101
|
Boncompain G, Weigel AV. Transport and sorting in the Golgi complex: multiple mechanisms sort diverse cargo. Curr Opin Cell Biol 2018; 50:94-101. [DOI: 10.1016/j.ceb.2018.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/28/2018] [Accepted: 03/05/2018] [Indexed: 01/22/2023]
|
102
|
Shimasaki K, Watanabe-Takahashi M, Umeda M, Funamoto S, Saito Y, Noguchi N, Kumagai K, Hanada K, Tsukahara F, Maru Y, Shibata N, Naito M, Nishikawa K. Pleckstrin homology domain of p210 BCR-ABL interacts with cardiolipin to regulate its mitochondrial translocation and subsequent mitophagy. Genes Cells 2017; 23:22-34. [PMID: 29205725 DOI: 10.1111/gtc.12544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/30/2017] [Indexed: 02/05/2023]
Abstract
Chronic myeloid leukemia (CML) is caused by the chimeric protein p210 BCR-ABL encoded by a gene on the Philadelphia chromosome. Although the kinase domain of p210 BCR-ABL is an active driver of CML, the pathological role of its pleckstrin homology (PH) domain remains unclear. Here, we carried out phospholipid vesicle-binding assays to show that cardiolipin (CL), a characteristic mitochondrial phospholipid, is a unique ligand of the PH domain. Arg726, a basic amino acid in the ligand-binding region, was crucial for ligand recognition. A subset of wild-type p210 BCR-ABL that was transiently expressed in HEK293 cells was dramatically translocated from the cytosol to mitochondria in response to carbonyl cyanide m-chlorophenylhydrazone (CCCP) treatment, which induces mitochondrial depolarization and subsequent externalization of CL to the organelle's outer membrane, whereas an R726A mutant of the protein was not translocated. Furthermore, only wild-type p210 BCR-ABL, but not the R726A mutant, suppressed CCCP-induced mitophagy and subsequently enhanced reactive oxygen species production. Thus, p210 BCR-ABL can change its intracellular localization via interactions between the PH domain and CL to cope with mitochondrial damage. This suggests that p210 BCR-ABL could have beneficial effects for cancer proliferation, providing new insight into the PH domain's contribution to CML pathogenesis.
Collapse
Affiliation(s)
- Kentaro Shimasaki
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Miho Watanabe-Takahashi
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Masato Umeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Satoru Funamoto
- Department of Neuropathology, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Yoshiro Saito
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Noriko Noguchi
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Keigo Kumagai
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Fujiko Tsukahara
- Department of Pharmacology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Yoshiro Maru
- Department of Pharmacology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Norihito Shibata
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Tokyo, Japan
| | - Mikihiko Naito
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Tokyo, Japan
| | - Kiyotaka Nishikawa
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| |
Collapse
|
103
|
Ebrahimzadeh Z, Mukherjee A, Richard D. A map of the subcellular distribution of phosphoinositides in the erythrocytic cycle of the malaria parasite Plasmodium falciparum. Int J Parasitol 2017; 48:13-25. [PMID: 29154995 DOI: 10.1016/j.ijpara.2017.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/22/2017] [Accepted: 08/31/2017] [Indexed: 12/16/2022]
Abstract
Despite representing a small percentage of the cellular lipids of eukaryotic cells, phosphoinositides (PIPs) are critical in various processes such as intracellular trafficking and signal transduction. Central to their various functions is the differential distribution of PIP species to specific membrane compartments through the actions of kinases, phosphatases and lipases. Despite their importance in the malaria parasite lifecycle, the subcellular distribution of most PIP species in this organism is still unknown. We here localise several species of PIPs throughout the erythrocytic cycle of Plasmodium falciparum. We show that PI3P is mostly found at the apicoplast and the membrane of the food vacuole, that PI4P associates with the Golgi apparatus and the plasma membrane and that PI(4,5)P2, in addition to being detected at the plasma membrane, labels some cavity-like spherical structures. Finally, we show that the elusive PI5P localises to the plasma membrane, the nucleus and potentially to the transitional endoplasmic reticulum (ER). Our map of the subcellular distribution of PIP species in P. falciparum will be a useful tool to shed light on the dynamics of these lipids in this deadly parasite.
Collapse
Affiliation(s)
- Zeinab Ebrahimzadeh
- Centre de recherche en infectiologie, CRCHU de Québec-Université Laval, 2705 Boul. Laurier, Québec, QC G1V 4G2, Canada
| | - Angana Mukherjee
- Centre de recherche en infectiologie, CRCHU de Québec-Université Laval, 2705 Boul. Laurier, Québec, QC G1V 4G2, Canada
| | - Dave Richard
- Centre de recherche en infectiologie, CRCHU de Québec-Université Laval, 2705 Boul. Laurier, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
104
|
Lyoo H, Dorobantu CM, van der Schaar HM, van Kuppeveld FJM. Modulation of proteolytic polyprotein processing by coxsackievirus mutants resistant to inhibitors targeting phosphatidylinositol-4-kinase IIIβ or oxysterol binding protein. Antiviral Res 2017; 147:86-90. [PMID: 29024767 DOI: 10.1016/j.antiviral.2017.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/03/2017] [Accepted: 10/08/2017] [Indexed: 10/18/2022]
Abstract
Enteroviruses (e.g. poliovirus, coxsackievirus, and rhinovirus) require several host factors for genome replication. Among these host factors are phosphatidylinositol-4-kinase IIIβ (PI4KB) and oxysterol binding protein (OSBP). Enterovirus mutants resistant to inhibitors of PI4KB and OSBP were previously isolated, which demonstrated a role of single substitutions in the non-structural 3A protein in conferring resistance. Besides the 3A substitutions (i.e., 3A-I54F and 3A-H57Y) in coxsackievirus B3 (CVB3), substitution N2D in 2C was identified in each of the PI4KB-inhibitor resistant CVB3 pools, but its possible benefit has not been investigated yet. In this study, we set out to investigate the possible role of 2C-N2D in the resistance to PI4KB and OSBP inhibition. We show that 2C-N2D by itself did not confer any resistance to inhibitors of PI4KB and OSBP. However, the double mutant (i.e., 2C-N2D/3A-H57Y) showed better replication than the 3A-H57Y single mutant in the presence of inhibitors. Growing evidence suggests that alterations in lipid homeostasis affect the proteolytic processing of the poliovirus polyprotein. Therefore, we studied the effect of PI4KB or OSBP inhibition on proteolytic processing of the CVB3 polyprotein during infection as well as in a replication-independent system. We show that both PI4KB and OSBP inhibitors specifically affected the cleavage at the 3A-3B junction, and that mutation 3A-H57Y recovered impaired proteolytic processing at this junction. Although 2C-N2D enhanced replication of the 3A-H57Y single mutant, we did not detect additional effects of this substitution on polyprotein processing, which leaves the mechanism of how 2C-N2D contributes to the resistance to be revealed.
Collapse
Affiliation(s)
- Heyrhyoung Lyoo
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Cristina M Dorobantu
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hilde M van der Schaar
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
105
|
Mesmin B, Bigay J, Polidori J, Jamecna D, Lacas-Gervais S, Antonny B. Sterol transfer, PI4P consumption, and control of membrane lipid order by endogenous OSBP. EMBO J 2017; 36:3156-3174. [PMID: 28978670 DOI: 10.15252/embj.201796687] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 11/09/2022] Open
Abstract
The network of proteins that orchestrate the distribution of cholesterol among cellular organelles is not fully characterized. We previously proposed that oxysterol-binding protein (OSBP) drives cholesterol/PI4P exchange at contact sites between the endoplasmic reticulum (ER) and the trans-Golgi network (TGN). Using the inhibitor OSW-1, we report here that the sole activity of endogenous OSBP makes a major contribution to cholesterol distribution, lipid order, and PI4P turnover in living cells. Blocking OSBP causes accumulation of sterols at ER/lipid droplets at the expense of TGN, thereby reducing the gradient of lipid order along the secretory pathway. OSBP consumes about half of the total cellular pool of PI4P, a consumption that depends on the amount of cholesterol to be transported. Inhibiting the spatially restricted PI4-kinase PI4KIIIβ triggers large periodic traveling waves of PI4P across the TGN These waves are cadenced by long-range PI4P production by PI4KIIα and PI4P consumption by OSBP Collectively, these data indicate a massive spatiotemporal coupling between cholesterol transport and PI4P turnover via OSBP and PI4-kinases to control the lipid composition of subcellular membranes.
Collapse
Affiliation(s)
- Bruno Mesmin
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Joëlle Bigay
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Joël Polidori
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Denisa Jamecna
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | | | - Bruno Antonny
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| |
Collapse
|
106
|
Banerjee S, Kane PM. Direct interaction of the Golgi V-ATPase a-subunit isoform with PI(4)P drives localization of Golgi V-ATPases in yeast. Mol Biol Cell 2017; 28:2518-2530. [PMID: 28720663 PMCID: PMC5597324 DOI: 10.1091/mbc.e17-05-0316] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/03/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022] Open
Abstract
PI(4)P directly interacts with the cytosolic domain of yeast Golgi vacuolar H+-ATPase (V-ATPase) a-isoform, Stv1, and the human Golgi a-subunit isoform. Lys-84 of Stv1 is essential for PI(4)P interaction, and localization of Stv1-containing V-ATPases in vivo requires the PI(4)P interaction. We propose that phosphatidylinositol binding exerts organelle-specific control over V-ATPases. Luminal pH and phosphoinositide content are fundamental features of organelle identity. Vacuolar H+-ATPases (V-ATPases) drive organelle acidification in all eukaryotes, and membrane-bound a-subunit isoforms of the V-ATPase are implicated in organelle-specific targeting and regulation. Earlier work demonstrated that the endolysosomal lipid PI(3,5)P2 activates V-ATPases containing the vacuolar a-subunit isoform in Saccharomyces cerevisiae. Here we demonstrate that PI(4)P, the predominant Golgi phosphatidylinositol (PI) species, directly interacts with the cytosolic amino terminal (NT) domain of the yeast Golgi V-ATPase a-isoform Stv1. Lysine-84 of Stv1NT is essential for interaction with PI(4)P in vitro and in vivo, and interaction with PI(4)P is required for efficient localization of Stv1-containing V-ATPases. The cytosolic NT domain of the human V-ATPase a2 isoform specifically interacts with PI(4)P in vitro, consistent with its Golgi localization and function. We propose that NT domains of Vo a-subunit isoforms interact specifically with PI lipids in their organelles of residence. These interactions can transmit organelle-specific targeting or regulation information to V-ATPases.
Collapse
Affiliation(s)
- Subhrajit Banerjee
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
107
|
Abstract
Filamentous fungi are a large and ancient clade of microorganisms that occupy a broad range of ecological niches. The success of filamentous fungi is largely due to their elongate hypha, a chain of cells, separated from each other by septa. Hyphae grow by polarized exocytosis at the apex, which allows the fungus to overcome long distances and invade many substrates, including soils and host tissues. Hyphal tip growth is initiated by establishment of a growth site and the subsequent maintenance of the growth axis, with transport of growth supplies, including membranes and proteins, delivered by motors along the cytoskeleton to the hyphal apex. Among the enzymes delivered are cell wall synthases that are exocytosed for local synthesis of the extracellular cell wall. Exocytosis is opposed by endocytic uptake of soluble and membrane-bound material into the cell. The first intracellular compartment in the endocytic pathway is the early endosomes, which emerge to perform essential additional functions as spatial organizers of the hyphal cell. Individual compartments within septated hyphae can communicate with each other via septal pores, which allow passage of cytoplasm or organelles to help differentiation within the mycelium. This article introduces the reader to more detailed aspects of hyphal growth in fungi.
Collapse
|
108
|
Yoshida A, Hayashi H, Tanabe K, Fujita A. Segregation of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate into distinct microdomains on the endosome membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017. [PMID: 28648675 DOI: 10.1016/j.bbamem.2017.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phosphatidylinositol 4-phosphate (PtdIns(4)P) is the immediate precursor of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), which is located on the cytoplasmic leaflet of the plasma membrane and has been reported to possess multiple cellular functions. Although PtdIns(4)P and PtdIns(4,5)P2 have been reported to localize to multiple intracellular compartments and to each function as regulatory molecules, their generation, regulation and functions in most intracellular compartments are not well-defined. To analyze PtdIns(4)P and PtdIns(4,5)P2 distributions, at a nanoscale, we employed an electron microscopy technique that specifically labels PtdIns(4)P and PtdIns(4,5)P2 on the freeze-fracture replica of intracellular biological membranes. This method minimizes the possibility of artificial perturbation, because molecules in the membrane are physically immobilized in situ. Using this technique, we found that PtdIns(4)P was localized to the cytoplasmic leaflet of Golgi apparatus and vesicular-shaped structures. The PtdIns(4,5)P2 labeling was observed in the cytoplasmic leaflet of the mitochondrial inner membrane and vesicular-shaped structures. Double labeling of PtdIns(4)P and PtdIns(4,5)P2 with endosome markers illustrated that PtdIns(4)P and PtdIns(4,5)P2 were mainly localized to the late endosome/lysosome and early endosome, respectively. PtdIns(4)P and PtdIns(4,5)P2 were colocalized in some endosomes, with the two phospholipids separated into distinct microdomains on the same endosomes. This is the first report showing, at a nanoscale, segregation of PtdIns(4)P- and PtdIns(4,5)P2-enriched microdomains in the endosome, of likely importance for endosome functionality.
Collapse
Affiliation(s)
- Akane Yoshida
- Field of Veterinary Pathobiology, Basic Veterinary Science, Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Hiroki Hayashi
- Field of Veterinary Pathobiology, Basic Veterinary Science, Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Kenji Tanabe
- Medical Research Institute, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Akikazu Fujita
- Field of Veterinary Pathobiology, Basic Veterinary Science, Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan.
| |
Collapse
|
109
|
Jackson CL, Walch L, Verbavatz JM. Lipids and Their Trafficking: An Integral Part of Cellular Organization. Dev Cell 2017; 39:139-153. [PMID: 27780039 DOI: 10.1016/j.devcel.2016.09.030] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An evolutionarily conserved feature of cellular organelles is the distinct phospholipid composition of their bounding membranes, which is essential to their identity and function. Within eukaryotic cells, two major lipid territories can be discerned, one centered on the endoplasmic reticulum and characterized by membranes with lipid packing defects, the other comprising plasma-membrane-derived organelles and characterized by membrane charge. We discuss how this cellular lipid organization is maintained, how lipid flux is regulated, and how perturbations in cellular lipid homeostasis can lead to disease.
Collapse
Affiliation(s)
- Catherine L Jackson
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | - Laurence Walch
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Jean-Marc Verbavatz
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| |
Collapse
|
110
|
De Craene JO, Bertazzi DL, Bär S, Friant S. Phosphoinositides, Major Actors in Membrane Trafficking and Lipid Signaling Pathways. Int J Mol Sci 2017; 18:ijms18030634. [PMID: 28294977 PMCID: PMC5372647 DOI: 10.3390/ijms18030634] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 11/30/2022] Open
Abstract
Phosphoinositides are lipids involved in the vesicular transport of proteins and lipids between the different compartments of eukaryotic cells. They act by recruiting and/or activating effector proteins and thus are involved in regulating various cellular functions, such as vesicular budding, membrane fusion and cytoskeleton dynamics. Although detected in small concentrations in membranes, their role is essential to cell function, since imbalance in their concentrations is a hallmark of many cancers. Their synthesis involves phosphorylating/dephosphorylating positions D3, D4 and/or D5 of their inositol ring by specific lipid kinases and phosphatases. This process is tightly regulated and specific to the different intracellular membranes. Most enzymes involved in phosphoinositide synthesis are conserved between yeast and human, and their loss of function leads to severe diseases (cancer, myopathy, neuropathy and ciliopathy).
Collapse
Affiliation(s)
- Johan-Owen De Craene
- Department of Molecular and Cellular Genetics, Université de Strasbourg, CNRS, GMGM UMR 7156, F-67000 Strasbourg, France.
| | - Dimitri L Bertazzi
- Department of Molecular and Cellular Genetics, Université de Strasbourg, CNRS, GMGM UMR 7156, F-67000 Strasbourg, France.
| | - Séverine Bär
- Department of Molecular and Cellular Genetics, Université de Strasbourg, CNRS, GMGM UMR 7156, F-67000 Strasbourg, France.
| | - Sylvie Friant
- Department of Molecular and Cellular Genetics, Université de Strasbourg, CNRS, GMGM UMR 7156, F-67000 Strasbourg, France.
| |
Collapse
|
111
|
Makowski SL, Tran TT, Field SJ. Emerging themes of regulation at the Golgi. Curr Opin Cell Biol 2017; 45:17-23. [PMID: 28213314 DOI: 10.1016/j.ceb.2017.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/24/2017] [Indexed: 02/06/2023]
Abstract
The Golgi is generally recognized for its central role in the secretory pathway to orchestrate protein post-translational modification and trafficking of proteins and lipids to their final destination. Despite the common view of the Golgi as an inert sorting organelle, emerging data demonstrate that important signaling events occur at the Golgi, including those that regulate the trafficking function of the Golgi. The phosphatidylinositol-4-phosphate/GOLPH3/MYO18A/F-actin complex serves as a hub for signals that regulate Golgi trafficking function. Furthermore, the Golgi is increasingly appreciated for its important role in cell growth and in driving oncogenic transformation, as illuminated by the discovery that GOLPH3 and MYO18A are cancer drivers.
Collapse
Affiliation(s)
- Stefanie L Makowski
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, CA 92093-0707, USA
| | - Thuy Tt Tran
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, CA 92093-0707, USA
| | - Seth J Field
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, CA 92093-0707, USA.
| |
Collapse
|
112
|
Vidal-Quadras M, Holst MR, Francis MK, Larsson E, Hachimi M, Yau WL, Peränen J, Martín-Belmonte F, Lundmark R. Endocytic turnover of Rab8 controls cell polarization. J Cell Sci 2017; 130:1147-1157. [PMID: 28137756 PMCID: PMC5358338 DOI: 10.1242/jcs.195420] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/18/2017] [Indexed: 01/05/2023] Open
Abstract
Adaptation of cell shape and polarization through the formation and retraction of cellular protrusions requires balancing of endocytosis and exocytosis combined with fine-tuning of the local activity of small GTPases like Rab8. Here, we show that endocytic turnover of the plasma membrane at protrusions is directly coupled to surface removal and inactivation of Rab8. Removal is induced by reduced membrane tension and mediated by the GTPase regulator associated with focal adhesion kinase-1 (GRAF1, also known as ARHGAP26), a regulator of clathrin-independent endocytosis. GRAF1-depleted cells were deficient in multi-directional spreading and displayed elevated levels of GTP-loaded Rab8, which was accumulated at the tips of static protrusions. Furthermore, GRAF1 depletion impaired lumen formation and spindle orientation in a 3D cell culture system, indicating that GRAF1 activity regulates polarity establishment. Our data suggest that GRAF1-mediated removal of Rab8 from the cell surface restricts its activity during protrusion formation, thereby facilitating dynamic adjustment of the polarity axis.
Collapse
Affiliation(s)
| | - Mikkel R Holst
- Integrative Medical Biology, Umeå University, Umeå 901 87, Sweden
| | - Monika K Francis
- Integrative Medical Biology, Umeå University, Umeå 901 87, Sweden.,Medical Biochemistry and Biophysics, Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå 901 87, Sweden
| | - Elin Larsson
- Integrative Medical Biology, Umeå University, Umeå 901 87, Sweden.,Medical Biochemistry and Biophysics, Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå 901 87, Sweden
| | - Mariam Hachimi
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-UAM, Madrid 28049, Spain
| | - Wai-Lok Yau
- Medical Biochemistry and Biophysics, Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå 901 87, Sweden
| | - Johan Peränen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki FIN-00014, Finland
| | - Fernando Martín-Belmonte
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-UAM, Madrid 28049, Spain
| | - Richard Lundmark
- Integrative Medical Biology, Umeå University, Umeå 901 87, Sweden .,Medical Biochemistry and Biophysics, Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå 901 87, Sweden
| |
Collapse
|
113
|
Pantazopoulou A. The Golgi apparatus: insights from filamentous fungi. Mycologia 2017; 108:603-22. [DOI: 10.3852/15-309] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/01/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Areti Pantazopoulou
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| |
Collapse
|
114
|
Ceramide Transport from the Endoplasmic Reticulum to the Trans Golgi Region at Organelle Membrane Contact Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 997:69-81. [PMID: 28815522 DOI: 10.1007/978-981-10-4567-7_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lipids are the major constituents of all cell membranes and play dynamic roles in organelle structure and function. Although the spontaneous transfer of lipids between different membranes rarely occurs, lipids are appropriately transported between different organelles for their metabolism and to exert their functions in living cells. Proteins that have the biochemical capability to catalyze the intermembrane transfer of lipids are called lipid transfer proteins (LTPs). All organisms possess many types of LTPs. Recent studies revealed that LTPs are key players in the interorganelle transport of lipids at organelle membrane contact sites (MCSs). This chapter depicts how LTPs rationally operate at MCSs by using the ceramide transport protein CERT as a typical model for the LTP-mediated interorganelle transport of lipids.
Collapse
|
115
|
Várnai P, Gulyás G, Tóth DJ, Sohn M, Sengupta N, Balla T. Quantifying lipid changes in various membrane compartments using lipid binding protein domains. Cell Calcium 2016; 64:72-82. [PMID: 28088320 DOI: 10.1016/j.ceca.2016.12.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/28/2016] [Accepted: 12/29/2016] [Indexed: 11/30/2022]
Abstract
One of the largest challenges in cell biology is to map the lipid composition of the membranes of various organelles and define the exact location of processes that control the synthesis and distribution of lipids between cellular compartments. The critical role of phosphoinositides, low-abundant lipids with rapid metabolism and exceptional regulatory importance in the control of almost all aspects of cellular functions created the need for tools to visualize their localizations and dynamics at the single cell level. However, there is also an increasing need for methods to determine the cellular distribution of other lipids regulatory or structural, such as diacylglycerol, phosphatidic acid, or other phospholipids and cholesterol. This review will summarize recent advances in this research field focusing on the means by which changes can be described in more quantitative terms.
Collapse
Affiliation(s)
- Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gergő Gulyás
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Dániel J Tóth
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States; Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Mira Sohn
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| | - Nivedita Sengupta
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
116
|
Klayman LM, Wedegaertner PB. Inducible Inhibition of Gβγ Reveals Localization-dependent Functions at the Plasma Membrane and Golgi. J Biol Chem 2016; 292:1773-1784. [PMID: 27994056 DOI: 10.1074/jbc.m116.750430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/16/2016] [Indexed: 01/28/2023] Open
Abstract
Heterotrimeric G proteins signal at a variety of endomembrane locations, in addition to their canonical function at the cytoplasmic surface of the plasma membrane (PM), where they are activated by cell surface G protein-coupled receptors. Here we focus on βγ signaling at the Golgi, where βγ activates a signaling cascade, ultimately resulting in vesicle fission from the trans-Golgi network (TGN). To develop a novel molecular tool for inhibiting endogenous βγ in a spatial-temporal manner, we take advantage of a lipid association mutant of the widely used βγ inhibitor GRK2ct (GRK2ct-KERE) and the FRB/FKBP heterodimerization system. We show that GRK2ct-KERE cannot inhibit βγ function when expressed in cells, but recruitment to a specific membrane location recovers the ability of GRK2ct-KERE to inhibit βγ signaling. PM-recruited GRK2ct-KERE inhibits lysophosphatidic acid-induced phosphorylation of Akt, whereas Golgi-recruited GRK2ct-KERE inhibits cargo transport from the TGN to the PM. Moreover, we show that Golgi-recruited GRK2ct-KERE inhibits model basolaterally targeted but not apically targeted cargo delivery, for both PM-destined and secretory cargo, providing the first evidence of selectivity in terms of cargo transport regulated by βγ. Last, we show that Golgi fragmentation induced by ilimaquinone and nocodazole is blocked by βγ inhibition, demonstrating that βγ is a key regulator of multiple pathways that impact Golgi morphology. Thus, we have developed a new molecular tool, recruitable GRK2ct-KERE, to modulate βγ signaling at specific subcellular locations, and we demonstrate novel cargo selectivity for βγ regulation of TGN to PM transport and a novel role for βγ in mediating Golgi fragmentation.
Collapse
Affiliation(s)
- Lauren M Klayman
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Philip B Wedegaertner
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
| |
Collapse
|
117
|
Modulation of membrane phosphoinositide dynamics by the phosphatidylinositide 4-kinase activity of the Legionella LepB effector. Nat Microbiol 2016; 2:16236. [PMID: 27941800 DOI: 10.1038/nmicrobiol.2016.236] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 10/07/2016] [Indexed: 11/08/2022]
Abstract
Legionella pneumophila, the causative bacterium for Legionnaires' disease, hijacks host membrane trafficking for the maturation of the Legionella-containing vacuole (LCV). The LCV membrane mainly contains PtdIns4P, which is important for anchoring many secreted Legionella effectors onto the LCV. Here, we identify a cryptic functional domain (LepB_NTD) preceding the well-characterized RabGAP domain in the Legionella Dot/Icm type IV secretion system effector LepB. LepB_NTD alone is toxic to yeast and can disrupt the Golgi in mammalian cells. The crystal structure reveals an unexpected kinase fold and catalytic motif important for LepB_NTD function in eukaryotes. Cell biology-guided biochemical analyses uncovered a lipid kinase activity in LepB_NTD that specifically converts PtdIns3P into PtdIns(3,4)P2. PtdIns(3,4)P2 is efficiently hydrolysed into PtdIns4P by another Dot/Icm effector SidF that is known to possess phosphoinositide phosphatase activity. Consistently, SidF is capable of counteracting the cellular functions of LepB_NTD. Genetic analyses show a requirement for LepB kinase activity as well as lipid phosphatase activity of SidF for PtdIns4P biosynthesis on the LCV membrane. Our study identifies an unprecedented phosphatidylinositide 4-kinase activity from bacteria and highlights a sophisticated manipulation of host phosphoinositide metabolism by a bacterial pathogen.
Collapse
|
118
|
Schultzhaus Z, Johnson TB, Shaw BD. Clathrin localization and dynamics in Aspergillus nidulans. Mol Microbiol 2016; 103:299-318. [PMID: 27741567 DOI: 10.1111/mmi.13557] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2016] [Indexed: 12/15/2022]
Abstract
Cell growth necessitates extensive membrane remodeling events including vesicle fusion or fission, processes that are regulated by coat proteins. The hyphal cells of filamentous fungi concentrate both exocytosis and endocytosis at the apex. This investigation focuses on clathrin in Aspergillus nidulans, with the aim of understanding its role in membrane remodeling in growing hyphae. We examined clathrin heavy chain (ClaH-GFP) which localized to three distinct subcellular structures: late Golgi (trans-Golgi equivalents of filamentous fungi), which are concentrated just behind the hyphal tip but are intermittently present throughout all hyphal cells; the region of concentrated endocytosis just behind the hyphal apex (the "endocytic collar"); and small, rapidly moving puncta that were seen trafficking long distances in nearly all hyphal compartments. ClaH localized to distinct domains on late Golgi, and these clathrin "hubs" dispersed in synchrony after the late Golgi marker PHOSBP . Although clathrin was essential for growth, ClaH did not colocalize well with the endocytic patch marker fimbrin. Tests of FM4-64 internalization and repression of ClaH corroborated the observation that clathrin does not play an important role in endocytosis in A. nidulans. A minor portion of ClaH puncta exhibited bidirectional movement, likely along microtubules, but were generally distinct from early endosomes.
Collapse
Affiliation(s)
- Z Schultzhaus
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX, 77845, USA
| | - T B Johnson
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX, 77845, USA
| | - B D Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX, 77845, USA
| |
Collapse
|
119
|
Fidler DR, Murphy SE, Courtis K, Antonoudiou P, El-Tohamy R, Ient J, Levine TP. Using HHsearch to tackle proteins of unknown function: A pilot study with PH domains. Traffic 2016; 17:1214-1226. [PMID: 27601190 PMCID: PMC5091641 DOI: 10.1111/tra.12432] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 01/08/2023]
Abstract
Advances in membrane cell biology are hampered by the relatively high proportion of proteins with no known function. Such proteins are largely or entirely devoid of structurally significant domain annotations. Structural bioinformaticians have developed profile‐profile tools such as HHsearch (online version called HHpred), which can detect remote homologies that are missed by tools used to annotate databases. Here we have applied HHsearch to study a single structural fold in a single model organism as proof of principle. In the entire clan of protein domains sharing the pleckstrin homology domain fold in yeast, systematic application of HHsearch accurately identified known PH‐like domains. It also predicted 16 new domains in 13 yeast proteins many of which are implicated in intracellular traffic. One of these was Vps13p, where we confirmed the functional importance of the predicted PH‐like domain. Even though such predictions require considerable work to be corroborated, they are useful first steps. HHsearch should be applied more widely, particularly across entire proteomes of model organisms, to significantly improve database annotations.
Collapse
Affiliation(s)
- David R Fidler
- Department of Cell Biology, UCL Institute of Ophthalmology, London, UK
| | - Sarah E Murphy
- Department of Cell Biology, UCL Institute of Ophthalmology, London, UK
| | - Katherine Courtis
- Department of Cell Biology, UCL Institute of Ophthalmology, London, UK
| | | | - Rana El-Tohamy
- Department of Cell Biology, UCL Institute of Ophthalmology, London, UK
| | - Jonathan Ient
- Department of Cell Biology, UCL Institute of Ophthalmology, London, UK
| | - Timothy P Levine
- Department of Cell Biology, UCL Institute of Ophthalmology, London, UK.
| |
Collapse
|
120
|
Lipid transfer proteins and the tuning of compartmental identity in the Golgi apparatus. Chem Phys Lipids 2016; 200:42-61. [DOI: 10.1016/j.chemphyslip.2016.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 11/23/2022]
|
121
|
Abstract
Acidic phospholipids are minor membrane lipids but critically important for signaling events. The main acidic phospholipids are phosphatidylinositol phosphates (PIPs also known as phosphoinositides), phosphatidylserine (PS), and phosphatidic acid (PA). Acidic phospholipids are precursors of second messengers of key signaling cascades or are second messengers themselves. They regulate the localization and activation of many proteins, and are involved in virtually all membrane trafficking events. As such, it is crucial to understand the subcellular localization and dynamics of each of these lipids within the cell. Over the years, several techniques have emerged in either fixed or live cells to analyze the subcellular localization and dynamics of acidic phospholipids. In this chapter, we review one of them: the use of genetically encoded biosensors that are based on the expression of specific lipid binding domains (LBDs) fused to fluorescent proteins. We discuss how to design such sensors, including the criteria for selecting the lipid binding domains of interest and to validate them. We also emphasize the care that must be taken during data analysis as well as the main limitations and advantages of this approach.
Collapse
Affiliation(s)
- Matthieu Pierre Platre
- Laboratoire de Reproduction et Développement des Plantes, CNRS, INRA, ENS Lyon, UCBL, Université de Lyon, 46 Allée d'Italie, 69364, Lyon Cedex 07, France
| | - Yvon Jaillais
- Laboratoire de Reproduction et Développement des Plantes, CNRS, INRA, ENS Lyon, UCBL, Université de Lyon, 46 Allée d'Italie, 69364, Lyon Cedex 07, France.
| |
Collapse
|
122
|
George AA, Hayden S, Stanton GR, Brockerhoff SE. Arf6 and the 5'phosphatase of synaptojanin 1 regulate autophagy in cone photoreceptors. Bioessays 2016; 38 Suppl 1:S119-35. [DOI: 10.1002/bies.201670913] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Ashley A. George
- Department of Biochemistry; University of Washington; Seattle WA USA
| | - Sara Hayden
- Department of Biochemistry; University of Washington; Seattle WA USA
| | - Gail R. Stanton
- Department of Biochemistry; University of Washington; Seattle WA USA
| | | |
Collapse
|
123
|
Jang DJ, Lee JA. The roles of phosphoinositides in mammalian autophagy. Arch Pharm Res 2016; 39:1129-36. [PMID: 27350551 DOI: 10.1007/s12272-016-0777-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/14/2016] [Indexed: 01/01/2023]
Abstract
Autophagy is an evolutionarily conserved cellular process for lysosomal degradation, which is involved in various physiological processes within cells. Its dysfunction is associated with many human diseases, such as cancer, liver diseases, heart diseases, and infectious diseases, including neurodegenerative diseases. Autophagy involves the formation of a double-membrane bound autophagosome and the degradation of cytosolic components via its fusion and maturation with the lysosome. One of the most important steps in the process of autophagy is membrane biogenesis during autophagosome formation/maturation from different membrane sources within cells. However, there is limited knowledge regarding: (1) how the core autophagy machinery is recruited to the initial site to initiate the formation of the isolation membrane and (2) how the autophagosome matures into the functional autolysosome. Lipid supply for nucleation/elongation of the autophagosome has been proposed as one possible mechanism. Accumulating evidence suggests the important role of phosphoinositides as phospholipids, which represent key membrane-localized signals in the regulation of fundamental cellular processes, in autophagosome formation and maturation. This review focuses on how phosphoinositides influence autophagy induction or autophagosome biogenesis/maturation, because the way they are altered by autophagy might contribute to the pathogenesis of human diseases.
Collapse
Affiliation(s)
- Deok-Jin Jang
- Department of Applied Biology, College of Ecology and Environment, Kyungpook National University, Sangju, Republic of Korea
| | - Jin-A Lee
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Republic of Korea.
| |
Collapse
|
124
|
Nanoscale analysis reveals agonist-sensitive and heterogeneous pools of phosphatidylinositol 4-phosphate in the plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1298-305. [DOI: 10.1016/j.bbamem.2016.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 01/06/2023]
|
125
|
Lopes da Silva M, O'Connor MN, Kriston-Vizi J, White IJ, Al-Shawi R, Simons JP, Mössinger J, Haucke V, Cutler DF. Type II PI4-kinases control Weibel-Palade body biogenesis and von Willebrand factor structure in human endothelial cells. J Cell Sci 2016; 129:2096-105. [PMID: 27068535 PMCID: PMC4878995 DOI: 10.1242/jcs.187864] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/04/2016] [Indexed: 12/21/2022] Open
Abstract
Weibel-Palade bodies (WPBs) are endothelial storage organelles that mediate the release of molecules involved in thrombosis, inflammation and angiogenesis, including the pro-thrombotic glycoprotein von Willebrand factor (VWF). Although many protein components required for WPB formation and function have been identified, the role of lipids is almost unknown. We examined two key phosphatidylinositol kinases that control phosphatidylinositol 4-phosphate levels at the trans-Golgi network, the site of WPB biogenesis. RNA interference of the type II phosphatidylinositol 4-kinases PI4KIIα and PI4KIIβ in primary human endothelial cells leads to formation of an increased proportion of short WPB with perturbed packing of VWF, as exemplified by increased exposure of antibody-binding sites. When stimulated with histamine, these cells release normal levels of VWF yet, under flow, form very few platelet-catching VWF strings. In PI4KIIα-deficient mice, immuno-microscopy revealed that VWF packaging is also perturbed and these mice exhibit increased blood loss after tail cut compared to controls. This is the first demonstration that lipid kinases can control the biosynthesis of VWF and the formation of WPBs that are capable of full haemostatic function.
Collapse
Affiliation(s)
| | - Marie N O'Connor
- Endothelial Cell Biology Laboratory, University College London, London WC1E 6BT, UK
| | - Janos Kriston-Vizi
- Bioinformatics Image Core, University College London, London WC1E 6BT, UK
| | - Ian J White
- Electron Microscopy Core, MRC Laboratory of Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Raya Al-Shawi
- Royal Free Centre for Biomedical Science, and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, UK
| | - J Paul Simons
- Royal Free Centre for Biomedical Science, and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, UK
| | - Julia Mössinger
- Leibniz Institut für Molekulare Pharmakologie (FMP), Molecular Physiology and Cell Biology, Robert-Roessle-Str. 10, 13125 Berlin Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Volker Haucke
- Leibniz Institut für Molekulare Pharmakologie (FMP), Molecular Physiology and Cell Biology, Robert-Roessle-Str. 10, 13125 Berlin Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Daniel F Cutler
- Endothelial Cell Biology Laboratory, University College London, London WC1E 6BT, UK
| |
Collapse
|
126
|
Cao H, Zhuo L, Su Y, Sun L, Wang X. Non-specific phospholipase C1 affects silicon distribution and mechanical strength in stem nodes of rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:308-21. [PMID: 26991499 DOI: 10.1111/tpj.13165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 05/25/2023]
Abstract
Silicon, the second abundant element in the crust, is beneficial for plant growth, mechanical strength, and stress responses. Here we show that manipulation of the non-specific phospholipase C1, NPC1, alters silicon content in nodes and husks of rice (Oryza sativa). Silicon content in NPC1-overexpressing (OE) plants was decreased in nodes but increased in husks compared to wild-type, whereas RNAi suppression of NPC1 resulted in the opposite changes to those of NPC1-OE plants. NPC1 from rice hydrolyzed phospholipids and galactolipids to generate diacylglycerol that can be phosphorylated to phosphatidic acid. Phosphatidic acid interacts with Lsi6, a silicon transporter that is expressed at the highest level in nodes. In addition, the node cells of NPC1-OE plants have lower contents of cellulose and hemicellulose, and thinner sclerenchyma and vascular bundle fibre cells than wild-type plants; whereas NPC1-RNAi plants displayed the opposite changes. These data indicate that NPC1 modulates silicon distribution and secondary cell wall deposition in nodes and grains, affecting mechanical strength and seed shattering.
Collapse
Affiliation(s)
- Huasheng Cao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Zhuo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuan Su
- Department of Biology, University of Missouri, St. Louis, Missouri, 63121, USA
| | - Linxiao Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, Missouri, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| |
Collapse
|
127
|
New molecular mechanisms of inter-organelle lipid transport. Biochem Soc Trans 2016; 44:486-92. [DOI: 10.1042/bst20150265] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 12/19/2022]
Abstract
Lipids are precisely distributed in cell membranes, along with associated proteins defining organelle identity. Because the major cellular lipid factory is the endoplasmic reticulum (ER), a key issue is to understand how various lipids are subsequently delivered to other compartments by vesicular and non-vesicular transport pathways. Efforts are currently made to decipher how lipid transfer proteins (LTPs) work either across long distances or confined to membrane contact sites (MCSs) where two organelles are at close proximity. Recent findings reveal that proteins of the oxysterol-binding protein related-proteins (ORP)/oxysterol-binding homology (Osh) family are not all just sterol transporters/sensors: some can bind either phosphatidylinositol 4-phosphate (PtdIns(4)P) and sterol or PtdIns(4)P and phosphatidylserine (PS), exchange these lipids between membranes, and thereby use phosphoinositide metabolism to create cellular lipid gradients. Lipid exchange is likely a widespread mechanism also utilized by other LTPs to efficiently trade lipids between organelle membranes. Finally, the discovery of more proteins bearing a lipid-binding module (SMP or START-like domain) raises new questions on how lipids are conveyed in cells and how the activities of different LTPs are coordinated.
Collapse
|
128
|
The counterflow transport of sterols and PI4P. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:940-951. [PMID: 26928592 DOI: 10.1016/j.bbalip.2016.02.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 02/03/2023]
Abstract
Cholesterol levels in intracellular membranes are constantly adjusted to match with specific organelle functions. Cholesterol is kept high in the plasma membrane (PM) because it is essential for its barrier function, while low levels are found in the endoplasmic reticulum (ER) where cholesterol mediates feedback control of its own synthesis by sterol-sensor proteins. The ER→Golgi→PM concentration gradient of cholesterol in mammalian cells, and ergosterol in yeast, appears to be sustained by specific intracellular transport processes, which are mostly mediated by lipid transfer proteins (LTPs). Here we review a recently described function of two LTPs, OSBP and its yeast homolog Osh4p, which consists in creating a sterol gradient between membranes by vectorial transport. OSBP also contributes to the formation of ER/Golgi membrane contact sites, which are important hubs for the transfer of several lipid species. OSBP and Osh4p organize a counterflow transport of lipids whereby sterols are exchanged for the phosphoinositide PI4P, which is used as a fuel to drive sterol transport. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
|
129
|
Phosphatidylinositol phosphate kinase PIPKIγ and phosphatase INPP5E coordinate initiation of ciliogenesis. Nat Commun 2016; 7:10777. [PMID: 26916822 PMCID: PMC4773430 DOI: 10.1038/ncomms10777] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/19/2016] [Indexed: 02/08/2023] Open
Abstract
Defective primary cilia are causative to a wide spectrum of human genetic disorders, termed ciliopathies. Although the regulation of ciliogenesis is intensively studied, how it is initiated remains unclear. Here we show that type Iγ phosphatidylinositol 4-phosphate (PtdIns(4)P) 5-kinase (PIPKIγ) and inositol polyphosphate-5-phosphatase E (INPP5E), a Joubert syndrome protein, localize to the centrosome and coordinate the initiation of ciliogenesis. PIPKIγ counteracts INPP5E in regulating tau-tubulin kinase-2 (TTBK2) recruitment to the basal body, which promotes the removal of microtubule capping protein CP110 and the subsequent axoneme elongation. Interestingly, INPP5E and its product—PtdIns(4)P—accumulate at the centrosome/basal body in non-ciliated, but not ciliated, cells. PtdIns(4)P binding to TTBK2 and the distal appendage protein CEP164 compromises the TTBK2-CEP164 interaction and inhibits the recruitment of TTBK2. Our results reveal that PtdIns(4)P homoeostasis, coordinated by PIPKIγ and INPP5E at the centrosome/ciliary base, is vital for ciliogenesis by regulating the CEP164-dependent recruitment of TTBK2. The primary cilium is essential for embryonic development and tissue pattern formation. Here the authors show that PIPKIγ localizes to the basal body of the primary cilium and cooperates with the Joubert Syndrome associated protein INPP5E to regulate the initiation of ciliogenesis.
Collapse
|
130
|
Um SM, Jun YW, Kim KH, Lee JA, Jang DJ. Analysis of molecular mechanism of cellular localization of various N-terminal mutants of Aplysia PDE4 in HEK293T cells. ANALYTICAL SCIENCE AND TECHNOLOGY 2016. [DOI: 10.5806/ast.2016.29.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
131
|
Manna PT, Field MC. Phosphoinositides, kinases and adaptors coordinating endocytosis in Trypanosoma brucei. Commun Integr Biol 2016; 8:e1082691. [PMID: 27064836 PMCID: PMC4802737 DOI: 10.1080/19420889.2015.1082691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 08/08/2015] [Indexed: 01/01/2023] Open
Abstract
In the kinetoplastid parasite Trypanosoma brucei clathrin-mediated endocytosis is essential for survival and aids immune evasion in the mammalian host. The formation of endocytic clathrin coated vesicles in T. brucei is via a unique mechanism owing to an evolutionarily recent loss of the adaptor protein (AP)2 complex, a central hub in endocytic vesicle assembly. Despite this loss, recent studies examining endocytic clathrin coat assembly have highlighted a high degree of conservation between trypanosomes and their mammalian hosts. In particular phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and its putative effectors, TbCALM and TbEpsinR, are central to clathrin-mediated endocytosis in the trypanosome, just as they are in animal cells. In addition to providing insights into the cell biology of T. brucei, these studies also suggest an ancient, possibly pan-eukaryotic connection between PtdIns(4,5)P2 and endocytosis.
Collapse
Affiliation(s)
- Paul T Manna
- Cambridge Institute for Medical Research; University of Cambridge ; Cambridge, UK
| | - Mark C Field
- Division of Biological Chemistry and Drug Discovery; University of Dundee ; Dundee, UK
| |
Collapse
|
132
|
George AA, Hayden S, Stanton GR, Brockerhoff SE. Arf6 and the 5'phosphatase of Synaptojanin 1 regulate autophagy in cone photoreceptors. ACTA ACUST UNITED AC 2016; 1:117-133. [PMID: 27123470 DOI: 10.1002/icl3.1044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abnormalities in the ability of cells to properly degrade proteins have been identified in many neurodegenerative diseases. Recent work has implicated Synaptojanin 1 (SynJ1) in Alzheimer's disease and Parkinson's disease, although the role of this polyphosphoinositide phosphatase in protein degradation has not been thoroughly described. Here we dissected in vivo the role of SynJ1 in endolysosomal trafficking in zebrafish cone photoreceptors using a SynJ1-deficient zebrafish mutant, nrca14 . We found that loss of SynJ1 leads to specific accumulation of late endosomes and autophagosomes early in photoreceptor development. An analysis of autophagic flux revealed that autophagosomes accumulate due to a defect in maturation. In addition we found an increase in vesicles that are highly enriched for PI(3)P, but negative for an early endosome marker in nrca14 cones. A mutational analysis of SynJ1 enzymatic domains found that activity of the 5' phosphatase, but not the Sac1 domain, is required to rescue both aberrant late endosomes and autophagosomes. Finally, modulating activity of the PI(4,5)P2 regulator, Arf6, rescued the disrupted trafficking pathways in nrca14 cones. Our study describes a specific role for SynJ1 in autophagosomal and endosomal trafficking and provides evidence that PI(4,5)P2 participates in autophagy in a neuronal cell type.
Collapse
Affiliation(s)
- Ashley A George
- Department of Biochemistry, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Sara Hayden
- Department of Biochemistry, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Gail R Stanton
- Department of Biochemistry, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Susan E Brockerhoff
- Department of Biochemistry, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| |
Collapse
|
133
|
Requirement of Phosphoinositides Containing Stearic Acid To Control Cell Polarity. Mol Cell Biol 2015; 36:765-80. [PMID: 26711260 DOI: 10.1128/mcb.00843-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/14/2015] [Indexed: 02/04/2023] Open
Abstract
Phosphoinositides (PIPs) are present in very small amounts but are essential for cell signaling, morphogenesis, and polarity. By mass spectrometry, we demonstrated that some PIPs with stearic acyl chains were strongly disturbed in a psi1Δ Saccharomyces cerevisiae yeast strain deficient in the specific incorporation of a stearoyl chain at the sn-1 position of phosphatidylinositol. The absence of PIPs containing stearic acid induced disturbances in intracellular trafficking, although the total amount of PIPs was not diminished. Changes in PIPs also induced alterations in the budding pattern and defects in actin cytoskeleton organization (cables and patches). Moreover, when the PSI1 gene was impaired, a high proportion of cells with bipolar cortical actin patches that occurred concomitantly with the bipolar localization of Cdc42p was specifically found among diploid cells. This bipolar cortical actin phenotype, never previously described, was also detected in a bud9Δ/bud9Δ strain. Very interestingly, overexpression of PSI1 reversed this phenotype.
Collapse
|
134
|
Tóth JT, Gulyás G, Tóth DJ, Balla A, Hammond GRV, Hunyady L, Balla T, Várnai P. BRET-monitoring of the dynamic changes of inositol lipid pools in living cells reveals a PKC-dependent PtdIns4P increase upon EGF and M3 receptor activation. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:177-87. [PMID: 26692031 DOI: 10.1016/j.bbalip.2015.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/18/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
Deciphering many roles played by inositol lipids in signal transduction and membrane function demands experimental approaches that can detect their dynamic accumulation with subcellular accuracy and exquisite sensitivity. The former criterion is met by imaging of fluorescence biosensors in living cells, whereas the latter is facilitated by biochemical measurements from populations. Here, we introduce BRET-based biosensors able to detect rapid changes in inositol lipids in cell populations with both high sensitivity and subcellular resolution in a single, convenient assay. We demonstrate robust and sensitive measurements of PtdIns4P, PtdIns(4,5)P2 and PtdIns(3,4,5)P3 dynamics, as well as changes in cytoplasmic Ins(1,4,5)P3 levels. Measurements were made during either experimental activation of lipid degradation, or PI 3-kinase and phospholipase C mediated signal transduction. Our results reveal a previously unappreciated synthesis of PtdIns4P that accompanies moderate activation of phospholipase C signaling downstream of both EGF and muscarinic M3 receptor activation. This signaling-induced PtdIns4P synthesis relies on protein kinase C, and implicates a feedback mechanism in the control of inositol lipid metabolism during signal transduction.
Collapse
Affiliation(s)
- József T Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Budapest, Hungary
| | - Gergő Gulyás
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Dániel J Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Budapest, Hungary
| | - Gerald R V Hammond
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Budapest, Hungary
| | - Tamás Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
135
|
Ariotti N, Hall TE, Rae J, Ferguson C, McMahon KA, Martel N, Webb RE, Webb RI, Teasdale RD, Parton RG. Modular Detection of GFP-Labeled Proteins for Rapid Screening by Electron Microscopy in Cells and Organisms. Dev Cell 2015; 35:513-25. [PMID: 26585296 DOI: 10.1016/j.devcel.2015.10.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/16/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
Abstract
Reliable and quantifiable high-resolution protein localization is critical for understanding protein function. However, the time required to clone and characterize any protein of interest is a significant bottleneck, especially for electron microscopy (EM). We present a modular system for enzyme-based protein tagging that allows for improved speed and sampling for analysis of subcellular protein distributions using existing clone libraries to EM-resolution. We demonstrate that we can target a modified soybean ascorbate peroxidase (APEX) to any GFP-tagged protein of interest by engineering a GFP-binding peptide (GBP) directly to the APEX-tag. We demonstrate that APEX-GBP (1) significantly reduces the time required to characterize subcellular protein distributions of whole libraries to less than 3 days, (2) provides remarkable high-resolution localization of proteins to organelle subdomains, and (3) allows EM localization of GFP-tagged proteins, including proteins expressed at endogenous levels, in vivo by crossing existing GFP-tagged transgenic zebrafish lines with APEX-GBP transgenic lines.
Collapse
Affiliation(s)
- Nicholas Ariotti
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia
| | - Thomas E Hall
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia
| | - James Rae
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia
| | - Charles Ferguson
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia
| | - Kerrie-Ann McMahon
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia
| | - Nick Martel
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia
| | - Robyn E Webb
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD 4072, Australia
| | - Richard I Webb
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD 4072, Australia
| | - Rohan D Teasdale
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia; Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
136
|
Kentala H, Weber-Boyvat M, Olkkonen VM. OSBP-Related Protein Family: Mediators of Lipid Transport and Signaling at Membrane Contact Sites. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:299-340. [PMID: 26811291 DOI: 10.1016/bs.ircmb.2015.09.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxysterol-binding protein (OSBP) and its related protein homologs, ORPs, constitute a conserved family of lipid-binding/transfer proteins (LTPs) expressed ubiquitously in eukaryotes. The ligand-binding domain of ORPs accommodates cholesterol and oxysterols, but also glycerophospholipids, particularly phosphatidylinositol-4-phosphate (PI4P). ORPs have been implicated as intracellular lipid sensors or transporters. Most ORPs carry targeting determinants for the endoplasmic reticulum (ER) and non-ER organelle membrane. ORPs are located and function at membrane contact sites (MCSs), at which ER is closely apposed with other organelle limiting membranes. Such sites have roles in lipid transport and metabolism, control of Ca(2+) fluxes, and signaling events. ORPs are postulated either to transport lipids over MCSs to maintain the distinct lipid compositions of organelle membranes, or to control the activity of enzymes/protein complexes with functions in signaling and lipid metabolism. ORPs may transfer PI4P and another lipid class bidirectionally. Transport of PI4P followed by its hydrolysis would in this model provide the energy for transfer of the other lipid against its concentration gradient. Control of organelle lipid compositions by OSBP/ORPs is important for the life cycles of several pathogenic viruses. Targeting ORPs with small-molecular antagonists is proposed as a new strategy to combat viral infections. Several ORPs are reported to modulate vesicle transport along the secretory or endocytic pathways. Moreover, antagonists of certain ORPs inhibit cancer cell proliferation. Thus, ORPs are LTPs, which mediate interorganelle lipid transport and coordinate lipid signals with a variety of cellular regimes.
Collapse
Affiliation(s)
- Henriikka Kentala
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Marion Weber-Boyvat
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| |
Collapse
|
137
|
Olkkonen VM. OSBP-Related Protein Family in Lipid Transport Over Membrane Contact Sites. Lipid Insights 2015; 8:1-9. [PMID: 26715851 PMCID: PMC4685180 DOI: 10.4137/lpi.s31726] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/03/2015] [Accepted: 09/06/2015] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence suggests that oxysterol-binding protein-related proteins (ORPs) localize at membrane contact sites, which are high-capacity platforms for inter-organelle exchange of small molecules and information. ORPs can simultaneously associate with the two apposed membranes and transfer lipids across the interbilayer gap. Oxysterol-binding protein moves cholesterol from the endoplasmic reticulum to trans-Golgi, driven by the retrograde transport of phosphatidylinositol-4-phosphate (PI4P). Analogously, yeast Osh6p mediates the transport of phosphatidylserine from the endoplasmic reticulum to the plasma membrane in exchange for PI4P, and ORP5 and -8 are suggested to execute similar functions in mammalian cells. ORPs may share the capacity to bind PI4P within their ligand-binding domain, prompting the hypothesis that bidirectional transport of a phosphoinositide and another lipid may be a common theme among the protein family. This model, however, needs more experimental support and does not exclude a function of ORPs in lipid signaling.
Collapse
Affiliation(s)
- Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland. ; Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
138
|
Wakana Y, Kotake R, Oyama N, Murate M, Kobayashi T, Arasaki K, Inoue H, Tagaya M. CARTS biogenesis requires VAP-lipid transfer protein complexes functioning at the endoplasmic reticulum-Golgi interface. Mol Biol Cell 2015; 26:4686-99. [PMID: 26490117 PMCID: PMC4678024 DOI: 10.1091/mbc.e15-08-0599] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/14/2015] [Indexed: 11/24/2022] Open
Abstract
Biogenesis of the TGN-derived transport carriers CARTS requires the ER protein VAP and Golgi lipid transfer proteins, ceramide transfer protein and OSBP. Sac1 lipid phosphatase is recruited to a VAP–OSBP complex formed at an ER subdomain closely apposed to the trans-Golgi/TGN. Association–dissociation dynamics of ER–Golgi contacts are important for CARTS formation. Vesicle-associated membrane protein–associated protein (VAP) is an endoplasmic reticulum (ER)-resident integral membrane protein that controls a nonvesicular mode of ceramide and cholesterol transfer from the ER to the Golgi complex by interacting with ceramide transfer protein and oxysterol-binding protein (OSBP), respectively. We report that VAP and its interacting proteins are required for the processing and secretion of pancreatic adenocarcinoma up-regulated factor, whose transport from the trans-Golgi network (TGN) to the cell surface is mediated by transport carriers called “carriers of the trans-Golgi network to the cell surface” (CARTS). In VAP-depleted cells, diacylglycerol level at the TGN was decreased and CARTS formation was impaired. We found that VAP forms a complex with not only OSBP but also Sac1 phosphoinositide phosphatase at specialized ER subdomains that are closely apposed to the trans-Golgi/TGN, most likely reflecting membrane contact sites. Immobilization of ER–Golgi contacts dramatically reduced CARTS production, indicating that association–dissociation dynamics of the two membranes are important. On the basis of these findings, we propose that the ER–Golgi contacts play a pivotal role in lipid metabolism to control the biogenesis of transport carriers from the TGN.
Collapse
Affiliation(s)
- Yuichi Wakana
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Richika Kotake
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Nanako Oyama
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Motohide Murate
- Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | | | - Kohei Arasaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hiroki Inoue
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Mitsuo Tagaya
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
139
|
Dorobantu CM, Albulescu L, Harak C, Feng Q, van Kampen M, Strating JRPM, Gorbalenya AE, Lohmann V, van der Schaar HM, van Kuppeveld FJM. Modulation of the Host Lipid Landscape to Promote RNA Virus Replication: The Picornavirus Encephalomyocarditis Virus Converges on the Pathway Used by Hepatitis C Virus. PLoS Pathog 2015; 11:e1005185. [PMID: 26406250 PMCID: PMC4583462 DOI: 10.1371/journal.ppat.1005185] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/02/2015] [Indexed: 12/12/2022] Open
Abstract
Cardioviruses, including encephalomyocarditis virus (EMCV) and the human Saffold virus, are small non-enveloped viruses belonging to the Picornaviridae, a large family of positive-sense RNA [(+)RNA] viruses. All (+)RNA viruses remodel intracellular membranes into unique structures for viral genome replication. Accumulating evidence suggests that picornaviruses from different genera use different strategies to generate viral replication organelles (ROs). For instance, enteroviruses (e.g. poliovirus, coxsackievirus, rhinovirus) rely on the Golgi-localized phosphatidylinositol 4-kinase III beta (PI4KB), while cardioviruses replicate independently of the kinase. By which mechanisms cardioviruses develop their ROs is currently unknown. Here we show that cardioviruses manipulate another PI4K, namely the ER-localized phosphatidylinositol 4-kinase III alpha (PI4KA), to generate PI4P-enriched ROs. By siRNA-mediated knockdown and pharmacological inhibition, we demonstrate that PI4KA is an essential host factor for EMCV genome replication. We reveal that the EMCV nonstructural protein 3A interacts with and is responsible for PI4KA recruitment to viral ROs. The ensuing phosphatidylinositol 4-phosphate (PI4P) proved important for the recruitment of oxysterol-binding protein (OSBP), which delivers cholesterol to EMCV ROs in a PI4P-dependent manner. PI4P lipids and cholesterol are shown to be required for the global organization of the ROs and for viral genome replication. Consistently, inhibition of OSBP expression or function efficiently blocked EMCV RNA replication. In conclusion, we describe for the first time a cellular pathway involved in the biogenesis of cardiovirus ROs. Remarkably, the same pathway was reported to promote formation of the replication sites of hepatitis C virus, a member of the Flaviviridae family, but not other picornaviruses or flaviviruses. Thus, our results highlight the convergent recruitment by distantly related (+)RNA viruses of a host lipid-modifying pathway underlying formation of viral replication sites. All positive-sense RNA viruses [(+)RNA viruses] replicate their viral genomes in tight association with reorganized membranous structures. Viruses generate these unique structures, often termed “replication organelles” (ROs), by efficiently manipulating the host lipid metabolism. While the molecular mechanisms underlying RO formation by enteroviruses (e.g. poliovirus) of the family Picornaviridae have been extensively investigated, little is known about other members belonging to this large family. This study provides the first detailed insight into the RO biogenesis of encephalomyocarditis virus (EMCV), a picornavirus from the genus Cardiovirus. We reveal that EMCV hijacks the lipid kinase phosphatidylinositol-4 kinase IIIα (PI4KA) to generate viral ROs enriched in phosphatidylinositol 4-phosphate (PI4P). In EMCV-infected cells, PI4P lipids play an essential role in virus replication by recruiting another cellular protein, oxysterol-binding protein (OSBP), to the ROs. OSBP further impacts the lipid composition of the RO membranes, by mediating the exchange of PI4P with cholesterol. This membrane-modification mechanism of EMCV is remarkably similar to that of the distantly related flavivirus hepatitis C virus (HCV), while distinct from that of the closely related enteroviruses, which recruit OSBP via another PI4K, namely PI4K IIIβ (PI4KB). Thus, EMCV and HCV represent a striking case of functional convergence in (+)RNA virus evolution.
Collapse
Affiliation(s)
- Cristina M. Dorobantu
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Lucian Albulescu
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Christian Harak
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Qian Feng
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Mirjam van Kampen
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jeroen R. P. M. Strating
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alexander E. Gorbalenya
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Hilde M. van der Schaar
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank J. M. van Kuppeveld
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
140
|
Vonkova I, Saliba AE, Deghou S, Anand K, Ceschia S, Doerks T, Galih A, Kugler K, Maeda K, Rybin V, van Noort V, Ellenberg J, Bork P, Gavin AC. Lipid Cooperativity as a General Membrane-Recruitment Principle for PH Domains. Cell Rep 2015; 12:1519-30. [DOI: 10.1016/j.celrep.2015.07.054] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 06/30/2015] [Accepted: 07/27/2015] [Indexed: 10/23/2022] Open
|
141
|
Kentala H, Pfisterer SG, Olkkonen VM, Weber-Boyvat M. Sterol liganding of OSBP-related proteins (ORPs) regulates the subcellular distribution of ORP-VAPA complexes and their impacts on organelle structure. Steroids 2015; 99:248-58. [PMID: 25681634 DOI: 10.1016/j.steroids.2015.01.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 01/20/2023]
Abstract
Oxysterol-binding protein (OSBP) and its homologues (ORPs) are lipid-binding/transfer proteins with affinity for oxysterols, cholesterol and glycerophospholipids. In addition to a ligand-binding domain, a majority of the ORPs carry a pleckstrin homology domain that targets organelle membranes via phosphoinositides, and a motif targeting the endoplasmic reticulum (ER) via VAMP-associated proteins (VAPs). We employed here Bimolecular Fluorescence Complementation (BiFC) to systematically assess the effects of sterol manipulation of HuH7 cells on complexes of established sterol-binding ORPs with their ER receptor, VAMP-associated protein A (VAPA). Depletion of cellular cholesterol with lipoprotein-deficient medium and Mevastatin caused concentration of OSBP-VAPA complexes and Golgi complex markers at a juxtanuclear position, an effect reversed by low-density lipoprotein treatment. A similar redistribution of OSBP-VAPA but not of sterol-binding deficient mutant OSBP(ΔELSK)-VAPA, occurred upon treatment with the high-affinity ligand, 25-hydroxycholesterol (25OHC), which reduced total and free cholesterol. ORP2-VAPA complexes, which localize in untreated cells at blob-like ER structures with associated lipid droplets, were redistributed upon treatment with the ORP2 ligand 22(R)OHC to a diffuse cytoplasmic/ER pattern and the plasma membrane. Analogously, distribution of ORP4L-VAPA complexes between the plasma membrane and vimentin intermediate filament associated compartments was modified by statin or 25OHC treatment. The treatments resulted in loss of vimentin co-localization, and sterol-binding deficient ORP4L(ΔELSR)-VAPA localized predominantly to the plasma membrane. In conclusion, treatment with statin or oxysterol ligands modify the subcellular targeting of ORP-VAPA complexes, consistent with the notion that this machinery controls lipid homeostasis and signaling at organelle interfaces.
Collapse
Affiliation(s)
- Henriikka Kentala
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290 Helsinki, Finland
| | - Simon G Pfisterer
- Institute of Biomedicine, Anatomy, FI-00014 University of Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290 Helsinki, Finland; Institute of Biomedicine, Anatomy, FI-00014 University of Helsinki, Finland
| | - Marion Weber-Boyvat
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290 Helsinki, Finland.
| |
Collapse
|
142
|
Bertazzi DL, De Craene JO, Bär S, Sanjuan-Vazquez M, Raess MA, Friant S. [Phosphoinositides: lipidic essential actors in the intracellular traffic]. Biol Aujourdhui 2015; 209:97-109. [PMID: 26115715 DOI: 10.1051/jbio/2015006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Indexed: 06/04/2023]
Abstract
Phosphoinositides (PPIn) are lipids involved in the vesicular transport of proteins between the different intracellular compartments. They act by recruiting and/or activating effector proteins and are thus involved in crucial cellular functions including vesicle budding, fusion and dynamics of membranes and regulation of the cytoskeleton. Although they are present in low concentrations in membranes, their activity is essential for cell survival and needs to be tightly controlled. Therefore, phosphatases and kinases specific of the various cellular membranes can phosphorylate/dephosphorylate their inositol ring on the positions D3, D4 and/or D5. The differential phosphorylation determines the intracellular localisation and the activity of the PPIn. Indeed, non-phosphorylated phosphatidylinositol (PtdIns) is the basic component of the PPIn and can be found in all eukaryotic cells at the cytoplasmic face of the ER, the Golgi, mitochondria and microsomes. It can get phosphorylated on position D4 to obtain PtdIns4P, a PPIn enriched in the Golgi compartment and involved in the maintenance of this organelle as well as anterograde and retrograde transport to and from the Golgi. PtdIns phosphorylation on position D3 results in PtdIns3P that is required for endosomal transport and multivesicular body (MVB) formation and sorting. These monophosphorylated PtdIns can be further phosphorylated to produce bisphophorylated PtdIns. Thus, PtdIns(4,5)P2, mainly produced by PtdIns4P phosphorylation, is enriched in the plasma membrane and involved in the regulation of actin cytoskeleton and endocytosis. PtdIns(3,5)P2, mainly produced by PtdIns3P phosphorylation, is enriched in late endosomes, MVBs and the lysosome/vacuole and plays a role in endosome to vacuole transport. PtdIns(3,4)P2 is absent in yeast, cells and mainly produced by PtdIns4P phosphorylation in human cells; PtdIns(3,4)P2 is localised in the plasma membrane and plays an important role as a second messenger by recruiting specific protein kinases (Akt and PDK1). Finally the triple phosphorylated PPIn, PtdIns(3,4,5)P3 also absent in yeast, is produced by the phosphorylation of PtdIns(3,4)P2 and localized at the plasma membrane of human cells where it binds proteins via their PH domain. Interaction partners include members of the Arf (ADP-ribosylation factors) family, PDK1 (Phosphoinositide Dependent Kinase 1) and Akt. Therefore this last PPIn is essential for the control of cell proliferation and its deregulation leads to the development of numerous cancers. In conclusion, the regulation of PPIn phosphorylation/dephosphorylation is complex and needs to be very precisely regulated. Indeed phosphatases and kinases allow the maintenance of the equilibrium between the different forms. PPIn play a crucial role in numerous cellular functions and a loss in their synthesis or regulation results in severe genetic diseases.
Collapse
|
143
|
Hsu F, Hu F, Mao Y. Spatiotemporal control of phosphatidylinositol 4-phosphate by Sac2 regulates endocytic recycling. ACTA ACUST UNITED AC 2015; 209:97-110. [PMID: 25869669 PMCID: PMC4395482 DOI: 10.1083/jcb.201408027] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Sac2 (INPP5F) is a phosphoinositide 4-phosphatase that specifically hydrolyzes PI(4)P and regulates endocytic recycling. It is well established that the spatial- and temporal-restricted generation and turnover of phosphoinositides (PIs) by a cascade of PI-metabolizing enzymes is a key regulatory mechanism in the endocytic pathway. Here, we demonstrate that the Sac1 domain–containing protein Sac2 is a PI 4-phosphatase that specifically hydrolyzes phosphatidylinositol 4-phosphate in vitro. We further show that Sac2 colocalizes with early endosomal markers and is recruited to transferrin (Tfn)-containing vesicles during endocytic recycling. Exogenous expression of the catalytically inactive mutant Sac2C458S resulted in altered cellular distribution of Tfn receptors and delayed Tfn recycling. Furthermore, genomic ablation of Sac2 caused a similar perturbation on Tfn and integrin recycling as well as defects in cell migration. Structural characterization of Sac2 revealed a unique pleckstrin-like homology Sac2 domain conserved in all Sac2 orthologues. Collectively, our findings provide evidence for the tight regulation of PIs by Sac2 in the endocytic recycling pathway.
Collapse
Affiliation(s)
- FoSheng Hsu
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Fenghua Hu
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Yuxin Mao
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
144
|
Luo X, Wasilko DJ, Liu Y, Sun J, Wu X, Luo ZQ, Mao Y. Structure of the Legionella Virulence Factor, SidC Reveals a Unique PI(4)P-Specific Binding Domain Essential for Its Targeting to the Bacterial Phagosome. PLoS Pathog 2015; 11:e1004965. [PMID: 26067986 PMCID: PMC4467491 DOI: 10.1371/journal.ppat.1004965] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/20/2015] [Indexed: 11/23/2022] Open
Abstract
The opportunistic intracellular pathogen Legionella pneumophila is the causative agent of Legionnaires’ disease. L. pneumophila delivers nearly 300 effector proteins into host cells for the establishment of a replication-permissive compartment known as the Legionella-containing vacuole (LCV). SidC and its paralog SdcA are two effectors that have been shown to anchor on the LCV via binding to phosphatidylinositol-4-phosphate [PI(4)P] to facilitate the recruitment of ER proteins to the LCV. We recently reported that the N-terminal SNL (SidC N-terminal E3 Ligase) domain of SidC is a ubiquitin E3 ligase, and its activity is required for the recruitment of ER proteins to the LCV. Here we report the crystal structure of SidC (1-871). The structure reveals that SidC contains four domains that are packed into an arch-like shape. The P4C domain (PI(4)P binding of SidC) comprises a four α-helix bundle and covers the ubiquitin ligase catalytic site of the SNL domain. Strikingly, a pocket with characteristic positive electrostatic potentials is formed at one end of this bundle. Liposome binding assays of the P4C domain further identified the determinants of phosphoinositide recognition and membrane interaction. Interestingly, we also found that binding with PI(4)P stimulates the E3 ligase activity, presumably due to a conformational switch induced by PI(4)P from a closed form to an open active form. Mutations of key residues involved in PI(4)P binding significantly reduced the association of SidC with the LCV and abolished its activity in the recruitment of ER proteins and ubiquitin signals, highlighting that PI(4)P-mediated targeting of SidC is critical to its function in the remodeling of the bacterial phagosome membrane. Finally, a GFP-fusion with the P4C domain was demonstrated to be specifically localized to PI(4)P-enriched compartments in mammalian cells. This domain shows the potential to be developed into a sensitive and accurate PI(4)P probe in living cells. Legionnaires’ disease is caused by the intracellular bacterial pathogen Legionella pneumophila. Successful infection by this bacterium requires a special secretion system that injects nearly 300 effector proteins into the cytoplasm of host cells. The effector SidC and its paralog SdcA anchor on the Legionella-containing vacuole (LCV) and are important for the recruitment of ER proteins to the LCV. Recent data demonstrated that SidC and SdcA are ubiquitin E3 ligases and that their activity is required for the enrichment of ER proteins and ubiquitin conjugates on the LCV. Here we present the crystal structure of SidC revealing the architecture of a novel PI(4)P-binding module. Our biochemical and cell biological studies highlight key determinants involved in PI(4)P-binding and membrane insertion. Characterization of this novel PI(4)P binding module opens a potential avenue for the development of an accurate in vivo PI(4)P probe. Our data also reveals a distinct regulatory mechanism of the ubiquitin E3 ligase activity of SidC, which is activated by the lipid molecule, PI(4)P. Furthermore, our results suggest that proper spatial localization of SidC to the cytoplasmic surface of the bacterial phagosome through the binding with PI(4)P is crucial to its function.
Collapse
Affiliation(s)
- Xi Luo
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - David J. Wasilko
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Yao Liu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Jiayi Sun
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Xiaochun Wu
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Yuxin Mao
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
145
|
Abstract
In eukaryotic cells, a sterol gradient exists between the early and late regions of the secretory pathway. This gradient seems to rely on non-vesicular transport mechanisms mediated by specialized carriers. The oxysterol-binding protein-related protein (ORP)/oxysterol-binding homology (Osh) family has been assumed initially to exclusively include proteins acting as sterol sensors/transporters and many efforts have been made to determine their mode of action. Our recent studies have demonstrated that some ORP/Osh proteins are not mere sterol transporters, but sterol/phosphatidylinositol 4-phosphate [PI(4)P] exchangers. They exploit the PI(4)P gradient at the endoplasmic reticulum (ER)/Golgi interface, or at membrane-contact sites between these compartments, to actively create a sterol gradient. Other recent reports have suggested that all ORP/Osh proteins bind PI(4)P and recognize a second lipid that is not necessary sterol. We have thus proposed that ORP/Osh proteins use PI(4)P gradients between organelles to convey various lipid species.
Collapse
|
146
|
Raiborg C, Wenzel EM, Stenmark H. ER-endosome contact sites: molecular compositions and functions. EMBO J 2015; 34:1848-58. [PMID: 26041457 DOI: 10.15252/embj.201591481] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/31/2015] [Indexed: 01/05/2023] Open
Abstract
Recent studies have revealed the existence of numerous contact sites between the endoplasmic reticulum (ER) and endosomes in mammalian cells. Such contacts increase during endosome maturation and play key roles in cholesterol transfer, endosome positioning, receptor dephosphorylation, and endosome fission. At least 7 distinct contact sites between the ER and endosomes have been identified to date, which have diverse molecular compositions. Common to these contact sites is that they impose a close apposition between the ER and endosome membranes, which excludes membrane fusion while allowing the flow of molecular signals between the two membranes, in the form of enzymatic modifications, or ion, lipid, or protein transfer. Thus, ER-endosome contact sites ensure coordination of molecular activities between the two compartments while keeping their general compositions intact. Here, we review the molecular architectures and cellular functions of known ER-endosome contact sites and discuss their implications for human health.
Collapse
Affiliation(s)
- Camilla Raiborg
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway Department of Molecular Cell Biology, Institute for Cancer Research Oslo University Hospital, Oslo, Norway
| | - Eva M Wenzel
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway Department of Molecular Cell Biology, Institute for Cancer Research Oslo University Hospital, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway Department of Molecular Cell Biology, Institute for Cancer Research Oslo University Hospital, Oslo, Norway Centre of Molecular Inflammation Research, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
147
|
Hammond GRV, Balla T. Polyphosphoinositide binding domains: Key to inositol lipid biology. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:746-58. [PMID: 25732852 DOI: 10.1016/j.bbalip.2015.02.013] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 01/29/2015] [Accepted: 02/17/2015] [Indexed: 01/01/2023]
Abstract
Polyphosphoinositides (PPIn) are an important family of phospholipids located on the cytoplasmic leaflet of eukaryotic cell membranes. Collectively, they are critical for the regulation of many aspects of membrane homeostasis and signaling, with notable relevance to human physiology and disease. This regulation is achieved through the selective interaction of these lipids with hundreds of cellular proteins, and thus the capability to study these localized interactions is crucial to understanding their functions. In this review, we discuss current knowledge of the principle types of PPIn-protein interactions, focusing on specific lipid-binding domains. We then discuss how these domains have been re-tasked by biologists as molecular probes for these lipids in living cells. Finally, we describe how the knowledge gained with these probes, when combined with other techniques, has led to the current view of the lipids' localization and function in eukaryotes, focusing mainly on animal cells. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Shriver Kennedy National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
148
|
Jun YW, Kim S, Kim KH, Lee JA, Lim CS, Chang I, Suh BC, Kaang BK, Jang DJ. Analysis of phosphoinositide-binding properties and subcellular localization of GFP-fusion proteins. Lipids 2015; 50:427-36. [PMID: 25688026 DOI: 10.1007/s11745-015-3994-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/01/2015] [Indexed: 11/26/2022]
Abstract
Specific protein-phosphoinositide (PI) interactions are known to play a key role in the targeting of proteins to specific cellular membranes. Investigation of these interactions would be greatly facilitated if GFP-fusion proteins expressed in mammalian cells and used for their subcellular localization could also be employed for in vitro lipid binding. In this study, we found that lysates of cells overexpressing GFP-fusion proteins could be used for in vitro protein-PI binding assays. We applied this approach to examine the PI-binding properties of Aplysia Sec7 protein (ApSec7) and its isoform ApSec7(VPKIS), in which a VPKIS sequence is inserted into the PH domain of ApSec7. EGFP-ApSec7 but not EGFP-ApSec7(VPKIS) did specifically bind to PI(3,4,5)P3 in an in vitro lipid-coated bead assay. Overexpression of EGFP-ApSec7 but not EGFP-ApSec7(VPKIS) did induce neurite outgrowth in Aplysia sensory neurons. Structure modeling analysis revealed that the inserted VPKIS caused misfolding around the PI(3,4,5)P3-binding pocket of ApSec7 and disturbed the binding of PI(3,4,5)P3 to the pleckstrin homology (PH) domain. Our data indicate that plasma membrane localization of EGFP-ApSec7 via the interaction between its PH domain and PI(3,4,5)P3 might play a key role in neurite outgrowth in Aplysia.
Collapse
Affiliation(s)
- Yong-Woo Jun
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sang-ju, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Lenoir M, Grzybek M, Majkowski M, Rajesh S, Kaur J, Whittaker SBM, Coskun Ü, Overduin M. Structural Basis of Dynamic Membrane Recognition by trans-Golgi Network Specific FAPP Proteins. J Mol Biol 2015; 427:966-981. [DOI: 10.1016/j.jmb.2014.12.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/17/2014] [Accepted: 12/29/2014] [Indexed: 10/24/2022]
|
150
|
Hernández-González M, Peñalva MA, Pantazopoulou A. Conditional inactivation ofAspergillus nidulans sarASAR1uncovers the morphogenetic potential of regulating endoplasmic reticulum (ER) exit. Mol Microbiol 2014; 95:491-508. [DOI: 10.1111/mmi.12880] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Miguel Hernández-González
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas CSIC; Ramiro de Maeztu 9 Madrid 28040 Spain
| | - Miguel A. Peñalva
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas CSIC; Ramiro de Maeztu 9 Madrid 28040 Spain
| | - Areti Pantazopoulou
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas CSIC; Ramiro de Maeztu 9 Madrid 28040 Spain
| |
Collapse
|