101
|
Zis P, Liampas A, Artemiadis A, Tsalamandris G, Neophytou P, Unwin Z, Kimiskidis VK, Hadjigeorgiou GM, Varrassi G, Zhao Y, Sarrigiannis PG. EEG Recordings as Biomarkers of Pain Perception: Where Do We Stand and Where to Go? Pain Ther 2022; 11:369-380. [PMID: 35322392 PMCID: PMC9098726 DOI: 10.1007/s40122-022-00372-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction The universality and complexity of pain, which is highly prevalent, yield its significance to both patients and researchers. Developing a non-invasive tool that can objectively measure pain is of the utmost importance for clinical and research purposes. Traditionally electroencephalography (EEG) has been mostly used in epilepsy; however, over the recent years EEG has become an important non-invasive clinical tool that has helped increase our understanding of brain network complexities and for the identification of areas of dysfunction. This review aimed to investigate the role of EEG recordings as potential biomarkers of pain perception. Methods A systematic search of the PubMed database led to the identification of 938 papers, of which 919 were excluded as a result of not meeting the eligibility criteria, and one article was identified through screening of the reference lists of the 19 eligible studies. Ultimately, 20 papers were included in this systematic review. Results Changes of the cortical activation have potential, though the described changes are not always consistent. The most consistent finding is the increase in the delta and gamma power activity. Only a limited number of studies have looked into brain networks encoding pain perception. Conclusion Although no robust EEG biomarkers of pain perception have been identified yet, EEG has potential and future research should be attempted. Designing strong research protocols, controlling for potential risk of biases, as well as investigating brain networks rather than isolated cortical changes will be crucial in this attempt. Supplementary Information The online version contains supplementary material available at 10.1007/s40122-022-00372-2.
Collapse
Affiliation(s)
- Panagiotis Zis
- Medical School, University of Cyprus, Nicosia, Cyprus
- Medical School, University of Sheffield, Sheffield, UK
- Department of Neurology, Nicosia General Hospital, Nicosia, Cyprus
| | - Andreas Liampas
- Department of Neurology, Nicosia General Hospital, Nicosia, Cyprus
| | - Artemios Artemiadis
- Medical School, University of Cyprus, Nicosia, Cyprus
- Department of Neurology, Nicosia General Hospital, Nicosia, Cyprus
| | | | | | - Zoe Unwin
- Department of Clinical Neurophysiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Vasilios K. Kimiskidis
- 1st Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios M. Hadjigeorgiou
- Medical School, University of Cyprus, Nicosia, Cyprus
- Department of Neurology, Nicosia General Hospital, Nicosia, Cyprus
| | | | - Yifan Zhao
- School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, UK
| | | |
Collapse
|
102
|
Li X, Lin X, Yao J, Chen S, Hu Y, Liu J, Jin R. Effects of High-Definition Transcranial Direct Current Stimulation Over the Primary Motor Cortex on Cold Pain Sensitivity Among Healthy Adults. Front Mol Neurosci 2022; 15:853509. [PMID: 35370540 PMCID: PMC8971908 DOI: 10.3389/fnmol.2022.853509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Some clinical studies have shown promising effects of transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) on pain relief. Nevertheless, a few studies reported no significant analgesic effects of tDCS, likely due to the complexity of clinical pain conditions. Human experimental pain models that utilize indices of pain in response to well-controlled noxious stimuli can avoid many confounds that are present in the clinical data. This study aimed to investigate the effects of high-definition tDCS (HD-tDCS) stimulation over M1 on sensitivity to experimental pain and assess whether these effects could be influenced by the pain-related cognitions and emotions. A randomized, double-blinded, crossover, and sham-controlled design was adopted. A total of 28 healthy participants received anodal, cathodal, or sham HD-tDCS over M1 (1 mA for 20 min) in different sessions, in which montage has the advantage of producing more focal stimulation. Using a cold pressor test, several indices reflecting the sensitivity to cold pain were measured immediately after HD-tDCS stimulation, such as cold pain threshold and tolerance and cold pain intensity and unpleasantness ratings. Results showed that only anodal HD-tDCS significantly increased cold pain threshold when compared with sham stimulation. Neither anodal nor cathodal HD-tDCS showed significant analgesic effects on cold pain tolerance, pain intensity, and unpleasantness ratings. Correlation analysis revealed that individuals that a had lower level of attentional bias to negative information benefited more from attenuating pain intensity rating induced by anodal HD-tDCS. Therefore, single-session anodal HD-tDCS modulates the sensory-discriminative aspect of pain perception as indexed by the increased pain threshold. In addition, the modulating effects of HD-tDCS on attenuating pain intensity to suprathreshold pain could be influenced by the participant’s negative attentional bias, which deserves to be taken into consideration in the clinical applications.
Collapse
Affiliation(s)
- Xiaoyun Li
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Xinxin Lin
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Junjie Yao
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Shengxiong Chen
- Medical Rehabilitation Center, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Yu Hu
- Medical Rehabilitation Center, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Jiang Liu
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Richu Jin
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Richu Jin,
| |
Collapse
|
103
|
Zarei AA, Jensen W, Faghani Jadidi A, Lontis R, Atashzar SF. Gamma-band Enhancement of Functional Brain Connectivity Following Transcutaneous Electrical Nerve Stimulation. J Neural Eng 2022; 19. [PMID: 35234662 DOI: 10.1088/1741-2552/ac59a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Transcutaneous electrical nerve stimulation (TENS) has been suggested as a possible non-invasive pain treatment. However, the underlying mechanism of the analgesic effect of TENS and how brain network functional connectivity is affected following the use of TENS is not yet fully understood. The purpose of this study was to investigate the effect of high-frequency TENS on the alternation of functional brain network connectivity and the corresponding topographical changes, besides perceived sensations. APPROACH Forty healthy subjects participated in this study. EEG data and sensory profiles were recorded before and up to an hour following high-frequency TENS (100 Hz) in sham and intervention groups. Brain source activity from EEG data was estimated using the LORETA algorithm. In order to generate the brain connectivity network, the Phase lag index was calculated for all pair-wise connections of eight selected brain areas over six different frequency bands (i.e., δ, θ, α, β, γ, and 0.5-90 Hz). MAIN RESULTS The results suggested that the functional connectivity between the primary somatosensory cortex (SI) and the anterior cingulate cortex (ACC), in addition to functional connectivity between S1 and the medial prefrontal cortex (mPFC), were significantly increased in the gamma-band, following the TENS intervention. Additionally, using graph theory, several significant changes were observed in global and local characteristics of functional brain connectivity in gamma-band. SIGNIFICANCE Our observations in this paper open a neuropsychological window of understanding the underlying mechanism of TENS and the corresponding changes in functional brain connectivity, simultaneously with alternation in sensory perception.
Collapse
Affiliation(s)
- Ali Asghar Zarei
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg Universitet, Fredrik Bajers Vej 7 D3, Aalborg, 9220, DENMARK
| | - Winnie Jensen
- Center for Sensory-Motor Interaction Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, 9220 Aalborg, Aalborg, 9220, DENMARK
| | - Armita Faghani Jadidi
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg Universitet, Fredrik Bajers Vej 7 D3, Aalborg, 9220, DENMARK
| | - Romulus Lontis
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg Universitet, Fredrik Bajers Vej 7 D3, Aalborg, 9220, DENMARK
| | - S Farokh Atashzar
- Departments of Electrical and Computer Engineering, and Mechanical and Aerospace Engineering, New York University, 5 MetroTech Center #266D Brooklyn, NY 11201, New York, New York, NY 11201, UNITED STATES
| |
Collapse
|
104
|
Late responses in the anterior insula reflect the cognitive component of pain: evidence of nonpain processing. Pain Rep 2022; 7:e984. [PMID: 35187379 PMCID: PMC8812601 DOI: 10.1097/pr9.0000000000000984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. Distinguishing sensory and cognitive aspects of pain-related insular activity and the temporal profile of anterior insula activity suggested a key role of cognitive modulation. Introduction: Pain is a complex experience influenced by sensory and psychological factors. The insula is considered to be a core part of the pain network in the brain. Previous studies have suggested a relationship between the posterior insula (PI) and sensory processing, and between the anterior insula (AI) and cognitive–affective factors. Objectives: Our aim was to distinguish sensory and cognitive responses in pain-related insular activities. Methods: We recorded spatiotemporal insular activation patterns of healthy participants (n = 20) during pain or tactile processing with painful or nonpainful movie stimuli, using a magnetoencephalography. We compared the peak latency between PI and AI activities in each stimulus condition, and between pain and tactile processing in each response. The peak latency and amplitude between different movies were then examined to explore the effects of cognitive influence. A visual analogue scale was used to assess subjective perception. Results: The results revealed one clear PI activity and 2 AI activities (early and late) in insular responses induced by pain/tactile stimulation. The early response transmitted from the PI to AI was observed during sensory-associated brain activity, whereas the late AI response was observed during cognitive-associated activity. In addition, we found that painful movie stimuli had a significant influence on both late AI activity and subjective perception, caused by nonpainful actual stimulation. Conclusions: The current findings suggested that late AI activation reflects the processing of cognitive pain information, whereas the PI and early AI responses reflect sensory processing.
Collapse
|
105
|
Pellicer F, Ortega-Legaspi JM, Martín R, Solís-Nájera S, Magis-Weinberg L, León-Olea M, Graff-Guerrero A, de la Fuente-Sandoval C, Rodriguez AO. Tracking the Temporal Footprint Effect of Thermonociception and Denervation on the Brain’s Pain Matrix: fMRI and BOLD Study in Rats. J Pain Res 2022; 15:857-865. [PMID: 35386425 PMCID: PMC8977223 DOI: 10.2147/jpr.s349840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/11/2022] [Indexed: 12/05/2022] Open
Abstract
Objective Pain constitutes an essential alarm for preserving the organism’s integrity. Damage to the nervous system produces a pathological condition known as neuropathic pain. Purpose Blood oxygenation level-dependent (BOLD) and functional magnetic resonance imaging (fMRI) have been widely used to map neuroanatomy and the active regions of interest (ROI) of nociceptive processing. Our study explored the brain’s BOLD response in rats after thermal noxious stimulation, immediately after sciatic nerve damage and during 75 minutes after surgical lesion of the sciatic nerve. Methods Nine male Wistar rats were tested; the experiments were performed on a 7-Tesla /21-cm Varian Agilent system. This approach allowed, for the first time, to measure in vivo the BOLD changes in brain regions involved with the pain process: cingulated (ACC), somatosensory (S1), and insular cortices (IC), as well as thalamus (Th) and ventral tegmental area (VTA) related with acute thermal pain and during the early stages of sciatic denervation that produce neuropathic pain. Results During thermonociception scan, all subjects showed BOLD activation in the ROIs determined as ACC, S1, Th, IC and VTA. After denervation, these regions continued to show activation with a slow decrement in intensity for the duration of the experiment. The results suggest that these brain structures are overactive during the genesis of neuropathic pain. Conclusion The study shows for the first time continuous activation of the pain matrix following an acute thermal nociceptive stimulus followed by neuropathic damage. These results have given insight into the early stages of the development of neuropathic pain in vivo.
Collapse
Affiliation(s)
- Francisco Pellicer
- Laboratorio de Neurofisiología Integrativa, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, CDMX, México
- Correspondence: Francisco Pellicer, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México Xochimilco 101, San Lorenzo Huipulco, Alcaldía Tlalpan, CDMX, 14370, México, Tel +52 55 41605063, Email
| | - Juan M Ortega-Legaspi
- Department of Medicine, Division of Cardiovascular Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rodrigo Martín
- Departamento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana Iztapalapa, CDMX, México
| | - Sergio Solís-Nájera
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, CDMX, México
| | - Lucía Magis-Weinberg
- Department of Psychology, University of Washington Guthrie Hall (GTH), Seattle, WA, USA
| | - Martha León-Olea
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, CDMX, México
| | - Ariel Graff-Guerrero
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Camilo de la Fuente-Sandoval
- Laboratorio de Psiquiatría Experimental, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, CDMX, México
| | - Alfredo O Rodriguez
- Departamento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana Iztapalapa, CDMX, México
| |
Collapse
|
106
|
Baron M, Devor M. Might pain be experienced in the brainstem rather than in the cerebral cortex? Behav Brain Res 2022; 427:113861. [DOI: 10.1016/j.bbr.2022.113861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022]
|
107
|
Medeiros P, Medeiros AC, Coimbra JPC, de Paiva Teixeira LEP, Salgado-Rohner CJ, da Silva JA, Coimbra NC, de Freitas RL. Physical, Emotional, and Social Pain During COVID-19 Pandemic-Related Social Isolation. TRENDS IN PSYCHOLOGY 2022. [PMCID: PMC8886700 DOI: 10.1007/s43076-022-00149-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The socio-emotional condition during the COVID-19 pandemic subsidises the (re)modulation of interactive neural circuits underlying risk assessment behaviour at the physical, emotional, and social levels. Experiences of social isolation, exclusion, or affective loss are generally considered some of the most “painful” things that people endure. The threats of social disconnection are processed by some of the same neural structures that process basic threats to survival. The lack of social connection can be “painful” due to an overlap in the neural circuitry responsible for both physical and emotional pain related to feelings of social rejection. Indeed, many of us go to great lengths to avoid situations that may engender these experiences. Accordingly, this work focuses on pandemic times; the somatisation mentioned above seeks the interconnection and/or interdependence between neural systems related to emotional and cognitive processes such that a person involved in an aversive social environment becomes aware of himself, others, and the threatening situation experienced and takes steps to avoid daily psychological and neuropsychiatric effects. Social distancing during isolation evokes the formation of social distress, increasing the intensity of learned fear that people acquire, consequently enhancing emotional and social pain.
Collapse
Affiliation(s)
- Priscila Medeiros
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, São Paulo, Ribeirão Preto 14049-900 Brazil
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, São Paulo, Ribeirão Preto 14049-900 Brazil
| | - Ana Carolina Medeiros
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, São Paulo, Ribeirão Preto 14049-900 Brazil
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, São Paulo, Ribeirão Preto 14049-900 Brazil
- Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, São Paulo, Ribeirão Preto 14050-220 Brazil
| | - Jade Pisssamiglio Cysne Coimbra
- Pontificial Catholic University of Campinas (PUC-Campinas), Prof Dr Euryclides de Jesus Zerbini Str., 1516, Parque Rural Fazenda Santa Cândida, Campinas, São Paulo, 13087-571 Brazil
| | | | - Carlos José Salgado-Rohner
- NeuroSmart Lab, International School of Economics and Administrative Sciences, Universidad de La Sabana, Chia, Colombia
| | - José Aparecido da Silva
- Laboratory of Psychophysics, Perception, Psychometrics, and Pain, Department of Psychology, Ribeirão Preto School of Philosophy, Sciences and Literature of the University of São Paulo (FFCLRP-USP), São Paulo, Ribeirão Preto 14049-901 Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, São Paulo, Ribeirão Preto 14049-900 Brazil
- Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, São Paulo, Ribeirão Preto 14050-220 Brazil
| | - Renato Leonardo de Freitas
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, São Paulo, Ribeirão Preto 14049-900 Brazil
- Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, São Paulo, Ribeirão Preto 14050-220 Brazil
- Biomedical Sciences Institute, Federal University of Alfenas (UNIFAL-MG), Gabriel Monteiro da Silva Str., 700, Alfenas, Minas Gerais 37130-000 Brazil
| |
Collapse
|
108
|
Pondelis NJ, Moulton EA. Supraspinal Mechanisms Underlying Ocular Pain. Front Med (Lausanne) 2022; 8:768649. [PMID: 35211480 PMCID: PMC8862711 DOI: 10.3389/fmed.2021.768649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/27/2021] [Indexed: 12/04/2022] Open
Abstract
Supraspinal mechanisms of pain are increasingly understood to underlie neuropathic ocular conditions previously thought to be exclusively peripheral in nature. Isolating individual causes of centralized chronic conditions and differentiating them is critical to understanding the mechanisms underlying neuropathic eye pain and ultimately its treatment. Though few functional imaging studies have focused on the eye as an end-organ for the transduction of noxious stimuli, the brain networks related to pain processing have been extensively studied with functional neuroimaging over the past 20 years. This article will review the supraspinal mechanisms that underlie pain as they relate to the eye.
Collapse
Affiliation(s)
- Nicholas J Pondelis
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Eric A Moulton
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
109
|
Gray matter alteration in medication overuse headache: a coordinates-based activation likelihood estimation meta-analysis. Brain Imaging Behav 2022; 16:2307-2319. [PMID: 35143020 PMCID: PMC9581858 DOI: 10.1007/s11682-022-00634-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 11/02/2022]
Abstract
Medication overuse headache (MOH) is a prevalent secondary headache, bringing heavy economic burden and neuropsychological damage. Neuroimaging studies on the disease reported divergent results. To merge the reported neuroimaging alterations in MOH patients and explore a pathophysiological mechanism of this disorder. A meta-analytic activation likelihood estimation (ALE) analysis method was used. We systematically searched English and Chinese databases for both morphological and functional neuroimaging studies published before Nov 18, 2021. Reported altered brain regions and the stereotactic coordinates of their peaks were extracted and pooled by GingerALE using Gaussian probability distribution into brain maps, illustrating converged regions of alteration among studies. We identified 927 articles, of which five studies on gray matter changes, using voxel-based morphometry (VBM) were eventually included for ALE analysis, with 344 subjects and 54 coordinates put into GingerALE. No functional magnetic resonance imaging (fMRI) or positron emission topography (PET) studies were included for pooling. Compared with healthy controls (HCs), MOH featured increased gray matter density in midbrain, striatum, cingulate, inferior parietal cortex and cerebellum (P < 0.001 uncorrected), whereas decreased gray matter density in orbitofrontal cortex (P < 0.05, family-wise error), frontal, insular and parietal cortices (P < 0.001 uncorrected). Withdrawal of analgesics led to decreased gray matter density in superior temporal gyrus, cuneus, midbrain and cerebellum (P < 0.001 uncorrected). This meta-analysis confirmed that medication overuse headache is associated with morphologic alteration in the reward system, the prefrontal cortex and a reversible modification in the pain network. Further functional imaging paradigms and longitudinal studies are required for a more definite conclusion and a causal mechanism.
Collapse
|
110
|
Li J, Zhang G, Wang J, Liu D, Wan C, Fang J, Wu D, Zhou Y, Tian T, Zhu W. Experience-dependent associations between distinct subtypes of childhood trauma and brain function and architecture. Quant Imaging Med Surg 2022; 12:1172-1185. [PMID: 35111614 DOI: 10.21037/qims-21-435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/31/2021] [Indexed: 11/06/2022]
Abstract
Background Childhood trauma can alter brain-development trajectories and lead to a greater risk of psychopathology developing in adulthood. For this reason, understanding experience-dependent brain abnormalities associated with different trauma subtypes is crucial for identifying developmental processes disrupted by unfavorable early environments and for proposing early intervention measures to reduce trauma's negative effects. Methods This study used multimodal magnetic resonance imaging (MRI) to explore the neural correlates of distinct subtypes of childhood trauma. We recruited a large community sample of young adults (mean age, 24.1, SD 1.9 years) who completed a Childhood Trauma Questionnaire, were given behavioral scores, and underwent multimodal MRI. To quantify brain changes, we used functional connectivity density (FCD) mapping based on whole brain analysis, regions of interest (ROI) analysis, and morphological measurements. Experience-dependent brain abnormalities were identified by multivariable linear regression. Results We found that diverse brain regions in the FCD mapping were significantly related to 4 trauma subtypes and belonged to different cognitive components used for various behaviors. Experience-related influences on functional circuits and brain morphology were observed in extensive regions, including the sensorimotor, cingulum, accumbens, insula, and frontal-parietal areas, as well as in regions within the default mode network. Conclusions Identifying specific regions or systems may be a valid strategy for understanding the pathogenesis and development process of psychiatric disorders in people with different traumatic experiences and may facilitate better-targeted intervention strategies for maltreated children.
Collapse
Affiliation(s)
- Jia Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guiling Zhang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changhua Wan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jicheng Fang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiran Zhou
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian Tian
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
111
|
Oliva V, Hartley-Davies R, Moran R, Pickering AE, Brooks JC. Simultaneous brain, brainstem and spinal cord pharmacological-fMRI reveals involvement of an endogenous opioid network in attentional analgesia. eLife 2022; 11:71877. [PMID: 35080494 PMCID: PMC8843089 DOI: 10.7554/elife.71877] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Pain perception is decreased by shifting attentional focus away from a threatening event. This attentional analgesia engages parallel descending control pathways from anterior cingulate (ACC) to locus coeruleus, and ACC to periaqueductal grey (PAG) – rostral ventromedial medulla (RVM), indicating possible roles for noradrenergic or opioidergic neuromodulators. To determine which pathway modulates nociceptive activity in humans, we used simultaneous whole brain-spinal cord pharmacological-fMRI (N = 39) across three sessions. Noxious thermal forearm stimulation generated somatotopic-activation of dorsal horn (DH) whose activity correlated with pain report and mirrored attentional pain modulation. Activity in an adjacent cluster reported the interaction between task and noxious stimulus. Effective connectivity analysis revealed that ACC interacts with PAG and RVM to modulate spinal cord activity. Blocking endogenous opioids with Naltrexone impairs attentional analgesia and disrupts RVM-spinal and ACC-PAG connectivity. Noradrenergic augmentation with Reboxetine did not alter attentional analgesia. Cognitive pain modulation involves opioidergic ACC-PAG-RVM descending control which suppresses spinal nociceptive activity.
Collapse
Affiliation(s)
- Valeria Oliva
- Department of Anesthesiology, University of California, San Diego, La Jolla, United States
| | - Ron Hartley-Davies
- School of Psychological Science, University of Bristol, Bristol, United Kingdom
| | - Rosalyn Moran
- Department of Neuroimaging, King's College London, London, United Kingdom
| | - Anthony E Pickering
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
112
|
Pagé MG, Gauvin L, Sylvestre MP, Nitulescu R, Dyachenko A, Choinière M. An Ecological Momentary Assessment Study of Pain Intensity Variability: Ascertaining Extent, Predictors, and Associations With Quality of Life, Interference and Health Care Utilization Among Individuals Living With Chronic Low Back Pain. THE JOURNAL OF PAIN 2022; 23:1151-1166. [PMID: 35074499 DOI: 10.1016/j.jpain.2022.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/16/2022]
Abstract
This ecological momentary assessment (EMA) study examined the extent of pain intensity variability among 140 individuals with chronic low back pain and explored predictors of such variability and psychosocial and health care utilization outcomes. Individuals completed momentary pain intensity reports (0-10 numeric rating scale) several times daily for two periods of seven consecutive days, one month apart. Participants also completed online questionnaires at baseline which tapped into pain characteristics, pain-related catastrophization, kinesiophobia, activity patterns, and depression and anxiety symptoms. Questionnaires assessing quality of life and health care utilization were administered online one month after completion of the last EMA report. Data were analyzed using linear hierarchical location-scale models. Results showed that pain intensity fluctuated over the course of a week as shown by an average standard deviation of 1.2. The extent of variability in pain intensity scores was heterogeneous across participants but stable over assessment periods. Patients' baseline characteristics along with psychosocial and health care utilization outcomes were not significantly associated with pain intensity variability. We conclude that pain intensity variability differs across patients yet correlates remain elusive. There is an important gap in our knowledge of what affects this variability. Future EMA studies should replicate and extend current findings. PERSPECTIVE: This study provides evidence indicating that there is substantial variability in momentary reports of pain intensity among individuals living with chronic low back pain. However, risk and protective factors for greater lability of pain are elusive as is evidence that greater pain intensity variability results in differential health care utilization.
Collapse
Affiliation(s)
- M Gabrielle Pagé
- Centre de recherche du Centre hospitalier de l'Université de Montréal & Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.
| | - Lise Gauvin
- Centre de recherche du Centre hospitalier de l'Université de Montréal & Department of Social and Preventive Medicine, École de santé publique de l'Université de Montréal, Montreal, Quebec, Canada
| | - Marie-Pierre Sylvestre
- Centre de recherche du Centre hospitalier de l'Université de Montréal & Department of Social and Preventive Medicine, École de santé publique de l'Université de Montréal, Montreal, Quebec, Canada
| | - Roy Nitulescu
- Centre de recherche du Centre hospitalier de l'Université de Montréal & Centre d'intégration et d'analyse en données médicales du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Alina Dyachenko
- Centre de recherche du Centre hospitalier de l'Université de Montréal & Centre d'intégration et d'analyse en données médicales du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Manon Choinière
- Centre de recherche du Centre hospitalier de l'Université de Montréal & Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
113
|
van den Berg B, Manoochehri M, Schouten AC, van der Helm FCT, Buitenweg JR. Nociceptive Intra-epidermal Electric Stimulation Evokes Steady-State Responses in the Secondary Somatosensory Cortex. Brain Topogr 2022; 35:169-181. [PMID: 35050427 PMCID: PMC8860817 DOI: 10.1007/s10548-022-00888-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
Abstract
Recent studies have established the presence of nociceptive steady-state evoked potentials (SSEPs), generated in response to thermal or intra-epidermal electric stimuli. This study explores cortical sources and generation mechanisms of nociceptive SSEPs in response to intra-epidermal electric stimuli. Our method was to stimulate healthy volunteers (n = 22, all men) with 100 intra-epidermal pulse sequences. Each sequence had a duration of 8.5 s, and consisted of pulses with a pulse rate between 20 and 200 Hz, which was frequency modulated with a multisine waveform of 3, 7 and 13 Hz (n = 10, 1 excluded) or 3 and 7 Hz (n = 12, 1 excluded). As a result, evoked potentials in response to stimulation onset and contralateral SSEPs at 3 and 7 Hz were observed. The SSEPs at 3 and 7 Hz had an average time delay of 137 ms and 143 ms respectively. The evoked potential in response to stimulation onset had a contralateral minimum (N1) at 115 ms and a central maximum (P2) at 300 ms. Sources for the multisine SSEP at 3 and 7 Hz were found through beamforming near the primary and secondary somatosensory cortex. Sources for the N1 were found near the primary and secondary somatosensory cortex. Sources for the N2-P2 were found near the supplementary motor area. Harmonic and intermodulation frequencies in the SSEP power spectrum remained below a detectable level and no evidence for nonlinearity of nociceptive processing, i.e. processing of peripheral firing rate into cortical evoked potentials, was found.
Collapse
Affiliation(s)
- Boudewijn van den Berg
- Biomedical Signals and Systems, Technical Medical Centre, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands.
| | - Mana Manoochehri
- Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Alfred C Schouten
- Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA.,Biomechanical Engineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Frans C T van der Helm
- Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Jan R Buitenweg
- Biomedical Signals and Systems, Technical Medical Centre, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
114
|
Symptom dimensions to address heterogeneity in tinnitus. Neurosci Biobehav Rev 2022; 134:104542. [PMID: 35051524 DOI: 10.1016/j.neubiorev.2022.104542] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 01/10/2023]
Abstract
Tinnitus, the auditory phantom percept, is a well-known heterogenous disorder with multiple subtypes. Researchers and clinicians have tried to classify these subtypes according to clinical profiles, aetiologies, and response to treatment with little success. The occurrence of overlapping tinnitus subtypes suggests that the disorder exists along a continuum of severity, with no clear distinct boundaries. In this perspective, we propose a neuro-mechanical framework, viewing tinnitus as a dimensional disorder which is a complex interplay of its behavioural, biological and neurophysiological phenotypes. Moreover, we explore the potential of these dimensions as interacting networks without a common existing cause, giving rise to tinnitus. Considering tinnitus as partially overlapping, dynamically changing, interacting networks, each representing a different aspect of the unified tinnitus percept, suggests that the interaction of these networks determines the phenomenology of the tinnitus, ultimately leading to a dimensional spectrum, rather than a categorical subtyping. A combination of a robust theoretical framework and strong empirical evidence can advance our understanding of the functional mechanisms underlying tinnitus and ultimately, improve treatment strategies.
Collapse
|
115
|
Damascelli M, Woodward TS, Sanford N, Zahid HB, Lim R, Scott A, Kramer JK. Multiple Functional Brain Networks Related to Pain Perception Revealed by fMRI. Neuroinformatics 2022; 20:155-172. [PMID: 34101115 PMCID: PMC9537130 DOI: 10.1007/s12021-021-09527-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 01/07/2023]
Abstract
The rise of functional magnetic resonance imaging (fMRI) has led to a deeper understanding of cortical processing of pain. Central to these advances has been the identification and analysis of "functional networks", often derived from groups of pre-selected pain regions. In this study our main objective was to identify functional brain networks related to pain perception by examining whole-brain activation, avoiding the need for a priori selection of regions. We applied a data-driven technique-Constrained Principal Component Analysis for fMRI (fMRI-CPCA)-that identifies networks without assuming their anatomical or temporal properties. Open-source fMRI data collected during a thermal pain task (33 healthy participants) were subjected to fMRI-CPCA for network extraction, and networks were associated with pain perception by modelling subjective pain ratings as a function of network activation intensities. Three functional networks emerged: a sensorimotor response network, a salience-mediated attention network, and the default-mode network. Together, these networks constituted a brain state that explained variability in pain perception, both within and between individuals, demonstrating the potential of data-driven, whole-brain functional network techniques for the analysis of pain imaging data.
Collapse
Affiliation(s)
- Matteo Damascelli
- grid.17091.3e0000 0001 2288 9830Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC V6T 1Z4 Canada ,BC Mental Health & Addictions Research Institute, BC Children’s Hospital Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4 Canada ,grid.443934.d0000 0004 6336 7598ICORD, Blusson Spinal Cord Centre, 818 West 10th Ave, Vancouver, BC V5Z 1M9 Canada
| | - Todd S. Woodward
- BC Mental Health & Addictions Research Institute, BC Children’s Hospital Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4 Canada ,grid.17091.3e0000 0001 2288 9830Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1 Canada
| | - Nicole Sanford
- BC Mental Health & Addictions Research Institute, BC Children’s Hospital Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4 Canada ,grid.17091.3e0000 0001 2288 9830Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1 Canada
| | - Hafsa B. Zahid
- BC Mental Health & Addictions Research Institute, BC Children’s Hospital Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4 Canada ,grid.17091.3e0000 0001 2288 9830Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1 Canada
| | - Ryan Lim
- BC Mental Health & Addictions Research Institute, BC Children’s Hospital Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4 Canada
| | - Alexander Scott
- grid.17091.3e0000 0001 2288 9830Department of Physical Therapy, University of British Columbia, 2177 Wesbrook Mall, Vancouver, BC V6T 1Z3 Canada ,grid.17091.3e0000 0001 2288 9830Centre for Hip Health and Mobility, Robert H. N. Ho Research Centre, 2635 Laurel St, Vancouver, BC V5Z 1M9 Canada
| | - John K. Kramer
- grid.443934.d0000 0004 6336 7598ICORD, Blusson Spinal Cord Centre, 818 West 10th Ave, Vancouver, BC V5Z 1M9 Canada ,grid.17091.3e0000 0001 2288 9830School of Kinesiology, University of British Columbia, 6081 University Blvd, Vancouver, BC V6T 1Z1 Canada
| |
Collapse
|
116
|
Cardinale V, Demirakca T, Gradinger T, Sack M, Ruf M, Kleindienst N, Schmitz M, Schmahl C, Baumgärtner U, Ende G. Cerebral processing of sharp mechanical pain measured with arterial spin labeling. Brain Behav 2022; 12:e2442. [PMID: 34878219 PMCID: PMC8785639 DOI: 10.1002/brb3.2442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Arterial spin labeling (ASL) is a functional neuroimaging technique that has been frequently used to investigate acute pain states. A major advantage of ASL as opposed to blood-oxygen-level-dependent functional neuroimaging is its applicability for low-frequency designs. As such, ASL represents an interesting option for studies in which repeating an experimental event would reduce its ecological validity. Whereas most ASL pain studies so far have used thermal stimuli, to our knowledge, no ASL study so far has investigated pain responses to sharp mechanical pain. METHODS As a proof of concept, we investigated whether ASL has the sensitivity to detect brain activation within core areas of the nociceptive network in healthy controls following a single stimulation block based on 96 s of mechanical painful stimulation using a blunt blade. RESULTS We found significant increases in perfusion across many regions of the nociceptive network such as primary and secondary somatosensory cortices, premotor cortex, posterior insula, inferior parietal cortex, parietal operculum, temporal gyrus, temporo-occipital lobe, putamen, and the cerebellum. Contrary to our hypothesis, we did not find any significant increase within ACC, thalamus, or PFC. Moreover, we were able to detect a significant positive correlation between pain intensity ratings and pain-induced perfusion increase in the posterior insula. CONCLUSION We demonstrate that ASL is suited to investigate acute pain in a single event paradigm, although to detect activation within some regions of the nociceptive network, the sensitivity of our paradigm seemed to be limited. Regarding the posterior insula, our paradigm was sensitive enough to detect a correlation between pain intensity ratings and pain-induced perfusion increase. Previous experimental pain studies have proposed that intensity coding in this region may be restricted to thermal stimulation. Our result demonstrates that the posterior insula encodes intensity information for mechanical stimuli as well.
Collapse
Affiliation(s)
- Vita Cardinale
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Traute Demirakca
- Department of Neuroimaging and Core Facility ZIPP, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tobias Gradinger
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Markus Sack
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Ruf
- Department of Neuroimaging and Core Facility ZIPP, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nikolaus Kleindienst
- Institute of Psychiatric and Psychosomatic Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marius Schmitz
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ulf Baumgärtner
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MTCN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Institute of Cognitive and Affective Neuroscience (ICAN), Medical School Hamburg, Hamburg, Germany
| | - Gabriele Ende
- Department of Neuroimaging and Core Facility ZIPP, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
117
|
Vinberg K, Rosén J, Kastrati G, Ahs F. Whole brain correlates of individual differences in skin conductance responses during discriminative fear conditioning to social cues. eLife 2022; 11:69686. [PMID: 36413209 PMCID: PMC9721615 DOI: 10.7554/elife.69686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/21/2022] [Indexed: 11/23/2022] Open
Abstract
Understanding the neural basis for individual differences in the skin conductance response (SCR) during discriminative fear conditioning may inform on our understanding of autonomic regulation in fear-related psychopathology. Previous region-of-interest (ROI) analyses have implicated the amygdala in regulating conditioned SCR, but whole brain analyses are lacking. This study examined correlations between individual differences in SCR during discriminative fear conditioning to social stimuli and neural activity throughout the brain, by using data from a large functional magnetic resonance imaging study of twins (N = 285 individuals). Results show that conditioned SCR correlates with activity in the dorsal anterior cingulate cortex/anterior midcingulate cortex, anterior insula, bilateral temporoparietal junction, right frontal operculum, bilateral dorsal premotor cortex, right superior parietal lobe, and midbrain. A ROI analysis additionally showed a positive correlation between amygdala activity and conditioned SCR in line with previous reports. We suggest that the observed whole brain correlates of SCR belong to a large-scale midcingulo-insular network related to salience detection and autonomic-interoceptive processing. Altered activity within this network may underlie individual differences in conditioned SCR and autonomic aspects of psychopathology.
Collapse
Affiliation(s)
- Kevin Vinberg
- Department of Psychology and Social Work, Mid Sweden UniversityÖstersundSweden
| | - Jörgen Rosén
- Department of Psychology and Social Work, Mid Sweden UniversityÖstersundSweden,Department of Psychology, Uppsala UniversityUppsalaSweden
| | - Granit Kastrati
- Department of Psychology and Social Work, Mid Sweden UniversityÖstersundSweden,Department of Clinical Neuroscience, Karolinska InstitutetStockholmSweden
| | - Fredrik Ahs
- Department of Psychology and Social Work, Mid Sweden UniversityÖstersundSweden
| |
Collapse
|
118
|
Goel S, Choudhary S, Saxena A, Sonkar M. The myth and half-truths of fetal pain decrypted: A metaverse. INDIAN JOURNAL OF PAIN 2022. [DOI: 10.4103/ijpn.ijpn_5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
119
|
Geisler M, Ritter A, Herbsleb M, Bär K, Weiss T. Neural mechanisms of pain processing differ between endurance athletes and nonathletes: A functional connectivity magnetic resonance imaging study. Hum Brain Mapp 2021; 42:5927-5942. [PMID: 34524716 PMCID: PMC8596969 DOI: 10.1002/hbm.25659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/25/2021] [Accepted: 08/31/2021] [Indexed: 11/11/2022] Open
Abstract
Pain perception and the ability to modulate arising pain vary tremendously between individuals. It has been shown that endurance athletes possess higher pain tolerance thresholds and a greater effect of conditioned pain modulation than nonathletes, both indicating a more efficient system of endogenous pain inhibition. The aim of the present study was to focus on the neural mechanisms of pain processing in endurance athletes that have not been investigated yet. Therefore, we analyzed the pain processing of 18 male athletes and 19 healthy male nonathletes using functional magnetic resonance imaging. We found lower pain ratings in endurance athletes compared to nonathletes to physically identical painful stimulation. Furthermore, brain activations of athletes versus nonathletes during painful heat stimulation revealed reduced activation in several brain regions that are typically activated by nociceptive stimulation. This included the thalamus, primary and secondary somatosensory cortex, insula, anterior cingulate cortex, midcingulate cortex, dorsolateral prefrontal cortex, and brain stem (BS). Functional connectivity analyses revealed stronger network during painful heat stimulation in athletes between the analyzed brain regions except for connections with the BS that showed reduced functional connectivity in athletes. Post hoc correlation analyses revealed associations of the subject's fitness level and the brain activation strengths, subject's fitness level and functional connectivity, and brain activation strengths and functional connectivity. Together, our results demonstrate for the first time that endurance athletes do not only differ in behavioral variables compared to nonathletes, but also in the neural processing of pain elicited by noxious heat.
Collapse
Affiliation(s)
- Maria Geisler
- Department of Clinical PsychologyFriedrich‐Schiller‐University JenaJenaGermany
| | - Alexander Ritter
- Section of Neurological Rehabilitation, Hans–Berger Department of NeurologyJena University HospitalJenaGermany
| | - Marco Herbsleb
- Department of Sports Medicine and Health PromotionFriedrich‐Schiller‐University JenaJenaGermany
| | - Karl‐Jürgen Bär
- Department of Psychosomatic Medicine and PsychotherapyUniversity Hospital JenaJenaGermany
| | - Thomas Weiss
- Department of Clinical PsychologyFriedrich‐Schiller‐University JenaJenaGermany
| |
Collapse
|
120
|
Peek AL, Leaver AM, Foster S, Puts NA, Oeltzschner G, Henderson L, Galloway G, Ng K, Refshauge K, Rebbeck T. Increase in ACC GABA+ levels correlate with decrease in migraine frequency, intensity and disability over time. J Headache Pain 2021; 22:150. [PMID: 34903165 PMCID: PMC8903525 DOI: 10.1186/s10194-021-01352-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background An imbalance between inhibitory and excitatory neurometabolites has been implicated in chronic pain. Prior work identified elevated levels of Gamma-aminobutyric acid + macromolecules (“GABA+”) using magnetic resonance spectroscopy (MRS) in people with migraine. What is not understood is whether this increase in GABA+ is a cause, or consequence of living with, chronic migraine. Therefore, to further elucidate the nature of the elevated GABA+ levels reported in migraine, this study aimed to observe how GABA+ levels change in response to changes in the clinical characteristics of migraine over time. Methods We observed people with chronic migraine (ICHD-3) over 3-months as their treatment was escalated in line with the Australian Pharmaceutical Benefits Scheme (PBS). Participants underwent an MRS scan and completed questionnaires regarding migraine frequency, intensity (HIT-6) and disability (WHODAS) at baseline and following the routine 3 months treatment escalation to provide the potential for some participants to recover. We were therefore able to monitor changes in brain neurochemistry as clinical characteristics potentially changed over time. Results The results, from 18 participants who completed both baseline and follow-up measures, demonstrated that improvements in migraine frequency, intensity and disability were associated with an increase in GABA+ levels in the anterior cingulate cortex (ACC); migraine frequency (r = − 0.51, p = 0.03), intensity (r = − 0.51, p = 0.03) and disability (r = − 0.53, p = 0.02). However, this was not seen in the posterior cingulate gyrus (PCG). An incidental observation found those who happened to have their treatment escalated with CGRP-monoclonal antibodies (CGRP-mAbs) (n = 10) had a greater increase in ACC GABA+ levels (mean difference 0.54 IU IQR [0.02 to 1.05], p = 0.05) and reduction in migraine frequency (mean difference 10.3 IQR [2.52 to 18.07], p = 0.01) compared to those who did not (n = 8). Conclusion The correlation between an increase in ACC GABA+ levels with improvement in clinical characteristics of migraine, suggest previously reported elevated GABA+ levels may not be a cause of migraine, but a protective mechanism attempting to suppress further migraine attacks. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-021-01352-1.
Collapse
Affiliation(s)
- Aimie L Peek
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, 2141, Australia. .,NHMRC Centre of Research Excellence in Road Traffic Injury Recovery, Brisbane, Queensland, Australia.
| | - Andrew M Leaver
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, 2141, Australia
| | - Sheryl Foster
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, 2141, Australia.,Department of Radiology, Westmead Hospital, Hawkesbury Road, Westmead, New South Wales, 2145, Australia
| | - Nicolaas A Puts
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, Kings College London, London, UK
| | - Georg Oeltzschner
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Luke Henderson
- School of Medical Sciences, Brain and Mind Centre, University of Sydney, Camperdown, Australia
| | - Graham Galloway
- The University of Queensland, St Lucia, Queensland, 4072, Australia.,Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Karl Ng
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, 2141, Australia.,Department of Neurology, Royal North Shore Hospital, Reserve Road, St Leonards, New South Wales, 2065, Australia
| | - Kathryn Refshauge
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, 2141, Australia
| | - Trudy Rebbeck
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, 2141, Australia.,NHMRC Centre of Research Excellence in Road Traffic Injury Recovery, Brisbane, Queensland, Australia
| |
Collapse
|
121
|
Demichelis G, Pinardi C, Giani L, Medina JP, Gianeri R, Bruzzone MG, Becker B, Proietti A, Leone M, Chiapparini L, Ferraro S, Nigri A. Chronic cluster headache: A study of the telencephalic and cerebellar cortical thickness. Cephalalgia 2021; 42:444-454. [PMID: 34875879 DOI: 10.1177/03331024211058205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE Previous studies on brain morphological alterations in chronic cluster headache revealed inconsistent findings. METHOD The present cross-sectional explorative study determined telencephalic and cerebellar cortex thickness alterations in a relatively wide sample of chronic cluster headache patients (n = 28) comparing them to matched healthy individuals. RESULTS The combination of two highly robust state-of-the-art approaches for thickness estimation (Freesurfer, CERES), strengthened by functional characterization of the identified abnormal regions, revealed four main results: chronic cluster headache patients show 1) cortical thinning in the right middle cingulate cortex, left posterior insula, and anterior cerebellar lobe, regions involved in nociception's sensory and sensory-motor aspects and possibly in autonomic functions; 2) cortical thinning in the left anterior superior temporal sulcus and the left collateral/lingual sulcus, suggesting neuroplastic maladaptation in areas possibly involved in social cognition, which may promote psychiatric comorbidity; 3) abnormal functional connectivity among some of these identified telencephalic areas; 4) the identified telencephalic areas of cortical thinning present robust interaction, as indicated by the functional connectivity results, with the left posterior insula possibly playing a pivotal role. CONCLUSION The reported results constitute a coherent and robust picture of the chronic cluster headache brain. Our study paves the way for hypothesis-driven studies that might impact our understanding of the pathophysiology of this condition.
Collapse
Affiliation(s)
- Greta Demichelis
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Pinardi
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luca Giani
- Department of Neurology and Headache Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Jean Paul Medina
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ruben Gianeri
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Grazia Bruzzone
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Benjiamin Becker
- School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Alberto Proietti
- Department of Neurology and Headache Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Massimo Leone
- Department of Neurology and Headache Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luisa Chiapparini
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Ferraro
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Anna Nigri
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
122
|
Hu XS, Nascimento TD, DaSilva AF. Shedding light on pain for the clinic: a comprehensive review of using functional near-infrared spectroscopy to monitor its process in the brain. Pain 2021; 162:2805-2820. [PMID: 33990114 PMCID: PMC8490487 DOI: 10.1097/j.pain.0000000000002293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/29/2021] [Indexed: 11/27/2022]
Abstract
ABSTRACT Pain is a complex experience that involves sensation, emotion, and cognition. The subjectivity of the traditional pain measurement tools has expedited the interest in developing neuroimaging techniques to monitor pain objectively. Among noninvasive neuroimaging techniques, functional near-infrared spectroscopy (fNIRS) has balanced spatial and temporal resolution; yet, it is portable, quiet, and cost-effective. These features enable fNIRS to image the cortical mechanisms of pain in a clinical environment. In this article, we evaluated pain neuroimaging studies that used the fNIRS technique in the past decade. Starting from the experimental design, we reviewed the regions of interest, probe localization, data processing, and primary findings of these existing fNIRS studies. We also discussed the fNIRS imaging's potential as a brain surveillance technique for pain, in combination with artificial intelligence and extended reality techniques. We concluded that fNIRS is a brain imaging technique with great potential for objective pain assessment in the clinical environment.
Collapse
Affiliation(s)
- Xiao-Su Hu
- University of Michigan, School of Dentistry, Biologic & Materials Sciences Department, Hedache & Orofacial Pain Effort Lab
| | - Thiago D. Nascimento
- University of Michigan, School of Dentistry, Biologic & Materials Sciences Department, Hedache & Orofacial Pain Effort Lab
| | - Alexandre F. DaSilva
- University of Michigan, School of Dentistry, Biologic & Materials Sciences Department, Hedache & Orofacial Pain Effort Lab
| |
Collapse
|
123
|
Paul K, Tik M, Hahn A, Sladky R, Geissberger N, Wirth EM, Kranz GS, Pfabigan DM, Kraus C, Lanzenberger R, Lamm C, Windischberger C. Give me a pain that I am used to: distinct habituation patterns to painful and non-painful stimulation. Sci Rep 2021; 11:22929. [PMID: 34824311 PMCID: PMC8617189 DOI: 10.1038/s41598-021-01881-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 10/18/2021] [Indexed: 11/08/2022] Open
Abstract
Pain habituation is associated with a decrease of activation in brain areas related to pain perception. However, little is known about the specificity of these decreases to pain, as habituation has also been described for other responses like spinal reflexes and other sensory responses. Thus, it might be hypothesized that previously reported reductions in activation are not specifically related to pain habituation. For this reason, we performed a 3 T fMRI study using either painful or non-painful electrical stimulation via an electrode attached to the back of the left hand. Contrasting painful vs. non-painful stimulation revealed significant activation clusters in regions well-known to be related to pain processing, such as bilateral anterior and posterior insula, primary/secondary sensory cortices (S1/S2) and anterior midcingulate cortex (aMCC). Importantly, our results show distinct habituation patterns for painful (in aMCC) and non-painful (contralateral claustrum) stimulation, while similar habituation for both types of stimulation was identified in bilateral inferior frontal gyrus (IFG) and contralateral S2. Our findings thus distinguish a general habituation in somatosensory processing (S2) and reduced attention (IFG) from specific pain and non-pain related habituation effects where pain-specific habituation effects within the aMCC highlight a change in affective pain perception.
Collapse
Affiliation(s)
- Katharina Paul
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Martin Tik
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Ronald Sladky
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Nicole Geissberger
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Eva-Maria Wirth
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Georg S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Daniela M Pfabigan
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
- Department of Behavioural Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christoph Kraus
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Christian Windischberger
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
124
|
Broessner G, Ellerbrock I, Menz MM, Frank F, Verius M, Gaser C, May A. Repetitive T1 Imaging Influences Gray Matter Volume Estimations in Structural Brain Imaging. Front Neurol 2021; 12:755749. [PMID: 34777226 PMCID: PMC8581175 DOI: 10.3389/fneur.2021.755749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Voxel-based morphometry (VBM) is a widely used tool for studying structural patterns of brain plasticity, brain development and disease. The source of the T1-signal changes is not understood. Most of these changes are discussed to represent loss or possibly gain of brain gray matter and recent publications speculate also about non-structural changes affecting T1-signal. We investigated the potential of pain stimulation to ultra-short-term alter gray matter signal changes in pain relevant brain regions in healthy volunteers using a longitudinal design. Immediately following regional nociceptive input, we detected significant gray matter volume (GMV) changes in central pain processing areas, i.e. anterior cingulate and insula cortex. However, similar results were observed in a control group using the identical time intervals but without nociceptive painful input. These GMV changes could be reproduced in almost 100 scanning sessions enrolling 72 healthy individuals comprising repetitive magnetization-prepared rapid gradient-echo (MPRAGE) sequences. These data suggest that short-term longitudinal repetitive MPRAGE may produce significant GMV changes without any intervention. Future studies investigating brain plasticity should focus and specifically report a consistent timing at which time-point during the experiment the T1-weighted scan is conducted. There is a necessity of a control group for longitudinal imaging studies.
Collapse
Affiliation(s)
- Gregor Broessner
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Isabel Ellerbrock
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mareike M Menz
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Frank
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Verius
- Department of Neuroradiology, Medical University Innsbruck, Innsbruck, Austria
| | - Christian Gaser
- Departments of Neurology and Psychiatry, Jena University Hospital, Jena, Germany
| | - Arne May
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
125
|
Mercer Lindsay N, Chen C, Gilam G, Mackey S, Scherrer G. Brain circuits for pain and its treatment. Sci Transl Med 2021; 13:eabj7360. [PMID: 34757810 DOI: 10.1126/scitranslmed.abj7360] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Nicole Mercer Lindsay
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Biology, CNC Program, Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Chong Chen
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gadi Gilam
- Division of Pain Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sean Mackey
- Division of Pain Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,New York Stem Cell Foundation-Robertson Investigator, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
126
|
Brewer R, Murphy J, Bird G. Atypical interoception as a common risk factor for psychopathology: A review. Neurosci Biobehav Rev 2021; 130:470-508. [PMID: 34358578 PMCID: PMC8522807 DOI: 10.1016/j.neubiorev.2021.07.036] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/09/2021] [Accepted: 07/31/2021] [Indexed: 02/06/2023]
Abstract
The inadequacy of a categorial approach to mental health diagnosis is now well-recognised, with many authors, diagnostic manuals and funding bodies advocating a dimensional, trans-diagnostic approach to mental health research. Variance in interoception, the ability to perceive one's internal bodily state, is reported across diagnostic boundaries, and is associated with atypical functioning across symptom categories. Drawing on behavioural and neuroscientific evidence, we outline current research on the contribution of interoception to numerous cognitive and affective abilities (in both typical and clinical populations), and describe the interoceptive atypicalities seen in a range of psychiatric conditions. We discuss the role that interoception may play in the development and maintenance of psychopathology, as well as the ways in which interoception may differ across clinical presentations. A number of important areas for further research on the role of interoception in psychopathology are highlighted.
Collapse
Affiliation(s)
- Rebecca Brewer
- Department of Psychology, Royal Holloway, University of London, United Kingdom
| | - Jennifer Murphy
- Department of Psychology, Royal Holloway, University of London, United Kingdom.
| | - Geoffrey Bird
- Department of Experimental Psychology, University of Oxford, United Kingdom; Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| |
Collapse
|
127
|
Hasan MA, Vuckovic A, Qazi SA, Yousuf Z, Shahab S, Fraser M. Immediate effect of neurofeedback training on the pain matrix and cortical areas involved in processing neuropsychological functions. Neurol Sci 2021; 42:4551-4561. [PMID: 33624179 DOI: 10.1007/s10072-021-05125-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 02/09/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This study investigated the impact of neurofeedback training on the deeper cortical structures that comprise the "pain matrix" and are involved in processing neuropsychological functions. METHODS Five paraplegic patients with central neuropathic pain received up to 40 sessions of neurofeedback training. They were asked to simultaneously modulate the relative power of the theta, alpha and beta bands, provided as a feedback from the sensorimotor cortex. The source localization technique was applied on EEG data recorded with 16 electrodes placed over the whole head. RESULTS Neurofeedback training from the sensorimotor cortex induced effects on the pain matrix and in the areas involved in processing neuropsychological functions such as memory, executive functions and emotional regulations. Alpha and beta band activity was most increased in insular, cingulate and frontal cortex regions, and other areas corresponding to executive and emotional function processing. Theta band decreases were noted in the frontal, cingulate and motor cortices. In group analysis, theta and beta band activity was significantly reduced. CONCLUSION The single channel electroencephalogram-based neurofeedback training produced effects on similar areas that are targeted in 19 channels standardized low-resolution brain electromagnetic tomography and expensive time-delayed functional magnetic resonance imaging feedback studies.
Collapse
Affiliation(s)
- Muhammad Abul Hasan
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, Pakistan.
- Neurocomputation Laboratory, National Center of Artificial Intelligence, Karachi, Pakistan.
| | - Aleksandra Vuckovic
- Centre for Rehabilitation Engineering, Biomedical Engineering Division, School of Engineering, University of Glasgow, Glasgow, UK
| | - Saad A Qazi
- Neurocomputation Laboratory, National Center of Artificial Intelligence, Karachi, Pakistan
- Department of Electrical Engineering, NED University of Engineering & Technology, Karachi, Pakistan
| | - Zuha Yousuf
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, Pakistan
- Neurocomputation Laboratory, National Center of Artificial Intelligence, Karachi, Pakistan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Sania Shahab
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, Pakistan
| | - Matthew Fraser
- Queen Elizabeth National Spinal Injuries Unit, Southern General Hospital, Glasgow, UK
| |
Collapse
|
128
|
Zhang X, Li P, Otieno SCSA, Li H, Leppänen PHT. Oxytocin reduces romantic rejection-induced pain in online speed-dating as revealed by decreased frontal-midline theta oscillations. Psychoneuroendocrinology 2021; 133:105411. [PMID: 34537623 DOI: 10.1016/j.psyneuen.2021.105411] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Romantic rejection is an emotionally distressful experience profoundly affecting life, possibly leading to mental illness or suicide. Oxytocin (OT) is a neuropeptide widely implicated in reducing physical pain and negative emotions; however, whether OT has an effect on reducing intense social pain (e.g., romantic rejection) remains unknown. Here, we tested the effect of OT on social pain and investigated its role in the outcome evaluation phase of social decision-making. METHODS Electroencephalographic recordings were obtained between August 2nd and October 20th, 2020 in Shenzhen University from 61 healthy participants in a double-blind, placebo-controlled study with a between-subject design. We defined frontal-midline theta oscillation as a neural signature of social pain and assessed self-reported pleasantness ratings for four possible romantic outcomes in an online speed-dating task. RESULTS In the placebo group, greater theta power was induced by romantic rejection, being associated with rejection distress. This pattern was not observed in the OT group, where romantic rejection induced significantly decreased theta power compared to the placebo group; in the OT group, there was no association between theta power and rejection distress. Furthermore, the frontal-midline theta oscillation could be source-localized to brain areas overlapping with the physical-social pain matrix (i.e., somatosensory cortex, anterior cingulate cortex, frontal pole, and supplementary motor area). CONCLUSIONS OT relieves social pain caused by romantic rejection, reflected in decreased frontal-midline theta oscillations and a diminished connection between theta power and rejection distress. These findings can help understand and harness OT's pain-reducing effect on social pain.
Collapse
Affiliation(s)
- Xukai Zhang
- School of Psychology, Shenzhen University, Shenzhen, China; Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland; School of Psychology, South China Normal University, Guangzhou, China; Institute for Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Peng Li
- School of Psychology, Shenzhen University, Shenzhen, China; Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, China.
| | | | - Hong Li
- School of Psychology, South China Normal University, Guangzhou, China; Institute for Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China; Center for Emotion and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Paavo H T Leppänen
- Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
129
|
Makovac E, Venezia A, Hohenschurz-Schmidt D, Dipasquale O, Jackson JB, Medina S, O'Daly O, Williams SCR, McMahon SB, Howard MA. The association between pain-induced autonomic reactivity and descending pain control is mediated by the periaqueductal grey. J Physiol 2021; 599:5243-5260. [PMID: 34647321 DOI: 10.1113/jp282013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/28/2021] [Indexed: 11/08/2022] Open
Abstract
There is a strict interaction between the autonomic nervous system (ANS) and pain, which might involve descending pain modulatory mechanisms. The periaqueductal grey (PAG) is involved both in descending pain modulation and ANS, but its role in mediating this relationship has not yet been explored. Here, we sought to determine brain regions mediating ANS and descending pain control associations. Thirty participants underwent conditioned pain modulation (CPM) assessments, in which they rated painful pressure stimuli applied to their thumbnail, either alone or with a painful cold contralateral stimulation. Differences in pain ratings between 'pressure-only' and 'pressure + cold' stimuli provided a measure of descending pain control. In 18 of the 30 participants, structural scans and two functional MRI assessments, one pain-free and one during cold-pain were acquired. Heart rate variability (HRV) was simultaneously recorded. Normalised low-frequency HRV (LF-HRVnu) and the CPM score were negatively correlated; individuals with higher LF-HRVnu during pain reported reductions in pain during CPM. PAG-ventro-medial prefrontal cortex (vmPFC) and PAG-rostral ventromedial medulla (RVM) functional connectivity correlated negatively with the CPM. Importantly, PAG-vmPFC functional connectivity mediated the strength of the LF-HRVnu-CPM association. CPM response magnitude was also negatively correlated with vmPFC GM volume. Our multi-modal approach, using behavioural, physiological and MRI measures, provides important new evidence of interactions between ANS and descending pain mechanisms. ANS dysregulation and dysfunctional descending pain modulation are characteristics of chronic pain. We suggest that further investigation of body-brain interactions in chronic pain patients may catalyse the development of new treatments. KEY POINTS: Heart rate variability (HRV) is associated with descending pain modulation as measured by the conditioned pain modulation protocol (CPM). There is an association between CPM scores and the functional connectivity between the periaqueductal grey (PAG) and ventro-medial prefrontal cortex (vmPFC). CPM scores are also associated with vmPFC grey matter volume. The strength of functional connectivity between the PAG and vmPFC mediates the association between HRV and CPM. Our data provide new evidence of interactions between the autonomic nervous system and descending pain mechanisms.
Collapse
Affiliation(s)
- Elena Makovac
- Department of Neuroimaging, King's College London, London, UK.,Wolfson Centre for Age Related Diseases, King's College London, London, UK
| | | | - David Hohenschurz-Schmidt
- Department of Neuroimaging, King's College London, London, UK.,Pain Research, Department Surgery & Cancer, Faculty of Medicine, Imperial College, London, UK
| | | | - Jade B Jackson
- Department of Neuroimaging, King's College London, London, UK.,MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Sonia Medina
- Department of Neuroimaging, King's College London, London, UK.,Wolfson Centre for Age Related Diseases, King's College London, London, UK
| | - Owen O'Daly
- Department of Neuroimaging, King's College London, London, UK
| | | | - Stephen B McMahon
- Wolfson Centre for Age Related Diseases, King's College London, London, UK
| | | |
Collapse
|
130
|
Hu XS, Beard K, Sherbel MC, Nascimento TD, Petty S, Pantzlaff E, Schwitzer D, Kaciroti N, Maslowski E, Ashman LM, Feinberg SE, DaSilva AF. Brain Mechanisms of Virtual Reality Breathing Versus Traditional Mindful Breathing in Pain Modulation: Observational Functional Near-infrared Spectroscopy Study. J Med Internet Res 2021; 23:e27298. [PMID: 34636731 PMCID: PMC8548979 DOI: 10.2196/27298] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Pain is a complex experience that involves sensory-discriminative and cognitive-emotional neuronal processes. It has long been known across cultures that pain can be relieved by mindful breathing (MB). There is a common assumption that MB exerts its analgesic effect through interoception. Interoception refers to consciously refocusing the mind's attention to the physical sensation of internal organ function. OBJECTIVE In this study, we dissect the cortical analgesic processes by imaging the brains of healthy subjects exposed to traditional MB (TMB) and compare them with another group for which we augmented MB to an outside sensory experience via virtual reality breathing (VRB). METHODS The VRB protocol involved in-house-developed virtual reality 3D lungs that synchronized with the participants' breathing cycles in real time, providing them with an immersive visual-auditory exteroception of their breathing. RESULTS We found that both breathing interventions led to a significant increase in pain thresholds after week-long practices, as measured by a thermal quantitative sensory test. However, the underlying analgesic brain mechanisms were opposite, as revealed by functional near-infrared spectroscopy data. In the TMB practice, the anterior prefrontal cortex uniquely modulated the premotor cortex. This increased its functional connection with the primary somatosensory cortex (S1), thereby facilitating the S1-based sensory-interoceptive processing of breathing but inhibiting its other role in sensory-discriminative pain processing. In contrast, virtual reality induced an immersive 3D exteroception with augmented visual-auditory cortical activations, which diminished the functional connection with the S1 and consequently weakened the pain processing function of the S1. CONCLUSIONS In summary, our study suggested two analgesic neuromechanisms of VRB and TMB practices-exteroception and interoception-that distinctively modulated the S1 processing of the ascending noxious inputs. This is in line with the concept of dualism (Yin and Yang).
Collapse
Affiliation(s)
- Xiao-Su Hu
- Headache & Orofacial Pain Effort Lab, Biologic and Materials Sciences & Prosthodontics Department, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Katherine Beard
- Headache & Orofacial Pain Effort Lab, Biologic and Materials Sciences & Prosthodontics Department, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Mary Catherine Sherbel
- Headache & Orofacial Pain Effort Lab, Biologic and Materials Sciences & Prosthodontics Department, University of Michigan School of Dentistry, Ann Arbor, MI, United States
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Thiago D Nascimento
- Headache & Orofacial Pain Effort Lab, Biologic and Materials Sciences & Prosthodontics Department, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Sean Petty
- 3D Lab, Digital Media Commons, University of Michigan, Ann Arbor, MI, United States
| | - Eddie Pantzlaff
- Headache & Orofacial Pain Effort Lab, Biologic and Materials Sciences & Prosthodontics Department, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - David Schwitzer
- Headache & Orofacial Pain Effort Lab, Biologic and Materials Sciences & Prosthodontics Department, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Niko Kaciroti
- Headache & Orofacial Pain Effort Lab, Biologic and Materials Sciences & Prosthodontics Department, University of Michigan School of Dentistry, Ann Arbor, MI, United States
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | | | - Lawrence M Ashman
- Headache & Orofacial Pain Effort Lab, Biologic and Materials Sciences & Prosthodontics Department, University of Michigan School of Dentistry, Ann Arbor, MI, United States
- Department of Oral & Maxillofacial Surgery, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Stephen E Feinberg
- Headache & Orofacial Pain Effort Lab, Biologic and Materials Sciences & Prosthodontics Department, University of Michigan School of Dentistry, Ann Arbor, MI, United States
- Department of Oral & Maxillofacial Surgery, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Alexandre F DaSilva
- Headache & Orofacial Pain Effort Lab, Biologic and Materials Sciences & Prosthodontics Department, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| |
Collapse
|
131
|
Lee CH, Kim HS, Kim YS, Jung S, Yoon CH, Kwon OY. Cerebral current-source distribution associated with pain improvement by non-invasive painless signaling therapy in patients with failed back surgery syndrome. Korean J Pain 2021; 34:437-446. [PMID: 34593661 PMCID: PMC8494963 DOI: 10.3344/kjp.2021.34.4.437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Non-invasive painless signaling therapy (NPST) is an electro-cutaneous treatment that converts endogenous pain information into synthetic non-pain information. This study explored whether pain improvement by NPST in failed back surgery syndrome (FBSS) patients is related to cerebral modulation. METHODS Electroencephalography (EEG) analysis was performed in 11 patients with FBSS. Subjects received daily NPST for 5 days. Before the first treatment, patients completed the Brief Pain Inventory (BPI) and Beck Depression Inventory and underwent baseline EEG. After the final treatment, they responded again to the BPI, reported the percent pain improvement (PPI), and then underwent post-treatment EEG. If the PPI grade was zero, they were assigned to the ineffective group, while all others were assigned to the effective group. We used standardized low-resolution brain electromagnetic tomography (sLORETA) to explore the EEG current-source distribution (CSD) associated with pain improvement by NPST. RESULTS The 11 participants had a median age of 67.0 years, and 63.6% were female. The sLORETA images revealed a beta-2 CSD increment in 12 voxels of the right anterior cingulate gyrus (ACG) and the right medial frontal area. The point of maximal CSD changes was in the right ACG. The alpha band CSD increased in 2 voxels of the left transverse gyrus. CONCLUSIONS Pain improvement by NPST in FBSS patients was associated with increased cerebral activity, mainly in the right ACG. The change in afferent information induced by NPST seems to be associated with cerebral pain perception.
Collapse
Affiliation(s)
- Chang Han Lee
- Department of Rehabilitation Medicine, Gyeongsang National University Hospital, Jinju, Korea
- Department of Rehabilitation Medicine, Gyeongsang National University College of Medicine, Jinju, Korea
- Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Hyeong Seop Kim
- Department of Rehabilitation Medicine, Gyeongsang National University Hospital, Jinju, Korea
| | - Young-Soo Kim
- Department of Neurology, Gyeongsang National University Hospital, Jinju, Korea
- Department of Neurology, Gyeongsang National University College of Medicine, Jinju, Korea
- Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Seokwon Jung
- Department of Neurology, Gyeongsang National University Hospital, Jinju, Korea
| | - Chul Ho Yoon
- Department of Rehabilitation Medicine, Gyeongsang National University Hospital, Jinju, Korea
- Department of Rehabilitation Medicine, Gyeongsang National University College of Medicine, Jinju, Korea
- Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Oh-Young Kwon
- Department of Neurology, Gyeongsang National University Hospital, Jinju, Korea
- Department of Neurology, Gyeongsang National University College of Medicine, Jinju, Korea
- Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, Korea
| |
Collapse
|
132
|
Abnormal within- and cross-networks functional connectivity in different outcomes of herpes zoster patients. Brain Imaging Behav 2021; 16:366-378. [PMID: 34549378 DOI: 10.1007/s11682-021-00510-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 12/23/2022]
Abstract
Neuroimaging studies have displayed aberrant brain activities in individual sensory- and emotional-linked regions in postherpetic neuralgia (PHN) patients. However, multi-dimensional dysfunction in chronic pain may rely on the interplay between networks. Little is known about the changes in the functional architecture of resting state networks (RSNs) in PHN. In this cross-sectional study, we recruited 31 PHN patients, 33 RHZ patients and 34 HCs; all participants underwent resting-state functional magnetic resonance imaging scans. We investigated the differences of within- and cross-network connectivities between different outcomes of HZ patients [including PHN and recuperation from herpes zoster (RHZ)] and healthy controls (HCs) so as to extract a characteristic network pattern of PHN. The abnormal network connectivities were then correlated with clinical variables in respective groups. PHN and RHZ patients could be similarly characterized by abnormal within-default mode network (DMN), DMN-salience network (SN) and SN-basal ganglia network (BGN) connectivity relative to HCs. Of note, compared with RHZ patients, PHN patients could be characterized by abnormal DMN-BGN and within-BGN connectivity. Furthermore, the within-DMN connectivity was associated with pain-induced emotional scores among PHN patients. Our study presented that network-level imbalance could account for the pain-related dysfunctions in different outcomes of herpes zoster patients. These insights are potentially useful for understanding neuromechanism of PHN and providing central therapeutic targets for PHN.
Collapse
|
133
|
Leemhuis E, Giuffrida V, Giannini AM, Pazzaglia M. A Therapeutic Matrix: Virtual Reality as a Clinical Tool for Spinal Cord Injury-Induced Neuropathic Pain. Brain Sci 2021; 11:1201. [PMID: 34573221 PMCID: PMC8472645 DOI: 10.3390/brainsci11091201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/31/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Neuropathic pain (NP) is a chronic, debilitating, and resistant form of pain. The onset rate of NP following spinal cord injuries (SCI) is high and may reduce the quality of life more than the sensorimotor loss itself. The long-term ineffectiveness of current treatments in managing symptoms and counteracting maladaptive plasticity highlights the need to find alternative therapeutic approaches. Virtual reality (VR) is possibly the best way to administer the specific illusory or reality-like experience and promote behavioral responses that may be effective in mitigating the effects of long-established NP. This approach aims to promote a more systematic adoption of VR-related techniques in pain research and management procedures, highlighting the encouraging preliminary results in SCI. We suggest that the multisensory modulation of the sense of agency and ownership by residual body signals may produce positive responses in cases of brain-body disconnection. First, we focus on the transversal role embodiment and how multisensory and environmental or artificial stimuli modulate illusory sensations of bodily presence and ownership. Then, we present a brief overview of the use of VR in healthcare and pain management. Finally, we discus research experiences which used VR in patients with SCI to treating NP, including the most recent combinations of VR with further stimulation techniques.
Collapse
Affiliation(s)
- Erik Leemhuis
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Valentina Giuffrida
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Anna Maria Giannini
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Mariella Pazzaglia
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| |
Collapse
|
134
|
Optogenetic Stimulation of the Anterior Cingulate Cortex Modulates the Pain Processing in Neuropathic Pain: A Review. J Mol Neurosci 2021; 72:1-8. [PMID: 34505976 DOI: 10.1007/s12031-021-01898-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Neuropathic pain is characterized by hypersensitivity, hyperalgesia, and allodynia, which is caused by damage to the somatosensory nervous system. It substantially impairs the quality of life. The management of neuropathic pain is challenging and should comprise alternative therapies. Researchers working on neural modulation methods in the field of optogenetics have recently referred to novel techniques that involve the activation or inhibition of signaling proteins by specific wavelengths of light. The use of optogenetics in neuropathic pain facilitates the investigation of pain pathways involved in chronic pain and has the potential for therapeutic use. Neuropathic pain is often accompanied by negative stimuli involving a broad network of brain regions. In particular, the anterior cingulate cortex (ACC) is a part of the limbic system that has highly interconnected structures involved in processing components of pain. The ACC is a key region for acute pain perception as well as the development of neuropathic pain, characterized by long-term potentiation induced in pain pathways. The exact mechanism for neuropathic pain in the ACC is unclear. Current evidence supports the potential of optogenetics methods to modulate the neuronal activity in the ACC for neuropathic pain. We anticipate the neuronal modulation in the ACC will be used widely to manage neuropathic pain.
Collapse
|
135
|
Jenkins LC, Chang WJ, Buscemi V, Liston M, Skippen P, Cashin AG, McAuley JH, Schabrun SM. Low Somatosensory Cortex Excitability in the Acute Stage of Low Back Pain Causes Chronic Pain. THE JOURNAL OF PAIN 2021; 23:289-304. [PMID: 34492395 DOI: 10.1016/j.jpain.2021.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/26/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022]
Abstract
Determining the mechanistic causes of complex biopsychosocial health conditions such as low back pain (LBP) is challenging, and research is scarce. Cross-sectional studies demonstrate altered excitability and organization of the somatosensory and motor cortex in people with acute and chronic LBP, however, no study has explored these mechanisms longitudinally or attempted to draw causal inferences. Using sensory evoked potential area measurements and transcranial magnetic stimulation derived map volume we analyzed somatosensory and motor cortex excitability in 120 adults experiencing acute LBP. Following multivariable regression modelling with adjustment for confounding, we identified lower primary (OR = 2.08, 95% CI = 1.22-3.57) and secondary (OR = 2.56, 95% CI = 1.37-4.76) somatosensory cortex excitability significantly increased the odds of developing chronic pain at 6-month follow-up. Corticomotor excitability in the acute stage of LBP was associated with higher pain intensity at 6-month follow-up (B = -0.15, 95% CI: -0.28 to -0.02) but this association did not remain after confounder adjustment. These data provide evidence that low somatosensory cortex excitability in the acute stage of LBP is a cause of chronic pain. PERSPECTIVE: This prospective longitudinal cohort study design identified low sensorimotor cortex excitability during the acute stage of LBP in people who developed chronic pain. Interventions that target this proposed mechanism may be relevant to the prevention of chronic pain.
Collapse
Affiliation(s)
- Luke C Jenkins
- School of Health Sciences, Western Sydney University, Penrith, New South Wales, Australia; Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
| | - Wei-Ju Chang
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
| | - Valentina Buscemi
- INPUT Pain Management Unit, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Matthew Liston
- School of Health Sciences, Western Sydney University, Penrith, New South Wales, Australia; Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia; Centre for Human and Applied Physiological Sciences, Faculty of Life Science and Medicine, Kings College, London
| | - Patrick Skippen
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
| | - Aidan G Cashin
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia; Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - James H McAuley
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia; School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Siobhan M Schabrun
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia.
| |
Collapse
|
136
|
Schudlo LC, Anagnostou E, Chau T, Doyle-Thomas K. Investigating sensory response to physical discomfort in children with autism spectrum disorder using near-infrared spectroscopy. PLoS One 2021; 16:e0257029. [PMID: 34478466 PMCID: PMC8415580 DOI: 10.1371/journal.pone.0257029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/20/2021] [Indexed: 11/19/2022] Open
Abstract
Self-reporting of pain can be difficult in populations with communication challenges or atypical sensory processing, such as children with autism spectrum disorder (ASD). Consequently, pain can go untreated. An objective method to identify discomfort would be valuable to individuals unable to express or recognize their own bodily distress. Near-infrared spectroscopy (NIRS) is a brain-imaging modality that is suited for this application. We evaluated the potential of detecting a cortical response to discomfort in the ASD population using NIRS. Using a continuous-wave spectrometer, prefrontal and parietal measures were collected from 15 males with ASD and 7 typically developing (TD) males 10-15 years of age. Participants were exposed to a noxious cold stimulus by immersing their hands in cold water and tepid water as a baseline task. Across all participants, the magnitude and timing of the cold and tepid water-induced brain responses were significantly different (p < 0.001). The effect of the task on the brain response depended on the study group (group x task: p < 0.001), with the ASD group exhibiting a blunted response to the cold stimulus. Findings suggest that NIRS may serve as a tool for objective pain assessment and atypical sensory processing.
Collapse
Affiliation(s)
- Larissa C. Schudlo
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
- Computer and Biomedical Engineering Department, Ryerson University, Toronto, Canada
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
- Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Tom Chau
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Krissy Doyle-Thomas
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
- School of Health and Community Services, Mohawk College, Hamilton, Canada
| |
Collapse
|
137
|
Novembre G, Iannetti GD. Towards a unified neural mechanism for reactive adaptive behaviour. Prog Neurobiol 2021; 204:102115. [PMID: 34175406 PMCID: PMC7611662 DOI: 10.1016/j.pneurobio.2021.102115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 11/27/2022]
Abstract
Surviving in natural environments requires animals to sense sudden events and swiftly adapt behaviour accordingly. The study of such Reactive Adaptive Behaviour (RAB) has been central to a number of research streams, all orbiting around movement science but progressing in parallel, with little cross-field fertilization. We first provide a concise review of these research streams, independently describing four types of RAB: (1) cortico-muscular resonance, (2) stimulus locked response, (3) online motor correction and (4) action stopping. We then highlight remarkable similarities across these four RABs, suggesting that they might be subserved by the same neural mechanism, and propose directions for future research on this topic.
Collapse
Affiliation(s)
- Giacomo Novembre
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia (IIT), Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London, UK.
| | - Gian Domenico Iannetti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia (IIT), Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London, UK.
| |
Collapse
|
138
|
Ghavidel-Parsa B, Bidari A, Rahimi A, Gharibpoor F, Khosousi MJ. No effect of approved fibromyalgia drugs on the social pain (invalidation) contrary to physical pain: an open-label short-term randomized clinical trial. Clin Rheumatol 2021; 41:245-254. [PMID: 34420102 DOI: 10.1007/s10067-021-05890-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/01/2021] [Accepted: 08/12/2021] [Indexed: 01/16/2023]
Abstract
OBJECTIVES The social pain or invalidation denoting painful feeling following social conflicts or misunderstanding about illness legitimacy has been proposed as a salient disabling symptom besides physical pain or non-pain symptoms in fibromyalgia (FM). We sought to evaluate the effect of 1-month administration of duloxetine or pregabalin on the invalidation dimensions in FM patients with respect to the comparison of these two drugs on this issue. METHOD This open-label randomized clinical trial study was performed on FM patients whose diagnoses were confirmed by a rheumatologist based on the 2016 American College of Rheumatology (ACR). Primary outcome measure (Illness Invalidation Inventory (3*I)) and secondary outcome measures (Beck Depression Inventory-II (BDI-II), widespread pain index (WPI), and polysymptomatic distress scale (PSD)) were compared before and after treatment, using paired t test or Wilcoxon signed test. RESULTS Of 81 eligible FM patients, 44 patients in the duloxetine arm and 27 patients in the pregabalin arm completed the study protocol. Overall, no significant improvement was seen in 3*I scores after treatment with either duloxetine or pregabalin, except in the lack of understanding of medical professionals which improved after treatment with pregabalin (2.43 ± 1.38 to 1.79 ± 0.94, p value: 0.01). There were no intragroup and intergroup differences in the effects of duloxetine and pregabalin on 3*I scores when adjusted with the cofounders. Both duloxetine and pregabalin improved WPI, BDI-II, and PSD scores significantly. CONCLUSIONS Short-term FM pharmacological treatment had no effect on social pain. This finding was regardless of drug type, improvement of physical pain, and depression.
Collapse
Affiliation(s)
- Banafsheh Ghavidel-Parsa
- School of Medicine, Rheumatology Research Center, Razi Hospital, Guilan University of Medical Science, Rasht, Guilan, Iran.
| | - Ali Bidari
- Department of Rheumatology, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Rahimi
- Student Research Committee, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Guilan, Iran
| | - Faeze Gharibpoor
- Student Research Committee, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Guilan, Iran
| | - Mohammad-Javad Khosousi
- Gastrointestinal and Liver Disease Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
139
|
Amin FM, De Icco R, Al-Karagholi MAM, Raghava JM, Wolfram F, Larsson HBW, Ashina M. Investigation of cortical thickness and volume during spontaneous attacks of migraine without aura: a 3-Tesla MRI study. J Headache Pain 2021; 22:98. [PMID: 34418951 PMCID: PMC8380396 DOI: 10.1186/s10194-021-01312-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Structural imaging has revealed changes in cortical thickness in migraine patients compared to healthy controls is reported, but presence of dynamic cortical and subcortical changes during migraine attack versus inter-ictal phase is unknown. The aim of the present study was to investigate possible changes in cortical thickness during spontaneous migraine attacks. We hypothesized that pain-related cortical area would be affected during the attack compared to an inter-ictal phase. METHODS Twenty-five patients with migraine without aura underwent three-dimensional T1-weighted imaging on a 3-Tesla MRI scanner during spontaneous and untreated migraine attacks. Subsequently, 20 patients were scanned in the inter-ictal phase, while 5 patients did not show up for the inter-ictal scan. Four patients were excluded from the analysis because of bilateral migraine pain and another one patient was excluded due to technical error in the imaging. Longitudinal image processing was done using FreeSurfer. Repeated measures ANOVA was used for statistical analysis and to control for multiple comparison the level of significance was set at p = 0.025. RESULTS In a total of 15 patients, we found reduced cortical thickness of the precentral (p = 0.023), pericalcarine (p = 0.024), and temporal pole (p = 0.017) cortices during the attack compared to the inter-ictal phase. Cortical volume was reduced in prefrontal (p = 0.018) and pericalcarine (p = 0.017) cortices. Hippocampus volume was increased during attack (p = 0.007). We found no correlations between the pain side or any other clinical parameters and the reduced cortical size. CONCLUSION Spontaneous migraine attacks are accompanied by transient reduced cortical thickness and volume in pain-related areas. The findings constitute a fingerprint of acute pain in migraine patients, which can be used as a possible biomarker to predict antimigraine treatment effect in future studies. TRIAL REGISTRATION The study was registered at ClinicalTrials.gov ( NCT02202486 ).
Collapse
Affiliation(s)
- Faisal Mohammad Amin
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet Glostrup, University of Copenhagen, Valdemar Hansens Vej 5, 2600, Glostrup, Denmark.
| | - Roberto De Icco
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet Glostrup, University of Copenhagen, Valdemar Hansens Vej 5, 2600, Glostrup, Denmark
| | - Jayachandra M Raghava
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET,Faculty of Health and Medical Sciences, Rigshospitalet, University of Copenhagen, Glostrup, Denmark.,Centre for Neuropsychiatric Schizophrenia Research, CNSR and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, 2600, Glostrup, Denmark
| | - Frauke Wolfram
- Department of Radiology, Herlev-Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Henrik B W Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET,Faculty of Health and Medical Sciences, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet Glostrup, University of Copenhagen, Valdemar Hansens Vej 5, 2600, Glostrup, Denmark
| |
Collapse
|
140
|
Neural correlates of acceptance and rejection in online speed dating: An electroencephalography study. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 22:145-159. [PMID: 34415558 DOI: 10.3758/s13415-021-00939-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 01/09/2023]
Abstract
Pursuing dating relationships is important for many people's well-being, because it helps them fulfill the need for stable social relationships. However, the neural underpinnings of decision-making processes during the pursuit of dating interactions are unclear. In the present study, we used a novel online speed dating paradigm where participants (undergraduate students, N = 25, aged 18-25 years, 52% female) received direct information about acceptance or rejection of their various speed dates. We recorded EEG measurements during speed dating feedback anticipation and feedback processing stages to examine the stimulus preceding negativity (SPN) and feedback-related brain activity (Reward Positivity, RewP, and theta oscillatory power). The results indicated that the SPN was larger when participants anticipated interest versus disinterest from their speed dates. A larger RewP was observed when participants received interest from their speed dates. Theta power was increased when participants received rejection from their speed dates. This theta response could be source-localized to brain areas that overlap with the physical pain matrix (anterior cingulate cortex, dorsolateral prefrontal cortex, and the supplementary motor area). This study demonstrates that decision-making processes-as evident in a speed date experiment-are characterized by distinct neurophysiological responses during anticipating an evaluation and processing thereof. Our results corroborate the involvement of the SPN in reward anticipation, RewP in reward processing and mid-frontal theta power in processing of negative social-evaluative feedback. These findings contribute to a better understanding of the neurocognitive mechanisms implicated in decision-making processes when pursuing dating relationships.
Collapse
|
141
|
De Ridder D, Adhia D, Vanneste S. The anatomy of pain and suffering in the brain and its clinical implications. Neurosci Biobehav Rev 2021; 130:125-146. [PMID: 34411559 DOI: 10.1016/j.neubiorev.2021.08.013] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 02/08/2023]
Abstract
Pain is an unpleasant sensory and emotional experience associated with actual or potential tissue damage. Chronic pain, with a prevalence of 20-30 % is the major cause of human suffering worldwide, because effective, specific and safe therapies have yet to be developed. It is unevenly distributed among sexes, with women experiencing more pain and suffering. Chronic pain can be anatomically and phenomenologically dissected into three separable but interacting pathways, a lateral 'painfulness' pathway, a medial 'suffering' pathway and a descending pain inhibitory pathway. One may have pain(fullness) without suffering and suffering without pain(fullness). Pain sensation leads to suffering via a cognitive, emotional and autonomic processing, and is expressed as anger, fear, frustration, anxiety and depression. The medial pathway overlaps with the salience and stress networks, explaining that behavioural relevance or meaning determines the suffering associated with painfulness. Genetic and epigenetic influences trigger chronic neuroinflammatory changes which are involved in transitioning from acute to chronic pain. Based on the concept of the Bayesian brain, pain (and suffering) can be regarded as the consequence of an imbalance between the two ascending and the descending pain inhibitory pathways under control of the reward system. The therapeutic clinical implications of this simple pain model are obvious. After categorizing the working mechanisms of each of the available treatments (pain killers, psychopharmacology, psychotherapy, neuromodulation, psychosurgery, spinal cord stimulation) to 1 or more of the 3 pathways, a rational combination can be proposed of activating the descending pain inhibitory pathway in combination with inhibition of the medial and lateral pathway, so as to rebalance the pain (and suffering) pathways.
Collapse
Affiliation(s)
- Dirk De Ridder
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| | - Divya Adhia
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sven Vanneste
- Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
142
|
Terry EL, Tanner JJ, Cardoso JS, Sibille KT, Lai S, Deshpande H, Deutsch G, Goodin BR, Bradley LA, Price CC, Fillingim RB. Associations of pain catastrophizing with pain-related brain structure in individuals with or at risk for knee osteoarthritis: Sociodemographic considerations. Brain Imaging Behav 2021; 15:1769-1777. [PMID: 33095381 PMCID: PMC8062594 DOI: 10.1007/s11682-020-00372-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Compelling evidence exists that non-Hispanic blacks (NHB) engage in pain catastrophizing (negatively evaluate one's ability to cope with pain) more often than non-Hispanic whites (NHW). Functional neuroimaging studies revealed that individuals with high levels of trait pain catastrophizing show increased cerebral responses to pain in several pain-related brain regions (e.g., insula, primary somatosensory cortex [S1]), but associations between brain structure and catastrophizing remain largely unexplored. The current investigation was conducted at the University of Florida and the University of Alabama at Birmingham. Participants were 129 community-dwelling adults with or at risk of knee osteoarthritis (OA). Participants completed the pain catastrophizing subscale of the Coping Strategies Questionnaire-Revised and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain intensity subscale. Magnetic Resonance Imaging data were obtained. MANOVA and Chi-Square analyses assessed sociodemographic/clinical differences stratified by ethnicity/race. Multivariate regression analyses with insula and somatosensory cortical thickness entered as dependent variables with catastrophizing and the interaction between catastrophizing and ethnicity/race as the independent variables. Covariates include education, body mass index, study site, and WOMAC pain (ethnicity/race was an additional covariate in non-stratified analyses). There were significant interactions between ethnicity/race, pain catastrophizing, and brain structure. Higher pain catastrophizing was associated with thinner S1 bilaterally (ps < .05) in NHW, but not NHB participants with or at risk for knee OA. These results suggest that pain catastrophizing might have differing effects on pain-related central pathways and may contribute to ethnic/race group differences in individuals with or at risk for knee OA.
Collapse
Affiliation(s)
- Ellen L Terry
- University of Florida, College of Nursing, PO Box 100197, 1225 Center Drive, FL, 32610-0 197, Gainesville, USA.
- Pain Research and Intervention Center of Excellence (PRICE), University of Florida, Gainesville, FL, 32611, USA.
| | - Jared J Tanner
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, 32611, USA
| | - Josue S Cardoso
- Pain Research and Intervention Center of Excellence (PRICE), University of Florida, Gainesville, FL, 32611, USA
| | - Kimberly T Sibille
- Pain Research and Intervention Center of Excellence (PRICE), University of Florida, Gainesville, FL, 32611, USA
| | - Song Lai
- Department of Radiation Oncology; CTSI Human Imaging Core, University of Florida, Gainesville, FL, 32611, USA
| | - Hrishikesh Deshpande
- Division of Molecular Imaging and Therapeutics; Division of Advanced Medical Imaging Research, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Georg Deutsch
- Division of Molecular Imaging and Therapeutics; Division of Advanced Medical Imaging Research, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Burel R Goodin
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Laurence A Bradley
- Division of Clinical Immunology & Rheumatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Catherine C Price
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, 32611, USA
| | - Roger B Fillingim
- Pain Research and Intervention Center of Excellence (PRICE), University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
143
|
Neumann L, Wulms N, Witte V, Spisak T, Zunhammer M, Bingel U, Schmidt-Wilcke T. Network properties and regional brain morphology of the insular cortex correlate with individual pain thresholds. Hum Brain Mapp 2021; 42:4896-4908. [PMID: 34296487 PMCID: PMC8449096 DOI: 10.1002/hbm.25588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 12/16/2022] Open
Abstract
Pain thresholds vary considerably across individuals and are influenced by a number of behavioral, genetic and neurobiological factors. However, the neurobiological underpinnings that account for individual differences remain to be fully elucidated. In this study, we used voxel‐based morphometry (VBM) and graph theory, specifically the local clustering coefficient (CC) based on resting‐state connectivity, to identify brain regions, where regional gray matter volume and network properties predicted individual pain thresholds. As a main finding, we identified a cluster in the left posterior insular cortex (IC) reaching into the left parietal operculum, including the secondary somatosensory cortex, where both regional gray matter volume and the local CC correlated with individual pain thresholds. We also performed a resting‐state functional connectivity analysis using the left posterior IC as seed region, demonstrating that connectivity to the pre‐ as well as postcentral gyrus bilaterally; that is, to the motor and primary sensory cortices were correlated with individual pain thresholds. To our knowledge, this is the first study that applied VBM in combination with voxel‐based graph theory in the context of pain thresholds. The co‐location of the VBM and the local CC cluster provide first evidence that both structure and function map to the same brain region while being correlated with the same behavioral measure; that is, pain thresholds. The study highlights the importance of the posterior IC, not only for pain perception in general, but also for the determination of individual pain thresholds.
Collapse
Affiliation(s)
- Lynn Neumann
- Medizinische Klinik I, Klinik für Innere Medizin, Nephrologie und Dialyse, Osteologie und Rheumatologie, St. Franziskus-Hospital Münster, Münster, Germany
| | - Niklas Wulms
- Institut für Epidemiologie und Sozialmedizin, Universitätsklinikum Münster, Münster, Germany
| | - Vanessa Witte
- Klinik für Dermatologie, Venerologie und Allergologie, St. Josef-Hospital Bochum, Ruhr-Universität Bochum, Bochum, Germany
| | - Tamas Spisak
- Klinik für Neurologie, Universitätsklinikum Essen, Essen, Germany
| | | | - Ulrike Bingel
- Klinik für Neurologie, Universitätsklinikum Essen, Essen, Germany
| | - Tobias Schmidt-Wilcke
- Institut für Klinische Neurowissenschaften und Medizinische Psychologie, Heinrich Heine Universität, Düsseldorf, Germany.,Neurologisches Zentrum, Bezirksklinikum Mainkofen, Deggendorf, Germany
| |
Collapse
|
144
|
Guarnera A, Bottino F, Napolitano A, Sforza G, Cappa M, Chioma L, Pasquini L, Rossi-Espagnet MC, Lucignani G, Figà-Talamanca L, Carducci C, Ruscitto C, Valeriani M, Longo D, Papetti L. Early alterations of cortical thickness and gyrification in migraine without aura: a retrospective MRI study in pediatric patients. J Headache Pain 2021; 22:79. [PMID: 34294048 PMCID: PMC8296718 DOI: 10.1186/s10194-021-01290-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background Migraine is the most common neurological disease, with high social-economical burden. Although there is growing evidence of brain structural and functional abnormalities in patients with migraine, few studies have been conducted on children and no studies investigating cortical gyrification have been conducted on pediatric patients affected by migraine without aura. Methods Seventy-two pediatric patients affected by migraine without aura and eighty-two controls aged between 6 and 18 were retrospectively recruited with the following inclusion criteria: MRI exam showing no morphological or signal abnormalities, no systemic comorbidities, no abnormal neurological examination. Cortical thickness (CT) and local gyrification index (LGI) were obtained through a dedicated algorithm, consisting of a combination of voxel-based and surface-based morphometric techniques. The statistical analysis was performed separately on CT and LGI between: patients and controls; subgroups of controls and subgroups of patients. Results Patients showed a decreased LGI in the left superior parietal lobule and in the supramarginal gyrus, compared to controls. Female patients presented a decreased LGI in the right superior, middle and transverse temporal gyri, right postcentral gyrus and supramarginal gyrus compared to male patients. Compared to migraine patients younger than 12 years, the ≥ 12-year-old subjects showed a decreased CT in the superior and middle frontal gyri, pre- and post-central cortex, paracentral lobule, superior and transverse temporal gyri, supramarginal gyrus and posterior insula. Migraine patients experiencing nausea and/or vomiting during headache attacks presented an increased CT in the pars opercularis of the left inferior frontal gyrus. Conclusions Differences in CT and LGI in patients affected by migraine without aura may suggest the presence of congenital and acquired abnormalities in migraine and that migraine might represent a vast spectrum of different entities. In particular, ≥ 12-year-old pediatric patients showed a decreased CT in areas related to the executive function and nociceptive networks compared to younger patients, while female patients compared to males showed a decreased CT of the auditory cortex compared to males. Therefore, early and tailored therapies are paramount to obtain migraine control, prevent cerebral reduction of cortical thickness and preserve executive function and nociception networks to ensure a high quality of life.
Collapse
Affiliation(s)
- Alessia Guarnera
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy.,Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Francesca Bottino
- Medical Physics Department, Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, Rome, Italy.
| | - Giorgia Sforza
- Pediatric Headache Center, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Marco Cappa
- Unit of Endocrinology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Laura Chioma
- Unit of Endocrinology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Luca Pasquini
- Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Via di Grottarossa, 1035-1039, 00189, Rome, Italy.,Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 10065, New York City, NY, USA
| | - Maria Camilla Rossi-Espagnet
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy.,Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Giulia Lucignani
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Lorenzo Figà-Talamanca
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Chiara Carducci
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Claudia Ruscitto
- Child Neurology Unit, Systems Medicine Department, Tor Vergata University Hospital of Rome, 00133, Rome, Italy
| | - Massimiliano Valeriani
- Pediatric Headache Center, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy.,Center for Sensory-Motor Interaction, Aalborg University, 9220, Aalborg, Denmark
| | - Daniela Longo
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Laura Papetti
- Pediatric Headache Center, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| |
Collapse
|
145
|
Jo HG, Wudarczyk O, Leclerc M, Regenbogen C, Lampert A, Rothermel M, Habel U. Effect of odor pleasantness on heat-induced pain: An fMRI study. Brain Imaging Behav 2021; 15:1300-1312. [PMID: 32770446 DOI: 10.1007/s11682-020-00328-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Odor modulates the experience of pain, but the neural basis of how the two sensory modalities, olfaction and pain, are linked in the central nervous system is far from clear. In this study, we investigated the mechanisms by which the brain modulates the pain experience under concurrent odorant stimulation. We conducted an fMRI study using a 2 × 3 factorial design, in which one of two temperatures (warm, hot) and one of three types of odors (pleasant, unpleasant, no odor) were presented simultaneously. "Hot" temperatures were individually determined as those perceived as painful (mean temperature = 46.9 °C). The non-painful "warm" temperature was set to 40 °C. Participants rated hot compared to warm stimuli as more intense and unpleasant, especially in the presence of an unpleasant odor. Parametric modeling on the intensity ratings activated the pain network, covering brain regions activated by the hot stimuli. The presence of an odor, irrespective of its valence, activated the amygdalae. In addition, the amygdalae showed stimulus-dependent functional couplings with the right supramarginal gyrus and with the left superior frontal gyrus. The coupling between the right amygdala and the left superior frontal gyrus was related to the intensity and unpleasantness ratings of the pain experience. Our results suggest that these functional connections may reflect the integrating process of the two sensory modalities, enabling olfactory influence on the pain experience.
Collapse
Affiliation(s)
- Han-Gue Jo
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany. .,JARA-Institute Brain Structure Function Relationship (INM-10), Research Center Jülich and RWTH Aachen University, Jülich, Germany. .,School of Computer, Information and Communication Engineering, Kunsan National University, Gunsan, South Korea.
| | - Olga Wudarczyk
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.,Cluster of Excellence Science of Intelligence, Technische Universität Berlin and Humboldt Universität zu Berlin, 10587, Berlin, Germany
| | - Marcel Leclerc
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Christina Regenbogen
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,JARA-Institute Brain Structure Function Relationship (INM-10), Research Center Jülich and RWTH Aachen University, Jülich, Germany.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Angelika Lampert
- Institute of Physiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Markus Rothermel
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,JARA-Institute Brain Structure Function Relationship (INM-10), Research Center Jülich and RWTH Aachen University, Jülich, Germany
| |
Collapse
|
146
|
Abstract
Cluster headache is a primary headache form occurring in paroxysmal excruciatingly severe unilateral head pain attacks usually grouped in periods lasting 1-2months, the cluster periods. A genetic component is suggested by the familial occurrence of the disease but a genetic linkage is yet to be identified. Contemporary activation of trigeminal and cranial parasympathetic systems-the so-called trigemino-parasympathetic reflex-during the headache attacks seem to cause the pain and accompanying oculo-facial autonomic phenomena respectively. At peripheral level, the increased calcitonin gene related peptide (CGRP) plasma levels suggests trigeminal system activation during cluster headache attacks. The temporal pattern of the disease both in terms of circadian rhythmicity and seasonal recurrence has suggested involvement of the hypothalamic biological clock in the pathophysiology of cluster headache. The posterior hypothalamus was investigate as the cluster generator leading to activation of the trigemino-parasympathetic reflex, but the accumulated experience after 20 years of hypothalamic electrical stimulation to treat the condition indicate that this brain region rather acts as pain modulator. Efficacy of monoclonal antibodies to treat episodic cluster headache points to a key role of CGRP in the pathophysiology of the condition.
Collapse
|
147
|
Yaghoubi Jami P, Han H, Thoma SJ, Mansouri B, Houser R. Do Histories of Painful Life Experiences Affect the Expression of Empathy Among Young Adults? An Electroencephalography Study. Front Psychol 2021; 12:689304. [PMID: 34335406 PMCID: PMC8322231 DOI: 10.3389/fpsyg.2021.689304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Previous research suggests that prior experience of pain affects the expression of empathy. However, most of these studies attended to physical pain despite evidence indicating that other forms of pain may also affect brain activity and emotional states in similar ways. To address this limitation, we compared empathic responses of 33 participants, some of whom had experienced a personal loss, across three conditions: observing strangers in physical pain, psychological pain, and a non-painful condition. We also examined the effect of presence of prior painful experience on empathic reactions. In addition, we examined the stimulation type, prior experience, and ERPs in the early Late Positive Potential (300-550 ms), late Late Positive Potential (550-800 ms), and very late Late Positive Potential (VLLPP; 800-1,050 ms) time windows. Behavioral data indicated that participants who had personally experienced a loss scored significantly higher on perspective taking in the psychological-pain condition. ERP results also indicated significantly lower intensity in Fp2, an electrode in the prefrontal region, within VLLPP time window for participants experiencing a loss in the psychological-pain condition. The results of both behavioral and ERP analysis indicated that prior experience of psychological pain is related to cognitive empathy, but not affective empathy. The implication of these findings for research on empathy, for the study of psychological pain, and the moderating influence of prior painful experiences are discussed.
Collapse
Affiliation(s)
| | - Hyemin Han
- Educational Psychology Program, University of Alabama, Tuscaloosa, AL, United States
| | - Stephen J Thoma
- Educational Psychology Program, University of Alabama, Tuscaloosa, AL, United States
| | - Behzad Mansouri
- Department of Curriculum and Instruction, University of Alabama, Tuscaloosa, AL, United States
| | - Rick Houser
- Counselor Education Program, University of Alabama, Tuscaloosa, AL, United States
| |
Collapse
|
148
|
Huo BB, Zheng MX, Hua XY, Shen J, Wu JJ, Xu JG. Metabolic Brain Network Analysis With 18F-FDG PET in a Rat Model of Neuropathic Pain. Front Neurol 2021; 12:566119. [PMID: 34276529 PMCID: PMC8284720 DOI: 10.3389/fneur.2021.566119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/05/2021] [Indexed: 11/16/2022] Open
Abstract
Neuropathic pain has been found to be related to profound reorganization in the function and structure of the brain. We previously demonstrated changes in local brain activity and functional/metabolic connectivity among selected brain regions by using neuroimaging methods. The present study further investigated large-scale metabolic brain network changes in 32 Sprague–Dawley rats with right brachial plexus avulsion injury (BPAI). Graph theory was applied in the analysis of 2-deoxy-2-[18F] fluoro-D-glucose (18F-FDG) PET images. Inter-subject metabolic networks were constructed by calculating correlation coefficients. Global and nodal network properties were calculated and comparisons between pre- and post-BPAI (7 days) status were conducted. The global network properties (including global efficiency, local efficiency and small-world index) and nodal betweenness centrality did not significantly change for all selected sparsity thresholds following BPAI (p > 0.05). As for nodal network properties, both nodal degree and nodal efficiency measures significantly increased in the left caudate putamen, left medial prefrontal cortex, and right caudate putamen (p < 0.001). The right entorhinal cortex showed a different nodal degree (p < 0.05) but not nodal efficiency. These four regions were selected for seed-based metabolic connectivity analysis. Strengthened connectivity was found among these seeds and distributed brain regions including sensorimotor area, cognitive area, and limbic system, etc. (p < 0.05). Our results indicated that the brain had the resilience to compensate for BPAI-induced neuropathic pain. However, the importance of bilateral caudate putamen, left medial prefrontal cortex, and right entorhinal cortex in the network was strengthened, as well as most of their connections with distributed brain regions.
Collapse
Affiliation(s)
- Bei-Bei Huo
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Shen
- Department of Orthopedics, Guanghua Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
149
|
Dongyang L, Fernandes AM, da Cunha PHM, Tibes R, Sato J, Listik C, Dale C, Kubota GT, Galhardoni R, Teixeira MJ, Aparecida da Silva V, Rosi J, Ciampi de Andrade D. Posterior-superior insular deep transcranial magnetic stimulation alleviates peripheral neuropathic pain - A pilot double-blind, randomized cross-over study. Neurophysiol Clin 2021; 51:291-302. [PMID: 34175192 DOI: 10.1016/j.neucli.2021.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Peripheral neuropathic pain (pNeP) is prevalent, and current treatments, including drugs and motor cortex repetitive transcranial magnetic stimulation (rTMS) leave a substantial proportion of patients with suboptimal pain relief. METHODS We explored the intensity and short-term duration of the analgesic effects produced in pNeP patients by 5 days of neuronavigated deep rTMS targeting the posterior superior insula (PSI) with a double-cone coil in a sham-controlled randomized cross-over trial. RESULTS Thirty-one pNeP patients received induction series of five active or sham consecutive sessions of daily deep-rTMS to the PSI in a randomized sequence, with a washout period of at least 21 days between series. The primary outcome [number of responders (>50% pain intensity reduction from baseline in a numerical rating scale ranging from 0 to 10)] was significantly higher after real (58.1%) compared to sham (19.4%) stimulation (p = 0.002). The number needed to treat was 2.6, and the effect size was 0.97 [95% CI (0.6; 1.3)]. One week after the 5th stimulation day, pain scores were no longer different between groups, and no difference in neuropathic pain characteristics and interference with daily living were present. No major side effects occurred, and milder adverse events (i.e., short-lived headaches after stimulation) were reported in both groups. Blinding was effective, and analgesic effects were not affected by sequence of the stimulation series (active-first or sham-first), age, sex or pain duration of participants. DISCUSSION PSI deep-rTMS was safe in refractory pNeP and was able to provide significant pain intensity reduction after a five-day induction series of treatments. Post-hoc assessment of neuronavigation targeting confirmed deep-rTMS was delivered within the boundaries of the PSI in all participants. CONCLUSION PSI deep-rTMS provided significant pain relief during 5-day induction sessions compared to sham stimulation.
Collapse
Affiliation(s)
- Liu Dongyang
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, P.O. Box: 05403-900, São Paulo, SP, Brazil
| | - Ana Mércia Fernandes
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, P.O. Box: 05403-900, São Paulo, SP, Brazil
| | - Pedro Henrique Martins da Cunha
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, P.O. Box: 05403-900, São Paulo, SP, Brazil
| | - Raissa Tibes
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, P.O. Box: 05403-900, São Paulo, SP, Brazil
| | - João Sato
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, P.O. Box: 05403-900, São Paulo, SP, Brazil
| | - Clarice Listik
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, P.O. Box: 05403-900, São Paulo, SP, Brazil
| | - Camila Dale
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, P.O. Box: 05403-900, São Paulo, SP, Brazil
| | - Gabriel Taricani Kubota
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, P.O. Box: 05403-900, São Paulo, SP, Brazil
| | - Ricardo Galhardoni
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, P.O. Box: 05403-900, São Paulo, SP, Brazil
| | - Manoel Jacobsen Teixeira
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, P.O. Box: 05403-900, São Paulo, SP, Brazil
| | - Valquíria Aparecida da Silva
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, P.O. Box: 05403-900, São Paulo, SP, Brazil
| | - Jefferson Rosi
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, P.O. Box: 05403-900, São Paulo, SP, Brazil
| | - Daniel Ciampi de Andrade
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, P.O. Box: 05403-900, São Paulo, SP, Brazil; Pain Center Instituto do Câncer Octavio Frias de Oliveira, University of São Paulo, Avenida Dr. Arnaldo 251, P.O. Box: 01246-000, São Paulo, SP, Brazil.
| |
Collapse
|
150
|
The dynamics of pain reappraisal: the joint contribution of cognitive change and mental load. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 20:276-293. [PMID: 31950439 PMCID: PMC7105446 DOI: 10.3758/s13415-020-00768-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study was designed to investigate the neural mechanism of cognitive modulation of pain via a reappraisal strategy with high temporal resolution. The EEG signal was recorded from 29 participants who were instructed to down-regulate, up-regulate, or maintain their pain experience. The L2 minimum norm source reconstruction method was used to localize areas in which a significant effect of the instruction was present. Down-regulating pain by reappraisal exerted a robust effect on pain processing from as early as ~100 ms that diminished the activity of limbic brain regions: the anterior cingulate cortex, right orbitofrontal cortex, left anterior temporal region, and left insula. However, compared with the no-regulation condition, the neural activity was similarly attenuated in the up- and down-regulation conditions. We suggest that this effect could be ascribed to the cognitive load that was associated with the execution of a cognitively demanding reappraisal task that could have produced a general attenuation of pain-related areas regardless of the aim of the reappraisal task (i.e., up- or down-regulation attempts). These findings indicate that reappraisal effects reflect the joint influence of both reappraisal-specific (cognitive change) and unspecific (cognitive demand) factors, thus pointing to the importance of cautiously selected control conditions that allow the modulating impact of both processes to be distinguished.
Collapse
|