101
|
Zhou J, Jia L, Hu Z, Wang Y. Pharmacological Inhibition of PTEN Aggravates Acute Kidney Injury. Sci Rep 2017; 7:9503. [PMID: 28842716 PMCID: PMC5572703 DOI: 10.1038/s41598-017-10336-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/08/2017] [Indexed: 12/13/2022] Open
Abstract
Renal ischemia/reperfusion is a major cause of acute kidney injury. However, the pathogenic mechanisms underlying renal ischemia/reperfusion injury (IRI) are not fully defined. Here, we investigated the role of PTEN, a dual protein/lipid phosphatase, in the development of ischemic AKI in mice. Pharmacological inhibition of PTEN with bpV(HOpic) exacerbated renal dysfunction and promoted tubular damage in mice with IRI compared with vehicle-treated mice with IRI. PTEN inhibition enhanced tubular cell apoptosis in kidneys with IRI, which was associated with excessive caspase-3 activation. Furthermore, PTEN inhibition expanded the infiltration of neutrophils and macrophages into kidneys with IRI, which was accompanied by increased expression of the proinflammatory molecules. These results have demonstrated that PTEN plays a crucial role in the pathogenesis of ischemic acute kidney injury through regulating tubular cell apoptosis and inflammation suggesting PTEN could be a potential therapeutic target for acute kidney injury.
Collapse
Affiliation(s)
- Jun Zhou
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.,Department of Anesthesiology, Affiliated Foshan Hospital of Sun Yat-Sen University, Foshan, China
| | - Li Jia
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Zhaoyong Hu
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Yanlin Wang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA. .,Center for Translational Research on Inflammatory Diseases (CTRID) and Renal Section, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA.
| |
Collapse
|
102
|
Pérez-Guijarro E, Day CP, Merlino G, Zaidi MR. Genetically engineered mouse models of melanoma. Cancer 2017; 123:2089-2103. [PMID: 28543694 DOI: 10.1002/cncr.30684] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 01/04/2023]
Abstract
Melanoma is a complex disease that exhibits highly heterogeneous etiological, histopathological, and genetic features, as well as therapeutic responses. Genetically engineered mouse (GEM) models provide powerful tools to unravel the molecular mechanisms critical for melanoma development and drug resistance. Here, we expound briefly the basis of the mouse modeling design, the available technology for genetic engineering, and the aspects influencing the use of GEMs to model melanoma. Furthermore, we describe in detail the currently available GEM models of melanoma. Cancer 2017;123:2089-103. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Eva Pérez-Guijarro
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - M Raza Zaidi
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
103
|
Wang S, Liu JC, Ju Y, Pellecchia G, Voisin V, Wang DY, Leha L R, Ben-David Y, Bader GD, Zacksenhaus E. microRNA-143/145 loss induces Ras signaling to promote aggressive Pten-deficient basal-like breast cancer. JCI Insight 2017; 2:93313. [PMID: 28768903 DOI: 10.1172/jci.insight.93313] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/23/2017] [Indexed: 11/17/2022] Open
Abstract
The tumor suppressor PTEN is frequently inactivated in breast and other cancers; yet, germ-line mutations in this gene induce nonmalignant hamartomas, indicating dependency on additional cooperating events. Here we show that most tumors derived from conditional deletion of mouse pten in mammary epithelium are highly differentiated and lack transplantable tumor-initiating cells (TICs) capable of seeding new tumors following orthotopic injection of FACS-sorted or tumorsphere cells. A rare group of poorly differentiated tumors did harbor transplantable TICs. These transplantable tumors exhibited distinct molecular classification, signaling pathways, chromosomal aberrations, and mutational landscape, as well as reduced expression of microRNA-143/145 (miR-143/145). Stable knockdown of miR-143/145 conferred tumorigenic potential upon poorly transplantable pten-deficient tumor cells through a mechanism involving induction of RAS signaling, leading to increased sensitivity to MEK inhibition. In humans, miR-145 deficiency significantly correlated with elevated RAS-pathway activity in basal-like breast cancer, and patients with combined PTEN/miR-145 loss or PTEN-loss/high RAS-pathway activity exhibited poor clinical outcome. These results underscore a selective pressure for combined PTEN loss together with RAS-pathway activation, either through miR-145 loss or other mechanisms, in basal-like breast cancer, and a need to identify and prioritize these tumors for aggressive therapy.
Collapse
Affiliation(s)
- Sharon Wang
- Division of Advanced Diagnostics, Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada.,Laboratory Medicine & Pathobiology, and
| | - Jeff C Liu
- Division of Advanced Diagnostics, Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - YoungJun Ju
- Division of Advanced Diagnostics, Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | | | - Veronique Voisin
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Dong-Yu Wang
- Division of Advanced Diagnostics, Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - Rajwinder Leha L
- Division of Advanced Diagnostics, Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - Yaacov Ben-David
- The Key laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, and State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, and
| | - Eldad Zacksenhaus
- Division of Advanced Diagnostics, Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada.,Laboratory Medicine & Pathobiology, and.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
104
|
Shima N, Pederson KD. Dormant origins as a built-in safeguard in eukaryotic DNA replication against genome instability and disease development. DNA Repair (Amst) 2017; 56:166-173. [PMID: 28641940 PMCID: PMC5547906 DOI: 10.1016/j.dnarep.2017.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
DNA replication is a prerequisite for cell proliferation, yet it can be increasingly challenging for a eukaryotic cell to faithfully duplicate its genome as its size and complexity expands. Dormant origins now emerge as a key component for cells to successfully accomplish such a demanding but essential task. In this perspective, we will first provide an overview of the fundamental processes eukaryotic cells have developed to regulate origin licensing and firing. With a special focus on mammalian systems, we will then highlight the role of dormant origins in preventing replication-associated genome instability and their functional interplay with proteins involved in the DNA damage repair response for tumor suppression. Lastly, deficiencies in the origin licensing machinery will be discussed in relation to their influence on stem cell maintenance and human diseases.
Collapse
Affiliation(s)
- Naoko Shima
- The University of Minnesota, Twin Cities, Department of Genetics, Cell Biology and Development, Masonic Cancer Center, 6-160 Jackson Hall, 321 Church St SE., Minneapolis, MN 55455, United States.
| | - Kayla D Pederson
- The University of Minnesota, Twin Cities, Department of Genetics, Cell Biology and Development, Masonic Cancer Center, 6-160 Jackson Hall, 321 Church St SE., Minneapolis, MN 55455, United States
| |
Collapse
|
105
|
Mendes RD, Canté-Barrett K, Pieters R, Meijerink JPP. The relevance of PTEN-AKT in relation to NOTCH1-directed treatment strategies in T-cell acute lymphoblastic leukemia. Haematologica 2017; 101:1010-7. [PMID: 27582570 DOI: 10.3324/haematol.2016.146381] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/01/2016] [Indexed: 11/09/2022] Open
Abstract
The tumor suppressor phosphatase and tensin homolog (PTEN) negatively regulates phosphatidylinositol 3-kinase (PI3K)-AKT signaling and is often inactivated by mutations (including deletions) in a variety of cancer types, including T-cell acute lymphoblastic leukemia. Here we review mutation-associated mechanisms that inactivate PTEN together with other molecular mechanisms that activate AKT and contribute to T-cell leukemogenesis. In addition, we discuss how Pten mutations in mouse models affect the efficacy of gamma-secretase inhibitors to block NOTCH1 signaling through activation of AKT. Based on these models and on observations in primary diagnostic samples from patients with T-cell acute lymphoblastic leukemia, we speculate that PTEN-deficient cells employ an intrinsic homeostatic mechanism in which PI3K-AKT signaling is dampened over time. As a result of this reduced PI3K-AKT signaling, the level of AKT activation may be insufficient to compensate for NOTCH1 inhibition, resulting in responsiveness to gamma-secretase inhibitors. On the other hand, de novo acquired PTEN-inactivating events in NOTCH1-dependent leukemia could result in temporary, strong activation of PI3K-AKT signaling, increased glycolysis and glutaminolysis, and consequently gamma-secretase inhibitor resistance. Due to the central role of PTEN-AKT signaling and in the resistance to NOTCH1 inhibition, AKT inhibitors may be a promising addition to current treatment protocols for T-cell acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Rui D Mendes
- Department of Pediatric Oncology/Hematology, Erasmus MC Rotterdam-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Kirsten Canté-Barrett
- Department of Pediatric Oncology/Hematology, Erasmus MC Rotterdam-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Rob Pieters
- Department of Pediatric Oncology/Hematology, Erasmus MC Rotterdam-Sophia Children's Hospital, Rotterdam, The Netherlands Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jules P P Meijerink
- Department of Pediatric Oncology/Hematology, Erasmus MC Rotterdam-Sophia Children's Hospital, Rotterdam, The Netherlands Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
106
|
Gowda C, Soliman M, Kapadia M, Ding Y, Payne K, Dovat S. Casein Kinase II (CK2), Glycogen Synthase Kinase-3 (GSK-3) and Ikaros mediated regulation of leukemia. Adv Biol Regul 2017. [PMID: 28623166 DOI: 10.1016/j.jbior.2017.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Signaling networks that regulate cellular proliferation often involve complex interactions between several signaling pathways. In this manuscript we review the crosstalk between the Casein Kinase II (CK2) and Glycogen Synthase Kinase-3 (GSK-3) pathways that plays a critical role in the regulation of cellular proliferation in leukemia. Both CK2 and GSK-3 are potential targets for anti-leukemia treatment. Previously published data suggest that CK2 and GSK-3 act synergistically to promote the phosphatidylinositol-3 kinase (PI3K) pathway via phosphorylation of PTEN. More recent data demonstrate another mechanism through which CK2 promotes the PI3K pathway - via transcriptional regulation of PI3K pathway genes by the newly-discovered CK2-Ikaros axis. Together, these data suggest that the CK2 and GSK-3 pathways regulate AKT/PI3K signaling in leukemia via two complementary mechanisms: a) direct phosphorylation of PTEN and b) transcriptional regulation of PI3K-promoting genes. Functional interactions between CK2, Ikaros and GSK3 define a novel signaling network that regulates proliferation of leukemia cells. This regulatory network involves both direct posttranslational modifications (by CK and GSK-3) and transcriptional regulation (via CK2-mediated phosphorylation of Ikaros). This information provides a basis for the development of targeted therapy for leukemia.
Collapse
Affiliation(s)
- Chandrika Gowda
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Mario Soliman
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Malika Kapadia
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Yali Ding
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Kimberly Payne
- Department of Anatomy, Loma Linda University, Loma Linda, CA, USA.
| | - Sinisa Dovat
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
107
|
Meng Y, Cai KQ, Moore R, Tao W, Tse JD, Smith ER, Xu XX. Pten facilitates epiblast epithelial polarization and proamniotic lumen formation in early mouse embryos. Dev Dyn 2017; 246:517-530. [PMID: 28387983 DOI: 10.1002/dvdy.24503] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/27/2017] [Accepted: 03/21/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Phosphatase and tensin homologue on chromosome 10 (Pten), a lipid phosphatase originally identified as a tumor-suppressor gene, regulates the phosphoinositol 3 kinase signaling pathway and impacts cell death and proliferation. Pten mutant embryos die at early stages of development, although the particular developmental deficiency and the mechanisms are not yet fully understood. RESULTS We analyzed Pten mutant embryos in detail and found that the formation of the proamniotic cavity is impaired. Embryoid bodies derived from Pten-null embryonic stem cells failed to undergo cavitation, reproducing the embryonic phenotype in vitro. Analysis of embryoid bodies and embryos revealed a role of Pten in the initiation of the focal point of the epithelial rosette that develops into the proamniotic lumen, and in establishment of epithelial polarity to transform the amorphous epiblast cells into a polarized epithelium. CONCLUSIONS We conclude that Pten is required for proamniotic cavity formation by establishing polarity for epiblast cells to form a rosette that expands into the proamniotic lumen, rather than facilitating apoptosis to create the cavity. Developmental Dynamics 246:517-530, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yue Meng
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Graduate Program in Molecular Cell and Developmental Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Kathy Q Cai
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Robert Moore
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Wensi Tao
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Graduate Program in Molecular Cell and Developmental Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Jeffrey D Tse
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Graduate Program in Molecular Cell and Developmental Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Elizabeth R Smith
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Xiang-Xi Xu
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Graduate Program in Molecular Cell and Developmental Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
108
|
Hill VK, Kim JS, James CD, Waldman T. Correction of PTEN mutations in glioblastoma cell lines via AAV-mediated gene editing. PLoS One 2017; 12:e0176683. [PMID: 28464039 PMCID: PMC5413031 DOI: 10.1371/journal.pone.0176683] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/16/2017] [Indexed: 11/30/2022] Open
Abstract
PTEN is among the most commonly mutated tumor suppressor genes in human cancer. However, studying the role of PTEN in the pathogenesis of cancer has been limited, in part, by the paucity of human cell-based isogenic systems that faithfully model PTEN loss. In an effort to remedy this problem, gene editing was used to correct an endogenous mutant allele of PTEN in two human glioblastoma multiforme (GBM) cell lines– 42MGBA and T98G. PTEN correction resulted in reduced cellular proliferation that was Akt-dependent in 42MGBA cells and Akt-independent in T98G cells. This is the first report of human cancer cell lines in which mutant PTEN has been corrected by gene editing. The isogenic sets of gene edited cell lines reported here will likely prove useful for further study of PTEN mutations in the pathogenesis of cancer, and for the discovery and validation of novel therapeutics targeting the PTEN pathway.
Collapse
Affiliation(s)
- Victoria K. Hill
- Georgetown University School of Medicine, Lombardi Comprehensive Cancer Center, Washington DC, United States of America
| | - Jung-Sik Kim
- Georgetown University School of Medicine, Lombardi Comprehensive Cancer Center, Washington DC, United States of America
| | - C. David James
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Todd Waldman
- Georgetown University School of Medicine, Lombardi Comprehensive Cancer Center, Washington DC, United States of America
- * E-mail:
| |
Collapse
|
109
|
Dosil MA, Mirantes C, Eritja N, Felip I, Navaridas R, Gatius S, Santacana M, Colàs E, Moiola C, Schoenenberger JA, Encinas M, Garí E, Matias-Guiu X, Dolcet X. Palbociclib has antitumour effects on Pten-
deficient endometrial neoplasias. J Pathol 2017; 242:152-164. [DOI: 10.1002/path.4896] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/08/2017] [Accepted: 03/09/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Maria Alba Dosil
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida; Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC); Madrid Spain
| | - Cristina Mirantes
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida; Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
| | - Núria Eritja
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida; Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC); Madrid Spain
| | - Isidre Felip
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida; Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
| | - Raúl Navaridas
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida; Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
| | - Sònia Gatius
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida; Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC); Madrid Spain
| | - Maria Santacana
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida; Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC); Madrid Spain
| | - Eva Colàs
- Biomedical Research Group in Gynaecology, Vall Hebron Research Institute (VHIR); Universitat Autònoma de Barcelona; Barcelona Spain
| | - Cristian Moiola
- Biomedical Research Group in Gynaecology, Vall Hebron Research Institute (VHIR); Universitat Autònoma de Barcelona; Barcelona Spain
| | - Joan Antoni Schoenenberger
- Department of Pharmacology, Hospital Universitari Arnau de Vilanova. Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
| | - Mario Encinas
- Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
| | - Eloi Garí
- Cell Cycle Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
| | - Xavier Matias-Guiu
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida; Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC); Madrid Spain
| | - Xavier Dolcet
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida; Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, IRBLleida; Lleida Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC); Madrid Spain
| |
Collapse
|
110
|
Crumbaker M, Khoja L, Joshua AM. AR Signaling and the PI3K Pathway in Prostate Cancer. Cancers (Basel) 2017; 9:E34. [PMID: 28420128 PMCID: PMC5406709 DOI: 10.3390/cancers9040034] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/04/2017] [Accepted: 04/11/2017] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer is a leading cause of cancer-related death in men worldwide. Aberrant signaling in the androgen pathway is critical in the development and progression of prostate cancer. Despite ongoing reliance on androgen receptor (AR) signaling in castrate resistant disease, in addition to the development of potent androgen targeting drugs, patients invariably develop treatment resistance. Interactions between the AR and PI3K pathways may be a mechanism of treatment resistance and inhibitors of this pathway have been developed with variable success. Herein we outline the role of the PI3K pathway in prostate cancer and, in particular, its association with androgen receptor signaling in the pathogenesis and evolution of prostate cancer, as well as a review of the clinical utility of PI3K targeting.
Collapse
Affiliation(s)
- Megan Crumbaker
- Kinghorn Cancer Centre, St Vincent's Hospital, 370 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
- Garvan Institute of Medical Research, St Vincent's Clinical School, University of New South Wales, Sydney, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.
| | - Leila Khoja
- AstraZeneca UK, Clinical Discovery Unit, Early Clinical Development Innovative Medicines, da Vinci Building, Melbourn Science Park, Melbourn, Hertfordshire SG8 6HB, UK.
- Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust Cambridge Biomedical Campus, Hills Rd, Cambridge CB2 0QQ, UK.
| | - Anthony M Joshua
- Kinghorn Cancer Centre, St Vincent's Hospital, 370 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
- Garvan Institute of Medical Research, St Vincent's Clinical School, University of New South Wales, Sydney, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, University Avenue, Toronto, ON M5G 2M9, Canada.
| |
Collapse
|
111
|
Dirican E, Akkiprik M. Phosphatidylinositol 3-kinase regulatory subunit 1 and phosphatase and tensin homolog as therapeutic targets in breast cancer. Tumour Biol 2017; 39:1010428317695529. [PMID: 28351303 DOI: 10.1177/1010428317695529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer among women in Turkey and worldwide. It is considered a heterogeneous disease and has different subtypes. Moreover, breast cancer has different molecular characteristics, behaviors, and responses to treatment. Advances in the understanding of the molecular mechanisms implicated in breast cancer progression have led to the identification of many potential therapeutic gene targets, such as Breast Cancer 1/2, phosphatidylinositol 3-kinase catalytic subunit alpha, and tumor protein 53. The aim of this review is to summarize the roles of phosphatidylinositol 3-kinase regulatory subunit 1 (alpha) (alias p85α) and phosphatase and tensin homolog in breast cancer progression and the molecular mechanisms involved. Phosphatase and tensin homolog is a tumor suppressor gene and protein. Phosphatase and tensin homolog antagonizes the phosphatidylinositol 3-kinase/AKT signaling pathway that plays a key role in cell growth, differentiation, and survival. Loss of phosphatase and tensin homolog expression, detected in about 20%-30% of cases, is known to be one of the most common tumor changes leading to phosphatidylinositol 3-kinase pathway activation in breast cancer. Instead, the regulatory subunit p85α is a significant component of the phosphatidylinositol 3-kinase pathway, and it has been proposed that a reduction in p85α protein would lead to decreased negative regulation of phosphatidylinositol 3-kinase and hyperactivation of the phosphatidylinositol 3-kinase pathway. Phosphatidylinositol 3-kinase regulatory subunit 1 protein has also been reported to be a positive regulator of phosphatase and tensin homolog via the stabilization of this protein. A functional genetic alteration of phosphatidylinositol 3-kinase regulatory subunit 1 that results in reduced p85α protein expression and increased insulin receptor substrate 1 binding would lead to enhanced phosphatidylinositol 3-kinase signaling and hence cancer development. Phosphatidylinositol 3-kinase regulatory subunit 1 underexpression was observed in 61.8% of breast cancer samples. Therefore, expression/alternations of phosphatidylinositol 3-kinase regulatory subunit 1 and phosphatase and tensin homolog genes have crucial roles for breast cancer progression. This review will summarize the biological roles of phosphatidylinositol 3-kinase regulatory subunit 1 and phosphatase and tensin homolog in breast cancer, with an emphasis on recent findings and the potential of phosphatidylinositol 3-kinase regulatory subunit 1 and phosphatase and tensin homolog as a therapeutic target for breast cancer therapy.
Collapse
Affiliation(s)
- Ebubekir Dirican
- Department of Medical Biology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Mustafa Akkiprik
- Department of Medical Biology, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
112
|
Liang H, Chen X, Yin Q, Ruan D, Zhao X, Zhang C, McNutt MA, Yin Y. PTENβ is an alternatively translated isoform of PTEN that regulates rDNA transcription. Nat Commun 2017; 8:14771. [PMID: 28332494 PMCID: PMC5376652 DOI: 10.1038/ncomms14771] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/27/2017] [Indexed: 12/17/2022] Open
Abstract
PTEN is a critical tumour suppressor that is frequently mutated in human cancer. We have previously identified a CUG initiated PTEN isoform designated PTENα, which functions in mitochondrial bioenergetics. Here we report the identification of another N-terminal extended PTEN isoform, designated PTENβ. PTENβ translation is initiated from an AUU codon upstream of and in-frame with the AUG initiation sequence for canonical PTEN. We show that the Kozak context and a downstream hairpin structure are critical for this alternative initiation. PTENβ localizes predominantly in the nucleolus, and physically associates with and dephosphorylates nucleolin, which is a multifunctional nucleolar phosphoprotein. Disruption of PTENβ alters rDNA transcription and promotes ribosomal biogenesis, and this effect can be reversed by re-introduction of PTENβ. Our data show that PTENβ regulates pre-rRNA synthesis and cellular proliferation. These results demonstrate the complexity of the PTEN protein family and the diversity of its functions.
Collapse
Affiliation(s)
- Hui Liang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xi Chen
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qi Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Danhui Ruan
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Cong Zhang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Michael A. McNutt
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
113
|
Regulation of PI3K effector signalling in cancer by the phosphoinositide phosphatases. Biosci Rep 2017; 37:BSR20160432. [PMID: 28082369 PMCID: PMC5301276 DOI: 10.1042/bsr20160432] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 12/24/2022] Open
Abstract
Class I phosphoinositide 3-kinase (PI3K) generates phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) at the plasma membrane in response to growth factors, activating a signalling cascade that regulates many cellular functions including cell growth, proliferation, survival, migration and metabolism. The PI3K pathway is commonly dysregulated in human cancer, and drives tumorigenesis by promoting aberrant cell growth and transformation. PtdIns(3,4,5)P3 facilitates the activation of many pleckstrin homology (PH) domain-containing proteins including the serine/threonine kinase AKT. There are three AKT isoforms that are frequently hyperactivated in cancer through mutation, amplification or dysregulation of upstream regulatory proteins. AKT isoforms have converging and opposing functions in tumorigenesis. PtdIns(3,4,5)P3 signalling is degraded and terminated by phosphoinositide phosphatases such as phosphatase and tensin homologue (PTEN), proline-rich inositol polyphosphate 5-phosphatase (PIPP) (INPP5J) and inositol polyphosphate 4-phosphatase type II (INPP4B). PtdIns(3,4,5)P3 is rapidly hydrolysed by PIPP to generate phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2), which is further hydrolysed by INPP4B to form phosphatidylinositol 3-phosphate (PtdIns3P). PtdIns(3,4)P2 and PtdIns3P are also important signalling molecules; PtdIns(3,4)P2 together with PtdIns(3,4,5)P3 are required for maximal AKT activation and PtdIns3P activates PI3K-dependent serum and glucocorticoid-regulated kinase (SGK3) signalling. Loss of Pten, Pipp or Inpp4b expression or function promotes tumour growth in murine cancer models through enhanced AKT isoform-specific signalling. INPP4B inhibits PtdIns(3,4)P2-mediated AKT activation in breast and prostate cancer; however, INPP4B expression is increased in acute myeloid leukaemia (AML), melanoma and colon cancer where it paradoxically promotes cell proliferation, transformation and/or drug resistance. This review will discuss how PTEN, PIPP and INPP4B distinctly regulate PtdIns(3,4,5)P3 signalling downstream of PI3K and how dysregulation of these phosphatases affects cancer outcomes.
Collapse
|
114
|
Hayes MN, Langenau DM. Discovering novel oncogenic pathways and new therapies using zebrafish models of sarcoma. Methods Cell Biol 2017; 138:525-561. [PMID: 28129857 DOI: 10.1016/bs.mcb.2016.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Sarcoma is a type of cancer affecting connective, supportive, or soft tissue of mesenchymal origin. Despite rare incidence in adults (<1%), over 15% of pediatric cancers are sarcoma. Sadly, both adults and children with relapsed or metastatic disease have devastatingly high rates of mortality. Current treatment options for sarcoma include surgery, radiation, and/or chemotherapy; however, significant limitations exist with respect to the efficacy of these strategies. Strong impetus has been placed on the development of novel therapies and preclinical models for uncovering mechanisms involved in the development, progression, and therapy resistance of sarcoma. Over the past 15 years, the zebrafish has emerged as a powerful genetic model of human cancer. High genetic conservation when combined with a unique susceptibility to develop sarcoma has made the zebrafish an effective tool for studying these diseases. Transgenic and gene-activation strategies have been employed to develop zebrafish models of rhabdomyosarcoma, malignant peripheral nerve sheath tumors, Ewing's sarcoma, chordoma, hemangiosarcoma, and liposarcoma. These models all display remarkable molecular and histopathological conservation with their human cancer counterparts and have offered excellent platforms for understanding disease progression in vivo. Short tumor latency and the amenability of zebrafish for ex vivo manipulation, live imaging studies, and tumor cell transplantation have allowed for efficient study of sarcoma initiation, growth, self-renewal, and maintenance. When coupled with facile chemical genetic approaches, zebrafish models of sarcoma have provided a strong translational tool to uncover novel drug pathways and new therapeutic strategies.
Collapse
Affiliation(s)
- M N Hayes
- Massachusetts General Hospital, Boston, MA, United States; Massachusetts General Hospital, Charlestown, MA, United States; Harvard Stem Cell Institute, Boston, MA, United States
| | - D M Langenau
- Massachusetts General Hospital, Boston, MA, United States; Massachusetts General Hospital, Charlestown, MA, United States; Harvard Stem Cell Institute, Boston, MA, United States
| |
Collapse
|
115
|
Corti F, Simons M. Modulation of VEGF receptor 2 signaling by protein phosphatases. Pharmacol Res 2017; 115:107-123. [PMID: 27888154 PMCID: PMC5205541 DOI: 10.1016/j.phrs.2016.11.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022]
Abstract
Phosphorylation of serines, threonines, and tyrosines is a central event in signal transduction cascades in eukaryotic cells. The phosphorylation state of any particular protein reflects a balance of activity between kinases and phosphatases. Kinase biology has been exhaustively studied and is reasonably well understood, however, much less is known about phosphatases. A large body of evidence now shows that protein phosphatases do not behave as indiscriminate signal terminators, but can function both as negative or positive regulators of specific signaling pathways. Genetic models have also shown that different protein phosphatases play precise biological roles in health and disease. Finally, genome sequencing has unveiled the existence of many protein phosphatases and associated regulatory subunits comparable in number to kinases. A wide variety of roles for protein phosphatase roles have been recently described in the context of cancer, diabetes, hereditary disorders and other diseases. In particular, there have been several recent advances in our understanding of phosphatases involved in regulation of vascular endothelial growth factor receptor 2 (VEGFR2) signaling. The receptor is the principal signaling molecule mediating a wide spectrum of VEGF signal and, thus, is of paramount significance in a wide variety of diseases ranging from cancer to cardiovascular to ophthalmic. This review focuses on the current knowledge about protein phosphatases' regulation of VEGFR2 signaling and how these enzymes can modulate its biological effects.
Collapse
Affiliation(s)
- Federico Corti
- Yale Cardiovascular Research Center, Department of Internal Medicine and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
116
|
Ndrg1b and fam49ab modulate the PTEN pathway to control T-cell lymphopoiesis in the zebrafish. Blood 2016; 128:3052-3060. [PMID: 27827822 DOI: 10.1182/blood-2016-09-742502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/04/2016] [Indexed: 02/07/2023] Open
Abstract
During hematopoiesis, the balance between proliferation, differentiation, and apoptosis is tightly regulated in order to maintain homeostasis. Failure in these processes can ultimately lead to uncontrolled proliferation and leukemia. Phosphatase and tensin homolog (PTEN) is one of the molecular pathways involved in this balance. By opposing PI3-kinases, PTEN inhibits proliferation and promotes differentiation and is thus considered a tumor suppressor. Indeed, PTEN is frequently mutated in many cancers, including leukemias. Loss of PTEN often leads to lymphoid cancers. However, little is known about the molecular events that regulate PTEN signaling during lymphopoiesis. In this study, we used zebrafish to address this. We report that N-myc downstream-regulated gene 1b (ndrg1b) rescues lymphoid differentiation after PTEN inhibition. We also show that a previously uncharacterized gene, fam49ab, inhibits T-cell differentiation, a phenotype that can be rescued by ndrg1b We propose that ndrg1b and fam49ab are 2 new modulators of PTEN signaling that control lymphoid differentiation in the zebrafish thymus.
Collapse
|
117
|
Mundi PS, Sachdev J, McCourt C, Kalinsky K. AKT in cancer: new molecular insights and advances in drug development. Br J Clin Pharmacol 2016; 82:943-56. [PMID: 27232857 PMCID: PMC5137819 DOI: 10.1111/bcp.13021] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/21/2016] [Accepted: 05/23/2016] [Indexed: 12/11/2022] Open
Abstract
The phosphatidylinositol-3 kinase (PI3K)-AKT pathway is one of the most commonly dysregulated pathways in all of cancer, with somatic mutations, copy number alterations, aberrant epigenetic regulation and increased expression in a number of cancers. The carefully maintained homeostatic balance of cell division and growth on one hand, and programmed cell death on the other, is universally disturbed in tumorigenesis, and downstream effectors of the PI3K-AKT pathway play an important role in this disturbance. With a wide array of downstream effectors involved in cell survival and proliferation, the well-characterized direct interactions of AKT make it a highly attractive yet elusive target for cancer therapy. Here, we review the salient features of this pathway, evidence of its role in promoting tumorigenesis and recent progress in the development of therapeutic agents that target AKT.
Collapse
Affiliation(s)
- Prabhjot S Mundi
- Division of Medical Oncology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Jasgit Sachdev
- Translational Genomics Research Institute, Virginia G. Piper Cancer Center at HonorHealth, Scottsdale, AZ, USA
| | - Carolyn McCourt
- Division of Gynecologic Oncology, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Kevin Kalinsky
- Division of Medical Oncology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| |
Collapse
|
118
|
Role of phosphatase of regenerating liver 1 (PRL1) in spermatogenesis. Sci Rep 2016; 6:34211. [PMID: 27666520 PMCID: PMC5035919 DOI: 10.1038/srep34211] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/09/2016] [Indexed: 01/08/2023] Open
Abstract
The PRL phosphatases are oncogenic when overexpressed but their in vivo biological function is less well understood. Previous gene deletion study revealed a role for PRL2 in spermatogenesis. We report here the first knockout mice lacking PRL1, the most related homolog of PRL2. We found that loss of PRL1 does not affect spermatogenesis and reproductive ability of male mice, likely due to functional compensation by the relatively higher expression of PRL2 in the testes. However, PRL1-/-/PRL2+/- male mice show testicular atrophy phenotype similar to PRL2-/- mice. More strikingly, deletion of one PRL1 allele in PRL2-/- male mice causes complete infertility. Mechanistically, the total level of PRL1 and PRL2 is negatively correlated with the PTEN protein level in the testis and PRL1+/-/PRL2-/- mice have the highest level of PTEN, leading to attenuated Akt activation and increased germ cell apoptosis, effectively halting spermatozoa production. These results provide the first evidence that in addition to PRL2, PRL1 is also required for spermatogenesis by downregulating PTEN and promoting Akt signaling. The ability of the PRLs to suppress PTEN expression underscores the biochemical basis for their oncogenic potential.
Collapse
|
119
|
Muñoz-Fontela C, Mandinova A, Aaronson SA, Lee SW. Emerging roles of p53 and other tumour-suppressor genes in immune regulation. Nat Rev Immunol 2016; 16:741-750. [PMID: 27667712 DOI: 10.1038/nri.2016.99] [Citation(s) in RCA: 267] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumour-suppressor genes are indispensable for the maintenance of genomic integrity. Recently, several of these genes, including those encoding p53, PTEN, RB1 and ARF, have been implicated in immune responses and inflammatory diseases. In particular, the p53 tumour- suppressor pathway is involved in crucial aspects of tumour immunology and in homeostatic regulation of immune responses. Other studies have identified roles for p53 in various cellular processes, including metabolism and stem cell maintenance. Here, we discuss the emerging roles of p53 and other tumour-suppressor genes in tumour immunology, as well as in additional immunological settings, such as virus infection. This relatively unexplored area could yield important insights into the homeostatic control of immune cells in health and disease and facilitate the development of more effective immunotherapies. Consequently, tumour-suppressor genes are emerging as potential guardians of immune integrity.
Collapse
Affiliation(s)
- César Muñoz-Fontela
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Anna Mandinova
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Building 149 13th Street, Charlestown, Massachusetts 02129, USA.,Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA.,Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Stuart A Aaronson
- Department of Oncological Sciences, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029, USA
| | - Sam W Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Building 149 13th Street, Charlestown, Massachusetts 02129, USA.,Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
120
|
Schöndorf T, Dostal A, Grabmann J, Göhring UJ. Single Mutations of the PTEN Gene in Recurrent Ovarian Carcinomas. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155760000700508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Thomas Schöndorf
- Department of Gynecology and Obstetrics, University of Cologne, Cologne, Germany
| | | | | | - Uwe-Jochen Göhring
- Department of Gynecology and Obstetrics, University of Cologne, Cologne, Germany
| |
Collapse
|
121
|
Chen H, Ye D, Xie X, Lu W, Zhu C, Chen X. PTEN Promoter Methylation and Protein Expression in Normal Early Placentas and Hydatidiform Moles. ACTA ACUST UNITED AC 2016; 12:214-7. [PMID: 15784509 DOI: 10.1016/j.jsgi.2005.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the relationship between PTEN promoter methylation and protein expression, and the possible involvement of the PTEN gene in development of gestational trophoblasts and the pathogenesis of hydatidiform moles. METHODS DNA was extracted from choria of normal early placentas, partial hydatidiform moles, complete hydatidiform moles, and invasive moles, and overdigested by methylation-sensitive endonuclease HpaII. The PTEN promoter was amplificated by polymerase chain reaction. PTEN protein expression was detected by immunohistochemistry. RESULTS In partial and complete hydatidiform moles, the PTEN promoter methylation rate was significantly higher than in early placentas (72%, 59.4%, 14.3%; P = .000, .002, respectively), and the PTEN protein expression rate was significantly lower than in early placentas (9.1%, 4.5%, 90.5%; P = .000, .000, respectively). However, partial hydatidiform moles, complete hydatidiform moles, and invasive moles were not significant different in terms of PTEN promoter methylation and protein expression. CONCLUSIONS These findings suggest that the regulation of PTEN expression may play an important role in the development of the early gestational trophoblast and in the pathogenesis of hydatidiform mole, but not in its malignant transformation.
Collapse
Affiliation(s)
- Huaizeng Chen
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
122
|
Upton DH, Walters KA, Allavena RE, Jimenez M, Desai R, Handelsman DJ, Allan CM. Global or Granulosa Cell-Specific Pten Mutations in Combination with Elevated FSH Levels Fail to Cause Ovarian Tumours in Mice. Discov Oncol 2016; 7:316-326. [PMID: 27506975 DOI: 10.1007/s12672-016-0272-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/25/2016] [Indexed: 01/22/2023] Open
Abstract
Phosphatase and tensin homologue (PTEN) is a known tumour suppressor. To explore the role of Pten in ovarian tumorigenesis, we used transgenic (Tg) SOX2. Cre and AMH. Cre mouse models to direct global Pten haploinsufficiency (Pten +/-) or ovary-specific granulosa cell (GC) Pten disruption (Pten GC ). Pten mutant models were combined with progressively rising Tg-follicle-stimulating hormone (TgFSH) levels to study the tumorigenic potential of combined genetic/endocrine modification in vivo. Global Pten +/- mice exhibited grossly detectable tumours in multiple organs including uterine and mammary tissue and displayed reduced survival. Despite extra-ovarian tumorigenesis, Pten +/- females had no detectable ovarian tumours, although elevated corpus luteum numbers increased ovary size and estrous cycling was altered. Combined TgFSH/Pten +/- mice also had no ovarian tumours, but early survival was reduced in the presence of TgFSH. Ovary-specific Pten GC ± TgFSH females exhibited no detectable ovarian or uterine tumours, and corpus luteum numbers and estrous cycling remained unchanged. The non-tumorigenic ovarian phenotypes in Pten +/- and Pten GC ± TgFSH mice support the proposal that multi-hit genetic mutations (including ovarian and extra-ovarian tissue) initiate ovarian tumours. Our findings suggest that elevated FSH may reduce early cancer survival; however, the ovary remains remarkably resistant to Pten-induced tumorigenic changes even in the presence of uterine and reproductive cancers.
Collapse
Affiliation(s)
- Dannielle H Upton
- ANZAC Research Institute, University of Sydney, Concord Hospital, Sydney, NSW, 2139, Australia.
| | - Kirsty A Walters
- ANZAC Research Institute, University of Sydney, Concord Hospital, Sydney, NSW, 2139, Australia
| | - Rachel E Allavena
- School of Veterinary Science, University of Queensland, QLD, Gatton, 4343, Australia
| | - Mark Jimenez
- ANZAC Research Institute, University of Sydney, Concord Hospital, Sydney, NSW, 2139, Australia
| | - Reena Desai
- ANZAC Research Institute, University of Sydney, Concord Hospital, Sydney, NSW, 2139, Australia
| | - David J Handelsman
- ANZAC Research Institute, University of Sydney, Concord Hospital, Sydney, NSW, 2139, Australia
| | - Charles M Allan
- ANZAC Research Institute, University of Sydney, Concord Hospital, Sydney, NSW, 2139, Australia
| |
Collapse
|
123
|
Abstract
T cell acute lymphoblastic leukaemia (T-ALL) is an aggressive haematological malignancy derived from early T cell progenitors. In recent years genomic and transcriptomic studies have uncovered major oncogenic and tumour suppressor pathways involved in T-ALL transformation and identified distinct biological groups associated with prognosis. An increased understanding of T-ALL biology has already translated into new prognostic biomarkers and improved animal models of leukaemia and has opened opportunities for the development of targeted therapies for the treatment of this disease. In this Review we examine our current understanding of the molecular mechanisms of T-ALL and recent developments in the translation of these results to the clinic.
Collapse
Affiliation(s)
- Laura Belver
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
| | - Adolfo Ferrando
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
- Department of Pathology, Columbia University Medical Center, New York, New York 10032, USA
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10032, USA
| |
Collapse
|
124
|
Benhamou D, Labi V, Novak R, Dai I, Shafir-Alon S, Weiss A, Gaujoux R, Arnold R, Shen-Orr SS, Rajewsky K, Melamed D. A c-Myc/miR17-92/Pten Axis Controls PI3K-Mediated Positive and Negative Selection in B Cell Development and Reconstitutes CD19 Deficiency. Cell Rep 2016; 16:419-431. [DOI: 10.1016/j.celrep.2016.05.084] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/14/2016] [Accepted: 05/19/2016] [Indexed: 01/13/2023] Open
|
125
|
Peng H, Chen Y, Gong P, Cai L, Lyu X, Jiang Q, Wang J, Lu J, Yao K, Liu K, Li J, Li X. Higher methylation intensity induced by EBV LMP1 via NF-κB/DNMT3b signaling contributes to silencing of PTEN gene. Oncotarget 2016; 7:40025-40037. [PMID: 27223069 PMCID: PMC5129989 DOI: 10.18632/oncotarget.9474] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/31/2016] [Indexed: 12/27/2022] Open
Abstract
Phosphatase and tensin homolog (PTEN) is a major tumor suppressor and usually silenced via the deletion, insertion and mutation. We previously discovered its inactivation via aberrant CpG island methylation. Here, we provide further evidence that EBV latent membrane protein 1(LMP1) can induce a higher intensity of DNA methylation at PTEN CpG islands, inactivating PTEN at the cellular and molecular level. Initially, increased methylation intensity of PTEN CpG islands was observed in EBV-infected nasopharyngeal carcinoma (NPC) cells, accompanied by decreased PTEN expression. In NPC tissue samples showing the methylation at PTEN promoter, LMP1 was highly expressed in higher methylation intensity group relative to lower intensity group, and DNA methyltransferase 3b (DNMT3b) expression was positively correlated with LMP1 expression. Moreover, transfection of LMP1 gene into EBV-negative NPC cells demonstrated that LMP1 up-regulated DNMT3b expression, leading to a higher intensity of PTEN CpG island methylation. Mechanistically, computational prediction and luciferase reporter assay identified a functional NF-κB binding site on DNMT3b promoter and the mutated NF-κB binding site abolished LMP1-mediated DNMT3b activation. Chromatin immunoprecipitation displayed that NF-κB p65 subunit constitutively bound to DNMT3b promoter, supporting the activation of DNMT3b by EBV LMP1 via NF-κB signaling. Furthermore, the expression level of DNMT3b was observed to be increased in the nuclei of LMP1-expressing NPC cells, and a NF-κB inhibitor, PDTC, counteracted LMP1-mediated DNMT3b overexpression. Thus, this study first reports that LMP1-mediated NF-κB can up-regulate DNMT3b transcription, thereby leading to relatively higher methylation intensity at PTEN CpG islands, and ultimately silencing major tumor suppressor PTEN.
Collapse
Affiliation(s)
- Hong Peng
- Department of Otorhinolaryngology at Nanfang Hospital, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
- Department of Otolaryngology-Head and Neck Surgery, the Second People's Hospital of Guangdong Province, Southern Medical University, Guangzhou 510515, China
| | - Yuxiang Chen
- Department of Otorhinolaryngology at Nanfang Hospital, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Pinggui Gong
- Department of Otorhinolaryngology at Nanfang Hospital, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
- Department of Otolaryngology-Head and Neck Surgery, the Second People's Hospital of Guangdong Province, Southern Medical University, Guangzhou 510515, China
| | - Longmei Cai
- Department of Otorhinolaryngology at Nanfang Hospital, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Xiaoming Lyu
- Department of Otorhinolaryngology at Nanfang Hospital, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Qiang Jiang
- Department of Otorhinolaryngology at Nanfang Hospital, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jianguo Wang
- Department of Otorhinolaryngology at Nanfang Hospital, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Juan Lu
- Department of Otorhinolaryngology at Nanfang Hospital, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Kaitai Yao
- Department of Otorhinolaryngology at Nanfang Hospital, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Kunping Liu
- Department of Pathology, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, China
| | - Jinbang Li
- Department of Otorhinolaryngology at Nanfang Hospital, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
- Department of Pathology, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, China
| | - Xin Li
- Department of Otorhinolaryngology at Nanfang Hospital, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
126
|
Bassi C, Mak TW. Regulation of the Phosphatidylinositide 3-Kinase Pathway by the Lipid Phosphatase PTEN. Clin Chem 2016; 62:884-5. [DOI: 10.1373/clinchem.2015.253237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/04/2016] [Indexed: 11/06/2022]
Affiliation(s)
| | - Tak W Mak
- The Campbell Family Institute for Breast Cancer Research
- Department of Medical Biophysics, University of Toronto, and
- Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
127
|
Zhou M, Zhang Y, Chen X, Zhu J, Du M, Zhou L, Zhang L, Wang W, Sun G. PTEN-Foxo1 signaling triggers HMGB1-mediated innate immune responses in acute lung injury. Immunol Res 2016; 62:95-105. [PMID: 25759027 PMCID: PMC4424276 DOI: 10.1007/s12026-015-8639-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PTEN is a multifunctional phosphatase that regulates immune responses through a PI3K/Akt signaling cascade. HMGB1 plays an important role in the initiation of innate immune responses to induce acute lung injury (ALI). This study was designed to investigate the role of PTEN/Foxo1 signaling in the regulation of in vivo and in vitro innate immune responses in ALI. Using a mouse model of ALI, wild-type (WT) and myeloid-specific PTEN knockout (PTEN(M-KO)) mice were instilled with a recombinant HMGB1 (rHMGB1) or PBS. In some experiments, Foxo1 siRNA or non-specific siRNA was injected into mice 6 h prior to rHMGB1 instillation into lung. We found that rHMGB1 treatment in WT mice increased the expression of PTEN, Foxo1, TLR4, and NF-κB in alveolar macrophages from WT mice. However, macrophage-specific PTEN ablation resulted in reduced Foxo1 and TLR4 while increasing β-catenin (Ser552) and Akt (Ser473) phosphorylation in these cells. Knockdown of Foxo1 with siRNA administration in WT mice ameliorated lung injury and inhibited myeloperoxidase activity followed by rHMGB1 treatment, which was accompanied by decreased mRNA expression coding for TNF-α, IL-1β, MIP2, and IP-10. Moreover, Foxo1 knockdown inhibited the expression of TLR4-dependent IRF3 and IFN-β both in vitro and in vivo. These results demonstrate that PTEN/Foxo1 signaling is critical for triggering HMGB1-mediated innate TLR4 activation during ALI. By identifying the molecular signaling pathways within innate immune system, our studies provide the potential therapeutic targets for ALI.
Collapse
Affiliation(s)
- Min Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Anhui Medical University, JiXi Road 218, Hefei, 230022, Anhui, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Kirschner LS, Qamri Z, Kari S, Ashtekar A. Mouse models of thyroid cancer: A 2015 update. Mol Cell Endocrinol 2016; 421:18-27. [PMID: 26123589 PMCID: PMC4691568 DOI: 10.1016/j.mce.2015.06.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/28/2015] [Accepted: 06/11/2015] [Indexed: 02/06/2023]
Abstract
Thyroid cancer is the most common endocrine neoplasm, and its rate is rising at an alarming pace. Thus, there is a compelling need to develop in vivo models which will not only enable the confirmation of the oncogenic potential of driver genes, but also point the way towards the development of new therapeutics. Over the past 20 years, techniques for the generation of mouse models of human diseases have progressed substantially, accompanied by parallel advances in the genetics and genomics of human tumors. This convergence has enabled the development of mouse lines carrying mutations in the genes that cause thyroid cancers of all subtypes, including differentiated papillary and follicular thyroid cancers, poorly differentiated/anaplastic cancers, and medullary thyroid cancers. In this review, we will discuss the state of the art of mouse modeling of thyroid cancer, with the eventual goal of providing insight into tumor biology and treatment.
Collapse
Affiliation(s)
- Lawrence S Kirschner
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA; Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH, USA.
| | - Zahida Qamri
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH, USA
| | - Suresh Kari
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH, USA
| | - Amruta Ashtekar
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
129
|
Grego-Bessa J, Bloomekatz J, Castel P, Omelchenko T, Baselga J, Anderson KV. The tumor suppressor PTEN and the PDK1 kinase regulate formation of the columnar neural epithelium. eLife 2016; 5:e12034. [PMID: 26809587 PMCID: PMC4739759 DOI: 10.7554/elife.12034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/02/2015] [Indexed: 01/16/2023] Open
Abstract
Epithelial morphogenesis and stability are essential for normal development and organ homeostasis. The mouse neural plate is a cuboidal epithelium that remodels into a columnar pseudostratified epithelium over the course of 24 hr. Here we show that the transition to a columnar epithelium fails in mutant embryos that lack the tumor suppressor PTEN, although proliferation, patterning and apical-basal polarity markers are normal in the mutants. The Pten phenotype is mimicked by constitutive activation of PI3 kinase and is rescued by the removal of PDK1 (PDPK1), but does not depend on the downstream kinases AKT and mTORC1. High resolution imaging shows that PTEN is required for stabilization of planar cell packing in the neural plate and for the formation of stable apical-basal microtubule arrays. The data suggest that appropriate levels of membrane-associated PDPK1 are required for stabilization of apical junctions, which promotes cell elongation, during epithelial morphogenesis.
Collapse
Affiliation(s)
- Joaquim Grego-Bessa
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Joshua Bloomekatz
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Pau Castel
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Tatiana Omelchenko
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - José Baselga
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
130
|
Dysregulation of AKT Pathway by SMYD2-Mediated Lysine Methylation on PTEN. Neoplasia 2016; 17:367-73. [PMID: 25925379 PMCID: PMC4415136 DOI: 10.1016/j.neo.2015.03.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/25/2015] [Accepted: 03/09/2015] [Indexed: 12/17/2022] Open
Abstract
Phosphatase and tensin homologue (PTEN), one of the well-characterized tumor suppressor proteins, counteracts the phosphatidylinositol 3-kinase-AKT pathway through its unique lipid phosphatase activity. The functions of PTEN are regulated by a variety of posttranslational modifications such as acetylation, oxidation, ubiquitylation, phosphorylation, and SUMOylation. However, methylation of PTEN has not been reported so far. In this study, we demonstrated that the oncogenic protein lysine methyltransferase SET and MYND domain containing 2 (SMYD2) methylates PTEN at lysine 313 in vitro and in vivo. Knockdown of SMYD2 suppressed the cell growth of breast cancer cells and attenuated phosphorylation levels of AKT, indicating that SMYD2-mediated methylation negatively regulates PTEN tumor suppressor activity and results in activation of the phosphatidylinositol 3-kinase-AKT pathway. Furthermore, PTEN protein with lysine 313 substitution diminished phosphorylation of PTEN at serine 380, which is known to inactivate tumor suppressor functions of PTEN. Taken together, our findings unveil a novel mechanism of PTEN dysregulation regulated by lysine methylation in human cancer.
Collapse
|
131
|
Wang S, Liu JC, Kim D, Datti A, Zacksenhaus E. Targeted Pten deletion plus p53-R270H mutation in mouse mammary epithelium induces aggressive claudin-low and basal-like breast cancer. Breast Cancer Res 2016; 18:9. [PMID: 26781438 PMCID: PMC4717616 DOI: 10.1186/s13058-015-0668-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/22/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC), an aggressive disease comprising several subtypes including basal-like and claudin-low, involves frequent deletions or point mutations in TP53, as well as loss of PTEN. We previously showed that combined deletion of both tumor suppressors in the mouse mammary epithelium invariably induced claudin-low-like TNBC. The effect of p53 mutation plus Pten deletion on mammary tumorigenesis and whether this combination can induce basal-like TNBC in the mouse are unknown. METHODS WAP-Cre:Pten(f/f):p53(lox.stop.lox_R270H) composite mice were generated in which Pten is deleted and a p53-R270H mutation in the DNA-binding domain is induced upon expression of Cre-recombinase in pregnancy-identified alveolar progenitors. Tumors were characterized by histology, marker analysis, transcriptional profiling [GEO-GSE75989], bioinformatics, high-throughput (HTP) FDA drug screen as well as orthotopic injection to quantify tumor-initiating cells (TICs) and tail vein injection to identify lung metastasis. RESULTS Combined Pten deletion plus induction of p53-R270H mutation accelerated formation of four distinct mammary tumors including poorly differentiated adenocarcinoma (PDA) and spindle/mesenchymal-like lesions. Transplantation assays revealed highest frequency of TICs in PDA and spindle tumors compared with other subtypes. Hierarchical clustering demonstrated that the PDA and spindle tumors grouped closely with human as well as mouse models of basal and claudin-low subtypes, respectively. HTP screens of primary Pten(∆):p53(∆) vs. Pten(∆):p53(R270H) spindle tumor cells with 1120 FDA-approved drugs identified 8-azaguanine as most potent for both tumor types, but found no allele-specific inhibitor. A gene set enrichment analysis revealed increased expression of a metastasis pathway in Pten(∆):p53(R270H) vs. Pten(∆):p53(∆) spindle tumors. Accordingly, following tail vein injection, both Pten(∆):p53(R270H) spindle and PDA tumor cells induced lung metastases and morbidity significantly faster than Pten(∆):p53(∆) double-deletion cells, and this was associated with the ability of Pten(∆):p53(R270H) tumor cells to upregulate E-cadherin expression in lung metastases. CONCLUSIONS Our results demonstrate that WAP-Cre:Pten(f/f):p53(lox.stop.lox_R270H) mice represent a tractable model to study basal-like breast cancer because unlike p53 deletion, p53(R270H) mutation in the mouse does not skew tumors toward the claudin-low subtype. The WAP-Cre:Pten(f/f):p53(lox.stop.lox_R270H) mice develop basal-like breast cancer that is enriched in TICs, can readily form lung metastasis, and provides a preclinical model to study both basal-like and claudin-low TNBC in immune-competent mice.
Collapse
Affiliation(s)
- Sharon Wang
- Division of Advanced Diagnostics, Toronto General Research Institute - University Health Network, 67 College Street, Toronto, ON, M5G 2M1, Canada. .,Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Jeff C Liu
- Division of Advanced Diagnostics, Toronto General Research Institute - University Health Network, 67 College Street, Toronto, ON, M5G 2M1, Canada.
| | - Danbi Kim
- Division of Advanced Diagnostics, Toronto General Research Institute - University Health Network, 67 College Street, Toronto, ON, M5G 2M1, Canada.
| | - Alessandro Datti
- SMART Laboratory for High-Throughput Screening Programs, Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, 600 University Avenue, Toronto, ON, M5G 1X5, Canada. .,Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121, Perugia, Italy.
| | - Eldad Zacksenhaus
- Division of Advanced Diagnostics, Toronto General Research Institute - University Health Network, 67 College Street, Toronto, ON, M5G 2M1, Canada. .,Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
132
|
Pulido R. PTEN: a yin-yang master regulator protein in health and disease. Methods 2016; 77-78:3-10. [PMID: 25843297 DOI: 10.1016/j.ymeth.2015.02.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 01/16/2023] Open
Abstract
The PTEN gene is a tumor suppressor gene frequently mutated in human tumors, which encodes a ubiquitous protein whose major activity is to act as a lipid phosphatase that counteracts the action of the oncogenic PI3K. In addition, PTEN displays protein phosphatase- and catalytically-independent activities. The physiologic control of PTEN function, and its inactivation in cancer and other human diseases, including some neurodevelopmental disorders, is upon the action of multiple regulatory mechanisms. This provides a wide spectrum of potential therapeutic approaches to reconstitute PTEN activity. By contrast, inhibition of PTEN function may be beneficial in a different group of human diseases, such as type 2 diabetes or neuroregeneration-related pathologies. This makes PTEN a functionally dual yin-yang protein with high potential in the clinics. Here, a brief overview on PTEN and its relation with human disease is presented.
Collapse
Affiliation(s)
- Rafael Pulido
- BioCruces Health Research Institute, Barakaldo, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
133
|
Teng YC, Shen ZQ, Kao CH, Tsai TF. Hepatocellular carcinoma mouse models: Hepatitis B virus-associated hepatocarcinogenesis and haploinsufficient tumor suppressor genes. World J Gastroenterol 2016; 22:300-325. [PMID: 26755878 PMCID: PMC4698494 DOI: 10.3748/wjg.v22.i1.300] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/14/2015] [Accepted: 11/24/2015] [Indexed: 02/06/2023] Open
Abstract
The multifactorial and multistage pathogenesis of hepatocellular carcinoma (HCC) has fascinated a wide spectrum of scientists for decades. While a number of major risk factors have been identified, their mechanistic roles in hepatocarcinogenesis still need to be elucidated. Many tumor suppressor genes (TSGs) have been identified as being involved in HCC. These TSGs can be classified into two groups depending on the situation with respect to allelic mutation/loss in the tumors: the recessive TSGs with two required mutated alleles and the haploinsufficient TSGs with one required mutated allele. Hepatitis B virus (HBV) is one of the most important risk factors associated with HCC. Although mice cannot be infected with HBV due to the narrow host range of HBV and the lack of a proper receptor, one advantage of mouse models for HBV/HCC research is the numerous and powerful genetic tools that help investigate the phenotypic effects of viral proteins and allow the dissection of the dose-dependent action of TSGs. Here, we mainly focus on the application of mouse models in relation to HBV-associated HCC and on TSGs that act either in a recessive or in a haploinsufficient manner. Discoveries obtained using mouse models will have a great impact on HCC translational medicine.
Collapse
|
134
|
Abstract
Starting from the discovery of "inhibitory chromosomes" by Theodor Boveri to the finding by Henry Harris that fusing a normal cell to a cancer cell reduced tumorigenic potential, the notion of tumor suppression was recognized well before any tumor-suppressor genes were discovered. Although not the first to be revealed, PTEN has been demonstrated to be one of the most frequently altered tumor suppressors in cancer. This introductory chapter provides a historical perspective on our current understanding of PTEN including some of the seminal discoveries in the tumor suppressor field, the events leading to PTEN's discovery, and an introduction to some of the most important researchers and their studies which have shed light on PTEN biology and function as we know it today.
Collapse
Affiliation(s)
- Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Princess Margaret Cancer Centre, Room 4211, Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8.
| |
Collapse
|
135
|
Abstract
PTEN expression can be dysregulated in cancers via multiple mechanisms including genomic loss, epigenetic silencing, transcriptional repression, and posttranscriptional regulation by microRNAs. MicroRNAs are short, noncoding RNAs that regulate gene expression by binding to recognition sites on target transcripts. Recent studies have demonstrated that the competition for shared microRNAs between both protein-coding and noncoding transcripts represents an additional facet of gene regulation. Here, we describe in detail an integrated computational and experimental approach to identify and validate these competing endogenous RNA (ceRNA) interactions.
Collapse
Affiliation(s)
- Yvonne Tay
- Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, 14 Medical Drive, #12-01, Singapore, 117599, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, MA, 02215, USA.
| |
Collapse
|
136
|
Abstract
C. elegans encodes a PTEN homolog called DAF-18 and human PTEN can functionally replace DAF-18. Thus C. elegans provides a valuable model organism to study PTEN. This chapter provides methods to study DAF-18/PTEN function in C. elegans. We provide methods to genotype daf-18/Pten mutants, visualize and quantify DAF-18/PTEN in C. elegans, as well as to study physiological and developmental processes that will provide molecular insight on DAF-18/PTEN function.
Collapse
Affiliation(s)
- Shanqing Zheng
- Department of Biology, Queen's University, 116 Barrie St., Kingston, ON, Canada, K7L 3N6
| | - Ian D Chin-Sang
- Department of Biology, Queen's University, 116 Barrie St., Kingston, ON, Canada, K7L 3N6.
| |
Collapse
|
137
|
Sato A. mTOR, a Potential Target to Treat Autism Spectrum Disorder. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2016; 15:533-43. [PMID: 27071790 PMCID: PMC5070418 DOI: 10.2174/1871527315666160413120638] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/11/2015] [Accepted: 12/18/2015] [Indexed: 12/22/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a key regulator in various cellular processes, including cell growth, gene expression, and synaptic functions. Autism spectrum disorder (ASD) is frequently accompanied by monogenic disorders, such as tuberous sclerosis complex, phosphatase and tensin homolog tumor hamartoma syndrome, neurofibromatosis 1, and fragile X syndrome, in which mTOR is hyperactive. Mutations in the genes involved in the mTOR-mediated signaling pathway have been identified in some cases of syndromic ASD. Evidences indicate a pathogenic role for hyperactive mTOR-mediated signaling in ASD associated with these monogenic disorders, and mTOR inhibitors are a potential pharmacotherapy for ASD. Abnormal synaptic transmission through metabotropic glutamate receptor 5 may underlie in a part of ASD associated with hyperactive mTOR-mediated signaling. In this review, the relationship between mTOR and ASD is discussed.
Collapse
Affiliation(s)
- Atsushi Sato
- Department of Pediatrics, The University of Tokyo Hospital, Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113- 8655, Japan.
| |
Collapse
|
138
|
Abstract
PTEN plays an important role in diabetes pathogenesis not only as a key negative regulator of the PI3K/Akt pathway required for insulin action, but also via its role in other cell processes required to maintain metabolic homeostasis. We describe the generation of tissue-specific PTEN knockout mice and models of both type 1 and type 2 diabetes, which we have found useful for the study of diabetes pathogenesis. We also outline common methods suitable for the characterization of glucose homeostasis in rodent models, including techniques to measure beta cell function and insulin sensitivity.
Collapse
Affiliation(s)
- Cynthia T Luk
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada, M5G 2C4
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada, M5G 2C4
| | - Stephanie A Schroer
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada, M5G 2C4
| | - Minna Woo
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada, M5G 2C4.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada, M5G 2C4.
- Division of Endocrinology, Department of Medicine, University Health Network, University of Toronto, Toronto, ON, Canada, M5G 2C4.
- Toronto General Research Institute, 101 College Street, MaRS Centre/TMDT, Room 10-363, Toronto, ON, Canada, M5G 1L7.
| |
Collapse
|
139
|
den Hertog J. Tumor Suppressors in Zebrafish: From TP53 to PTEN and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:87-101. [PMID: 27165350 DOI: 10.1007/978-3-319-30654-4_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Zebrafish are increasingly being used to study cancer. Almost all tumor types have been found in zebrafish. However, tumor incidence is relatively low and tumors develop late in life. Functional inactivation of tumor suppressors is a crucial step in cancer progression and more and more tumor suppressor genes are being studied in zebrafish. Most often tumor suppressors have been inactivated by reverse genetics approaches using targeted disruption. However, some tumor suppressor mutants were identified by forward genetic screens for mutants with a particular phenotype. Some of the latter genes had not been recognized as tumor suppressors yet. Similarly, a screen for genes that suppress tumor formation in zebrafish in vivo led to the identification of a novel tumor suppressor gene. In this review, I will provide an overview of what the zebrafish has taught us about tumor suppressors.
Collapse
Affiliation(s)
- Jeroen den Hertog
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands. .,Institute of Biology, Leiden University, 2300 RA, Leiden, The Netherlands.
| |
Collapse
|
140
|
Monogenic mouse models of autism spectrum disorders: Common mechanisms and missing links. Neuroscience 2015; 321:3-23. [PMID: 26733386 DOI: 10.1016/j.neuroscience.2015.12.040] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 11/30/2015] [Accepted: 12/22/2015] [Indexed: 01/16/2023]
Abstract
Autism spectrum disorders (ASDs) present unique challenges in the fields of genetics and neurobiology because of the clinical and molecular heterogeneity underlying these disorders. Genetic mutations found in ASD patients provide opportunities to dissect the molecular and circuit mechanisms underlying autistic behaviors using animal models. Ongoing studies of genetically modified models have offered critical insight into possible common mechanisms arising from different mutations, but links between molecular abnormalities and behavioral phenotypes remain elusive. The challenges encountered in modeling autism in mice demand a new analytic paradigm that integrates behavioral assessment with circuit-level analysis in genetically modified models with strong construct validity.
Collapse
|
141
|
Benedykcinska A, Ferreira A, Lau J, Broni J, Richard-Loendt A, Henriquez NV, Brandner S. Generation of brain tumours in mice by Cre-mediated recombination of neural progenitors in situ with the tamoxifen metabolite endoxifen. Dis Model Mech 2015; 9:211-20. [PMID: 26704996 PMCID: PMC4770146 DOI: 10.1242/dmm.022715] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/21/2015] [Indexed: 01/10/2023] Open
Abstract
Targeted cell- or region-specific gene recombination is widely used in the functional analysis of genes implicated in development and disease. In the brain, targeted gene recombination has become a mainstream approach to study neurodegeneration or tumorigenesis. The use of the Cre-loxP system to study tumorigenesis in the adult central nervous system (CNS) can be limited, when the promoter (such as GFAP) is also transiently expressed during development, which can result in the recombination of progenies of different lineages. Engineering of transgenic mice expressing Cre recombinase fused to a mutant of the human oestrogen receptor (ER) allows the circumvention of transient developmental Cre expression by inducing recombination in the adult organism. The recombination of loxP sequences occurs only in the presence of tamoxifen. Systemic administration of tamoxifen can, however, exhibit toxicity and might also recombine unwanted cell populations if the promoter driving Cre expression is active at the time of tamoxifen administration. Here, we report that a single site-specific injection of an active derivative of tamoxifen successfully activates Cre recombinase and selectively recombines tumour suppressor genes in neural progenitor cells of the subventricular zone in mice, and we demonstrate its application in a model for the generation of intrinsic brain tumours.
Collapse
Affiliation(s)
- Anna Benedykcinska
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Andreia Ferreira
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Joanne Lau
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Jessica Broni
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Angela Richard-Loendt
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Nico V Henriquez
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
142
|
Lebok P, Kopperschmidt V, Kluth M, Hube-Magg C, Özden C, B T, Hussein K, Mittenzwei A, Lebeau A, Witzel I, Wölber L, Mahner S, Jänicke F, Geist S, Paluchowski P, Wilke C, Heilenkötter U, Simon R, Sauter G, Terracciano L, Krech R, von d Assen A, Müller V, Burandt E. Partial PTEN deletion is linked to poor prognosis in breast cancer. BMC Cancer 2015; 15:963. [PMID: 26672755 PMCID: PMC4682275 DOI: 10.1186/s12885-015-1770-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 10/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deletions of chromosome 10q23, including the PTEN (phosphatase and tensin homolog) locus, are known to occur in breast cancer, but systematic analyses of its clinical relevance are lacking. METHODS We thus analyzed a tissue microarray (TMA) with 2,197 breast cancers by fluorescence in-situ hybridization (FISH) using a PTEN-specific probe. RESULTS PTEN deletions were detected in 19% of no special type, 9% of lobular, 4% of tubular cancers and 46% in carcinomas with medullary features. 98.7% of deletions were heterozygous and only 1.3% were homozygous. PTEN deletion was significantly linked to advanced tumor stage (p=0.0054), high-grade (p<0.0001), high tumor cell proliferation (Ki67 Labeling Index; p<0.0001), and shortened overall survival (p=0.0090). PTEN deletions were inversely associated with features of luminal type breast cancers (ER/PR positivity; p<0.0001 each, and CCND1 amplification; p=0.0020). PTEN deletions were also strongly linked to amplification of genes involved in the PTEN/AKT pathway such as MYC (p=0.0430) and HER2 (p=0.0065). Remarkably the combined analysis of MYC, HER2, CCND1 and PTEN aberrations suggested that aberrations of multiple PTEN/AKT pathway genes have a strong additive effect on breast cancer prognosis. While cancers with one of these aberrations behaved only marginally different from cancers with none, disease outcome was markedly worse in cancers with two or more aberrations as compared to those with only one aberration (p=0.0002). In addition, the particularly poor prognosis of patients with HER2 amplification and PTEN deletions challenges the concept of PTEN deletions interfering with trastuzumab therapy. CONCLUSION PTEN deletion occurs in a relevant fraction of breast cancers, and is linked to aggressive tumor behavior. Reduced PTEN function cooperates with MYC and HER2 activation in conferring aggressive phenotype to cancer cells.
Collapse
Affiliation(s)
- P Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - V Kopperschmidt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - M Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - C Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - C Özden
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Taskin B
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - K Hussein
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - A Mittenzwei
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - A Lebeau
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - I Witzel
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - L Wölber
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - S Mahner
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - F Jänicke
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - S Geist
- Department of Gynecology, Regio Clinic Pinneberg, Pinneberg, Germany.
| | - P Paluchowski
- Department of Gynecology, Regio Clinic Pinneberg, Pinneberg, Germany.
| | - C Wilke
- Department of Gynecology, Regio Clinic Elmshorn, Elmshorn, Germany.
| | - U Heilenkötter
- Department of Gynecology, Clinical Centre Itzehoe, Itzehoe, Germany.
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - L Terracciano
- Department of Pathology, Basel University Clinics, Basel, Switzerland.
| | - R Krech
- Institute of Pathology, Clinical Centre Osnabrück, Osnabrück, Germany.
| | | | - V Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - E Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
143
|
PTEN stabilizes TOP2A and regulates the DNA decatenation. Sci Rep 2015; 5:17873. [PMID: 26657567 PMCID: PMC4674714 DOI: 10.1038/srep17873] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/06/2015] [Indexed: 11/12/2022] Open
Abstract
PTEN is a powerful tumor suppressor that antagonizes the cytoplasmic PI3K-AKT pathway and suppresses cellular proliferation. PTEN also plays a role in the maintenance of genomic stability in the nucleus. Here we report that PTEN facilitates DNA decatenation and controls a decatenation checkpoint. Catenations of DNA formed during replication are decatenated by DNA topoisomerase II (TOP2), and this process is actively monitored by a decatenation checkpoint in G2 phase. We found that PTEN deficient cells form ultra-fine bridges (UFBs) during anaphase and these bridges are generated as a result of insufficient decatenation. We show that PTEN is physically associated with a decatenation enzyme TOP2A and that PTEN influences its stability through OTUD3 deubiquitinase. In the presence of PTEN, ubiquitination of TOP2A is inhibited by OTUD3. Deletion or deficiency of PTEN leads to down regulation of TOP2A, dysfunction of the decatenation checkpoint and incomplete DNA decatenation in G2 and M phases. We propose that PTEN controls DNA decatenation to maintain genomic stability and integrity.
Collapse
|
144
|
Oncogenic PTEN functions and models in T-cell malignancies. Oncogene 2015; 35:3887-96. [PMID: 26616857 DOI: 10.1038/onc.2015.462] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/07/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023]
Abstract
PTEN is a protein phosphatase that is crucial to prevent the malignant transformation of T-cells. Although a numerous mechanisms regulate its expression and function, they are often altered in T-cell acute lymphoblastic leukaemias and T-cell lymphomas. As such, PTEN inactivation frequently occurs in these malignancies, where it can be associated with chemotherapy resistance and poor prognosis. Different Pten knockout models recapitulated the development of T-cell leukaemia/lymphoma, demonstrating that PTEN loss is at the center of a complex oncogenic network that sustains and drives tumorigenesis via the activation of multiple signalling pathways. These aspects and their therapeutic implications are discussed in this review.
Collapse
|
145
|
Caserta E, Egriboz O, Wang H, Martin C, Koivisto C, Pecót T, Kladney RD, Shen C, Shim KS, Pham T, Karikomi MK, Mauntel MJ, Majumder S, Cuitino MC, Tang X, Srivastava A, Yu L, Wallace J, Mo X, Park M, Fernandez SA, Pilarski R, La Perle KMD, Rosol TJ, Coppola V, Castrillon DH, Timmers C, Cohn DE, O'Malley DM, Backes F, Suarez AA, Goodfellow P, Chamberlin HM, Macrae ER, Shapiro CL, Ostrowski MC, Leone G. Noncatalytic PTEN missense mutation predisposes to organ-selective cancer development in vivo. Genes Dev 2015; 29:1707-20. [PMID: 26302789 PMCID: PMC4561480 DOI: 10.1101/gad.262568.115] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Caserta et al. generated and analyzed Pten knock-in mice harboring a C2 domain missense mutation at phenylalanine 341 (PtenFV), found in human cancer. This PTEN noncatalytic missense mutation exposes a core tumor suppressor function distinct from inhibition of canonical AKT signaling that predisposes to organ-selective cancer development in vivo. Inactivation of phosphatase and tensin homology deleted on chromosome 10 (PTEN) is linked to increased PI3K–AKT signaling, enhanced organismal growth, and cancer development. Here we generated and analyzed Pten knock-in mice harboring a C2 domain missense mutation at phenylalanine 341 (PtenFV), found in human cancer. Despite having reduced levels of PTEN protein, homozygous PtenFV/FV embryos have intact AKT signaling, develop normally, and are carried to term. Heterozygous PtenFV/+ mice develop carcinoma in the thymus, stomach, adrenal medulla, and mammary gland but not in other organs typically sensitive to Pten deficiency, including the thyroid, prostate, and uterus. Progression to carcinoma in sensitive organs ensues in the absence of overt AKT activation. Carcinoma in the uterus, a cancer-resistant organ, requires a second clonal event associated with the spontaneous activation of AKT and downstream signaling. In summary, this PTEN noncatalytic missense mutation exposes a core tumor suppressor function distinct from inhibition of canonical AKT signaling that predisposes to organ-selective cancer development in vivo.
Collapse
Affiliation(s)
- Enrico Caserta
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Onur Egriboz
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Hui Wang
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Chelsea Martin
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Christopher Koivisto
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Thierry Pecót
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Raleigh D Kladney
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Changxian Shen
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Kang-Sup Shim
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Thac Pham
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Matthew K Karikomi
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Melissa J Mauntel
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Sarmila Majumder
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Maria C Cuitino
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Xing Tang
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Arunima Srivastava
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, Columbus, Ohio 43210, USA; Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Julie Wallace
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, Ohio 43210, USA; Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Morag Park
- Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A1, Canada; Rosalind and Morris Goodman Cancer Center, McGill University, Montreal, Quebec H3A 1A1, Canada; Department of Oncology, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Soledad A Fernandez
- Center for Biostatistics, The Ohio State University, Columbus, Ohio 43210, USA; Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Robert Pilarski
- Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Krista M D La Perle
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Thomas J Rosol
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Vincenzo Coppola
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Diego H Castrillon
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Cynthia Timmers
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - David E Cohn
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio 43210, USA
| | - David M O'Malley
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Floor Backes
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Adrian A Suarez
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Paul Goodfellow
- Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Helen M Chamberlin
- Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA
| | - Erin R Macrae
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Charles L Shapiro
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Michael C Ostrowski
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Gustavo Leone
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
146
|
The intrinsically disordered tails of PTEN and PTEN-L have distinct roles in regulating substrate specificity and membrane activity. Biochem J 2015; 473:135-44. [PMID: 26527737 PMCID: PMC4700475 DOI: 10.1042/bj20150931] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/02/2015] [Indexed: 11/17/2022]
Abstract
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a lipid and protein phosphatase, and both activities are necessary for its role as a tumour suppressor. PTEN activity is controlled by phosphorylation of its intrinsically disordered C-terminal tail. A recently discovered variant of PTEN, PTEN-long (PTEN-L), has a 173-residue N-terminal extension that causes PTEN-L to exhibit unique behaviour, such as movement from one cell to another. Using hydrogen/deuterium exchange mass spectrometry (HDX-MS) and biophysical assays, we show that both the N-terminal extension of PTEN-L and C-terminal tail of PTEN affect the phosphatase activity using unique mechanisms. Phosphorylation of six residues in the C-terminal tail of PTEN results in auto-inhibitory interactions with the phosphatase and C2 domains, effectively blocking both the active site and the membrane-binding interface of PTEN. Partially dephosphorylating PTEN on pThr(366)/pSer(370) results in sufficient exposure of the active site to allow a selective activation for soluble substrates. Using HDX-MS, we identified a membrane-binding element in the N-terminal extension of PTEN-L, termed the membrane-binding helix (MBH). The MBH radically alters the membrane binding mechanism of PTEN-L compared with PTEN, switching PTEN-L to a 'scooting' mode of catalysis from the 'hopping' mode that is characteristic of PTEN.
Collapse
|
147
|
Choi JP, Desai R, Zheng Y, Yao M, Dong Q, Watson G, Handelsman DJ, Simanainen U. Androgen actions via androgen receptor promote PTEN inactivation induced uterine cancer. Endocr Relat Cancer 2015; 22:687-701. [PMID: 26285813 DOI: 10.1530/erc-15-0203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Haploinsufficient inactivating phosphatase and tensin homolog (Pten) mutations cause Cowden syndrome, an autosomal dominant risk genotype for hormone dependent reproductive cancers. As androgen actions mediated via the androgen receptor (AR) supports uterine growth and may modify uterine cancer risk, we hypothesized that a functional AR may increase PTEN inactivation induced uterine cancer. To test the hypothesis, we compared the PTEN knockout (PTENKO) induced uterine pathology in heterozygous PTENKO and combined heterozygous PTEN and complete AR knockout (PTENARKO) female mice. PTENKO induced uterine pathology was significantly reduced by AR inactivation with severe macroscopic uterine pathology present in 21% of PTENARKO vs 46% of PTENKO at a median age of 45 weeks. This could be due to reduced stroma ERα expression in PTENARKO compared to PTENKO uterus, while AR inactivation did not modify PTEN or P-AKT levels. Unexpectedly, while progesterone (P4) is assumed protective in uterine cancers, serum P4 was significantly higher in PTENKO females compared to WT, ARKO, and PTENARKO females consistent with more corpora lutea in PTENKO ovaries. Serum testosterone and ovarian estradiol were similar between all females. Hence, our results demonstrated AR inactivation mediated protection against PTENKO induced uterine pathology and suggests a potential role for antiandrogens in uterine cancer prevention and treatment.
Collapse
Affiliation(s)
- Jaesung Peter Choi
- ANZAC Research InstituteUniversity of Sydney, Sydney, New South Wales 2139, AustraliaDiscipline of EndocrinologyCentral Clinical School, Bosch Institute, Charles Perkins Centre, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales 2050, AustraliaDepartment of Anatomical PathologyRoyal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
| | - Reena Desai
- ANZAC Research InstituteUniversity of Sydney, Sydney, New South Wales 2139, AustraliaDiscipline of EndocrinologyCentral Clinical School, Bosch Institute, Charles Perkins Centre, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales 2050, AustraliaDepartment of Anatomical PathologyRoyal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
| | - Yu Zheng
- ANZAC Research InstituteUniversity of Sydney, Sydney, New South Wales 2139, AustraliaDiscipline of EndocrinologyCentral Clinical School, Bosch Institute, Charles Perkins Centre, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales 2050, AustraliaDepartment of Anatomical PathologyRoyal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
| | - Mu Yao
- ANZAC Research InstituteUniversity of Sydney, Sydney, New South Wales 2139, AustraliaDiscipline of EndocrinologyCentral Clinical School, Bosch Institute, Charles Perkins Centre, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales 2050, AustraliaDepartment of Anatomical PathologyRoyal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
| | - Qihan Dong
- ANZAC Research InstituteUniversity of Sydney, Sydney, New South Wales 2139, AustraliaDiscipline of EndocrinologyCentral Clinical School, Bosch Institute, Charles Perkins Centre, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales 2050, AustraliaDepartment of Anatomical PathologyRoyal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
| | - Geoff Watson
- ANZAC Research InstituteUniversity of Sydney, Sydney, New South Wales 2139, AustraliaDiscipline of EndocrinologyCentral Clinical School, Bosch Institute, Charles Perkins Centre, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales 2050, AustraliaDepartment of Anatomical PathologyRoyal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
| | - David J Handelsman
- ANZAC Research InstituteUniversity of Sydney, Sydney, New South Wales 2139, AustraliaDiscipline of EndocrinologyCentral Clinical School, Bosch Institute, Charles Perkins Centre, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales 2050, AustraliaDepartment of Anatomical PathologyRoyal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
| | - Ulla Simanainen
- ANZAC Research InstituteUniversity of Sydney, Sydney, New South Wales 2139, AustraliaDiscipline of EndocrinologyCentral Clinical School, Bosch Institute, Charles Perkins Centre, Royal Prince Alfred Hospital, University of Sydney, Sydney, New South Wales 2050, AustraliaDepartment of Anatomical PathologyRoyal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
| |
Collapse
|
148
|
Shnitsar I, Bashkurov M, Masson GR, Ogunjimi AA, Mosessian S, Cabeza EA, Hirsch CL, Trcka D, Gish G, Jiao J, Wu H, Winklbauer R, Williams RL, Pelletier L, Wrana JL, Barrios-Rodiles M. PTEN regulates cilia through Dishevelled. Nat Commun 2015; 6:8388. [PMID: 26399523 PMCID: PMC4598566 DOI: 10.1038/ncomms9388] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/17/2015] [Indexed: 01/26/2023] Open
Abstract
Cilia are hair-like cellular protrusions important in many aspects of eukaryotic biology. For instance, motile cilia enable fluid movement over epithelial surfaces, while primary (sensory) cilia play roles in cellular signalling. The molecular events underlying cilia dynamics, and particularly their disassembly, are not well understood. Phosphatase and tensin homologue (PTEN) is an extensively studied tumour suppressor, thought to primarily act by antagonizing PI3-kinase signalling. Here we demonstrate that PTEN plays an important role in multicilia formation and cilia disassembly by controlling the phosphorylation of Dishevelled (DVL), another ciliogenesis regulator. DVL is a central component of WNT signalling that plays a role during convergent extension movements, which we show here are also regulated by PTEN. Our studies identify a novel protein substrate for PTEN that couples PTEN to regulation of cilia dynamics and WNT signalling, thus advancing our understanding of potential underlying molecular etiologies of PTEN-related pathologies.
Collapse
Affiliation(s)
- Iryna Shnitsar
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Mikhail Bashkurov
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Glenn R Masson
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Abiodun A Ogunjimi
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Sherly Mosessian
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095, USA
| | - Eduardo Aguiar Cabeza
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Calley L Hirsch
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Daniel Trcka
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Gerald Gish
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Jing Jiao
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095, USA
| | - Hong Wu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095, USA
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Roger L Williams
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Laurence Pelletier
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Jeffrey L Wrana
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Miriam Barrios-Rodiles
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| |
Collapse
|
149
|
Cai KQ, Wang Y, Smith ER, Smedberg JL, Yang DH, Yang WL, Xu XX. Global deletion of Trp53 reverts ovarian tumor phenotype of the germ cell-deficient white spotting variant (Wv) mice. Neoplasia 2015; 17:89-100. [PMID: 25622902 PMCID: PMC4309726 DOI: 10.1016/j.neo.2014.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/07/2014] [Accepted: 11/12/2014] [Indexed: 01/01/2023] Open
Abstract
White spotting variant (Wv) mice are spontaneous mutants attributed to a point mutation in the c-Kit gene, which reduces the tyrosine kinase activity to around 1% and affects the development of melanocytes, mast cells, and germ cells. Homozygous mutant mice are sterile but can live nearly a normal life span. The female Wv mice have a greatly reduced ovarian germ cell and follicle reserve at birth, and the remaining follicles are largely depleted soon after the females reach reproductive stage at around 7 weeks of age. Consequently, ovarian epithelial tumors develop in 100% of Wv females by 3 to 4 months of age. These tumors, called tubular adenomas, are benign but can become invasive in older Wv mice. We tested if additional genetic mutation(s) could convert the benign ovarian epithelial tumors to malignant tumors by crossing the Wv mutant into the Trp53 knockout background. Surprisingly, we found that global deletion of Trp53 suppressed the development of ovarian tubular adenomas in Wv mice. The ovaries of Wv/Wv; Trp53 (−/−) mice were covered by a single layer of surface epithelium and lacked excessive epithelial proliferation. Rather, the ovaries contained a small number of follicles. The presence of ovarian follicles and granulosa cells, as indicated by Pgc7 and inhibin-alpha expression, correlated with the absence of epithelial lesions. A reduction of Pten gene dosage, as in Wv/Wv; Pten (+/−) mice, produced a similar, though less dramatic, phenotype. We conclude that deletion of Trp53 prolongs the survival of ovarian follicles in Wv mice and consequently prevents the proliferation of ovarian epithelial cells and development of ovarian tubular adenomas. The results suggest that various cell types within the ovary communicate and mutually modulate, and an intact tissue environment is required to ensure homeostasis of ovarian surface epithelial cells. Especially, the current finding emphasizes the importance of ovarian follicles in suppressing the hyperplastic growth of ovarian epithelial cells, dominating over the loss of p53.
Collapse
Affiliation(s)
- Kathy Qi Cai
- Ovarian Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Ying Wang
- Sylvester Comprehensive Cancer Center, Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136; Department of Medicine, University of California at San Diego, La Jolla, CA 92093
| | - Elizabeth R Smith
- Sylvester Comprehensive Cancer Center, Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136
| | | | - Dong-Hua Yang
- Ovarian Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Wan-Lin Yang
- Ovarian Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Xiang-Xi Xu
- Sylvester Comprehensive Cancer Center, Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136.
| |
Collapse
|
150
|
Phosphatidylinositol (3,4) bisphosphate-specific phosphatases and effector proteins: A distinct branch of PI3K signaling. Cell Signal 2015; 27:1789-98. [DOI: 10.1016/j.cellsig.2015.05.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/16/2015] [Accepted: 05/20/2015] [Indexed: 01/22/2023]
|