review. Brain Res 2008; 1225:26-38. [PMID: 18586017 DOI: 10.1016/j.brainres.2008.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 06/05/2008] [Accepted: 06/06/2008] [Indexed: 11/19/2022]
Abstract
The largest part of information passed among neurons in the brain occurs by the means of chemical synapses connecting the axons of presynaptic neurons to the dendritic tree of the postsynaptic ones. In the present paper, the most relevant open problems related to the mechanisms of control of the information passing among neurons by synaptic transmission will be shortly reviewed. The "cross talking" between synapses, their mutual interactions and the control of the information flow between different areas of the dendritic tree will be also considered. The threshold mechanism based on the "reversal potential" will be considered for its role in the control of information transfer among neurons and also for its contribution to the information flow among different areas of the dendritic tree and to the computational ability of the single neuron. The concept of "competition for plasticity" will be proposed as a mechanism of competition based on the synaptic activation time.
Collapse
Affiliation(s)
- Vito Di Maio
- Istituto di Cibernetica E. Caianiello del CNR, c/o Comprensorio Olivetti, Building 70, Via Campi Flegrei, 34, 80078, Pozzuoli (NA), Italy.
| |
Collapse
|
129
|
Cingolani LA, Goda Y. Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci 2008; 9:344-56. [PMID: 18425089 DOI: 10.1038/nrn2373] [Citation(s) in RCA: 604] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synapse regulation exploits the capacity of actin to function as a stable structural component or as a dynamic filament. Beyond its well-appreciated role in eliciting visible morphological changes at the synapse, the emerging picture points to an active contribution of actin to the modulation of the efficacy of pre- and postsynaptic terminals. Moreover, by engaging distinct pools of actin and divergent signalling pathways, actin-dependent morphological plasticity could be uncoupled from modulation of synaptic strength. The aim of this Review is to highlight some of the recent progress in elucidating the role of the actin cytoskeleton in synaptic function.
Collapse
Affiliation(s)
- Lorenzo A Cingolani
- MRC Laboratory for Molecular Cell Biology and MRC Cell Biology Unit, University College London, Gower Street, London, WC1E 6BT, UK
| | | |
Collapse
|
130
|
Affiliation(s)
- R Angus Silver
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
131
|
Heine M, Groc L, Frischknecht R, Béïque JC, Lounis B, Rumbaugh G, Huganir RL, Cognet L, Choquet D. Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science 2008; 320:201-5. [PMID: 18403705 PMCID: PMC2715948 DOI: 10.1126/science.1152089] [Citation(s) in RCA: 381] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AMPA glutamate receptors (AMPARs) mediate fast excitatory synaptic transmission. Upon fast consecutive synaptic stimulation, transmission can be depressed. Recuperation from fast synaptic depression has been attributed solely to recovery of transmitter release and/or AMPAR desensitization. We show that AMPAR lateral diffusion, observed in both intact hippocampi and cultured neurons, allows fast exchange of desensitized receptors with naïve functional ones within or near the postsynaptic density. Recovery from depression in the tens of millisecond time range can be explained in part by this fast receptor exchange. Preventing AMPAR surface movements through cross-linking, endogenous clustering, or calcium rise all slow recovery from depression. Physiological regulation of postsynaptic receptor mobility affects the fidelity of synaptic transmission by shaping the frequency dependence of synaptic responses.
Collapse
Affiliation(s)
- Martin Heine
- CNRS, UMR 5091, Université Bordeaux, Bordeaux, France
| | - Laurent Groc
- CNRS, UMR 5091, Université Bordeaux, Bordeaux, France
| | | | - Jean-Claude Béïque
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Brahim Lounis
- Centre de Physique Moleculaire Optique et Hertzienne, CNRS, UMR 5798, Université Bordeaux, Talence, France
| | - Gavin Rumbaugh
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Richard L. Huganir
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Laurent Cognet
- Centre de Physique Moleculaire Optique et Hertzienne, CNRS, UMR 5798, Université Bordeaux, Talence, France
| | | |
Collapse
|
132
|
Regulation of serotonin biosynthesis by the G proteins Galphao and Galphaq controls serotonin signaling in Caenorhabditis elegans. Genetics 2008; 178:157-69. [PMID: 18202365 DOI: 10.1534/genetics.107.079780] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To analyze mechanisms that modulate serotonin signaling, we investigated how Caenorhabditis elegans regulates the function of serotonergic motor neurons that stimulate egg-laying behavior. Egg laying is inhibited by the G protein Galphao and activated by the G protein Galphaq. We found that Galphao and Galphaq act directly in the serotonergic HSN motor neurons to control egg laying. There, the G proteins had opposing effects on transcription of the tryptophan hydroxylase gene tph-1, which encodes the rate-limiting enzyme for serotonin biosynthesis. Antiserotonin staining confirmed that Galphao and Galphaq antagonistically affect serotonin levels. Altering tph-1 gene dosage showed that small changes in tph-1 expression were sufficient to affect egg-laying behavior. Epistasis experiments showed that signaling through the G proteins has additional tph-1-independent effects. Our results indicate that (1) serotonin signaling is regulated by modulating serotonin biosynthesis and (2) Galphao and Galphaq act in the same neurons to have opposing effects on behavior, in part, by antagonistically regulating transcription of specific genes. Galphao and Galphaq have opposing effects on many behaviors in addition to egg laying and may generally act, as they do in the egg-laying system, to integrate multiple signals and consequently set levels of transcription of genes that affect neurotransmitter release.
Collapse
|
133
|
Bykhovskaia M. Making quantal analysis more convenient, fast, and accurate: user-friendly software QUANTAN. J Neurosci Methods 2008; 168:500-13. [PMID: 18045692 PMCID: PMC2290970 DOI: 10.1016/j.jneumeth.2007.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 10/09/2007] [Accepted: 10/10/2007] [Indexed: 11/16/2022]
Abstract
Quantal analysis of synaptic transmission is an important tool for understanding the mechanisms of synaptic plasticity and synaptic regulation. Although several custom-made and commercial algorithms have been created for the analysis of spontaneous synaptic activity, software for the analysis of action potential evoked release remains very limited. The present paper describes a user-friendly software package QUANTAN which has been created to analyze electrical recordings of postsynaptic responses. The program package is written using Borland C++ under Windows platform. QUANTAN employs and compares several algorithms to extract the average quantal content of synaptic responses, including direct quantal counts, the analysis of synaptic amplitudes, and the analysis of integrated current traces. The integration of several methods in one user-friendly program package makes quantal analysis of action potential evoked release more reliable and accurate. To evaluate the variability in quantal content, QUANTAN performs deconvolution of the distributions of amplitudes or areas of synaptic responses employing a ridge regression method. Other capabilities of QUANTAN include the analysis of the time-course and stationarity of quantal release. In summary, QUANTAN uses digital records of synaptic responses as an input and computes the distribution of quantal content and synaptic parameters. QUANTAN is freely available to other scholars over the internet.
Collapse
Affiliation(s)
- Maria Bykhovskaia
- Lehigh University, Department of Biological Sciences, 111 Research Drive, Bethlehem, PA 18015, United States.
| |
Collapse
|
134
|
Abstract
The last few decades have seen the hippocampal formation at front and center in the field of synaptic transmission. However, much of what we know about hippocampal short- and long-term plasticity has been obtained from research at one particular synapse; the Schaffer collateral input onto principal cells of the CA1 subfield. A number of recent studies, however, have demonstrated that there is much to be learned about target-specific mechanisms of synaptic transmission by study of the lesser known synapse made between the granule cells of the dentate gyrus; the so-called mossy fiber synapse, and its targets both within the hilar region and the CA3 hippocampus proper. Indeed investigation of this synapse has provided an embarrassment of riches concerning mechanisms of transmission associated with feedforward excitatory and inhibitory control of the CA3 hippocampus. Importantly, work from a number of labs has revealed that mossy fiber synapses possess unique properties at both the level of their anatomy and physiology, and serve as an outstanding example of a synapse designed for target-specific compartmentalization of synaptic transmission. The purpose of the present review is to highlight several aspects of this synapse as they pertain to a novel mechanism of bidirectional control of synaptic plasticity at mossy fiber synapses made onto hippocampal stratum lucidum interneurons. It is not my intention to pour over all that is known regarding the mossy fiber synapse since many have explored this topic exhaustively in the past and interested readers are directed to other fine reviews (Henze et al., 2000; Urban et al., 2001; Lawrence and McBain, 2003; Bischofberger et al., 2006; Nicoll and Schmitz, 2005).
Collapse
Affiliation(s)
- Chris J McBain
- Laboratory of Cellular and Synaptic Neurophysiology, Program in Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
135
|
Stevens CF, Williams JH. Discharge of the readily releasable pool with action potentials at hippocampal synapses. J Neurophysiol 2007; 98:3221-9. [PMID: 17942621 PMCID: PMC2201901 DOI: 10.1152/jn.00857.2007] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A readily releasable pool (RRP) of synaptic vesicles has been identified at hippocampal synapses with application of hypertonic solution. RRP size correlates with important properties of synaptic function such as release probability. However, a discrepancy in RRP size has been reported depending on the method used to evoke synaptic release. This study was undertaken to determine quantitative relationships between the RRP defined with hypertonic solution and that released with trains of action potentials. We find that asynchronous release at cell culture synapses contributes significantly to the discharge of the RRP with trains of action potentials and that RRP size is the same when elicited by either nerve stimuli or hypertonic challenge.
Collapse
Affiliation(s)
- Charles F Stevens
- Molecular Neurobiology Lab, The Salk Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
136
|
Kam K, Nicoll R. Excitatory synaptic transmission persists independently of the glutamate-glutamine cycle. J Neurosci 2007; 27:9192-200. [PMID: 17715355 PMCID: PMC6672195 DOI: 10.1523/jneurosci.1198-07.2007] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The glutamate-glutamine cycle is thought to be integral in continuously replenishing the neurotransmitter pool of glutamate. Inhibiting glial transfer of glutamine to neurons leads to rapid impairment in physiological and behavioral function; however, the degree to which excitatory synaptic transmission relies on the normal operation of this cycle is unknown. In slices and cultured neurons from rat hippocampus, we enhanced the transfer of glutamine to neurons, a fundamental step in this cycle, by adding exogenous glutamine. Although raising glutamine augments synaptic transmission by increasing vesicular glutamate, access to this synthetic pathway by exogenously applied glutamine to neurons is delayed and slow, challenging mechanisms linking the rapid effects of pharmacological inhibitors to decreased vesicular glutamate. We find that pharmacological inhibitors of glutamine synthetase or system A transporters cause an acute depression of basal synaptic transmission that is rapidly reversible, which is unlikely to be attributable to the rapid loss of vesicular glutamate. Furthermore, release of vesicular glutamate remains robust even during the prolonged removal of glutamine from pure neuronal cultures. We conclude that neurons have the capacity to store or produce glutamate for long periods of time, independently of glia and the glutamate-glutamine cycle.
Collapse
Affiliation(s)
- Kaiwen Kam
- Departments of Cellular and Molecular Pharmacology and
- Physiology, and
- Graduate Program in Neuroscience, University of California, San Francisco, San Francisco, California 94143-2140
| | - Roger Nicoll
- Departments of Cellular and Molecular Pharmacology and
- Physiology, and
| |
Collapse
|
137
|
Weng HR, Chen JH, Pan ZZ, Nie H. Glial glutamate transporter 1 regulates the spatial and temporal coding of glutamatergic synaptic transmission in spinal lamina II neurons. Neuroscience 2007; 149:898-907. [PMID: 17935889 DOI: 10.1016/j.neuroscience.2007.07.063] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 06/18/2007] [Accepted: 08/06/2007] [Indexed: 10/22/2022]
Abstract
Glutamatergic synaptic transmission is a dynamic process determined by the amount of glutamate released by presynaptic sites, the clearance of glutamate in the synaptic cleft, and the properties of postsynaptic glutamate receptors. Clearance of glutamate in the synaptic cleft depends on passive diffusion and active uptake by glutamate transporters. In this study, we examined the role of glial glutamate transporter 1 (GLT-1) in spinal sensory processing. Excitatory postsynaptic currents (EPSCs) of substantia gelatinosa neurons recorded from spinal slices of young adult rats were analyzed before and after GLT-1 was pharmacologically blocked by dihydrokainic acid. Inhibition of GLT-1 prolonged the EPSC duration and the EPSC decay phase. The EPSC amplitudes were increased in neurons with weak synaptic input but decreased in neurons with strong synaptic input upon inhibition of GLT-1. We suggest that presynaptic inhibition, desensitization of postsynaptic AMPA receptors, and glutamate "spillover" contributed to the kinetic change of EPSCs induced by the blockade of GLT-1. Thus, GLT-1 is a key component in maintaining the spatial and temporal coding in signal transmission at the glutamatergic synapse in substantia gelatinosa neurons.
Collapse
Affiliation(s)
- H-R Weng
- Department of Anesthesiology and Pain Medicine, The University of Texas M. D. Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 42, Houston, TX 77030-4009, USA.
| | | | | | | |
Collapse
|
138
|
Abstract
Changes in the response to release of a single synaptic vesicle have generally been attributed to postsynaptic modification of receptor sensitivity, but considerable evidence now demonstrates that alterations in vesicle filling also contribute to changes in quantal size. Receptors are not saturated at many synapses, and changes in the amount of transmitter per vesicle contribute to the physiological regulation of release. On the other hand, the presynaptic factors that determine quantal size remain poorly understood. Aside from regulation of the fusion pore, these mechanisms fall into two general categories: those that affect the accumulation of transmitter inside a vesicle and those that affect vesicle size. This review will summarize current understanding of the neurotransmitter cycle and indicate basic, unanswered questions about the presynaptic regulation of quantal size.
Collapse
Affiliation(s)
- Robert H Edwards
- Department of Neurology and Physiology, UCSF School of Medicine, San Francisco, CA 94158-2517, USA.
| |
Collapse
|
139
|
Carter AG, Soler-Llavina GJ, Sabatini BL. Timing and location of synaptic inputs determine modes of subthreshold integration in striatal medium spiny neurons. J Neurosci 2007; 27:8967-77. [PMID: 17699678 PMCID: PMC6672187 DOI: 10.1523/jneurosci.2798-07.2007] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 07/09/2007] [Indexed: 01/01/2023] Open
Abstract
Medium spiny neurons (MSNs) are the principal cells of the striatum and perform a central role in sensorimotor processing. MSNs must integrate many excitatory inputs located across their dendrites to fire action potentials and enable striatal function. However, the dependence of synaptic responses on the temporal and spatial distribution of these inputs remains unknown. Here, we use whole-cell recordings, two-photon microscopy, and two-photon glutamate uncaging to examine subthreshold synaptic integration in MSNs from acute rat brain slices. We find that synaptic responses can summate sublinearly, linearly, or supralinearly depending on the spatiotemporal pattern of activity. Repetitive activity at single inputs leads to sublinear summation, reflecting long-lived AMPA receptor desensitization. In contrast, asynchronous activity at multiple inputs generates linear summation, with synapses on neighboring spines functioning independently. Finally, synchronous activity at multiple inputs triggers supralinear summation at depolarized potentials, reflecting activation of NMDA receptors and L-type calcium channels. Thus, the properties of subthreshold integration in MSNs are determined by the distribution of synaptic inputs and the differential activation of multiple postsynaptic conductances.
Collapse
Affiliation(s)
- Adam G. Carter
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
140
|
Lisman JE, Raghavachari S, Tsien RW. The sequence of events that underlie quantal transmission at central glutamatergic synapses. Nat Rev Neurosci 2007; 8:597-609. [PMID: 17637801 DOI: 10.1038/nrn2191] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The properties of synaptic transmission were first elucidated at the neuromuscular junction. More recent work has examined transmission at synapses within the brain. Here we review the remarkable progress in understanding the biophysical and molecular basis of the sequential steps in this process. These steps include the elevation of Ca2+ in microdomains of the presynaptic terminal, the diffusion of transmitter through the fusion pore into the synaptic cleft and the activation of postsynaptic receptors. The results give insight into the factors that control the precision of quantal transmission and provide a framework for understanding synaptic plasticity.
Collapse
Affiliation(s)
- John E Lisman
- Brandeis University, Department of Biology, MS 008, 415 South Street, Waltham, Massachusetts 02454-9110, USA.
| | | | | |
Collapse
|
141
|
Albright MJ, Weston MC, Inan M, Rosenmund C, Crair MC. Increased thalamocortical synaptic response and decreased layer IV innervation in GAP-43 knockout mice. J Neurophysiol 2007; 98:1610-25. [PMID: 17581849 DOI: 10.1152/jn.00219.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The growth-associated protein, GAP-43, is an axonally localized neuronal protein with high expression in the developing brain and in regenerating neurites. Mice that lack GAP-43 (GAP-43 -/-) fail to form a whisker-related barrel map. In this study, we use GAP-43 -/- mice to examine GAP-43 synaptic function in the context of thalamocortical synapse development and cortical barrel map formation. Examination of thalamocortical synaptic currents in an acute brain slice preparation and in autaptic thalamic neurons reveals that GAP-43 -/- synapses have larger alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate receptor (AMPAR)-mediated currents than controls despite similar AMPAR function and normal probability of vesicular release. Interestingly, GAP-43 -/- synapses are less sensitive to blockade by a competitive glutamate receptor antagonist, suggesting higher levels of neurotransmitter in the cleft during synaptic transmission. Field excitatory postsynaptic potentials (EPSPs) from GAP-43 -/- thalamocortical synapses reveal a reduced fiber response, and anatomical analysis shows reduced thalamic innervation of barrel cortex in GAP-43 -/- mice. Despite this fact synaptic responses in the field EPSPs are similar in GAP-43 -/- mice and wild-type littermate controls, and the ratio of AMPAR-mediated to N-methyl-d-aspartate receptor (NMDAR)-mediated currents (AMPAR:NMDAR ratio) is larger than normal. This suggests that GAP-43 -/- mice form fewer thalamocortical synapses in layer IV because of decreased anatomical innervation of the cortex, but the remaining contacts are individually stronger possibly due to increased neurotransmitter concentration in the synaptic cleft. Together, these results indicate that in addition to its well known role in axonal pathfinding GAP-43 plays a functional role in regulating neurotransmitter release.
Collapse
Affiliation(s)
- Michael J Albright
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
142
|
Kashani A, Lepicard E, Poirel O, Videau C, David JP, Fallet-Bianco C, Simon A, Delacourte A, Giros B, Epelbaum J, Betancur C, El Mestikawy S. Loss of VGLUT1 and VGLUT2 in the prefrontal cortex is correlated with cognitive decline in Alzheimer disease. Neurobiol Aging 2007; 29:1619-30. [PMID: 17531353 DOI: 10.1016/j.neurobiolaging.2007.04.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 04/02/2007] [Accepted: 04/08/2007] [Indexed: 12/20/2022]
Abstract
Several lines of evidence suggest that the glutamatergic system is severely impaired in Alzheimer disease (AD). Here, we assessed the status of glutamatergic terminals in AD using the first available specific markers, the vesicular glutamate transporters VGLUT1 and VGLUT2. We quantified VGLUT1 and VGLUT2 in the prefrontal dorsolateral cortex (Brodmann area 9) of controls and AD patients using specific antiserums. A dramatic decrease in VGLUT1 and VGLUT2 was observed in AD using Western blot. Similar decreases were observed in an independent group of subjects using immunoautoradiography. The VGLUT1 reduction was highly correlated with the degree of cognitive impairment, assessed with the clinical dementia rating (CDR) score. A significant albeit weaker correlation was also observed with VGLUT2. These findings provide evidence indicating that glutamatergic systems are severely impaired in the A9 region of AD patients and that this impairment is strongly correlated with the progression of cognitive decline. Our results suggest that VGLUT1 expression in the prefrontal cortex could be used as a valuable neurochemical marker of dementia in AD.
Collapse
|
143
|
Wu XS, Xue L, Mohan R, Paradiso K, Gillis KD, Wu LG. The origin of quantal size variation: vesicular glutamate concentration plays a significant role. J Neurosci 2007; 27:3046-56. [PMID: 17360928 PMCID: PMC6672571 DOI: 10.1523/jneurosci.4415-06.2007] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fusion of a single vesicle induces a quantal response, which is critical in determining synaptic strength. Quantal size varies at most synapses. Its underlying mechanisms are not well understood. Here, we examined five sources of variation: vesicular glutamate concentration ([Glu]v), vesicle volume, ultrafast fusion pore closure, the postsynaptic receptor, and the location between release and the postsynaptic receptor cluster at glutamatergic, calyx of Held synapses. By averaging 2.66 million fusion events from 459 synapses, we resolved the capacitance jump evoked by single vesicle fusion. This capacitance jump, an indicator of vesicle volume, was independent of the amplitude of the miniature EPSC (mEPSC) recorded simultaneously at the same synapses. Thus, vesicle volume is not the main source of mEPSC variation. The capacitance jump was not followed by submillisecond endocytosis, excluding ultrafast endocytosis as a source of variation. Larger mEPSCs were increased to a lesser extent by presynaptic glutamate dialysis, and reduced to a lesser extent by gamma-DGG (gamma-D-glutamylglycine), a competitive AMPA receptor blocker, suggesting that a higher glutamate concentration in the synaptic cleft contributes to the large size of mEPSCs. Larger mEPSCs were not accompanied by briefer rise times, inconsistent with the prediction by, and thus arguing against, the scenario that larger mEPSCs are caused by a shorter distance between the release site and the postsynaptic receptor cluster. In summary, the different amplitudes of mEPSCs were mainly attributable to release of vesicles having similar volumes, but different glutamate amounts, suggesting that [Glu]v is a main source of quantal size variation.
Collapse
Affiliation(s)
- Xin-Sheng Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, and
| | - Lei Xue
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, and
| | - Raja Mohan
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, and
| | - Kenneth Paradiso
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, and
| | - Kevin D. Gillis
- Dalton Cardiovascular Research Center, University of Missouri–Columbia Research Park, Columbia, Missouri 65211
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, and
| |
Collapse
|
144
|
Wölfel M, Lou X, Schneggenburger R. A mechanism intrinsic to the vesicle fusion machinery determines fast and slow transmitter release at a large CNS synapse. J Neurosci 2007; 27:3198-210. [PMID: 17376981 PMCID: PMC6672471 DOI: 10.1523/jneurosci.4471-06.2007] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 02/09/2007] [Accepted: 02/10/2007] [Indexed: 11/21/2022] Open
Abstract
Heterogeneity of release probability p between vesicles in the readily releasable pool (RRP) is expected to strongly influence the kinetics of depression at synapses, but the underlying mechanism(s) are not well understood. To test whether differences in the intrinsic Ca2+ sensitivity of vesicle fusion might cause heterogeneity of p, we made presynaptic Ca2+-uncaging measurements at the calyx of Held and analyzed the time course of transmitter release by EPSC deconvolution. Ca2+ uncaging, which produced spatially homogeneous elevations of [Ca2+]i, evoked a fast and a slow component of release over a wide range of [Ca2+]i, showing that mechanism(s) intrinsic to the vesicle fusion machinery cause fast and slow transmitter release. Surprisingly, the number of vesicles released in the fast component increased with Ca2+-uncaging stimuli of larger amplitudes, a finding that was most obvious below approximately 10 microM [Ca2+]i and that we call "submaximal release" of fast-releasable vesicles. During trains of action potential-like presynaptic depolarizations, submaximal release was also observed as an increase in the cumulative fast release at enhanced release probabilities. A model that assumes two separate subpools of RRP vesicles with different intrinsic Ca2+ sensitivities predicted the observed Ca2+ dependencies of fast and slow transmitter release but could not fully account for submaximal release. Thus, fast and slow transmitter release in response to prolonged [Ca2+]i elevations is caused by intrinsic differences between RRP vesicles, and an "a posteriori" reduction of the Ca2+ sensitivity of vesicle fusion after the onset of the stimulus might cause submaximal release of fast-releasable vesicles and contribute to short-term synaptic depression.
Collapse
Affiliation(s)
- Markus Wölfel
- AG Synaptic Dynamics and Modulation, Department of Membrane Biophysics, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany, and
| | - Xuelin Lou
- AG Synaptic Dynamics and Modulation, Department of Membrane Biophysics, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany, and
| | - Ralf Schneggenburger
- AG Synaptic Dynamics and Modulation, Department of Membrane Biophysics, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany, and
- Laboratory of Synaptic Mechanisms, Brain-Mind Institute, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
145
|
Kukley M, Capetillo-Zarate E, Dietrich D. Vesicular glutamate release from axons in white matter. Nat Neurosci 2007; 10:311-20. [PMID: 17293860 DOI: 10.1038/nn1850] [Citation(s) in RCA: 372] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 01/16/2007] [Indexed: 12/11/2022]
Abstract
Vesicular release of neurotransmitter is the universal output signal of neurons in the brain. It is generally believed that fast transmitter release is restricted to nerve terminals that contact postsynaptic cells in the gray matter. Here we show in the rat brain that the neurotransmitter glutamate is also released at discrete sites along axons in white matter in the absence of neurons and nerve terminals. The propagation of single action potentials along axons leads to rapid vesicular release of glutamate, which is detected by ionotropic glutamate receptors on local oligodendrocyte precursor cells. Axonal release of glutamate is reliable, involves highly localized calcium microdomain signaling and is strongly calcium cooperative, similar to vesicle fusion at synapses. This axonal transmitter release represents a widespread mechanism for high-fidelity, activity-dependent signaling at the axon-glia interface in white matter.
Collapse
Affiliation(s)
- Maria Kukley
- Experimental Neurophysiology, Department of Neurosurgery, University Clinic Bonn, Germany.
| | | | | |
Collapse
|
146
|
Cavelier P, Attwell D. Neurotransmitter depletion by bafilomycin is promoted by vesicle turnover. Neurosci Lett 2007; 412:95-100. [PMID: 17123716 PMCID: PMC6930131 DOI: 10.1016/j.neulet.2006.10.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 10/24/2006] [Accepted: 10/25/2006] [Indexed: 11/16/2022]
Abstract
Accumulation of neurotransmitter into synaptic vesicles is powered by the vacuolar proton ATPase. We show here that, in brain slices, application of the H(+)-ATPase inhibitors bafilomycin or concanamycin does not efficiently deplete glutamatergic vesicles of transmitter unless vesicle turnover is increased. Simulations of vesicle energetics suggest either that bafilomycin and concanamycin act on the H(+)-ATPase from inside the vesicle, or that the vesicle membrane potential is maintained after the H(+)-ATPase is inhibited.
Collapse
Affiliation(s)
- Pauline Cavelier
- Department of Physiology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
147
|
Futai K, Kim MJ, Hashikawa T, Scheiffele P, Sheng M, Hayashi Y. Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95-neuroligin. Nat Neurosci 2007; 10:186-95. [PMID: 17237775 PMCID: PMC4755312 DOI: 10.1038/nn1837] [Citation(s) in RCA: 223] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 12/22/2006] [Indexed: 02/03/2023]
Abstract
The structure and function of presynaptic and postsynaptic components of the synapse are highly coordinated. How such coordination is achieved and the molecules involved in this process have not been clarified. Several lines of evidence suggest that presynaptic functionalities are regulated by retrograde mechanisms from the postsynaptic side. We therefore sought postsynaptic mechanisms responsible for trans-synaptic regulation of presynaptic function at excitatory synapses in rat hippocampal CA1 pyramidal neurons. We show here that the postsynaptic complex of scaffolding protein PSD-95 and neuroligin can modulate the release probability of transmitter vesicles at synapse in a retrograde way, resulting in altered presynaptic short-term plasticity. Presynaptic beta-neurexin serves as a likely presynaptic mediator of this effect. Our results indicate that trans-synaptic protein-protein interactions can link postsynaptic and presynaptic function.
Collapse
Affiliation(s)
- Kensuke Futai
- RIKEN-MIT Neuroscience Research Center, The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
148
|
Smear MC, Tao HW, Staub W, Orger MB, Gosse NJ, Liu Y, Takahashi K, Poo MM, Baier H. Vesicular glutamate transport at a central synapse limits the acuity of visual perception in zebrafish. Neuron 2007; 53:65-77. [PMID: 17196531 PMCID: PMC1828615 DOI: 10.1016/j.neuron.2006.12.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 10/30/2006] [Accepted: 12/13/2006] [Indexed: 10/23/2022]
Abstract
The neural circuitry that constrains visual acuity in the CNS has not been experimentally identified. We show here that zebrafish blumenkohl (blu) mutants are impaired in resolving rapid movements and fine spatial detail. The blu gene encodes a vesicular glutamate transporter expressed by retinal ganglion cells. Mutant retinotectal synapses release less glutamate, per vesicle and per terminal, and fatigue more quickly than wild-type in response to high-frequency stimulation. In addition, mutant axons arborize more extensively, thus increasing the number of synaptic terminals and effectively normalizing the combined input to postsynaptic cells in the tectum. This presumably homeostatic response results in larger receptive fields of tectal cells and a degradation of the retinotopic map. As predicted, mutants have a selective deficit in the capture of small prey objects, a behavior dependent on the tectum. Our studies successfully link the disruption of a synaptic protein to complex changes in neural circuitry and behavior.
Collapse
Affiliation(s)
- Matthew C Smear
- University of California, San Francisco, Department of Physiology, Program in Neuroscience, 1550 4th Street, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Kodama T, Itsukaichi-Nishida Y, Fukazawa Y, Wakamori M, Miyata M, Molnar E, Mori Y, Shigemoto R, Imoto K. A CaV2.1 calcium channel mutationrockerreduces the number of postsynaptic AMPA receptors in parallel fiber-Purkinje cell synapses. Eur J Neurosci 2006; 24:2993-3007. [PMID: 17156361 DOI: 10.1111/j.1460-9568.2006.05191.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rocker mice are hereditary ataxic mutants that carry a point mutation in the gene encoding the CaV2.1 (P/Q-type) Ca2+ channel alpha1 subunit, and show the mildest symptoms among the reported CaV2.1 mutant mice. We studied the basic characteristics of the rocker mutant Ca2+ channel and their impacts on excitatory synaptic transmission in cerebellar Purkinje cells (PCs). In acutely dissociated PC somas, the rocker mutant channel showed a moderate reduction in Ca2+ channel current density, whereas its kinetics and voltage dependency of gating remained nearly normal. Despite the small changes in channel function, synaptic transmission in the parallel fiber (PF)-PC synapses was severely impaired. The climbing fiber inputs onto PCs showed a moderate impairment but could elicit normal complex spikes. Presynaptic function of the PF-PC synapses, however, was unexpectedly almost normal in terms of paired-pulse facilitation, sensitivity to extracellular Ca2+ concentration and glutamate concentration in synaptic clefts. Electron microscopic analyses including freeze-fracture replica labeling revealed that both the number and density of postsynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors substantially decreased without gross structural changes of the PF-PC synapses. We also observed an abnormal arborization of PC dendrites in young adult rocker mice (approximately 1 month old). These lines of evidence suggest that even a moderate dysfunction of CaV2.1 Ca2+ channel can cause substantial changes in postsynaptic molecular composition of the PF-PC synapses and dendritic structure of PCs.
Collapse
Affiliation(s)
- Takashi Kodama
- Department of Information Physiology, National Institute for Physiological Sciences, Okazaki 444-8787, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Lisman J, Raghavachari S. A unified model of the presynaptic and postsynaptic changes during LTP at CA1 synapses. ACTA ACUST UNITED AC 2006; 2006:re11. [PMID: 17033044 DOI: 10.1126/stke.3562006re11] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Long-term potentiation (LTP) has been studied extensively at CA1 synapses of the hippocampus, and there is evidence implicating both postsynaptic and presynaptic changes in this process. These changes include (i) addition of AMPA channels to the extrasynaptic membrane and diffusional equilibrium of extrasynaptic receptors with synaptic receptors, (ii) sudden addition of AMPA channels to the synapse in large groups, (iii) a change in the mode of glutamate release (presumably from kiss-and-run to full fusion), and (iv) a delayed increase in the number of vesicles released. However, it remains unclear whether (or how) these changes work together. We have incorporated all of these processes into a structural model of the synapse. We propose that the synapse is composed of transsynaptic modules that function quasi-independently in AMPA-mediated transmission. Under basal conditions, synapses are partially silent; some modules are AMPA-silent (but contribute to NMDA-mediated transmission), whereas others are functional (and contribute to both AMPA- and NMDA-mediated transmission). During LTP, there is both a rapid change in the mode of vesicle fusion and a rapid insertion of a postsynaptic complex (a hyperslot) containing many proteins (slots) capable of binding AMPA channels. The combined effect of these pre- and postsynaptic changes is to convert AMPA-silent modules into functional modules. Slot filling is transiently enhanced by a rapid increase in extrasynaptic GluR1, a form of the AMPA-type receptor. A slower transsynaptic growth process adds AMPA-silent modules to the synapse, enhancing the number of vesicles released and thereby enhancing the NMDA response. This model accounts for a broad range of data, including the LTP-induced changes in quantal parameters. The model also provides a coherent explanation for the diverse effects of GluR1 knockout on basal transmission, LTP, and distance-dependent scaling.
Collapse
Affiliation(s)
- John Lisman
- Department of Biology, Brandeis University, Waltham, MA 02454, USA.
| | | |
Collapse
|