101
|
Li X, Li Y, Yu Q, Qian P, Huang H, Lin Y. Metabolic reprogramming of myeloid-derived suppressor cells: An innovative approach confronting challenges. J Leukoc Biol 2021; 110:257-270. [PMID: 34075637 PMCID: PMC8361984 DOI: 10.1002/jlb.1mr0421-597rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
Immune cells such as T cells, macrophages, dendritic cells, and other immunoregulatory cells undergo metabolic reprogramming in cancer and inflammation-derived microenvironment to meet specific physiologic and functional demands. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that are characterized by immunosuppressive activity, which plays a key role in host immune homeostasis. In this review, we have discussed the core metabolic pathways, including glycolysis, lipid and fatty acid biosynthesis, and amino acid metabolism in the MDSCs under various pathologic situations. Metabolic reprogramming is a determinant of the phenotype and functions of MDSCs, and is therefore a novel therapeutic possibility in various diseases.
Collapse
Affiliation(s)
- Xiaoqing Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Institute of HematologyZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouZhejiangChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouZhejiangChina
| | - Yixue Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Institute of HematologyZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouZhejiangChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouZhejiangChina
| | - Qinru Yu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Institute of HematologyZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouZhejiangChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouZhejiangChina
| | - Pengxu Qian
- Institute of HematologyZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouZhejiangChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouZhejiangChina
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Institute of HematologyZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouZhejiangChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouZhejiangChina
| | - Yu Lin
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Institute of HematologyZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouZhejiangChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouZhejiangChina
| |
Collapse
|
102
|
The Effect of Dietary Supplements on Oxidative Stress in Pregnant Women with Gestational Diabetes Mellitus: A Network Meta-Analysis. Nutrients 2021; 13:nu13072284. [PMID: 34209454 PMCID: PMC8308478 DOI: 10.3390/nu13072284] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) exacerbates the oxidative stress status of the pregnant women. Τo improve the oxidative stress status, several therapeutic interventions have been suggested. The aim of this network meta-analysis is to assess the effect of different dietary supplements on the oxidative stress status in pregnant women with GDM. METHODS A network meta-analysis of randomized control trials was performed comparing the changes delta (Δ) in total antioxidant capacity (TAC) and concentration of malondialdehyde (MDA) as primary outcomes, following different therapeutic interventions with dietary supplements in pregnant women with GDM. Four electronic databases and grey literature sources were searched. The secondary outcomes were other markers of oxidative stress. RESULTS The meta-analysis included 16 studies of 1173 women with GDM. Regarding ΔTAC: probiotics and omega-3 with vitamin E were superior to placebo/no intervention. Regarding ΔMDA: vitamin D with calcium, omega-3, vitamin D, omega-3 with vitamin E, magnesium with zinc and calcium, and probiotics were superior to placebo/no intervention. CONCLUSIONS Administration of dietary supplements in women with GDM can be helpful in limiting the oxidative stress which develop in these pregnancies.
Collapse
|
103
|
Abstract
Tremendous chemical diversity is the hallmark of plants and is supported by highly complex biochemical machinery. Plant metabolic enzymes originated and were transferred from eukaryotic and prokaryotic ancestors and further diversified by the unprecedented rates of gene duplication and functionalization experienced in land plants. Unlike microbes, which have frequent horizontal gene transfer events and multiple inputs of energy and organic carbon, land plants predominantly rely on organic carbon generated from CO2 and have experienced very few, if any, gene transfers during their recent evolutionary history. As such, plant metabolic networks have evolved in a stepwise manner and on existing networks under various evolutionary constraints. This review aims to take a broader view of plant metabolic evolution and lay a framework to further explore evolutionary mechanisms of the complex metabolic network. Understanding the underlying metabolic and genetic constraints is also an empirical prerequisite for rational engineering and redesigning of plant metabolic pathways.
Collapse
Affiliation(s)
- Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA;
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany;
| |
Collapse
|
104
|
Khan A, Siddiqui S, Husain SA, Mazurek S, Iqbal MA. Phytocompounds Targeting Metabolic Reprogramming in Cancer: An Assessment of Role, Mechanisms, Pathways, and Therapeutic Relevance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6897-6928. [PMID: 34133161 DOI: 10.1021/acs.jafc.1c01173] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The metabolism of cancer is remarkably different from that of normal cells and confers a variety of benefits, including the promotion of other cancer hallmarks. As the rewired metabolism is a near-universal property of cancer cells, efforts are underway to exploit metabolic vulnerabilities for therapeutic benefits. In the continued search for safer and effective ways of cancer treatment, structurally diverse plant-based compounds have gained substantial attention. Here, we present an extensive assessment of the role of phytocompounds in modulating cancer metabolism and attempt to make a case for the use of plant-based compounds in targeting metabolic vulnerabilities of cancer. We discuss the pharmacological interactions of phytocompounds with major metabolic pathways and evaluate the role of phytocompounds in the regulation of growth signaling and transcriptional programs involved in the metabolic transformation of cancer. Lastly, we examine the potential of these compounds in the clinical management of cancer along with limitations and challenges.
Collapse
Affiliation(s)
- Asifa Khan
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Shumaila Siddiqui
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Syed Akhtar Husain
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Sybille Mazurek
- Institute of Veterinary-Physiology and Biochemistry, University of Giessen, Giessen 35392, Germany
| | - Mohammad Askandar Iqbal
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| |
Collapse
|
105
|
Wang J, Liang C, Yang S, Song J, Li X, Dai X, Wang F, Juntawong N, Tan F, Zhang X, Jiao C, Zou X, Chen W. iTRAQ-based quantitative proteomic analysis of heat stress-induced mechanisms in pepper seedlings. PeerJ 2021; 9:e11509. [PMID: 34141478 PMCID: PMC8180192 DOI: 10.7717/peerj.11509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/03/2021] [Indexed: 11/30/2022] Open
Abstract
Background As one of the most important vegetable crops, pepper has rich nutritional value and high economic value. Increasing heat stress due to the global warming has a negative impact on the growth and yield of pepper. Methods To understand the heat stress response mechanism of pepper, an iTRAQ-based quantitative proteomic analysis was employed to identify possible heat-responsive proteins and metabolic pathways in 17CL30 and 05S180 pepper seedlings under heat stress. Result In the present study, we investigated the changes of phenotype, physiology, and proteome in heat-tolerant (17CL30) and heat-sensitive (05S180) pepper cultivars in response to heat stress. Phenotypic and physiological changes showed that 17CL30 had a stronger ability to resist heat stress compared with 05S180. In proteomic analysis, a total of 3,874 proteins were identified, and 1,591 proteins were considered to participate in the process of heat stress response. According to bioinformatic analysis of heat-responsive proteins, the heat tolerance of 17CL30 might be related to a higher ROS scavenging, photosynthesis, signal transduction, carbohydrate metabolism, and stress defense, compared with 05S180.
Collapse
Affiliation(s)
- Jing Wang
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China.,Longping Branch, Graduate School of Hunan University, Changsha, China
| | - Chengliang Liang
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Sha Yang
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jingshuang Song
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xuefeng Li
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xiongze Dai
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, China
| | - Fei Wang
- Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Niran Juntawong
- Faculty of Science, Department of Botany, Kasetsart University, Bangkok, Thailand
| | - Fangjun Tan
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xilu Zhang
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Chunhai Jiao
- Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Xuexiao Zou
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, China
| | - Wenchao Chen
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
106
|
GLUT-1 Enhances Glycolysis, Oxidative Stress, and Fibroblast Proliferation in Keloid. Life (Basel) 2021; 11:life11060505. [PMID: 34070830 PMCID: PMC8229441 DOI: 10.3390/life11060505] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 12/22/2022] Open
Abstract
A keloid is a fibroproliferative skin tumor. Proliferating keloid fibroblasts (KFs) demand active metabolic utilization. The contributing roles of glycolysis and glucose metabolism in keloid fibroproliferation remain unclear. This study aims to determine the regulation of glycolysis and glucose metabolism by glucose transporter-1 (GLUT-1), an essential protein to initiate cellular glucose uptake, in keloids and in KFs. Tissues of keloids and healthy skin were explanted for KFs and normal fibroblasts (NFs), respectively. GLUT-1 expression was measured by immunofluorescence, RT-PCR, and immunoblotting. The oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were measured with or without WZB117, a GLUT-1 inhibitor. Reactive oxygen species (ROS) were assayed by MitoSOX immunostaining. The result showed that glycolysis (ECAR) was enhanced in KFs, whereas OCR was not. GLUT-1 expression was selectively increased in KFs. Consistently, GLUT-1 expression was increased in keloid tissue. Treatment with WZB117 abolished the enhanced ECAR, including glycolysis and glycolytic capacity, in KFs. ROS levels were increased in KFs compared to those in NFs. GLUT-1 inhibition suppressed not only the ROS levels but also the cell proliferation in KFs. In summary, the GLUT-1-dependent glycolysis and ROS production mediated fibroblast proliferation in keloids. GLUT1 might be a potential target for metabolic reprogramming to treat keloids.
Collapse
|
107
|
Höhner R, Day PM, Zimmermann SE, Lopez LS, Krämer M, Giavalisco P, Correa Galvis V, Armbruster U, Schöttler MA, Jahns P, Krueger S, Kunz HH. Stromal NADH supplied by PHOSPHOGLYCERATE DEHYDROGENASE3 is crucial for photosynthetic performance. PLANT PHYSIOLOGY 2021; 186:142-167. [PMID: 33779763 PMCID: PMC8154072 DOI: 10.1093/plphys/kiaa117] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/17/2020] [Indexed: 05/22/2023]
Abstract
During photosynthesis, electrons travel from light-excited chlorophyll molecules along the electron transport chain to the final electron acceptor nicotinamide adenine dinucleotide phosphate (NADP) to form NADPH, which fuels the Calvin-Benson-Bassham cycle (CBBC). To allow photosynthetic reactions to occur flawlessly, a constant resupply of the acceptor NADP is mandatory. Several known stromal mechanisms aid in balancing the redox poise, but none of them utilizes the structurally highly similar coenzyme NAD(H). Using Arabidopsis (Arabidopsis thaliana) as a C3-model, we describe a pathway that employs the stromal enzyme PHOSPHOGLYCERATE DEHYDROGENASE 3 (PGDH3). We showed that PGDH3 exerts high NAD(H)-specificity and is active in photosynthesizing chloroplasts. PGDH3 withdrew its substrate 3-PGA directly from the CBBC. As a result, electrons become diverted from NADPH via the CBBC into the separate NADH redox pool. pgdh3 loss-of-function mutants revealed an overreduced NADP(H) redox pool but a more oxidized plastid NAD(H) pool compared to wild-type plants. As a result, photosystem I acceptor side limitation increased in pgdh3. Furthermore, pgdh3 plants displayed delayed CBBC activation, changes in nonphotochemical quenching, and altered proton motive force partitioning. Our fluctuating light-stress phenotyping data showed progressing photosystem II damage in pgdh3 mutants, emphasizing the significance of PGDH3 for plant performance under natural light environments. In summary, this study reveals an NAD(H)-specific mechanism in the stroma that aids in balancing the chloroplast redox poise. Consequently, the stromal NAD(H) pool may provide a promising target to manipulate plant photosynthesis.
Collapse
Affiliation(s)
- Ricarda Höhner
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Philip M Day
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Sandra E Zimmermann
- Biocenter University of Cologne, Institute for Plant Science, Cologne 50674, Germany
| | - Laura S Lopez
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Moritz Krämer
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | | | - Viviana Correa Galvis
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam 14476, Germany
| | - Ute Armbruster
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam 14476, Germany
| | - Mark Aurel Schöttler
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam 14476, Germany
| | - Peter Jahns
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf D-40225, Germany
| | - Stephan Krueger
- Biocenter University of Cologne, Institute for Plant Science, Cologne 50674, Germany
| | - Hans-Henning Kunz
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
108
|
Liang W, Chen Y, Li X, Guo F, Sun J, Zhang X, Xu B, Gao W. Label-Free Proteomic Analysis of Smoke-Drying and Shade-Drying Processes of Postharvest Rhubarb: A Comparative Study. FRONTIERS IN PLANT SCIENCE 2021; 12:663180. [PMID: 34140961 PMCID: PMC8205111 DOI: 10.3389/fpls.2021.663180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Postharvest processing plays a very important role in improving the quality of traditional Chinese medicine. According to previous studies, smoke-drying could significantly promote the accumulation of the bioactive components and pharmacological activities of rhubarb, but so far, the molecular mechanism has not been studied yet. In this research, to study the molecular mechanisms of postharvest processing for rhubarb during shade-drying and smoke-drying, label-free proteomic analyses were conducted. In total, 1,927 differentially abundant proteins (DAPs) were identified from rhubarb samples treated by different drying methods. These DAPs were mainly involved in response and defense, signal transduction, starch, carbohydrate and energy metabolism, and anthraquinone and phenolic acid biosynthesis. Smoke-drying significantly enhanced the expression of proteins involved in these metabolic pathways. Accordingly, the molecular mechanism of the accumulation of effective ingredients of rhubarb was clarified, which provided a novel insight into the biosynthesis of active ingredients that occur during the rhubarb dry process.
Collapse
Affiliation(s)
- Wei Liang
- Gansu Provincial Key Lab of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuan Chen
- Gansu Provincial Key Lab of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xia Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Fengxia Guo
- Gansu Provincial Key Lab of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiachen Sun
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Xuemin Zhang
- Key Laboratory of Modern Chinese Medicine Resources Research Enterprises, Tianjin, China
| | - Bo Xu
- Key Laboratory of Modern Chinese Medicine Resources Research Enterprises, Tianjin, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
109
|
The Pentose Phosphate Pathway in Yeasts-More Than a Poor Cousin of Glycolysis. Biomolecules 2021; 11:biom11050725. [PMID: 34065948 PMCID: PMC8151747 DOI: 10.3390/biom11050725] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 01/14/2023] Open
Abstract
The pentose phosphate pathway (PPP) is a route that can work in parallel to glycolysis in glucose degradation in most living cells. It has a unidirectional oxidative part with glucose-6-phosphate dehydrogenase as a key enzyme generating NADPH, and a non-oxidative part involving the reversible transketolase and transaldolase reactions, which interchange PPP metabolites with glycolysis. While the oxidative branch is vital to cope with oxidative stress, the non-oxidative branch provides precursors for the synthesis of nucleic, fatty and aromatic amino acids. For glucose catabolism in the baker’s yeast Saccharomyces cerevisiae, where its components were first discovered and extensively studied, the PPP plays only a minor role. In contrast, PPP and glycolysis contribute almost equally to glucose degradation in other yeasts. We here summarize the data available for the PPP enzymes focusing on S. cerevisiae and Kluyveromyces lactis, and describe the phenotypes of gene deletions and the benefits of their overproduction and modification. Reference to other yeasts and to the importance of the PPP in their biotechnological and medical applications is briefly being included. We propose future studies on the PPP in K. lactis to be of special interest for basic science and as a host for the expression of human disease genes.
Collapse
|
110
|
Folch PL, Bisschops MM, Weusthuis RA. Metabolic energy conservation for fermentative product formation. Microb Biotechnol 2021; 14:829-858. [PMID: 33438829 PMCID: PMC8085960 DOI: 10.1111/1751-7915.13746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/02/2022] Open
Abstract
Microbial production of bulk chemicals and biofuels from carbohydrates competes with low-cost fossil-based production. To limit production costs, high titres, productivities and especially high yields are required. This necessitates metabolic networks involved in product formation to be redox-neutral and conserve metabolic energy to sustain growth and maintenance. Here, we review the mechanisms available to conserve energy and to prevent unnecessary energy expenditure. First, an overview of ATP production in existing sugar-based fermentation processes is presented. Substrate-level phosphorylation (SLP) and the involved kinase reactions are described. Based on the thermodynamics of these reactions, we explore whether other kinase-catalysed reactions can be applied for SLP. Generation of ion-motive force is another means to conserve metabolic energy. We provide examples how its generation is supported by carbon-carbon double bond reduction, decarboxylation and electron transfer between redox cofactors. In a wider perspective, the relationship between redox potential and energy conservation is discussed. We describe how the energy input required for coenzyme A (CoA) and CO2 binding can be reduced by applying CoA-transferases and transcarboxylases. The transport of sugars and fermentation products may require metabolic energy input, but alternative transport systems can be used to minimize this. Finally, we show that energy contained in glycosidic bonds and the phosphate-phosphate bond of pyrophosphate can be conserved. This review can be used as a reference to design energetically efficient microbial cell factories and enhance product yield.
Collapse
Affiliation(s)
- Pauline L. Folch
- Bioprocess EngineeringWageningen University & ResearchPost office box 16Wageningen6700 AAThe Netherlands
| | - Markus M.M. Bisschops
- Bioprocess EngineeringWageningen University & ResearchPost office box 16Wageningen6700 AAThe Netherlands
| | - Ruud A. Weusthuis
- Bioprocess EngineeringWageningen University & ResearchPost office box 16Wageningen6700 AAThe Netherlands
| |
Collapse
|
111
|
Sustained oxidative stress instigates differentiation of cancer stem cells into tumor endothelial cells: Pentose phosphate pathway, reactive oxygen species and autophagy crosstalk. Biomed Pharmacother 2021; 139:111643. [PMID: 33945913 DOI: 10.1016/j.biopha.2021.111643] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/08/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Tumor angiogenesis plays a vital role in tumor growth and metastasis. It is proven that in tumor vasculature, endothelial cells (ECs) originate from a small population of cancer cells introduced as cancer stem cells (CSCs). Autophagy has a vital role in ECs differentiation from CSCs and tumor angiogenesis. High levels of reactive oxygen species (ROS) increased autophagy by inhibition of glucose-6-phosphate dehydrogenase (G6PD) and inactivation of the pentose phosphate pathway (PPP). Previously, we suggested that cancer cells initially increase the glycolysis rate when encountering ROS, then the metabolic balance is changed from glycolysis to PPP, following the continuation of oxidative stress. In this study, we investigate the possible role of persistent oxidative stress in the differentiation of CSCs into tumor ECs by relying on the relationship between the ROS, PPP and autophagy. Because tumor angiogenesis plays an important role in the growth and development of cancer, understanding the mechanisms involved in differentiating ECs from CSCs can help find promising treatments for cancer.
Collapse
|
112
|
Guo R, Zhao L, Zhang K, Lu H, Bhanbhro N, Yang C. Comparative Genomics and Transcriptomics of the Extreme Halophyte Puccinellia tenuiflora Provides Insights Into Salinity Tolerance Differentiation Between Halophytes and Glycophytes. FRONTIERS IN PLANT SCIENCE 2021; 12:649001. [PMID: 33968105 PMCID: PMC8100201 DOI: 10.3389/fpls.2021.649001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/06/2021] [Indexed: 05/25/2023]
Abstract
Halophytes and glycophytes exhibit clear differences in their tolerance to high levels of salinity. The genetic mechanisms underlying this differentiation, however, remain unclear. To unveil these mechanisms, we surveyed the evolution of salinity-tolerant gene families through comparative genomic analyses between the model halophyte Puccinellia tenuiflora and glycophytic Gramineae plants, and compared their transcriptional and physiological responses to salinity stress. Under salinity stress, the K+ concentration in the root was slightly enhanced in P. tenuiflora, but it was greatly reduced in the glycophytic Gramineae plants, which provided a physiological explanation for differences in salinity tolerance between P. tenuiflora and these glycophytes. Interestingly, several K+ uptake gene families from P. tenuiflora experienced family expansion and positive selection during evolutionary history. This gene family expansion and the elevated expression of K+ uptake genes accelerated K+ accumulation and decreased Na+ toxicity in P. tenuiflora roots under salinity stress. Positively selected P. tenuiflora K+ uptake genes may have evolved new functions that contributed to development of P. tenuiflora salinity tolerance. In addition, the expansion of the gene families involved in pentose phosphate pathway, sucrose biosynthesis, and flavonoid biosynthesis assisted the adaptation of P. tenuiflora to survival under high salinity conditions.
Collapse
Affiliation(s)
- Rui Guo
- Key Laboratory of Dryland Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Long Zhao
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Kaijian Zhang
- Beijing Novogene Bioinformatics Technology Ltd., Beijing, China
| | - Huiying Lu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Nadeem Bhanbhro
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Chunwu Yang
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| |
Collapse
|
113
|
Wang M, Pérez-Garcia MD, Davière JM, Barbier F, Ogé L, Gentilhomme J, Voisine L, Péron T, Launay-Avon A, Clément G, Baumberger N, Balzergue S, Macherel D, Grappin P, Bertheloot J, Achard P, Hamama L, Sakr S. Outgrowth of the axillary bud in rose is controlled by sugar metabolism and signalling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3044-3060. [PMID: 33543244 DOI: 10.1093/jxb/erab046] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/01/2021] [Indexed: 05/12/2023]
Abstract
Shoot branching is a pivotal process during plant growth and development, and is antagonistically orchestrated by auxin and sugars. In contrast to extensive investigations on hormonal regulatory networks, our current knowledge on the role of sugar signalling pathways in bud outgrowth is scarce. Based on a comprehensive stepwise strategy, we investigated the role of glycolysis/the tricarboxylic acid (TCA) cycle and the oxidative pentose phosphate pathway (OPPP) in the control of bud outgrowth. We demonstrated that these pathways are necessary for bud outgrowth promotion upon plant decapitation and in response to sugar availability. They are also targets of the antagonistic crosstalk between auxin and sugar availability. The two pathways act synergistically to down-regulate the expression of BRC1, a conserved inhibitor of shoot branching. Using Rosa calluses stably transformed with GFP-fused promoter sequences of RhBRC1 (pRhBRC1), glycolysis/TCA cycle and the OPPP were found to repress the transcriptional activity of pRhBRC1 cooperatively. Glycolysis/TCA cycle- and OPPP-dependent regulations involve the -1973/-1611 bp and -1206/-709 bp regions of pRhBRC1, respectively. Our findings indicate that glycolysis/TCA cycle and the OPPP are integrative parts of shoot branching control and can link endogenous factors to the developmental programme of bud outgrowth, likely through two distinct mechanisms.
Collapse
Affiliation(s)
- Ming Wang
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | | | - Jean-Michel Davière
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France
| | - François Barbier
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Laurent Ogé
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
| | - José Gentilhomme
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
| | - Linda Voisine
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
| | - Thomas Péron
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
| | - Alexandra Launay-Avon
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Saclay, Bâtiment 630, Plateau de Moulon, 91192 Gif sur Yvette, France
| | - Gilles Clément
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Nicolas Baumberger
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France
| | - Sandrine Balzergue
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
| | - David Macherel
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
| | - Philippe Grappin
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
| | - Jessica Bertheloot
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
| | - Patrick Achard
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France
| | - Latifa Hamama
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
| | - Soulaiman Sakr
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
| |
Collapse
|
114
|
Zou X, Li L, Liao F, Chen W. iTRAQ-based quantitative proteomic analysis reveals NtGNL1-dependent regulatory network underlying endosome trafficking for pollen tube polar growth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:200-209. [PMID: 33636685 DOI: 10.1016/j.plaphy.2021.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Endosome trafficking has been reported to play an essential role in pollen tube polar growth and NtGNL1 (Nicotiana tabacum GNOM-LIKE 1) regulates the polar growth through endosome trafficking. However, the regulation network and detailed molecular mechanisms underlying endosome trafficking remain unclear. Here, comparative proteomic analysis was carried out to survey the overall effect of NtGNL1 on pollen tube polar growth and NtGNL1-dependent endosome trafficking. With multiple comparative systems (RNAi, Wild type, and BFA or wortmannin treatments), 481 distinct proteins were identified including 43 common DEPs (differentially expressed proteins), of which 16 significant DEPs were common among RNAi, BFA, and wortmannin treated pollen tubes, indicating their close relation to the endosome trafficking. GO annotation indicates that the vesicle trafficking of gnl1HE pollen tubes differs from that of the BFA and wortmannin treated pollen tubes in the COPII-coated vesicle budding process. KEGG pathway analysis suggests that the Pentose phosphate pathway is critical for the NtGNL1-dependent endosome trafficking. Yeast two-hybrid further confirmed that the NtGNL1-Sec7 domain interacted strongly with VPS32.2, TCTP, PIS2, and PDIL2-1, suggesting that the core functional region of NtGNL1 is the Sec7 domain. Therefore, NtGNL1 likely functions via its Sec7 binding with these proteins to affect endosome trafficking. Our results provide a clear outline of proteins involving in NtGNL1-dependent endosome trafficking and valuable clues for understanding the regulatory mechanism of NtGNL1 guided pollen tube polar growth.
Collapse
Affiliation(s)
- Xinjian Zou
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ling Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Fanglei Liao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China; Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, 321004, China.
| | - Wenrong Chen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China; Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
115
|
Tian Y, Peng K, Bao Y, Zhang D, Meng J, Wang D, Wang X, Cang J. Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase genes of winter wheat enhance the cold tolerance of transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:86-97. [PMID: 33581622 DOI: 10.1016/j.plaphy.2021.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
In this study, winter wheat G6PDH (TaG6PDH) and 6PGDH (Ta6PGDH) were investigated. Both their expression and their activity were upregulated under cold stress, suggesting that TaG6PDH and Ta6PGDH positively respond to cold stress in winter wheat. Exogenous abscisic acid (ABA) treatment markedly increased the expression and activity levels of TaG6PDH and Ta6PGDH in winter wheat under cold stress. Subsequently, TaG6PDH-and Ta6PGDH were overexpressed in Arabidopsis, and showed stronger reactive oxygen species (ROS)-scavenging ability and higher survival rate compared with wild-type (WT) plants under cold stress. In addition, we found that TaG6PDH and Ta6PGDH overexpression can promote the oxidative pentose phosphate pathway (OPPP) in the cytoplasm and peroxisomes of Arabidopsis. In summary, Arabidopsis overexpressing TaG6PDH and Ta6PGDH showed improved cold tolerance.
Collapse
Affiliation(s)
- Yu Tian
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Kankan Peng
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuzhuo Bao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Da Zhang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jing Meng
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Duojia Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaonan Wang
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jing Cang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
116
|
Lehmkuhl EM, Loganathan S, Alsop E, Blythe AD, Kovalik T, Mortimore NP, Barrameda D, Kueth C, Eck RJ, Siddegowda BB, Joardar A, Ball H, Macias ME, Bowser R, Van Keuren-Jensen K, Zarnescu DC. TDP-43 proteinopathy alters the ribosome association of multiple mRNAs including the glypican Dally-like protein (Dlp)/GPC6. Acta Neuropathol Commun 2021; 9:52. [PMID: 33762006 PMCID: PMC7992842 DOI: 10.1186/s40478-021-01148-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a genetically heterogeneous neurodegenerative disease in which 97% of patients exhibit cytoplasmic aggregates containing the RNA binding protein TDP-43. Using tagged ribosome affinity purifications in Drosophila models of TDP-43 proteinopathy, we identified TDP-43 dependent translational alterations in motor neurons impacting the spliceosome, pentose phosphate and oxidative phosphorylation pathways. A subset of the mRNAs with altered ribosome association are also enriched in TDP-43 complexes suggesting that they may be direct targets. Among these, dlp mRNA, which encodes the glypican Dally like protein (Dlp)/GPC6, a wingless (Wg/Wnt) signaling regulator is insolubilized both in flies and patient tissues with TDP-43 pathology. While Dlp/GPC6 forms puncta in the Drosophila neuropil and ALS spinal cords, it is reduced at the neuromuscular synapse in flies suggesting compartment specific effects of TDP-43 proteinopathy. These findings together with genetic interaction data show that Dlp/GPC6 is a novel, physiologically relevant target of TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Erik M. Lehmkuhl
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Suvithanandhini Loganathan
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Eric Alsop
- Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ 85004 USA
| | - Alexander D. Blythe
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Tina Kovalik
- Department of Neurobiology, Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013 USA
| | - Nicholas P. Mortimore
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Dianne Barrameda
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Chuol Kueth
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Randall J. Eck
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Bhavani B. Siddegowda
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Archi Joardar
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Hannah Ball
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Maria E. Macias
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Robert Bowser
- Department of Neurobiology, Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013 USA
| | | | - Daniela C. Zarnescu
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
- Department of Neuroscience, University of Arizona, 1040 4th St, Tucson, AZ 85721 USA
- Department of Neurology, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724 USA
| |
Collapse
|
117
|
Huang S, Wang Y, Tang C, Jia H, Wu L. Speeding up selenite bioremediation using the highly selenite-tolerant strain Providencia rettgeri HF16-A novel mechanism of selenite reduction based on proteomic analysis. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124690. [PMID: 33296764 DOI: 10.1016/j.jhazmat.2020.124690] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Selenite in the environment is extremely biotoxic, thus, the biotransformation of selenite into selenium nanoparticles (SeNPs) by microorganisms is gaining increasing interest. However, the relatively low selenite tolerance and slow processing by known microorganisms limit its application. In this study, a highly selenite-resistant strain (up to 800 mM) was isolated from coalmine soil and identified as Providencia rettgeri HF16. Remarkably, 5 mM selenite was entirely transformed by this strain within 24 h, and SeNPs were detected as early as 2 h of incubation, which is a more rapid conversion than that described for other microorganisms. The SeNPs were spherical in shape with diameters ranging from 120 nm to 295 nm, depending on the incubation time. Moreover, in vitro selenite-reduction activity was detected in the cytoplasmic protein fraction with NADPH or NADH serving as electron donors. Proteomics analysis and key enzyme activity tests revealed the presence of a sulfite reductase-mediated selenite reduction pathway. To our knowledge, this is the first report to identify the involvement of sulfite reductase in selenite reduction under physiological conditions. P. rettgeri HF16 could be a suitable and robust biocatalyst for the bioremediation of selenite, and would accelerate the efficient and economical synthesis of selenium nanoparticles.
Collapse
Affiliation(s)
- ShengWei Huang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230026, Anhui, China
| | - Yuting Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, Anhui, China
| | - Caiguo Tang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230026, Anhui, China
| | - HuiLing Jia
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China; School of Life Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Lifang Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230026, Anhui, China; School of Life Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China.
| |
Collapse
|
118
|
Daneshmandi S, Cassel T, Lin P, Higashi RM, Wulf GM, Boussiotis VA, Fan TWM, Seth P. Blockade of 6-phosphogluconate dehydrogenase generates CD8 + effector T cells with enhanced anti-tumor function. Cell Rep 2021; 34:108831. [PMID: 33691103 PMCID: PMC8051863 DOI: 10.1016/j.celrep.2021.108831] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/07/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Although T cell expansion depends on glycolysis, T effector cell differentiation requires signaling via the production of reactive oxygen species (ROS). Because the pentose phosphate pathway (PPP) regulates ROS by generating nicotinamide adenine dinucleotide phosphate (NADPH), we examined how PPP blockade affects T cell differentiation and function. Here, we show that genetic ablation or pharmacologic inhibition of the PPP enzyme 6-phosphogluconate dehydrogenase (6PGD) in the oxidative PPP results in the generation of superior CD8+ T effector cells. These cells have gene signatures and immunogenic markers of effector phenotype and show potent anti-tumor functions both in vitro and in vivo. In these cells, metabolic reprogramming occurs along with increased mitochondrial ROS and activated antioxidation machinery to balance ROS production against oxidative damage. Our findings reveal a role of 6PGD as a checkpoint for T cell effector differentiation/survival and evidence for 6PGD as an attractive metabolic target to improve tumor immunotherapy.
Collapse
Affiliation(s)
- Saeed Daneshmandi
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Division of Interdisciplinary Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Teresa Cassel
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Penghui Lin
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Richard M Higashi
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Gerburg M Wulf
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Vassiliki A Boussiotis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Teresa W-M Fan
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA.
| | - Pankaj Seth
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Division of Interdisciplinary Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
119
|
Timm S, Arrivault S. Regulation of Central Carbon and Amino Acid Metabolism in Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:430. [PMID: 33668292 PMCID: PMC7996223 DOI: 10.3390/plants10030430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 01/10/2023]
Abstract
Fluctuations in the prevailing environmental conditions, including light availability and intensity, CO2/O2 ratio, temperature, and nutrient or water supply, require rapid metabolic switches to maintain proper metabolism [...].
Collapse
Affiliation(s)
- Stefan Timm
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18051 Rostock, Germany
| | - Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany;
| |
Collapse
|
120
|
Gao J, Song J, Ye J, Duan X, Dionysiou DD, Yadav JS, Nadagouda MN, Yang L, Luo S. Comparative toxicity reduction potential of UV/sodium percarbonate and UV/hydrogen peroxide treatments for bisphenol A in water: An integrated analysis using chemical, computational, biological, and metabolomic approaches. WATER RESEARCH 2021; 190:116755. [PMID: 33383346 DOI: 10.1016/j.watres.2020.116755] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is a common industrial chemical with significant adverse impacts on biological systems as an environmental contaminant. UV/hydrogen peroxide (UV/H2O2) is a well-established technology for BPA treatment in water while UV/sodium percarbonate (UV/SPC) is an emerging technology with unclear biological impacts of treated effluent. Therefore, in this study, the toxicity evaluation of BPA solution treated with UV/H2O2 and UV/SPC was preformed and compared based on transformation products (TPs) profile, quantitative structure-activity relationship (QSAR), Escherichia coli (E. coli) toxicity assays, and metabolomic analysis. TPs with hydroxylation, double-ring split, and single-ring cleavage were generated from BPA during the treatments with both technologies, but TPs with quinonation were specifically detected in UV/H2O2 treated solution at the UV dose of 1470 mJ cm-2. QSAR prediction based on TPs profile (excluding benzoquinone TPs) suggested that UV/H2O2 and UV/SPC treatments of BPA may increase matrix toxicity due to the formation of multi-hydroxylated TPs; however decreased bioaccumulation potential of all TPs may mitigate the increase of toxicity by reducing the chance of TPs to reach the concentration of toxicity threshold. In vivo assays with E. coli showed inhibited cell growth, arrested cell cycle, and increased cell death in BPA solution treated with UV/H2O2 at the UV dose of 1470 mJ cm-2. Metabolomic analysis indicated that BPA solution treated with UV/H2O2 at UV dose of 1470 mJ cm-2 impacted E. coli metabolism differently than other solutions with unique inhibition on glycerolipid metabolism. Moreover, BPA interfered in various metabolic pathways including alanine, aspartate and glutamate metabolism, starch and sucrose metabolism, pentose phosphate pathway, and lysine degradation, which were mitigated after the treatments. UV/SPC showed advantage over UV/H2O2 of attenuated impact on butanoate metabolism with UV irradiation. This study has generated valuable data for better understanding of biological impacts of BPA and its solutions treated with UV/H2O2 or UV/SPC, thus providing insights for their application prospect for water and wastewater treatment.
Collapse
Affiliation(s)
- Jiong Gao
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Jie Song
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jinshao Ye
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Xiaodi Duan
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221, United States.
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221, United States.
| | - Jagjit S Yadav
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH 45324, United States
| | - Lixia Yang
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330036, China
| | - Shenglian Luo
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330036, China
| |
Collapse
|
121
|
Corpas FJ, González-Gordo S, Palma JM. Nitric oxide and hydrogen sulfide modulate the NADPH-generating enzymatic system in higher plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:830-847. [PMID: 32945878 DOI: 10.1093/jxb/eraa440] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two key molecules in plant cells that participate, directly or indirectly, as regulators of protein functions through derived post-translational modifications, mainly tyrosine nitration, S-nitrosation, and persulfidation. These post-translational modifications allow the participation of both NO and H2S signal molecules in a wide range of cellular processes either physiological or under stressful circumstances. NADPH participates in cellular redox status and it is a key cofactor necessary for cell growth and development. It is involved in significant biochemical routes such as fatty acid, carotenoid and proline biosynthesis, and the shikimate pathway, as well as in cellular detoxification processes including the ascorbate-glutathione cycle, the NADPH-dependent thioredoxin reductase (NTR), or the superoxide-generating NADPH oxidase. Plant cells have diverse mechanisms to generate NADPH by a group of NADP-dependent oxidoreductases including ferredoxin-NADP reductase (FNR), NADP-glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPDH), NADP-dependent malic enzyme (NADP-ME), NADP-dependent isocitrate dehydrogenase (NADP-ICDH), and both enzymes of the oxidative pentose phosphate pathway, designated as glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH). These enzymes consist of different isozymes located in diverse subcellular compartments (chloroplasts, cytosol, mitochondria, and peroxisomes) which contribute to the NAPDH cellular pool. We provide a comprehensive overview of how post-translational modifications promoted by NO (tyrosine nitration and S-nitrosation), H2S (persulfidation), and glutathione (glutathionylation), affect the cellular redox status through regulation of the NADP-dependent dehydrogenases.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| | - Salvador González-Gordo
- Group of Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| | - José M Palma
- Group of Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| |
Collapse
|
122
|
Endothelial response to glucose: dysfunction, metabolism, and transport. Biochem Soc Trans 2021; 49:313-325. [PMID: 33522573 DOI: 10.1042/bst20200611] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
The endothelial cell response to glucose plays an important role in both health and disease. Endothelial glucose-induced dysfunction was first studied in diabetic animal models and in cells cultured in hyperglycemia. Four classical dysfunction pathways were identified, which were later shown to result from the common mechanism of mitochondrial superoxide overproduction. More recently, non-coding RNA, extracellular vesicles, and sodium-glucose cotransporter-2 inhibitors were shown to affect glucose-induced endothelial dysfunction. Endothelial cells also metabolize glucose for their own energetic needs. Research over the past decade highlighted how manipulation of endothelial glycolysis can be used to control angiogenesis and microvascular permeability in diseases such as cancer. Finally, endothelial cells transport glucose to the cells of the blood vessel wall and to the parenchymal tissue. Increasing evidence from the blood-brain barrier and peripheral vasculature suggests that endothelial cells regulate glucose transport through glucose transporters that move glucose from the apical to the basolateral side of the cell. Future studies of endothelial glucose response should begin to integrate dysfunction, metabolism and transport into experimental and computational approaches that also consider endothelial heterogeneity, metabolic diversity, and parenchymal tissue interactions.
Collapse
|
123
|
Mohsenpour SF, Hennige S, Willoughby N, Adeloye A, Gutierrez T. Integrating micro-algae into wastewater treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142168. [PMID: 33207512 DOI: 10.1016/j.scitotenv.2020.142168] [Citation(s) in RCA: 208] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 05/05/2023]
Abstract
Improving the ecological status of water sources is a growing focus for many developed and developing nations, in particular with reducing nitrogen and phosphorus in wastewater effluent. In recent years, mixotrophic micro-algae have received increased interest in implementing them as part of wastewater treatment. This is based on their ability to utilise organic and inorganic carbon, as well as inorganic nitrogen (N) and phosphorous (P) in wastewater for their growth, with the desired results of a reduction in the concentration of these substances in the water. The aim of this review is to provide a critical account of micro-algae as an important step in wastewater treatment for enhancing the reduction of N, P and the chemical oxygen demand (COD) in wastewater, whilst utilising a fraction of the energy demand of conventional biological treatment systems. Here, we begin with an overview of the various steps in the treatment process, followed by a review of the cellular and metabolic mechanisms that micro-algae use to reduce N, P and COD of wastewater with identification of when the process may potentially be most effective. We also describe the various abiotic and biotic factors influencing micro-algae wastewater treatment, together with a review of bioreactor configuration and design. Furthermore, a detailed overview is provided of the current state-of-the-art in the use of micro-algae in wastewater treatment.
Collapse
Affiliation(s)
- Seyedeh Fatemeh Mohsenpour
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Sebastian Hennige
- School of Geosciences, The King's Buildings, University of Edinburgh, Edinburgh EH9 3FE, UK
| | - Nicholas Willoughby
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Adebayo Adeloye
- Institute for Infrastructure and Environment, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Tony Gutierrez
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| |
Collapse
|
124
|
Zhang Z, Wang T, Liu G, Hu M, Yun Z, Duan X, Cai K, Jiang G. Inhibition of downy blight and enhancement of resistance in litchi fruit by postharvest application of melatonin. Food Chem 2021; 347:129009. [PMID: 33444889 DOI: 10.1016/j.foodchem.2021.129009] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/07/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023]
Abstract
Litchis are tasty fruit with economic importance. However, the extreme susceptibility of harvested litchis to litchi downy blight caused by Peronophythora litchii leads to compromised quality. This study aimed to study the effects of melatonin on postharvest resistance to P. litchii in 'Feizixiao' litchis. Results showed that melatonin restricted lesion expansion in litchis after P. litchi inoculation. Melatonin enhanced the activities of phenylalanine ammonia-lyase, cinnamate-4-hydroxylase and 4-hydroxycinnamate CoA ligase while promoting the accumulations of phenolics and flavonoids. Nicotinamide adenine dinucleotide phosphate content and glucose-6-phosphate dehydrogenase and 6-phosphogluconic acid dehydrogenase activities were higher in treated fruit than control fruit. Higher energy status along with elevated H+-ATPase, Ca2+-ATPase, succinate dehydrogenase and cytochrome C oxidase activities were observed in treated fruit. Ultrastructural observation showed reduced damage in mitochondria in treated fruit. The results suggest that melatonin induced resistance in litchis by modulating the phenylpropanoid and pentose phosphate pathways as well as energy metabolism. .
Collapse
Affiliation(s)
- Zhengke Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, PR China
| | - Tian Wang
- College of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, PR China
| | - Gangshuai Liu
- College of Food Science and Engineering, Hainan University, Haikou 570228, PR China; College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Meijiao Hu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China
| | - Ze Yun
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Xuewu Duan
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Kun Cai
- College of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Guoxiang Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China.
| |
Collapse
|
125
|
Ribeiro C, Hennen-Bierwagen TA, Myers AM, Cline K, Settles AM. Engineering 6-phosphogluconate dehydrogenase improves grain yield in heat-stressed maize. Proc Natl Acad Sci U S A 2020; 117:33177-33185. [PMID: 33323483 DOI: 10.1101/2020.05.21.108985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023] Open
Abstract
Endosperm starch synthesis is a primary determinant of grain yield and is sensitive to high-temperature stress. The maize chloroplast-localized 6-phosphogluconate dehydrogenase (6PGDH), PGD3, is critical for endosperm starch accumulation. Maize also has two cytosolic isozymes, PGD1 and PGD2, that are not required for kernel development. We found that cytosolic PGD1 and PGD2 isozymes have heat-stable activity, while amyloplast-localized PGD3 activity is labile under heat stress conditions. We targeted heat-stable 6PGDH to endosperm amyloplasts by fusing the Waxy1 chloroplast targeting the peptide coding sequence to the Pgd1 and Pgd2 open reading frames (ORFs). These WPGD1 and WPGD2 fusion proteins import into isolated chloroplasts, demonstrating a functional targeting sequence. Transgenic maize plants expressing WPGD1 and WPGD2 with an endosperm-specific promoter increased 6PGDH activity with enhanced heat stability in vitro. WPGD1 and WPGD2 transgenes complement the pgd3-defective kernel phenotype, indicating the fusion proteins are targeted to the amyloplast. In the field, the WPGD1 and WPGD2 transgenes can mitigate grain yield losses in high-nighttime-temperature conditions by increasing kernel number. These results provide insight into the subcellular distribution of metabolic activities in the endosperm and suggest the amyloplast pentose phosphate pathway is a heat-sensitive step in maize kernel metabolism that contributes to yield loss during heat stress.
Collapse
Affiliation(s)
- Camila Ribeiro
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611
| | - Tracie A Hennen-Bierwagen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Alan M Myers
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Kenneth Cline
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611
| | - A Mark Settles
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611
| |
Collapse
|
126
|
Identification, Characterization, and Stress Responsiveness of Glucose-6-phosphate Dehydrogenase Genes in Highland Barley. PLANTS 2020; 9:plants9121800. [PMID: 33353078 PMCID: PMC7766724 DOI: 10.3390/plants9121800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 01/22/2023]
Abstract
G6PDH provides intermediate metabolites and reducing power (nicotinamide adenine dinucleotide phosphate, NADPH) for plant metabolism, and plays a pivotal role in the cellular redox homeostasis. In this study, we cloned five G6PDH genes (HvG6PDH1 to HvG6PDH5) from highland barley and characterized their encoded proteins. Functional analysis of HvG6PDHs in E. coli showed that HvG6PDH1 to HvG6PDH5 encode the functional G6PDH proteins. Subcellular localization and phylogenetic analysis indicated that HvG6PDH2 and HvG6PDH5 are localized in the cytoplasm, while HvG6PDH1, HvG6PDH3, and HvG6PDH4 are plastidic isoforms. Analysis of enzymatic activities and gene expression showed that HvG6PDH1 to HvG6PDH4 are involved in responses to salt and drought stresses. The cytosolic HvG6PDH2 is the major isoform against oxidative stress. HvG6PDH5 may be a house-keeping gene. In addition, HvG6PDH1 to HvG6PDH4 and their encoded enzymes responded to jasmonic acid (JA) and abscisic acid (ABA) treatments, implying that JA and ABA are probably critical regulators of HvG6PDHs (except for HvG6PDH5). Reactive oxygen species analysis showed that inhibition of cytosolic and plastidic G6PDH activities leads to increased H2O2 and O2− contents in highland barley under salt and drought stresses. These results suggest that G6PDH can maintain cellular redox homeostasis and that cytosolic HvG6PDH2 is an irreplaceable isoform against oxidative stress in highland barley.
Collapse
|
127
|
Engineering 6-phosphogluconate dehydrogenase improves grain yield in heat-stressed maize. Proc Natl Acad Sci U S A 2020; 117:33177-33185. [PMID: 33323483 DOI: 10.1073/pnas.2010179117] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Endosperm starch synthesis is a primary determinant of grain yield and is sensitive to high-temperature stress. The maize chloroplast-localized 6-phosphogluconate dehydrogenase (6PGDH), PGD3, is critical for endosperm starch accumulation. Maize also has two cytosolic isozymes, PGD1 and PGD2, that are not required for kernel development. We found that cytosolic PGD1 and PGD2 isozymes have heat-stable activity, while amyloplast-localized PGD3 activity is labile under heat stress conditions. We targeted heat-stable 6PGDH to endosperm amyloplasts by fusing the Waxy1 chloroplast targeting the peptide coding sequence to the Pgd1 and Pgd2 open reading frames (ORFs). These WPGD1 and WPGD2 fusion proteins import into isolated chloroplasts, demonstrating a functional targeting sequence. Transgenic maize plants expressing WPGD1 and WPGD2 with an endosperm-specific promoter increased 6PGDH activity with enhanced heat stability in vitro. WPGD1 and WPGD2 transgenes complement the pgd3-defective kernel phenotype, indicating the fusion proteins are targeted to the amyloplast. In the field, the WPGD1 and WPGD2 transgenes can mitigate grain yield losses in high-nighttime-temperature conditions by increasing kernel number. These results provide insight into the subcellular distribution of metabolic activities in the endosperm and suggest the amyloplast pentose phosphate pathway is a heat-sensitive step in maize kernel metabolism that contributes to yield loss during heat stress.
Collapse
|
128
|
Zhang B, Li B, Men XH, Xu ZW, Wu H, Qin XT, Xu F, Teng Y, Yuan SJ, Jin LQ, Liu ZQ, Zheng YG. Proteome sequencing and analysis of Ophiocordyceps sinensis at different culture periods. BMC Genomics 2020; 21:886. [PMID: 33308160 PMCID: PMC7731760 DOI: 10.1186/s12864-020-07298-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/02/2020] [Indexed: 01/04/2023] Open
Abstract
Background Ophiocordyceps sinensis is an important traditional Chinese medicine for its comprehensive active ingredients, such as cordycepin, cordycepic acid, and Cordyceps polysaccharide. O. sinensis zjut, a special strain isolated from O. sinensis, has similar pharmacological functions to wild O. sinensis. Currently, O. sinensis with artificial cultivation has been widely studied, but systematic fundamental research at protein levels has not been determined. Results Proteomes of O. sinensis zjut at different culture periods (growth period, 3rd day; pre-stable period, 6th day; and stable period, 9th day) were relatively quantified by relative isotope markers and absolute quantitative technology. In total, 4005 proteins were obtained and further annotated with Gene Ontology, Kyoto Encyclopedia of Genes and Genomes database. Based on the result of the annotations, metabolic pathways of active ingredients, amino acids and fatty acid were constructed, and the related enzymes were exhibited. Subsequently, comparative proteomics of O. sinensis zjut identified the differentially expressed proteins (DEPs) by growth in different culture periods, to find the important proteins involved in metabolic pathways of active ingredients. 605 DEPs between 6d-VS-3d, 1188 DEPs between 9d-VS-3d, and 428 DEPs between 9d-VS-6d were obtained, respectively. Conclusion This work provided scientific basis to study protein profile and comparison of protein expression levels of O. sinensis zjut, and it will be helpful for metabolic engineering works to active ingredients for exploration, application and improvement of this fungus. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07298-z.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bo Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiao-Hui Men
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhe-Wen Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hui Wu
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220, China.,East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, China
| | - Xiang-Tian Qin
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220, China.,East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, China
| | - Feng Xu
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220, China.,East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, China
| | - Yi Teng
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220, China.,East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, China
| | - Shui-Jin Yuan
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220, China.,East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, China
| | - Li-Qun Jin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
129
|
Marsden SR, McMillan DGG, Hanefeld U. Assessing the Thiamine Diphosphate Dependent Pyruvate Dehydrogenase E1 Subunit for Carboligation Reactions with Aliphatic Ketoacids. Int J Mol Sci 2020; 21:ijms21228641. [PMID: 33207817 PMCID: PMC7696235 DOI: 10.3390/ijms21228641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/31/2022] Open
Abstract
The synthetic properties of the Thiamine diphosphate (ThDP)-dependent pyruvate dehydrogenase E1 subunit from Escherichia coli (EcPDH E1) was assessed for carboligation reactions with aliphatic ketoacids. Due to its role in metabolism, EcPDH E1 was previously characterised with respect to its biochemical properties, but it was never applied for synthetic purposes. Here, we show that EcPDH E1 is a promising biocatalyst for the production of chiral α-hydroxyketones. WT EcPDH E1 shows a 180-250-fold higher catalytic efficiency towards 2-oxobutyrate or pyruvate, respectively, in comparison to engineered transketolase variants from Geobacillus stearothermophilus (TKGST). Its broad active site cleft allows for the efficient conversion of both (R)- and (S)-configured α-hydroxyaldehydes, next to linear and branched aliphatic aldehydes as acceptor substrates under kinetically controlled conditions. The alternate, thermodynamically controlled self-reaction of aliphatic aldehydes was shown to be limited to low levels of conversion, which we propose to be due to their large hydration constants. Additionally, the thermodynamically controlled approach was demonstrated to suffer from a loss of stereoselectivity, which makes it unfeasible for aliphatic substrates.
Collapse
|
130
|
Zulkefli NS, Hwang SJ. Heterocyst Development and Diazotrophic Growth of Anabaena variabilis under Different Nitrogen Availability. Life (Basel) 2020; 10:E279. [PMID: 33202779 PMCID: PMC7696877 DOI: 10.3390/life10110279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 11/17/2022] Open
Abstract
Nitrogen is globally limiting primary production in the ocean, but some species of cyanobacteria can carry out nitrogen (N) fixation using specialized cells known as heterocysts. However, the effect of N sources and their availability on heterocyst development is not yet fully understood. This study aimed to evaluate the effect of various inorganic N sources on the heterocyst development and cellular growth in an N-fixing cyanobacterium, Anabaena variabilis. Growth rate, heterocyst development, and cellular N content of the cyanobacteria were examined under varying nitrate and ammonium concentrations. A. variabilis exhibited high growth rate both in the presence and absence of N sources regardless of their concentration. Ammonium was the primary source of N in A. variabilis. Even the highest concentrations of both nitrate (1.5 g L-1 as NaNO3) and ammonium (0.006 g L-1 as Fe-NH4-citrate) did not exhibit an inhibitory effect on heterocyst development. Heterocyst production positively correlated with the cell N quota and negatively correlated with vegetative cell growth, indicating that both of the processes were interdependent. Taken together, N deprivation triggers heterocyst production for N fixation. This study outlines the difference in heterocyst development and growth in A. variabilis under different N sources.
Collapse
Affiliation(s)
| | - Soon-Jin Hwang
- Department of Environmental Health Science and Human and Eco-care Center, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
131
|
Ranjbar S, Shahmansouri M, Attri P, Bogaerts A. Effect of plasma-induced oxidative stress on the glycolysis pathway of Escherichia coli. Comput Biol Med 2020; 127:104064. [PMID: 33171288 DOI: 10.1016/j.compbiomed.2020.104064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 01/01/2023]
Abstract
Antibiotic resistance is one of the world's most urgent public health problems. Due to its antibacterial properties, cold atmospheric plasma (CAP) may serve as an alternative method to antibiotics. It is claimed that oxidative stress caused by CAP is the main reason of bacteria inactivation. In this work, we computationally investigated the effect of plasma-induced oxidation on various glycolysis metabolites, by monitoring the production of the biomass. We observed that in addition to the significant reduction in biomass production, the rate of some reactions has increased. These reactions produce anti-oxidant products, showing the bacterial defense mechanism to escape the oxidative damage. Nevertheless, the simulations show that the plasma-induced oxidation effect is much stronger than the defense mechanism, causing killing of the bacteria.
Collapse
Affiliation(s)
- S Ranjbar
- Department of Physics, Faculty of Science, Arak University, Arak, 38156-8-8349, Iran; Research Group PLASMANT, University of Antwerp, Department of Chemistry, Universiteitsplein 1, Wilrijk-Antwerp, B-2610, Belgium.
| | - M Shahmansouri
- Department of Physics, Faculty of Science, Arak University, Arak, 38156-8-8349, Iran
| | - P Attri
- Research Group PLASMANT, University of Antwerp, Department of Chemistry, Universiteitsplein 1, Wilrijk-Antwerp, B-2610, Belgium; Center of Plasma Nano-interface Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - A Bogaerts
- Research Group PLASMANT, University of Antwerp, Department of Chemistry, Universiteitsplein 1, Wilrijk-Antwerp, B-2610, Belgium
| |
Collapse
|
132
|
Overexpression of a Cytosolic 6-Phosphogluconate Dehydrogenase Gene Enhances the Resistance of Rice to Nilaparvata lugens. PLANTS 2020; 9:plants9111529. [PMID: 33182659 PMCID: PMC7696191 DOI: 10.3390/plants9111529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022]
Abstract
The pentose phosphate pathway (PPP) plays an important role in plant growth and development, and plant responses to biotic and abiotic stresses. Yet, whether the PPP regulates plant defenses against herbivorous insects remains unclear. In this study, we cloned a rice cytosolic 6-phosphogluconate dehydrogenase gene, Os6PGDH1, which encodes the key enzyme catalyzing the third step in the reaction involving the oxidative phase of the PPP, and explored its role in rice defenses induced by brown planthopper (BPH) Nilaparvata lugens. Levels of Os6PGDH1 transcripts were detected in all five examined tissues, with the highest in outer leaf sheaths and lowest in inner leaf sheaths. Os6PGDH1 expression was strongly induced by mechanical wounding, infestation of gravid BPH females, and jasmonic acid (JA) treatment. Overexpressing Os6PGDH1 (oe6PGDH) decreased the height of rice plants and the mass of the aboveground part of plants, but slightly increased the length of plant roots. In addition, the overexpression of Os6PGDH1 enhanced levels of BPH-induced JA, jasmonoyl-isoleucine (JA-Ile), and H2O2, but decreased BPH-induced levels of ethylene. Bioassays revealed that gravid BPH females preferred to feed and lay eggs on wild-type (WT) plants over oe6PGDH plants; moreover, the hatching rate of BPH eggs raised on oe6PGDH plants and the fecundity of BPH females fed on these were significantly lower than the eggs and the females raised and fed on WT plants. Taken together, these results indicate that Os6PGDH1 plays a pivotal role not only in rice growth but also in the resistance of rice to BPH by modulating JA, ethylene, and H2O2 pathways.
Collapse
|
133
|
NMR spectroscopy analysis reveals differential metabolic responses in arabidopsis roots and leaves treated with a cytokinesis inhibitor. PLoS One 2020; 15:e0241627. [PMID: 33156865 PMCID: PMC7647083 DOI: 10.1371/journal.pone.0241627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/16/2020] [Indexed: 12/26/2022] Open
Abstract
In plant cytokinesis, de novo formation of a cell plate evolving into the new cell wall partitions the cytoplasm of the dividing cell. In our earlier chemical genomics studies, we identified and characterized the small molecule endosidin-7, that specifically inhibits callose deposition at the cell plate, arresting late-stage cytokinesis in arabidopsis. Endosidin-7 has emerged as a very valuable tool for dissecting this essential plant process. To gain insights regarding its mode of action and the effects of cytokinesis inhibition on the overall plant response, we investigated the effect of endosidin-7 through a nuclear magnetic resonance spectroscopy (NMR) metabolomics approach. In this case study, metabolomics profiles of arabidopsis leaf and root tissues were analyzed at different growth stages and endosidin-7 exposure levels. The results show leaf and root-specific metabolic profile changes and the effects of endosidin-7 treatment on these metabolomes. Statistical analyses indicated that the effect of endosidin-7 treatment was more significant than the developmental impact. The endosidin-7 induced metabolic profiles suggest compensations for cytokinesis inhibition in central metabolism pathways. This study further shows that long-term treatment of endosidin-7 profoundly changes, likely via alteration of hormonal regulation, the primary metabolism of arabidopsis seedlings. Hormonal pathway-changes are likely reflecting the plant’s responses, compensating for the arrested cell division, which in turn are leading to global metabolite modulation. The presented NMR spectral data are made available through the Metabolomics Workbench, providing a reference resource for the scientific community.
Collapse
|
134
|
Zhang G, Yang K, Xue W, Zeng X, Xu Q, Wang Y, Yuan H, Zhang Y, Nyima T. Comparative proteomic analysis of hulless barley cultivars (Hordeum vulgare L.) differing distinctly in β-glucan content. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
135
|
Wu B, Wang Y, Shi C, Chen Y, Yu L, Li J, Li W, Wei Y, He R. Ribosylation-Derived Advanced Glycation End Products Induce Tau Hyperphosphorylation Through Brain-Derived Neurotrophic Factor Reduction. J Alzheimers Dis 2020; 71:291-305. [PMID: 31381511 DOI: 10.3233/jad-190158] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Advanced glycation end products (AGEs) have been implicated in the disease process of diabetes mellitus. They have also been found in senile plaques and neurofibrillary tangles in the brains of Alzheimer's disease patients. Furthermore, abnormally high levels of D-ribose and D-glucose were found in the urine of patients with type 2 diabetes mellitus, suggesting that diabetic patients suffer from dysmetabolism of not only D-glucose but also D-ribose. In the present study, intravenous tail injections of ribosylated rat serum albumin (RRSA) were found to impair memory in rats, but they did not markedly impair learning, as measured by the Morris water maze test. Injections of RRSA were found to trigger tau hyperphosphorylation in the rat hippocampus via GSK-3β activation. Tau hyperphosphorylation and GSK-3β activation were also observed in N2a cells in the presence of ribosylation-derived AGEs. Furthermore, the administration of ribosylation-derived AGEs induced the suppression of brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB). Both GSK-3β inhibition and BDNF treatment decreased the levels of phosphorylated tau in N2a cells. In particular, the administration of BDNF could rescue memory failure in ribosylated AGE-injected rats. Ribosylation-derived AGEs downregulated the BDNF-TrkB pathway in rat brains and N2a cells, leading to GSK-3β activation-mediated tau hyperphosphorylation, which was involved in the observed rat memory loss. Targeting ribosylation may be a promising therapeutic strategy to prevent Alzheimer's disease and diabetic encephalopathies.
Collapse
Affiliation(s)
- Beibei Wu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Yujing Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Chenggang Shi
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Yao Chen
- Southwest Medical University, Luzhou, Sichuan, China
| | - Lexiang Yu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Juan Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Weiwei Li
- Peking University Hospital, Beijing, China
| | - Yan Wei
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Rongqiao He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China.,Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
136
|
Zhang Y, Luo M, Cheng L, Lin Y, Chen Q, Sun B, Gu X, Wang Y, Li M, Luo Y, Wang X, Zhang Y, Tang H. Identification of the Cytosolic Glucose-6-Phosphate Dehydrogenase Gene from Strawberry Involved in Cold Stress Response. Int J Mol Sci 2020; 21:ijms21197322. [PMID: 33023038 PMCID: PMC7582851 DOI: 10.3390/ijms21197322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PDH) plays an important role in plant stress responses. Here, five FaG6PDH sequences were obtained in strawberry, designated as FaG6PDH-CY, FaG6PDH-P1, FaG6PDH-P1.1, FaG6PDH-P2 and FaG6PDH-P0, which were divided into cytosolic (CY) and plastidic (P) isoforms based on the bioinformatic analysis. The respective FaG6PDH genes had distinct expression patterns in all tissues and at different stages of fruit development. Notably, FaG6PDH-CY was the most highly expressed gene among five FaG6PDH members, indicating it encoded the major G6PDH isoform throughout the plant. FaG6PDH positively regulated cold tolerance in strawberry. Inhibition of its activity gave rise to greater cold-induced injury in plant. The FaG6PDH-CY transcript had a significant increase under cold stress, similar to the G6PDH enzyme activity, suggesting a principal participant in response to cold stress. Further study showed that the low-temperature responsiveness (LTR) element in FaG6PDH-CY promoter can promote the gene expression when plant encountered cold stimuli. Besides, FaG6PDH-CY was involved in regulating cold-induced activation of antioxidant enzyme genes (FaSOD, FaCAT, FaAPX and FaGR) and RBOH-dependent ROS generation. The elevated FaG6PDH-CY enhanced ROS-scavenging capability of antioxidant enzymes to suppress ROS excessive accumulation and relieved the oxidative damage, eventually improving the strawberry resistance to cold stress.
Collapse
Affiliation(s)
- Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (M.L.); (L.C.); (Y.L.); (Q.C.); (B.S.); (Y.W.); (M.L.); (Y.L.); (X.W.)
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengwen Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (M.L.); (L.C.); (Y.L.); (Q.C.); (B.S.); (Y.W.); (M.L.); (Y.L.); (X.W.)
| | - Lijuan Cheng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (M.L.); (L.C.); (Y.L.); (Q.C.); (B.S.); (Y.W.); (M.L.); (Y.L.); (X.W.)
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (M.L.); (L.C.); (Y.L.); (Q.C.); (B.S.); (Y.W.); (M.L.); (Y.L.); (X.W.)
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (M.L.); (L.C.); (Y.L.); (Q.C.); (B.S.); (Y.W.); (M.L.); (Y.L.); (X.W.)
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (M.L.); (L.C.); (Y.L.); (Q.C.); (B.S.); (Y.W.); (M.L.); (Y.L.); (X.W.)
| | - Xianjie Gu
- Mianyang Academy of Agricultural Sciences, Mianyang 621000, China;
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (M.L.); (L.C.); (Y.L.); (Q.C.); (B.S.); (Y.W.); (M.L.); (Y.L.); (X.W.)
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (M.L.); (L.C.); (Y.L.); (Q.C.); (B.S.); (Y.W.); (M.L.); (Y.L.); (X.W.)
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (M.L.); (L.C.); (Y.L.); (Q.C.); (B.S.); (Y.W.); (M.L.); (Y.L.); (X.W.)
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (M.L.); (L.C.); (Y.L.); (Q.C.); (B.S.); (Y.W.); (M.L.); (Y.L.); (X.W.)
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (M.L.); (L.C.); (Y.L.); (Q.C.); (B.S.); (Y.W.); (M.L.); (Y.L.); (X.W.)
- Correspondence: (Y.Z.); (H.T.)
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (M.L.); (L.C.); (Y.L.); (Q.C.); (B.S.); (Y.W.); (M.L.); (Y.L.); (X.W.)
- Correspondence: (Y.Z.); (H.T.)
| |
Collapse
|
137
|
Rajhi H, Bardi A, Sadok S, Moussa M, Turki S. Phytoremediation of samples extracted from wastewater treatment plant and their socioeconomic impact. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1653-1664. [PMID: 33107859 DOI: 10.2166/wst.2020.429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The physico-chemical and bacteriological quality was evaluated in wastewater samples before and after treatment by microalgae enrichment. Three types of wastewater samples - raw water, inlet water and outlet water - were taken directly from the wastewater treatment plant and subjected to microalgae enrichment culture during two months. The main objective of this work was to apply a phytoremediation process based on the use of compulsory microalgae treatment of wastewater from treatment plants compared to other secondary treatments. The biomass of microalgae was extracted to determine the concentrations of phenolic compounds, sugars and especially lipids, which can be subsequently transformed into biodiesel. As a result, the pH showed a significant increase after microalgae proliferation, with values ranging from 9.94 to 10.36. Bacterial community analysis before and after microalgae culture showed a clear shift in biomass content. The total coliform (TC) and the fecal coliform (FC) contents decreased after microalgae enrichment. In addition, the fecal streptococci (FS) and Pseudomonas present in the different wastewater samples completely disappeared after treatment. The applied phytoremediation process showed a drop until the disappearance of the contagious microbes - which present a very serious health risk - due to the release of the quinic acid. The quinic acid observed in the treated waters exceeded the content of 464.328 mg/L. This phenolic compound naturally produced during the process demonstrated a very effective antimicrobial power. However, a significant increment of 100% of phenol compound removal was observed after microalgae enrichment. The lipid content in the various studied samples appeared after microalgae culture. In addition, the heavy metals, namely cadmium and chromium, were completely eliminated after the treatment. Several socioeconomic advantages can be achieved by the use of this process, notably the environmental advantages of bioenergetics and economic and social benefits of the non-expensive valorization of wastewaters for irrigation.
Collapse
Affiliation(s)
- Hayfa Rajhi
- Laboratory of Blue Biotechnology & Aquatic Bioproducts (B3Aqua), National Institute of Marine Sciences and Technologies. Tunis, La Goulette 2060, Tunisia E-mail:
| | - Anouar Bardi
- Higher Institute of Management of Gabés, Gabés, Tunisia
| | - Salwa Sadok
- Laboratory of Blue Biotechnology & Aquatic Bioproducts (B3Aqua), National Institute of Marine Sciences and Technologies. Tunis, La Goulette 2060, Tunisia E-mail:
| | - Mohamed Moussa
- Laboratory of Eremology and Fight Against Desertification, Arid Regions Institute of Medenine, Medenine, Tunisia
| | - Saifeddine Turki
- Laboratory of Eremology and Fight Against Desertification, Arid Regions Institute of Medenine, Medenine, Tunisia
| |
Collapse
|
138
|
Zheng M, Zhu C, Yang T, Qian J, Hsu YF. GSM2, a transaldolase, contributes to reactive oxygen species homeostasis in Arabidopsis. PLANT MOLECULAR BIOLOGY 2020; 104:39-53. [PMID: 32564178 DOI: 10.1007/s11103-020-01022-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Plants are exposed to various environmental cues that lead to reactive oxygen species (ROS) accumulation. ROS production and detoxification are tightly regulated to maintain balance. Although studies of glucose (Glc) are always accompanied by ROS in animals, the role of Glc in respect of ROS in plants is unclear. We isolated gsm2 (Glc-hypersensitive mutant 2), a mutant with a notably chlorotic-cotyledon phenotype. The chloroplast-localized GSM2 was characterized as a transaldolase in the pentose phosphate pathway. With 3% Glc treatment, fewer or no thylakoids were observed in gsm2 cotyledon chloroplasts than in wild-type cotyledon chloroplasts, suggesting that GSM2 is required for chloroplast protection under stress. gsm2 also showed evaluated accumulation of ROS with 3% Glc treatment and was more sensitive to exogenous H2O2 than the wild type. Gene expression analysis of the antioxidant enzymes in gsm2 revealed that chloroplast damage to gsm2 cotyledons results from the accumulation of excessive ROS in response to Glc. Moreover, the addition of diphenyleneiodonium chloride or phenylalanine can rescue Glc-induced chlorosis in gsm2 cotyledons. This work suggests that GSM2 functions to maintain ROS balance in response to Glc during early seedling growth and sheds light on the relationship between Glc, the pentose phosphate pathway and ROS.
Collapse
Affiliation(s)
- Min Zheng
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China
| | - Chunyan Zhu
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China
| | - Tingting Yang
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China
| | - Jie Qian
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China
| | - Yi-Feng Hsu
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China.
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
139
|
Yuan J, Sun N, Du H, Yin S, Kang H, Umair M, Liu C. Roles of metabolic regulation in developing Quercus variabilis acorns at contrasting geologically-derived phosphorus sites in subtropical China. BMC PLANT BIOLOGY 2020; 20:389. [PMID: 32842952 PMCID: PMC7449008 DOI: 10.1186/s12870-020-02605-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/16/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Phosphorus (P) -rich soils develop in phosphorite residing areas while P-deficient soils are ubiquitous in subtropical regions. Little has been reported that how metabolites participate in the seed development and the processes involved in their coping with contrasting-nutrient environments. RESULTS Here we quantified the metabolites of Quercus variabilis acorns in the early (July), middle (August), late (September) development stages, and determined element (C, H, O, N, P, K, Ca, Mg, S, Fe, Al, Mn, Na, Zn, and Cu) concentrations of acorns in the late stage, at geologically-derived contrasting-P sites in subtropical China. The primary metabolic pathways included sugar metabolism, the TCA cycle, and amino acid metabolism. Most metabolites (especially C- and N-containing metabolites) increased and then decreased from July to September. Acorns between the two sites were significantly discriminated at the three stages, respectively, by metabolites (predominantly sugars and organic acids). Concentrations of P, orthophosphoric acid and most sugars were higher; erythrose was lower in late-stage acorns at P-rich sites than those at P-deficient sites. No significant differences existed in the size and dry mass of individual acorns between oak populations at the two sites. CONCLUSIONS Oak acorns at the two sites formed distinct metabolic phenotypes related to their distinct geologically-derived soil conditions, and the late-stage acorns tended to increase P-use-efficiency in the material synthesis process at P-deficient sites, relative to those at P-rich sites.
Collapse
Affiliation(s)
- Jun Yuan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, 200240, China
| | - Ningxiao Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, 200240, China
| | - Hongmei Du
- School of Design, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, China
| | - Shan Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan RD, Shanghai, China
- Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Education, P. R. China, 800 Dongchuan RD, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, 800 Dongchuan RD., Shanghai, China
| | - Hongzhang Kang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan RD, Shanghai, China
- Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Education, P. R. China, 800 Dongchuan RD, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, 800 Dongchuan RD., Shanghai, China
| | - Muhammad Umair
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, 200240, China
| | - Chunjiang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, 200240, China.
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan RD, Shanghai, China.
- Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Education, P. R. China, 800 Dongchuan RD, Shanghai, China.
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, 800 Dongchuan RD., Shanghai, China.
| |
Collapse
|
140
|
Wang H, Wei S, Yang X, Liu W, Zhu L. Proteomic analysis of exudate of Cercospora armoraciae from Armoracia rusticana. PeerJ 2020; 8:e9592. [PMID: 33005484 PMCID: PMC7512140 DOI: 10.7717/peerj.9592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/01/2020] [Indexed: 01/08/2023] Open
Abstract
Background Cercospora armoraciae causes leaf spot disease on Armoracia rusticana. Exudation of droplets, when grown on PDA, distinguishes this fungi from other members of the genus Cercospora. The role this exudate plays in the virulence of this pathogen has not been elucidated. To explore this, we characterized the transcriptome of C. armoraciae and the proteome of exudate associated with this plant pathogen. Methods Virulence of three strains of C. armoraciae was evaluated in greenhouse assays. De novo sequencing was applied to assemble transcriptome from these strains. Nano-HPLC-MS/MS analysis was used to identify proteins in the pathogen exudate. Identified proteins were functionally classified and annotated using GO, KEGG, and COG/KOG bioinformatics analysis methods. Results When treated with the exudate of C. armoraciae strain SCa-01, leaves of A. rusticana showed yellowing and necrosis of the leaves and similar symptoms to plants inoculated with this fungi. A total of 14,937 unigenes were assembled from C. armoraciae, and 576 proteins comprising 1,538 peptides, 1,524 unique peptide, were identified from the exudate. GO annotation classified 411 proteins (71%) into 27 functional categories, namely, 12, seven and eight biological process, cellular component, and molecular function subcategories, respectively. KEGG analysis assigned 314 proteins to 84 signaling/metabolic pathways, and 450 proteins were annotated against the COG/KOG database. Discussion Transcriptome and GO analysis of C. armoraciae found most proteins in the exudate. GO analysis suggested that a considerable proportion of proteins were involved in cellular process and metabolic process, which suggests exudates maintain the metabolic balance of this fungi. Some proteins annotated to the phenylalanine metabolism, which suggests that the exudates may enhance the virulence of this pathogen. Some proteins annotated to the phenylalanine metabolism, which suggests that the exudates may enhance the pathogenicity of the pathogen. Also some proteins were annotated to the peroxisome metabolic pathway and the fatty acid biosynthesis pathways. These pathways may confer antifungal, antioxidant and antimicrobial activity on the exudates.
Collapse
Affiliation(s)
- Haining Wang
- Department of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Songhong Wei
- Department of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xiaohe Yang
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, Heilongjiang, China
| | - Wei Liu
- Department of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Lijun Zhu
- Department of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
141
|
Bandehagh A, Taylor NL. Can Alternative Metabolic Pathways and Shunts Overcome Salinity Induced Inhibition of Central Carbon Metabolism in Crops? FRONTIERS IN PLANT SCIENCE 2020; 11:1072. [PMID: 32849676 PMCID: PMC7417600 DOI: 10.3389/fpls.2020.01072] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/30/2020] [Indexed: 05/25/2023]
Abstract
The annual cost of lost crop production from exposure to salinity has major impacts on food security in all parts of the world. Salinity stress disturbs energy metabolism and knowledge of the impacts on critical processes controlling plant energy production is key to successfully breeding salt tolerant crops. To date, little progress has been achieved using classic breeding approaches to develop salt tolerance. The hope of some salinity researchers is that through a better understanding of the metabolic responses and adaptation to salinity exposure, new breeding targets can be suggested to help develop salt tolerant crops. Plants sense and react to salinity through a complex system of sensors, receptor systems, transporters, signal transducers, and gene expression regulators in order to control the uptake of salts and to induce tolerant metabolism that jointly leads to changes in growth rate and biomass production. During this response, there must be a balance between supply of energy from mitochondria and chloroplasts and energy demands for water and ion transport, growth, and osmotic adjustment. The photosynthetic response to salinity has been thoroughly researched and generally we see a sharp drop in photosynthesis after exposure to salinity. However, less attention has been given to the effect of salt stress on plant mitochondrial respiration and the metabolic processes that influence respiratory rate. A further complication is the wide range of respiratory responses that have been observed in different plant species, which have included major and minor increases, decreases, and no change in respiratory rate after salt exposure. In this review, we begin by considering physiological and biochemical impacts of salinity on major crop plants. We then summarize and consider recent advances that have characterized changes in abundance of metabolites that are involved in respiratory pathways and their alternative routes and shunts in terms of energy metabolism in crop plants. We will consider the diverse molecular responses of cellular plant metabolism during salinity exposure and suggest how these metabolic responses might aid in salinity tolerance. Finally, we will consider how this commonality and diversity should influence how future research of the salinity responses of crops plants should proceed.
Collapse
Affiliation(s)
- Ali Bandehagh
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Nicolas L. Taylor
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
142
|
Aghdam MS, Alikhani-Koupaei M. Exogenous phytosulfokine α (PSKα) applying delays senescence and relief decay in strawberry fruits during cold storage by sufficient intracellular ATP and NADPH availability. Food Chem 2020; 336:127685. [PMID: 32758803 DOI: 10.1016/j.foodchem.2020.127685] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/15/2022]
Abstract
Herein, we employed exogenous phytosulfokine α (PSKα) for delaying senescence and lessening decay in strawberry fruits during storage at 4 °C for 18 days. Our results showed that the strawberry fruits treated with 150 nM PSKα exhibited lower expression of poly-ADP-ribose polymerase 1 (PARP1) gene, leading to a higher intracellular NAD+ availability, beneficial for a sufficient provision of intracellular NADP+ with the activity of NAD kinase (NADK). Moreover, higher activities of glucose 6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), and methylenetetrahydrofolate dehydrogenase (MTHFD) may be the reason for the sufficient intracellular availability of NADPH in strawberry fruits treated with 150 nM PSKα. In addition, strawberry fruits treated with 150 nM PSKα exhibited a sufficient availability of ATP resulted from higher activities of succinate dehydrogenase (SDH) and cytochrome c oxidase (CCO). Therefore, our results indicate that exogenous PSKα could be beneficial for delaying senescence and reducing decay in strawberry fruits during cold storage.
Collapse
Affiliation(s)
- Morteza Soleimani Aghdam
- Department of Horticultural Science, Imam Khomeini International University, Qazvin 34148-96818, Iran.
| | - Majid Alikhani-Koupaei
- Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Higher Educational Complex of Saravan, Saravan, Iran.
| |
Collapse
|
143
|
Tomčala A, Michálek J, Schneedorferová I, Füssy Z, Gruber A, Vancová M, Oborník M. Fatty Acid Biosynthesis in Chromerids. Biomolecules 2020; 10:E1102. [PMID: 32722284 PMCID: PMC7464705 DOI: 10.3390/biom10081102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Fatty acids are essential components of biological membranes, important for the maintenance of cellular structures, especially in organisms with complex life cycles like protozoan parasites. Apicomplexans are obligate parasites responsible for various deadly diseases of humans and livestock. We analyzed the fatty acids produced by the closest phototrophic relatives of parasitic apicomplexans, the chromerids Chromera velia and Vitrella brassicaformis, and investigated the genes coding for enzymes involved in fatty acids biosynthesis in chromerids, in comparison to their parasitic relatives. Based on evidence from genomic and metabolomic data, we propose a model of fatty acid synthesis in chromerids: the plastid-localized FAS-II pathway is responsible for the de novo synthesis of fatty acids reaching the maximum length of 18 carbon units. Short saturated fatty acids (C14:0-C18:0) originate from the plastid are then elongated and desaturated in the cytosol and the endoplasmic reticulum. We identified giant FAS I-like multi-modular enzymes in both chromerids, which seem to be involved in polyketide synthesis and fatty acid elongation. This full-scale description of the biosynthesis of fatty acids and their derivatives provides important insights into the reductive evolutionary transition of a phototropic algal ancestor to obligate parasites.
Collapse
Affiliation(s)
- Aleš Tomčala
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
- Faculty of Fisheries and Protection of Waters, CENAKVA, Institute of Aquaculture and Protection of Waters, University of South Bohemia, Husova 458/102, 370 05 České Budějovice, Czech Republic
| | - Jan Michálek
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Ivana Schneedorferová
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Zoltán Füssy
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
| | - Ansgar Gruber
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
| | - Marie Vancová
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
| | - Miroslav Oborník
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
144
|
High PKCλ expression is required for ALDH1-positive cancer stem cell function and indicates a poor clinical outcome in late-stage breast cancer patients. PLoS One 2020; 15:e0235747. [PMID: 32658903 PMCID: PMC7357771 DOI: 10.1371/journal.pone.0235747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/22/2020] [Indexed: 12/19/2022] Open
Abstract
Despite development of markers for identification of cancer stem cells, the mechanism underlying the survival and division of cancer stem cells in breast cancer remains unclear. Here we report that PKCλ expression was enriched in basal-like breast cancer, among breast cancer subtypes, and was correlated with ALDH1A3 expression (p = 0.016, χ2-test). Late stage breast cancer patients expressing PKCλhigh and ALDH1A3high had poorer disease-specific survival than those expressing PKCλlow and ALDH1A3low (p = 0.018, log rank test for Kaplan-Meier survival curves: hazard ratio 2.58, 95% CI 1.24–5.37, p = 0.011, multivariate Cox regression analysis). Functional inhibition of PKCλ through siRNA-mediated knockdown or CRISPR-Cas9-mediated knockout in ALDH1high MDA-MB 157 and MDA-MB 468 basal-like breast cancer cells led to increases in the numbers of trypan blue-positive and active-caspase 3-positive cells, as well as suppression of tumor-sphere formation and cell migration. Furthermore, the amount of CASP3 and PARP mRNA and the level of cleaved caspase-3 protein were enhanced in PKCλ-deficient ALDH1high cells. An Apoptosis inhibitor (z-VAD-FMK) suppressed the enhancement of cell death as well as the levels of cleaved caspase-3 protein in PKCλ deficient ALDH1high cells. It also altered the asymmetric/symmetric distribution ratio of ALDH1A3 protein. In addition, PKCλ knockdown led to increases in cellular ROS levels in ALDH1high cells. These results suggest that PKCλ is essential for cancer cell survival and migration, tumorigenesis, the asymmetric distribution of ALDH1A3 protein among cancer cells, and the maintenance of low ROS levels in ALDH1-positive breast cancer stem cells. This makes it a key contributor to the poorer prognosis seen in late-stage breast cancer patients.
Collapse
|
145
|
Jammer A, Albacete A, Schulz B, Koch W, Weltmeier F, van der Graaff E, Pfeifhofer HW, Roitsch TG. Early-stage sugar beet taproot development is characterized by three distinct physiological phases. PLANT DIRECT 2020; 4:e00221. [PMID: 32766510 PMCID: PMC7395582 DOI: 10.1002/pld3.221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/04/2020] [Accepted: 04/13/2020] [Indexed: 05/21/2023]
Abstract
Despite the agronomic importance of sugar beet (Beta vulgaris L.), the early-stage development of its taproot has only been poorly investigated. Thus, the mechanisms that determine growth and sugar accumulation in sugar beet are largely unknown. In the presented study, a physiological characterization of early-stage sugar beet taproot development was conducted. Activities were analyzed for fourteen key enzymes of carbohydrate metabolism in developing taproots over the first 80 days after sowing. In addition, we performed in situ localizations of selected carbohydrate-metabolic enzyme activities, anatomical investigations, and quantifications of soluble carbohydrates, hexose phosphates, and phytohormones. Based on the accumulation dynamics of biomass and sucrose, as well as on anatomical parameters, the early phase of taproot development could be subdivided into three stages-prestorage, transition, secondary growth and sucrose accumulation stage-each of which was characterized by distinct metabolic and phytohormonal signatures. The enzyme activity signatures corresponding to these stages were also shown to be robustly reproducible in experiments conducted in two additional locations. The results from this physiological phenotyping approach contribute to the identification of the key regulators of sugar beet taproot development and open up new perspectives for sugar beet crop improvement concerning both physiological marker-based breeding and biotechnological approaches.
Collapse
Affiliation(s)
- Alexandra Jammer
- Institute of BiologyUniversity of GrazGrazAustria
- Department of Crop SciencesUFT TullnUniversity of Natural Resources and Life Sciences (BOKU)TullnAustria
| | - Alfonso Albacete
- Institute of BiologyUniversity of GrazGrazAustria
- Present address:
Department of Plant Production and AgrotechnologyInstitute for Agri‐Food Research and Development of Murcia (IMIDA)MurciaSpain
| | | | | | | | - Eric van der Graaff
- Institute of BiologyUniversity of GrazGrazAustria
- Department of Plant and Environmental SciencesCopenhagen Plant Science CentreUniversity of CopenhagenTaastrupDenmark
- Present address:
Koppert Cress B.V.MonsterThe Netherlands
| | | | - Thomas G. Roitsch
- Department of Crop SciencesUFT TullnUniversity of Natural Resources and Life Sciences (BOKU)TullnAustria
- Department of Plant and Environmental SciencesCopenhagen Plant Science CentreUniversity of CopenhagenTaastrupDenmark
- Department of Adaptive BiotechnologiesGlobal Change Research Institute CASBrnoCzech Republic
| |
Collapse
|
146
|
Chaput V, Martin A, Lejay L. Redox metabolism: the hidden player in carbon and nitrogen signaling? JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3816-3826. [PMID: 32064525 DOI: 10.1093/jxb/eraa078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/12/2020] [Indexed: 05/05/2023]
Abstract
While decades of research have considered redox metabolism as purely defensive, recent results show that reactive oxygen species (ROS) are necessary for growth and development. Close relationships have been found between the regulation of nitrogen metabolism and ROS in response to both carbon and nitrogen availability. Root nitrate uptake and nitrogen metabolism have been shown to be regulated by a signal from the oxidative pentose phosphate pathway (OPPP) in response to carbon signaling. As a major source of NADP(H), the OPPP is critical to maintaining redox balance under stress situations. Furthermore, recent results suggest that at least part of the regulation of the root nitrate transporter by nitrogen signaling is also linked to the redox status of the plant. This leads to the question of whether there is a more general role of redox metabolism in the regulation of nitrogen metabolism by carbon and nitrogen. This review highlights the role of the OPPP in carbon signaling and redox metabolism, and the interaction between redox and nitrogen metabolism. We discuss how redox metabolism could be an important player in the regulation of nitrogen metabolism in response to carbon/nitrogen interaction and the implications for plant adaptation to extreme environments and future crop development.
Collapse
Affiliation(s)
- Valentin Chaput
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Antoine Martin
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Laurence Lejay
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
147
|
Kang BS, Choi BY, Kho AR, Lee SH, Hong DK, Jeong JH, Kang DH, Park MK, Suh SW. An Inhibitor of the Sodium-Hydrogen Exchanger-1 (NHE-1), Amiloride, Reduced Zinc Accumulation and Hippocampal Neuronal Death after Ischemia. Int J Mol Sci 2020; 21:ijms21124232. [PMID: 32545865 PMCID: PMC7352629 DOI: 10.3390/ijms21124232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Acidosis in the brain plays an important role in neuronal injury and is a common feature of several neurological diseases. It has been reported that the sodium–hydrogen exchanger-1 (NHE-1) is a key mediator of acidosis-induced neuronal injury. It modulates the concentration of intra- and extra-cellular sodium and hydrogen ions. During the ischemic state, excessive sodium ions enter neurons and inappropriately activate the sodium–calcium exchanger (NCX). Zinc can also enter neurons through voltage-gated calcium channels and NCX. Here, we tested the hypothesis that zinc enters the intracellular space through NCX and the subsequent zinc accumulation induces neuronal cell death after global cerebral ischemia (GCI). Thus, we conducted the present study to confirm whether inhibition of NHE-1 by amiloride attenuates zinc accumulation and subsequent hippocampus neuronal death following GCI. Mice were subjected to GCI by bilateral common carotid artery (BCCA) occlusion for 30 min, followed by restoration of blood flow and resuscitation. Amiloride (10 mg/kg, intraperitoneally (i.p.)) was immediately injected, which reduced zinc accumulation and neuronal death after GCI. Therefore, the present study demonstrates that amiloride attenuates GCI-induced neuronal injury, likely via the prevention of intracellular zinc accumulation. Consequently, we suggest that amiloride may have a high therapeutic potential for the prevention of GCI-induced neuronal death.
Collapse
Affiliation(s)
- Beom Seok Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
| | - Bo Young Choi
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
| | - A Ra Kho
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
| | - Song Hee Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
| | - Dae Ki Hong
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
| | - Jeong Hyun Jeong
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
| | - Dong Hyeon Kang
- Department of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Korea;
| | - Min Kyu Park
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
- Correspondence: ; Tel.: +82-10-8573-6364
| |
Collapse
|
148
|
Petrova EV, Kukarskikh GP, Krendeleva TE, Antal TK. The Mechanisms and Role of Photosynthetic Hydrogen Production by Green Microalgae. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720030169] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
149
|
Alipour S, Wojciechowska N, Stolarska E, Bilska K, Kalemba EM. NAD(P)-Driven Redox Status Contributes to Desiccation Tolerance in Acer seeds. PLANT & CELL PHYSIOLOGY 2020; 61:1158-1167. [PMID: 32267948 DOI: 10.1093/pcp/pcaa044] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Desiccation tolerance is a developmental program enabling seed survival in a dry state and is common in seeds categorized as orthodox. We focused on NAD and its phosphorylated form (NADP) because their continual switching between reduced (NAD(P)H) and oxidized (NAD(P)+) forms is involved in the modulation of redox signaling and the determination of the reducing power and further antioxidant responses. Norway maple and sycamore seeds representing the orthodox and recalcitrant categories, respectively, were used as models in a comparison of responses to water loss. The process of desiccation up to 10% water content (WC) was monitored in Norway maple seeds, while dehydration up to 30% WC was monitored in desiccation-sensitive sycamore seeds. Norway maple and sycamore seeds, particularly their embryonic axes, exhibited a distinct redox status during dehydration and desiccation. High NADPH levels, NAD+ accumulation, low and stable NAD(P)H/NAD(P)+ ratios expressed as reducing power and high NADPH-dependent enzyme activity were reported in Norway maple seeds and were considered attributes of orthodox-type seeds. The contrasting results of sycamore seeds contributed to their low antioxidant capacity and high sensitivity to desiccation. NADPH deficiency, low NADPH-dependent enzyme activity and lack of NAD+ accumulation were primary features of sycamore seeds, with implications for their NAD(P)H/NAD(P)+ ratios and reducing power and with effects on many seed traits. Thus, we propose that the distinct levels of pyridine nucleotides and their redox status contribute to orthodox and recalcitrant phenotype differentiation in seeds by affecting cellular redox signaling, metabolism and the antioxidant system.
Collapse
Affiliation(s)
- Shirin Alipour
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
- Department of Forestry, Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad, Iran
| | - Natalia Wojciechowska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Ewelina Stolarska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Karolina Bilska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Ewa Marzena Kalemba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| |
Collapse
|
150
|
MacWilliams JR, Dingwall S, Chesnais Q, Sugio A, Kaloshian I. AcDCXR Is a Cowpea Aphid Effector With Putative Roles in Altering Host Immunity and Physiology. FRONTIERS IN PLANT SCIENCE 2020; 11:605. [PMID: 32499809 PMCID: PMC7243947 DOI: 10.3389/fpls.2020.00605] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/21/2020] [Indexed: 06/01/2023]
Abstract
Cowpea, Vigna unguiculata, is a crop that is essential to semiarid areas of the world like Sub-Sahara Africa. Cowpea is highly susceptible to cowpea aphid, Aphis craccivora, infestation that can lead to major yield losses. Aphids feed on their host plant by inserting their hypodermal needlelike flexible stylets into the plant to reach the phloem sap. During feeding, aphids secrete saliva, containing effector proteins, into the plant to disrupt plant immune responses and alter the physiology of the plant to their own advantage. Liquid chromatography tandem mass spectrometry (LC-MS/MS) was used to identify the salivary proteome of the cowpea aphid. About 150 candidate proteins were identified including diacetyl/L-xylulose reductase (DCXR), a novel enzyme previously unidentified in aphid saliva. DCXR is a member of short-chain dehydrogenases/reductases with dual enzymatic functions in carbohydrate and dicarbonyl metabolism. To assess whether cowpea aphid DCXR (AcDCXR) has similar functions, recombinant AcDCXR was purified and assayed enzymatically. For carbohydrate metabolism, the oxidation of xylitol to xylulose was tested. The dicarbonyl reaction involved the reduction of methylglyoxal, an α-β-dicarbonyl ketoaldehyde, known as an abiotic and biotic stress response molecule causing cytotoxicity at high concentrations. To assess whether cowpea aphids induce methylglyoxal in plants, we measured methylglyoxal levels in both cowpea and pea (Pisum sativum) plants and found them elevated transiently after aphid infestation. Agrobacterium-mediated transient overexpression of AcDCXR in pea resulted in an increase of cowpea aphid fecundity. Taken together, our results indicate that AcDCXR is an effector with a putative ability to generate additional sources of energy to the aphid and to alter plant defense responses. In addition, this work identified methylglyoxal as a potential novel aphid defense metabolite adding to the known repertoire of plant defenses against aphid pests.
Collapse
Affiliation(s)
- Jacob R. MacWilliams
- Graduate Program in Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| | - Stephanie Dingwall
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | | | - Akiko Sugio
- INRAE, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Isgouhi Kaloshian
- Graduate Program in Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
- Department of Nematology, University of California Riverside, Riverside, CA, United States
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|