101
|
Cyplik P, Juzwa W, Marecik R, Powierska-Czarny J, Piotrowska-Cyplik A, Czarny J, Drożdżyńska A, Chrzanowski L. Denitrification of industrial wastewater: Influence of glycerol addition on metabolic activity and community shifts in a microbial consortium. CHEMOSPHERE 2013; 93:2823-2831. [PMID: 24161581 DOI: 10.1016/j.chemosphere.2013.09.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 06/02/2023]
Abstract
The wastewater originating from explosives manufacturing plants are characterized by a high concentration of nitrates (3200mgNL(-1)), sulfates (1470mgL(-1)) and low pH (1.5) as well as the presence of organic compounds, such as nitroglycerin (1.9mgL(-1)) and nitroglycol (4.8mgL(-1)). The application of glycerol (C/N=3) at such a high concentration enabled complete removal of nitrates and did not cause the anaerobic glycerol metabolic pathway of the DNC4 consortium to activate, as confirmed by the low concentrations of 1,3-propanediol (0.16gL(-1)) and acetic acid (0.11gL(-1)) in the wastewater. Increasing the glycerol content (C/N=5) contributed to a notable increase in the concentration of both compounds: 1.12gL(-1) for acetic acid and 1.82 for 1,3-PD (1,3-propanediol). The nitrate reduction rate was at 44mgNg(-1) biomass d(-1). In order to assess the metabolic activity of the microorganisms, a method to determine the redox potential was employed. It was established, that the microorganisms can be divided into four groups, based on the determined denitrification efficiency and zero-order nitrate removal constants. The first group, involving Pseudomonas putida and Pseudomonas stutzeri, accounts for microorganisms capable of the most rapid denitrification, the second involves rapid denitrifying microbes (Citrobacter freundi and Pseudomonas alcaligenes), the third group are microorganisms exhibiting moderate denitrification ability: Achrobactrum xylosoxidans, Ochrobactrum intermedium and Stenotrophomonas maltophila, while the last group consists of slow denitrifying bacteria: Rodococcus rubber and Sphignobacterium multivorum.
Collapse
Affiliation(s)
- Paweł Cyplik
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Gupta AK, Verma SK, Khan K, Verma RK. Phytoremediation using aromatic plants: a sustainable approach for remediation of heavy metals polluted sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:10115-6. [PMID: 24010956 DOI: 10.1021/es403469c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Affiliation(s)
- Anand K Gupta
- Division of Agronomy and Soil science, CSIR-Central Institute of Medicinal and Aromatic Plants , Picnic Spot Road, Lucknow 226015, India
| | | | | | | |
Collapse
|
103
|
Leishman C, Widdup EE, Quesnel DM, Chua G, Gieg LM, Samuel MA, Muench DG. The effect of oil sands process-affected water and naphthenic acids on the germination and development of Arabidopsis. CHEMOSPHERE 2013; 93:380-387. [PMID: 23746390 DOI: 10.1016/j.chemosphere.2013.04.101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/23/2013] [Accepted: 04/27/2013] [Indexed: 06/02/2023]
Abstract
Oil sands mining in the Athabasca region of northern Alberta results in the production of large volumes of oil sands process-affected water (OSPW). We have evaluated the effects of OSPW, the acid extractable organic (AEO) fraction of OSPW, and individual naphthenic acids (NAs) on the germination and development of the model plant, Arabidopsis thaliana (Arabidopsis). The surrogate NAs that were selected for this study were petroleum NAs that have been used in previous toxicology studies and may not represent OSPW NAs. A tricyclic diamondoid NA that was recently identified as a component of OSPW served as a model NA in this study. Germination of Arabidopsis seeds was not inhibited when grown on medium containing up to 75% OSPW or by 50mgL(-1) AEO. However, simultaneous exposure to three simple, single-ringed surrogate NAs or a double-ringed surrogate NA had an inhibitory effect on germination at a concentration of 10mgL(-1), whereas inhibition of germination by the diamondoid model NA was observed only at 50mgL(-1). Seedling root growth was impaired by treatment with low concentrations of OSPW, and exposure to higher concentrations of OSPW resulted in increased growth inhibition of roots and primary leaves, and caused bleaching of cotyledons. Treatment with single- or double-ringed surrogate NAs at 10mgL(-1) severely impaired seedling growth. AEO or diamondoid NA treatment was less toxic, but resulted in severely impaired growth at 50mgL(-1). At low NA concentrations there was occasionally a stimulatory effect on root and shoot growth, possibly owing to the broad structural similarity of some NAs to known plant growth regulators such as auxins. This report provides a foundation for future studies aimed at using Arabidopsis as a biosensor for toxicity and to identify genes with possible roles in NA phytoremediation.
Collapse
Affiliation(s)
- Chelsea Leishman
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada T2N1N4
| | | | | | | | | | | | | |
Collapse
|
104
|
Jhansi Rani S, Usha R. Transgenic plants: Types, benefits, public concerns and future. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.jopr.2013.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
105
|
Zhang DQ, Gersberg RM, Hua T, Zhu J, Ng WJ, Tan SK. Assessment of plant-driven uptake and translocation of clofibric acid by Scirpus validus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:4612-4620. [PMID: 23274803 DOI: 10.1007/s11356-012-1375-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 11/29/2012] [Indexed: 06/01/2023]
Abstract
Pharmaceutical compounds are now considered as emerging contaminants of environmental concern. The overall objective of this study was to evaluate the uptake and translocation of clofibric acid (CA) by the macrophyte Scirpus validus growing hydroponically. A set of the three replicates was established for each exposure time and for each CA concentration. Plants were grown in 4 L vessels (four plants per vessel corresponding to the three exposure period studies, i.e., 7, 14, 18, and 21 days) which contained an aerated modified Hoagland nutrient solution that was spiked with CA at concentrations of 0.5, 1.0, and 2.0 mg L(-1). At each exposure period, CA concentration was measured in the nutrient solutions. A sea sand disruption method was employed for the extraction of CA from plant tissues. The determination of the pharmaceutical concentration was carried out using solid phase extraction (SPE) followed by chromatographic analysis. The quantification of CA concentrations in both nutrient solutions (after SPE) and plant tissues (after extraction) was conducted by chromatographic analysis. CA concentrations of 5.4-26.8 μg g(-1) (fresh weight) were detected in the roots and 7.2-34.6 μg g(-1) (fresh weight) in the shoots after 21 days. Mass balance calculations showed that S. validus uptake alone accounted for a significant contribution (6-13% for the roots and 22-49% for the shoots) of the total loss of CA. The bioaccumulation factors (BAFs) based on fresh weight for the roots ranged from 6.6 to 23.2, while values for the shoots ranged from 9.5 to 32.1. All the BAFs for the shoots were greater than those in the roots, implying that CA has greater tendency to be translocated to the shoots, rather than the roots of S. validus. All the shoot-to-root concentration ratios were more than 1, denoting that the shoots of S. validus do preferentially accumulate CA. We demonstrated that CA can be actively taken up, subsequently translocated and accumulated by aboveground tissues of S. validus. Since S. validus could account for the removal of 28-62% of the total mass loss of CA from the system, such phytoremediation technology has great potential for the removal of pharmaceuticals such as CA from inflowing waters.
Collapse
Affiliation(s)
- Dong Qing Zhang
- DHI-NTU Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 50 Nanyang Avenue, N1.2-B1-02, Singapore 639798, Singapore.
| | | | | | | | | | | |
Collapse
|
106
|
Huang L, Zhuo J, Guo W, Spencer RGM, Zhang Z, Xu J. Tracing organic matter removal in polluted coastal waters via floating bed phytoremediation. MARINE POLLUTION BULLETIN 2013; 71:74-82. [PMID: 23602265 DOI: 10.1016/j.marpolbul.2013.03.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 03/07/2013] [Accepted: 03/16/2013] [Indexed: 06/02/2023]
Abstract
Organic matter removal by cultured Sesuvium portulacastrum in constructed floating beds was studied during a 20 day greenhouse experiment and an 8 month field campaign in the polluted Yundang Lagoon (southeastern China). Experiments were traced via dissolved organic carbon (DOC) concentration, fluorescence excitation-emission matrix and absorption spectroscopy. Two 'terrestrial' humic-like, one 'marine' humic-like and one protein-like components were identified by parallel factor analysis. The 'terrestrial' humic-like and protein-like components, DOC and absorption coefficient (a280) decreased during the greenhouse experiment. The intensities of four fluorescence components were all reduced during the field experiment. These results demonstrate the clear potential of floating bed phytoremediation techniques for reducing organic pollution degree in brackish environments. The rhizosphere may play an important role during phytoremediation. Our results show that spectrophotometric measurements such as fluorescence provide a useful tool for examining the removal of different organic moieties during various bioremediation processes.
Collapse
Affiliation(s)
- Lingfeng Huang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | |
Collapse
|
107
|
Dhir B, Srivastava S. Heavy metal tolerance in metal hyperaccumulator plant, Salvinia natans. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 90:720-724. [PMID: 23553503 DOI: 10.1007/s00128-013-0988-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 03/20/2013] [Indexed: 06/02/2023]
Abstract
Metal tolerance capacity of Salvinia natans, a metal hyperaccumulator, was evaluated. Plants were exposed to 10, 30 and 50 mg L⁻¹ of Zn, Cd, Co, Cr, Fe, Cu, Pb, and Ni. Plant biomass, photosynthetic efficiency, quantum yield, photochemical quenching, electron transport rate and elemental (%C, H and N) constitution remained unaffected in Salvinia exposed to 30 mg L⁻¹ of heavy metals, except for Cu and Zn exposed plants, where significant reductions were noted in some of the measured parameters. However, a significant decline was noted in most of the measured parameters in plants exposed to 50 mg L⁻¹ of metal concentration. Results suggest that Salvinia has fairly high levels of tolerance to all the metals tested, but the level of tolerance varied from metal to metal.
Collapse
Affiliation(s)
- B Dhir
- Department of Genetics, University of Delhi South Campus, New Delhi 110021, India.
| | | |
Collapse
|
108
|
Gomes HI, Dias-Ferreira C, Ribeiro AB. Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 445-446:237-60. [PMID: 23334318 DOI: 10.1016/j.scitotenv.2012.11.098] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/28/2012] [Accepted: 11/28/2012] [Indexed: 05/21/2023]
Abstract
Polychlorinated biphenyls (PCB) are persistent organic pollutants used worldwide between the 1930s and 1980s. Although their use has been heavily restricted, PCB can be found in contaminated soils and sediments. The most frequent remediation solutions adopted are "dig and dump" and "dig and incinerate", but there are currently new methods that could be more sustainable alternatives. This paper takes a look into the remediation options available for PCB-contaminated soils and sediments, differentiating between biological, chemical, physical and thermal methods. The use of combined technologies was also reviewed. Most of them are still in an initial development stage and further research in different implementation issues is needed. There is no single technology that is the solution for PCB contamination problem. The successful remediation of a site will depend on proper selection, design and adjustment of the technology or combined technologies to the site characteristics.
Collapse
Affiliation(s)
- Helena I Gomes
- CENSE - Center for Environmental and Sustainability Research, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | | | | |
Collapse
|
109
|
Watharkar AD, Khandare RV, Kamble AA, Mulla AY, Govindwar SP, Jadhav JP. Phytoremediation potential of Petunia grandiflora Juss., an ornamental plant to degrade a disperse, disulfonated triphenylmethane textile dye Brilliant Blue G. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:939-949. [PMID: 22529004 DOI: 10.1007/s11356-012-0904-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 03/29/2012] [Indexed: 05/31/2023]
Abstract
Phytoremediation provides an ecofriendly alternative for the treatment of pollutants like textile dyes. The purpose of this study was to explore phytoremediation potential of Petunia grandiflora Juss. by using its wild as well as tissue-cultured plantlets to decolorize Brilliant Blue G (BBG) dye, a sample of dye mixture and a real textile effluent. In vitro cultures of P. grandiflora were obtained by seed culture method. The decolorization experiments were carried out using wild as well as tissue-cultured plants independently. The enzymatic analysis of the plant roots was performed before and after decolorization of BBG. Metabolites formed after dye degradation were analyzed using UV-vis spectroscopy, high-performance liquid chromatography, Fourier transform infrared spectroscopy, and gas chromatography-mass spectrometry. Phytotoxicity studies were performed. Characterization of dye mixture and textile effluent was also studied. The wild and tissue-cultured plants of P. grandiflora showed the decolorized BBG up to 86 %. Significant increase in the activities of lignin peroxidase, laccase, NADH-2,6-dichlorophenol-indophenol reductase, and tyrosinase was found in the roots of the plants. Three metabolites of BBG were identified as 3-{[ethyl(phenyl)amino]methyl}benzenesulfonic acid, 3-{[methyl (phenyl)amino]methyl}benzenesulfonic amino acid, and sodium-3-[(cyclohexa-2,5-dien-1-ylideneamino)methyl]benzenesulfonate. Textile effluent sample and a synthetic mixture of dyes were also decolorized by P. grandiflora. Phytotoxicity test revealed the nontoxic nature of metabolites. P. grandiflora showed the potential to decolorize and degrade BBG to nontoxic metabolites. The plant has efficiently treated a sample of dye mixture and textile effluent.
Collapse
|
110
|
Sun Y, Xu Y, Zhou Q, Wang L, Lin D, Liang X. The potential of gibberellic acid 3 (GA3) and Tween-80 induced phytoremediation of co-contamination of Cd and Benzo[a]pyrene (B[a]P) using Tagetes patula. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 114:202-208. [PMID: 23219334 DOI: 10.1016/j.jenvman.2012.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/07/2012] [Accepted: 09/17/2012] [Indexed: 06/01/2023]
Abstract
The present study was conducted to investigate the effectiveness of GA(3) and Tween-80 on enhancing the phytoremediation of Cd-B[a]P co-contaminated soils. Results showed that the addition of GA(3) and GA(3)-Tween-80 enhanced Tagetes patula growth by 14%-32% and 23%-55%, respectively, relative to the control group. However, under independent GA(3)-treated soils, Cd and B[a]P concentrations in the shoots of the plants decreased by 15%-33% and 15%-53%, respectively, compared with CK. By contrast, the shoot concentration and accumulation of Cd under GA(3)-Tween-80 treatment increased by 0.01-0.46 and 1.33-1.55 times, respectively, whereas those of B[a]P increased from 0.57 to 0.82, and 1.33 to 1.55 times, respectively, compared with those of the control. Optimal result for Cd phytoextraction was obtained under combined 5 mmol Tween-80 kg(-1) and 1 mmol GA(3) kg(-1) treatment, and the maximum removal rate of B[a]P was obtained after the application of 5 mmol Tween-80 kg(-1) and 5 mmol GA(3) kg(-1).
Collapse
Affiliation(s)
- Yuebing Sun
- Key Laboratory of Production Environment and Agro-product Safety, Institute of Agro-Environmental Protection, Ministry of Agriculture, Tianjin 300191, China
| | | | | | | | | | | |
Collapse
|
111
|
Chatterjee S, Mitra A, Datta S, Veer V. Phytoremediation Protocols: An Overview. SOIL BIOLOGY 2013. [DOI: 10.1007/978-3-642-35564-6_1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
112
|
Khan S, Afzal M, Iqbal S, Khan QM. Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. CHEMOSPHERE 2013; 90:1317-32. [PMID: 23058201 DOI: 10.1016/j.chemosphere.2012.09.045] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/08/2012] [Accepted: 09/10/2012] [Indexed: 05/06/2023]
Abstract
Plant-bacteria partnerships have been extensively studied and applied to improve crop yield. In addition to their application in agriculture, a promising field to exploit plant-bacteria partnerships is the remediation of soil and water polluted with hydrocarbons. Application of effective plant-bacteria partnerships for the remediation of hydrocarbons depend mainly on the presence and metabolic activities of plant associated rhizo- and endophytic bacteria possessing specific genes required for the degradation of hydrocarbon pollutants. Plants and their associated bacteria interact with each other whereby plant supplies the bacteria with a special carbon source that stimulates the bacteria to degrade organic contaminants in the soil. In return, plant associated-bacteria can support their host plant to overcome contaminated-induced stress responses, and improve plant growth and development. In addition, plants further get benefits from their associated-bacteria possessing hydrocarbon-degradation potential, leading to enhanced hydrocarbon mineralization and lowering of both phytotoxicity and evapotranspiration of volatile hydrocarbons. A better understanding of plant-bacteria partnerships could be exploited to enhance the remediation of hydrocarbon contaminated soils in conjunction with sustainable production of non-food crops for biomass and biofuel production.
Collapse
Affiliation(s)
- Sumia Khan
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | | | | | | |
Collapse
|
113
|
Oh K, Li T, Cheng H, Hu X, He C, Yan L, Shinichi Y. Development of Profitable Phytoremediation of Contaminated Soils with Biofuel Crops. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jep.2013.44a008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
114
|
|
115
|
Tak HI, Ahmad F, Babalola OO. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 223:33-52. [PMID: 23149811 DOI: 10.1007/978-1-4614-5577-6_2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this review, we briefly describe the biological application of PGPR for purposes of phytoremediating heavy metals. We address the agronomic practices that can be used to maximize the remediation potential of plants. Plant roots have limited ability ability mental from soil, mainly because metals have low solubility in the soil solution. The phytoavailability of metal is closely tired to the soil properties and the metabolites that are released by PGPR (e.g., siderophores, organ acids, and plant growth regulators). The role played by PGPR may be accomplished by their direct effect on plant growth dynamics, or indirectly by acidification, chelation, precipitation, or immobilization of heavy metals in the rhizosphere. From performing this review we have formed the following conclusions: The most critical factor is determining how efficient phytoremediation of metal-contaminated soil will be is the rate of uptake of the metal by plants. In turn, this depends on the rate of bioavailability. We know from our review that beneficial bacteria exist tha can alter metal bioavailability of plants. Using these beneficial bacteria improves the performance of phytoremediation of the metal-contaminated sites. Contaminated sites are often nutrient poor. Such soil can be nutrient enriched by applying metal-tolerant microbes that provide key needed plant nutrients. Applying metal-tolerant microbes therefore may be vital in enhancing the detoxification of heavy-metal-contaminated soils (Glick 2003). Plant stress generated by metal-contaminated soils can be countered by enhancing plant defense responses. Responses can be enhanced by alleviating the stress-mediated impact on plants by enzymatic hydrolysis of ACC, which is intermediate in the biosynthetic pathway of ethylene. These plant-microbe partnerships can act as decontaminators by improving phytoremediation. Soil microorganisms play a central role in maintaining soil structure, fertility and in remediating contaminated soils. Although not yet widely applied, utilizing a plant-microbe partnership is now being recognized as an important tool to enhance successful phytoremediaton of metal-contaminated sites. Hence, soil microbes are essential to soil health and sustainability. The key to their usefulness is their close association with, and positive influence on, plant growth and function. To capitalize on the early success of this technique and to improve it, additional research is needed on successful colonization and survival of inoculums under field conditions, because there are vital for the success of this approach. In addition, the effects of the interaction of PGPR and plant root-mediated process on the metal mobilization in soil are required, to better elucidate the mechanism that underlines bacterial-assisted phytoremediation is important. Finally, applying PGPR-associated phytoremediation under field conditions is important, because, to date, only locally contaminated sites have been treated with this technique, by using microbes cultured in the laboratory.
Collapse
Affiliation(s)
- Hamid Iqbal Tak
- Department of Biological Sciences, Faculty of Agriculture, Science and Technology, North-West University, Mafikeng Campus, X2046, Mmabatho 2735, South Africa
| | | | | |
Collapse
|
116
|
Affiliation(s)
- Christopher J Rhodes
- Fresh-lands Environmental Actions, 88 Star Road, Caversham, Berkshire RG4 5BE, UK.
| |
Collapse
|
117
|
Sepehri M, Khodaverdiloo H, Zarei M. Fungi and Their Role in Phytoremediation of Heavy Metal-Contaminated Soils. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/978-3-642-33811-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
118
|
|
119
|
|
120
|
Maqbool F, Wang Z, Xu Y, Zhao J, Gao D, Zhao YG, Bhatti ZA, Xing B. Rhizodegradation of petroleum hydrocarbons by Sesbania cannabina in bioaugmented soil with free and immobilized consortium. JOURNAL OF HAZARDOUS MATERIALS 2012; 237-238:262-269. [PMID: 22975255 DOI: 10.1016/j.jhazmat.2012.08.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 08/16/2012] [Accepted: 08/17/2012] [Indexed: 06/01/2023]
Abstract
The present study reports the effect of bioaugmentation by free and immobilized bacterial culture on the rhizodegradation of petroleum-polluted soil using Sesbania cannabina plant. Total petroleum hydrocarbon (TPH), hydrocarbon-degrading bacterial counts, microbial activity and root morphology were assessed during 120 days of plant growth. TPH concentration analyzed by GC-MS showed that bioaugmentation did not improve the TPH degradation. TPH concentration decreased from 2541 mg kg(-1) to 673 mg kg(-1) and 867 mg kg(-1) in the rhizosphere of free (FR) and immobilized bacterial inoculated (IR) soil, respectively at the 120th day while in the rhizosphere of uninoculated soil (CR) concentration decreased to 679 mg kg(-1) only at the 90th day, showing higher and rapid rhizodegradation with indigenous bacteria than bioaugmented bacterial cultures. Various predominant bacterial groups responsible for higher TPH degradation in the rhizosphere of S. cannabina were identified by PCR-DGGE analysis. It is concluded that natural plant-microbe interaction in the rhizosphere of S. cannabina was efficient enough to degrade TPH and plant rhizosphere keeps bacterial community in its surrounding therefore immobilized culture had no obvious effect on petroleum degradation.
Collapse
Affiliation(s)
- Farhana Maqbool
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Abratowska A, Wąsowicz P, Bednarek PT, Telka J, Wierzbicka M. Morphological and genetic distinctiveness of metallicolous and non-metallicolous populations of Armeria maritima s.l. (Plumbaginaceae) in Poland. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:586-95. [PMID: 22243547 DOI: 10.1111/j.1438-8677.2011.00536.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Patterns of morphological, genetic and epigenetic variation (DNA methylation pattern) were investigated in metallicolous (M) and non-metallicolous (NM) populations of Armeria maritima. A morphological study was carried out using plants from six natural populations grown in a greenhouse. Morphological variation was assessed using seven traits. On the basis of this study, three representative populations were selected for molecular analyses using metAFLP to study sequence- and methylation-based DNA variation. Only one morphological trait (length of outer involucral bracts) was common to both metallicolous populations studied; however, the level of variation was sufficient to differentiate between M and NM populations. Molecular analyses showed the existence of naturally occurring epigenetic variation in A. maritima populations, as well as structuring into distinct between and within population components. We show that patterns of population genetic structure differed depending on the information used in the study. Analysis of sequence-based information data demonstrates the presence of three well-defined and genetically differentiated populations. Methylation-based data show that two major groups of individuals are present, corresponding to the division into M and NM populations. These results were confirmed using different analytical approaches, which suggest that the DNA methylation pattern is similar in both M populations. We hypothesise that epigenetic processes may be involved in microevolution leading to development of M populations in A. maritima.
Collapse
Affiliation(s)
- A Abratowska
- Department of Molecular Plant Physiology, Institute of Botany, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
122
|
Gomes HI, Dias-Ferreira C, Ribeiro AB. Electrokinetic remediation of organochlorines in soil: enhancement techniques and integration with other remediation technologies. CHEMOSPHERE 2012; 87:1077-1090. [PMID: 22386462 DOI: 10.1016/j.chemosphere.2012.02.037] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 02/07/2012] [Accepted: 02/10/2012] [Indexed: 05/31/2023]
Abstract
Electrokinetic remediation has been increasingly used in soils and other matrices for numerous contaminants such as inorganic, organic, radionuclides, explosives and their mixtures. Several strategies were tested to improve this technology effectiveness, namely techniques to solubilize contaminants, control soil pH and also couple electrokinetics with other remediation technologies. This review focus in the experimental work carried out in organochlorines soil electroremediation, aiming to systemize useful information to researchers in this field. It is not possible to clearly state what technique is the best, since experimental approaches and targeted contaminants are different. Further research is needed in the application of some of the reviewed techniques. Also a number of technical and environmental issues will require evaluation for full-scale application. Removal efficiencies reported in real contaminated soils are much lower than the ones obtained with spiked kaolinite, showing the influence of other factors like aging of the contamination and adsorption to soil particles, resulting in important challenges when transferring technologies into the field.
Collapse
Affiliation(s)
- Helena I Gomes
- CENSE, Departamento de Ciências e Engenharia do Ambiente, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | | | | |
Collapse
|
123
|
Adhikari T, Kumar A. Phytoaccumulation and tolerance of Riccinus communis L. to nickel. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2012; 14:481-492. [PMID: 22567726 DOI: 10.1080/15226514.2011.604688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The phytotoxicity due to nickel (Ni) and its accumulation in castor (Ricinus communis L.) plant of Euphorbiaceae family resulting from its addition from low to very high levels to a swell-shrink clayey soil (Haplustert) was studied in a pot culture experiment. Nine levels of Ni (0, 10, 40, 80, 120, 160, 180, 200, 250 mg Ni kg(-1) soil) were applied. Crop was harvested at 45 days after sowing. At the higher Ni levels, beyond 200 mg Ni kg(-1) soil, reduced growth symptom was recorded. The concentration of Ni in plant parts increased with increasing dose of applied Ni. Nickel concentration in castor root ranged from traces (control) to 455 mg kg(-1) and was directly related to soil Ni concentration. At 200 mg Ni kg(-1) soil, dry matter yield of castor reduced to 10% of control plant. Significant changes were observed in the roots of castor treated with higher levels of Ni against control. The roots treated with Ni showed a decrease in number of cells in the cortex region. It also appeared that the cortex region consisted of elongated parenchymatous cells instead of the normal parenchymatous tissue as in the control plant. Regarding Ni accumulation capacity, castor plant was recorded as an accumulator (alpha = 0.11 and beta = 1.10). A laboratory study was also conducted in the experimental soil to know the different operationally defined fractions of Ni, which control the availability of Ni to castor. Different fractions of Ni present in this soil followed this order: Residual > Fe-Mn oxides > carbonate > organic > exchangeable > water soluble. Overall results depict that castor is a promising species which can be used as a potential plant for phytoremediation of contaminated soils and to improve soil quality and provide economical benefits.
Collapse
Affiliation(s)
- Tapan Adhikari
- Indian Institute of Soil Science, Nabiabagh, Madhya Pradesh, India.
| | | |
Collapse
|
124
|
Cyplik P, Marecik R, Piotrowska-Cyplik A, Olejnik A, Drożdżyńska A, Chrzanowski Ł. Biological Denitrification of High Nitrate Processing Wastewaters from Explosives Production Plant. WATER, AIR, AND SOIL POLLUTION 2012; 223:1791-1800. [PMID: 22593607 PMCID: PMC3332387 DOI: 10.1007/s11270-011-0984-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 09/28/2011] [Indexed: 05/26/2023]
Abstract
Wastewater samples originating from an explosives production plant (3,000 mg N l(-1) nitrate, 4.8 mg l(-1) nitroglycerin, 1.9 mg l(-1) nitroglycol and 1,200 mg l(-1) chemical oxygen demand) were subjected to biological purification. An attempt to completely remove nitrate and to decrease the chemical oxygen demand was carried out under anaerobic conditions. A soil isolated microbial consortium capable of biodegrading various organic compounds and reduce nitrate to atmospheric nitrogen under anaerobic conditions was used. Complete removal of nitrates with simultaneous elimination of nitroglycerin and ethylene glycol dinitrate (nitroglycol) was achieved as a result of the conducted research. Specific nitrate reduction rate was estimated at 12.3 mg N g(-1) VSS h(-1). Toxicity of wastewater samples during the denitrification process was studied by measuring the activity of dehydrogenases in the activated sludge. Mutagenicity was determined by employing the Ames test. The maximum mutagenic activity did not exceed 0.5. The obtained results suggest that the studied wastewater samples did not exhibit mutagenic properties.
Collapse
Affiliation(s)
- Paweł Cyplik
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland
| | - Roman Marecik
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland
| | - Agnieszka Piotrowska-Cyplik
- Institute of Food Technology of Plant Origin, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Anna Olejnik
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland
| | - Agnieszka Drożdżyńska
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland
| | - Łukasz Chrzanowski
- Institute of Chemical Technology and Engineering, Poznań University of Technology, Pl. M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland
| |
Collapse
|
125
|
|
126
|
Jidere CM, Akamigbo FOR, Ugwuanyi JO. Phytoremediation potentials of cowpea (Vigina unguiculata) and maize (Zea mays) for hydrocarbon degradation in organic and inorganic manure-amended tropical typic paleustults. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2012; 14:362-373. [PMID: 22567717 DOI: 10.1080/15226514.2011.620652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A field study on phytoremediation of hydrocarbon contaminated soil was designed to assess the effects of organic manures (poultry droppings and cassava peels) and NPK fertilization on the potentials of cowpea (Vigina unguiculata) and maize (Zea mays) to stimulate hydrocarbon degradation in soil. Cowpea and maize crops were established on the hydrocarbon contaminated soil amended with three rates (0, 4, and 8 ton/ha) of the soil amendments, and arranged in 3 x 3 x 3 factorial in Randomized Complete Block Design. Hydrocarbon was significantly (P < 0.05) reduced in plots treated with the combined forms of the soil amendments. While the treatment combinations of 8 t/ha Poultry Droppings (PD) + 8 t/ha Cassava Peels (CP) + 4 t/ha NPK fertilizer was optimal for hydrocarbon degradation in the cowpea plots, 4 t/ha PD + 8 t/ha CP + 8 t/ha NPK fertilizer was the most preferred in the maize plot. Cowpea showed greater potential for hydrocarbon degradation at the first year. The mean values of hydrocarbon concentrations at the cowpea and maize plots indicated no significant difference at the second year. Grain yield of cowpea increased by 87% at the second year, while maize was unable to grow to maturity in the first year.
Collapse
Affiliation(s)
- C M Jidere
- Department of Soil Science, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | | | | |
Collapse
|
127
|
Akinbile CO, Yusoff MS. Assessing water hyacinth (Eichhornia crassopes) and lettuce (Pistia stratiotes) effectiveness in aquaculture wastewater treatment. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2012; 14:201-11. [PMID: 22567705 DOI: 10.1080/15226514.2011.587482] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes) were analyzed to determine their effectiveness in aquaculture wastewater treatment in Malaysia. Wastewater from fish farm in Semanggol Perak, Malaysia was sampled and the parameters determined included, the pH, turbidity, dissolved oxygen (DO), chemical oxygen demand (COD), biochemical oxygen demand (BOD), nitrite phosphate (PO4(3-)), nitrate (NO(3-)), nitrite (NO(-2)), ammonia (NH3), and total kjedahl nitrogen (TKN). Also, hydroponics system was set up and was added with fresh plants weights of 150 +/- 20 grams Eichhornia crassipes and 50 +/- 10 grams Pistia stratiotes during the 30 days experiment. The phytoremediation treatment with Eichhornia crassipes had pH ranging from 5.52 to 5.59 and from 4.45 to 5.5 while Pistia stratiotes had its pH value from 5.76 to 6.49 and from 6.24 to 7.07. Considerable percentage reduction was observed in all the parameters treated with the phytoremediators. Percentage reduction of turbidity for Eichhornia crassipes were 85.26% and 87.05% while Pistia stratiotes were 92.70% and 93.69% respectively. Similar reductions were observed in COD, TKN, NO(3-), NH3, and PO4(3-). The capability of these plants in removing nutrients was established from the study. Removal of aquatic macrophytes from water bodies is recommended for efficient water purification.
Collapse
Affiliation(s)
- C O Akinbile
- School of Civil Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia.
| | | |
Collapse
|
128
|
Phytoremediation of Heavy Metals by Brassica juncea in Aquatic and Terrestrial Environment. THE PLANT FAMILY BRASSICACEAE 2012. [DOI: 10.1007/978-94-007-3913-0_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
129
|
Overexpression of phytochelatin synthase (AtPCS) in rice for tolerance to cadmium stress. Biologia (Bratisl) 2011. [DOI: 10.2478/s11756-011-0135-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
130
|
Mathivanan V, Prabavathi R, Prithabai C, Selvisabhanayakam. Analysis of Metals Concentration in the Soils of SIPCOT Industrial Complex, Cuddalore, Tamil Nadu. Toxicol Int 2011; 17:102-5. [PMID: 21170256 PMCID: PMC2997451 DOI: 10.4103/0971-6580.72681] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Phytoremediation is a promising area of new research, both for its low cost and great benefit to society in the clean retrieval of contaminated sites. Phytoremediation is the use of living green plants for in situ risk reduction and/or removal of contaminants from contaminated soil, water, sediments, and air. Specially selected or engineered plants are used in the process. The soil samples were taken from Cuddalore Old Town (OT) and the samples from SIPCOT industrial complex, which was the study area and analyzed for various metals concentrations. Fifteen metals have been analyzed by adopting standard procedure. The detection limits of metal concentration are drawn as control. The various (15) metal concentrations in the soil samples were found higher in soil taken from SIPCOT industrial complex, compared with samples taken from Cuddalore OT. In all the observations, it was found that most of the metals like calcium, cadmium, chromium, cobalt, nickel, and zinc showed maximum concentrations, whereas arsenic, antimony, lead, magnesium, sodium have shown minimum concentrations, both when compared with control. From the present study, it was found that the soil collected from SIPCOT complex area were more polluted due to the presence of various industrial effluents, municipal wastes, and sewages when compared with the soil collected from Cuddalore OT.
Collapse
Affiliation(s)
- V Mathivanan
- Department of Zoology, Annamalai University, Annamalai Nagar - 608 002, Tamil Nadu, India
| | | | | | | |
Collapse
|
131
|
Endophyte-Assisted Phytoremediation of Explosives in Poplar Trees by Methylobacterium populi BJ001T. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-94-007-1599-8_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
132
|
Peng RH, Xu RR, Fu XY, Xiong AS, Zhao W, Tian YS, Zhu B, Jin XF, Chen C, Han HJ, Yao QH. Microarray analysis of the phytoremediation and phytosensing of occupational toxicant naphthalene. JOURNAL OF HAZARDOUS MATERIALS 2011; 189:19-26. [PMID: 21367522 DOI: 10.1016/j.jhazmat.2010.12.114] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 12/30/2010] [Indexed: 05/28/2023]
Abstract
Naphthalene is of global environmental concern because it is assumed to contribute considerably to human cancer risk. Plants are important in removing naphthalene from the atmosphere and soil. However, there remains insufficient knowledge on plant response to this compound. To determine the mechanism of naphthalene uptake and transduction in plants, as well as plant response to this compound, a microarray system was used to analyze gene expression patterns in Arabidopsis thaliana after irrigation with 2.0mM naphthalene. A total of 247 differentially expressed genes were identified as upregulated by naphthalene. These genes might specifically contribute to naphthalene uptake, transformation, conjugation, and compartmentalization in the plant. The potential role of upregulated genes in plant defense to naphthalene and the use of phytosensing for naphthalene detection were also discussed.
Collapse
Affiliation(s)
- Ri-He Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Hall J, Soole K, Bentham R. Hydrocarbon phytoremediation in the family Fabaceae--a review. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2011; 13:317-332. [PMID: 21598795 DOI: 10.1080/15226514.2010.495143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Currently, studies often focus on the use of Poaceae species (grasses) for phytoremediation of hydrocarbon-contaminated soils. Research into the use of Fabaceae species (legumes) to remediate hydrocarbons in soils has been conducted, but these plants are commonly overlooked due to slower recorded rates of degradation compared with many grass species. Evidence in the literature suggests that in some cases Fabaceae species may increase total degradation of hydrocarbons and stimulate degradative capacity of the soil microbial community, particularly for contaminants which are normally more recalcitrant to degradation. As many recalcitrant hydrocarbons have negative impacts on human and ecosystem health, development of remediation options is crucial. Reconsideration of Fabaceae species for removal of such contaminants may lead to environmentally and economically sustainable technologies for remediation of contaminated sites.
Collapse
Affiliation(s)
- Jessica Hall
- Environmental Health, Flinders University of South Australia, Adelaide, South Australia.
| | | | | |
Collapse
|
134
|
. S, Khanna P. Assessment of Heavy Metal Contamination in Different Vegetables Grown in and Around Urban Areas. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/rjet.2011.162.179] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
135
|
Sun Y, Zhou Q, Xu Y, Wang L, Liang X. Phytoremediation for co-contaminated soils of benzo[a]pyrene (B[a]P) and heavy metals using ornamental plant Tagetes patula. JOURNAL OF HAZARDOUS MATERIALS 2011; 186:2075-2082. [PMID: 21269763 DOI: 10.1016/j.jhazmat.2010.12.116] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 11/01/2010] [Accepted: 12/23/2010] [Indexed: 05/30/2023]
Abstract
Pot-culture experiments were conducted to investigate the single effect of benzo[a]pyrene (B[a]P) and the joint effect of metal-B[a]P on the growth of Tagetes patula and its uptake, accumulation and dissipation of heavy metals and B[a]P. Results showed that the low concentration of B[a]P (≤10 mg kg(-1)) could facilitate plant growth and resulted in an increase in biomass at the rate of 10.0-49.7% relative to the control. There were significantly positive correlations between the concentrations of B[a]P accumulated in tissues of the plants and soil B[a]P (P<0.001). However, the occurrence of Cd, Cu and Pb had inhibitive effects on plant growth and B[a]P uptake and accumulation on the whole. T. patula still exhibited a steady feature of Cd-hyperaccumulator under combined contaminated soils. By contrast, the effectiveness of Cu and Pb absorption in the plants was very weak. Plant-promoted biodegradation of B[a]P was the dominant contribution, 79.2-92.4% and 78.2-92.9% of dissipation of B[a]P came from plant-biodegradation under single B[a]P and metal-B[a]P contaminated soils, respectively. Therefore, T. patula might be useful for phytoremediation of B[a]P and B[a]P-Cd contaminated sites.
Collapse
Affiliation(s)
- Yuebing Sun
- Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | | | | | | | | |
Collapse
|
136
|
Mohanty M, Patra HK. Attenuation of chromium toxicity by bioremediation technology. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2011; 210:1-34. [PMID: 21170701 DOI: 10.1007/978-1-4419-7615-4_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Chromium is an important toxic environmental pollutant. Chromium pollution results largely from industrial activities, but other natural and anthropogenic sources also contribute to the problem. Plants that are exposed to environmental contamination by chromium are affected in diverse ways, including a tendency to suffer metabolic stress. The stress imposed by Cr exposure also extends to oxidative metabolic stress in plants that leads to the generation of active toxic oxygen free radicals. Such active free radicals degrade essential biomolecules and distort plant biological membranes. In this chapter, we describe sources of environmental chromium contamination, and provide information about the toxic impact of chromium on plant growth and metabolism. In addition, we address different phytoremediation processes that are being studied for use worldwide, in contaminated regions, to address and mitigate Cr pollution. There has been a long history of attempts to successfully mitigate the toxic effects of chromium-contaminated soil on plants and other organisms. One common approach, the shifting of polluted soil to landfills, is expensive and imposes environmental risks and health hazards of its own. Therefore, alternative eco-friendly bioremediation approaches are much in demand for cleaning chromium-polluted areas. To achieve its cleaning effects, bioremediation utilizes living organisms (bacteria, algae, fungi, and plants) that are capable of absorbing and processing chromium residues in ways which amend or eliminate it. Phytoremediation (bioremediation with plants) techniques are increasingly being used to reduce heavy metal contamination and to minimize the hazards of heavy metal toxicity. To achieve this, several processes, viz., rhizofiltration, phytoextraction, phytodetoxification, phytostabilization, and phytovolatilization, have been developed and are showing utility in practice, or promise. Sources of new native hyperaccumulator plants for use at contaminated sites are needed and constitute a key goal of ongoing phytoremediation research programs. Such new plants are needed to enhance the attractiveness of phytoremediation as an effective, affordable, and eco-friendly technique to achieve successful clean-up of metal-contaminated sites worldwide.
Collapse
Affiliation(s)
- Monalisa Mohanty
- Laboratory of Environmental Physiology, Post Graduate Department of Botany, Utkal University, Bhubaneswar, 751004, Orissa, India.
| | | |
Collapse
|
137
|
Cai Z, Zhou Q, Peng S, Li K. Promoted biodegradation and microbiological effects of petroleum hydrocarbons by Impatiens balsamina L. with strong endurance. JOURNAL OF HAZARDOUS MATERIALS 2010; 183:731-7. [PMID: 20724074 DOI: 10.1016/j.jhazmat.2010.07.087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 07/12/2010] [Accepted: 07/21/2010] [Indexed: 05/25/2023]
Abstract
Phytoremediation is a promising green technology for cleanup of petroleum hydrocarbons (PHCs) in contaminated environment. Based on the objective of identifying special ornamental plants for the effective biodegradation of PHCs, the efficacy of Impatiens balsamina L. to phytoremedy petroleum contaminated soil from the Shengli Oil Field in Dongying City, Shandong Province, China, was further examined in a field plot-culture experiment under greenhouse conditions. After a 4-month culture period, the average degradation rate of total petroleum hydrocarbons (TPHs) by the plant was up to 18.13-65.03%, greatly higher than that (only 10.20-35.61%) in their corresponding controls by natural degradation. Among petroleum compositions saturated hydrocarbons had the highest degradation. The release of polar metabolic byproducts during phytoremediation of contaminated soils with ≥20,000 mg/kg of PHCs by I. balsamina may occur. Some growth indexes of I. balsamina indicated that the plant had a good tolerance to contaminated soils with ≤10,000 mg/kg of PHCs. Moreover rhizosphere bacteria and fungi became the dominant microbial population in soils with 5000 and 10,000 mg/kg of PHCs and were probably responsible for TPH degradation. Thus, I. balsamina L. could be a potential ornamental plant for effective phytoremediation of contaminated soils with ≤10,000 mg/kg of PHCs.
Collapse
Affiliation(s)
- Zhang Cai
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | | | | | | |
Collapse
|
138
|
Yadav R, Arora P, Kumar S, Chaudhury A. Perspectives for genetic engineering of poplars for enhanced phytoremediation abilities. ECOTOXICOLOGY (LONDON, ENGLAND) 2010; 19:1574-88. [PMID: 20848189 DOI: 10.1007/s10646-010-0543-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2010] [Indexed: 05/06/2023]
Abstract
Phytoremediation potential has been widely accepted as highly stable and dynamic approach for reducing eco-toxic pollutants. Earlier reports endorse remediation abilities both in herbaceous plants as well as woody trees. Poplars are dominant trees to the ecosystem structure and functioning in riparian forests of North America Rivers and also to other part of the world. Understanding of the fact that how genetic variation in primary producer structures communities, affects species distribution, and alters ecosystem-level processes, attention was paid to investigate the perspectives of genetic modification in poplar. The present review article furnishes documented evidences for genetic engineering of Populus tree for enhanced phytoremediation abilities. The versatility of poplar as a consequence of its distinct traits, rapid growth rates, extensive root system, high perennial biomass production, and immense industrial value, bring it in the forefront of phytoremediation. Furthermore, remediative capabilities of Populus can be significantly increased by introducing cross-kingdom, non-resident genes encoding desirable traits. Available genome sequence database of Populus contribute to the determination of gene functions together with elucidating phytoremediation linked metabolic pathways. Adequate understanding of functional genomics in merger with physiology and genetics of poplar offers distinct advantage in identifying and upgrading phytoremediation potential of this model forest tree species for human welfare.
Collapse
Affiliation(s)
- Rakesh Yadav
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, 125001 Haryana, India
| | | | | | | |
Collapse
|
139
|
Puertas-Mejía MA, Ruiz-Díez B, Fernández-Pascual M. Effect of cadmium ion excess over cell structure and functioning of Zea mays and Hordeum vulgare. BIOCHEM SYST ECOL 2010. [DOI: 10.1016/j.bse.2010.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
140
|
Perelo LW. Review: In situ and bioremediation of organic pollutants in aquatic sediments. JOURNAL OF HAZARDOUS MATERIALS 2010; 177:81-9. [PMID: 20138425 DOI: 10.1016/j.jhazmat.2009.12.090] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Revised: 12/01/2009] [Accepted: 12/18/2009] [Indexed: 05/24/2023]
Abstract
Organic pollutants in sediments are a worldwide problem because sediments act as sinks for hydrophobic, recalcitrant and hazardous compounds. Depending on biogeochemical processes these hydrocarbons are involved in adsorption, desorption and transformation processes and can be made available to benthic organisms as well as organisms in the water column through the sediment-water interface. Most of these recalcitrant hydrocarbons are toxic and carcinogenic, they may enter the food-chain and accumulate in biological tissue. Several approaches are being investigated or have been already used to remove organic hydrocarbons from sediments. This paper provides a review on types and sources of organic pollutants as well as their behavior in sediments. It presents the advantages and disadvantages of traditional sediment remediation techniques in use, such as dredging, capping and monitored natural attenuation. Furthermore, it describes new approaches with emphasis on bioremediation, like biostimulation, bioaugmentation and phytoremediation applied to sediments. These new techniques promise to be of lower impact and more cost efficient than traditional management strategies.
Collapse
Affiliation(s)
- Louisa Wessels Perelo
- Departamento de Engenharia Ambiental, Escola Politécnica, Universidade Federal da Bahia, Rua Prof. Aristides Novis, 02 - Federação, CEP 40210-910 Salvador, BA, Brazil.
| |
Collapse
|
141
|
Aken BV, Correa PA, Schnoor JL. Phytoremediation of polychlorinated biphenyls: new trends and promises. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:2767-76. [PMID: 20384372 PMCID: PMC3025541 DOI: 10.1021/es902514d] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Transgenic plants and associated bacteria constitute a new generation of genetically modified organisms for efficient and environment-friendly treatment of soil and water contaminated with polychlorinated biphenyls (PCBs). This review focuses on recent advances in phytoremediation for the treatment of PCBs, including the development of transgenic plants and associated bacteria. Phytoremediation, or the use of higher plants for rehabilitation of soil and groundwater, is a promising strategy for cost-effective treatment of sites contaminated by toxic compounds, including PCBs. Plants can help mitigate environmental pollution by PCBs through a range of mechanisms: besides uptake from soil (phytoextraction), plants are capable of enzymatic transformation of PCBs (phytotransformation); by releasing a variety of secondary metabolites, plants also enhance the microbial activity in the root zone, improving biodegradation of PCBs (rhizoremediation). However, because of their hydrophobicity and chemical stability, PCBs are only slowly taken up and degraded by plants and associated bacteria, resulting in incomplete treatment and potential release of toxic metabolites into the environment. Moreover, naturally occurring plant-associated bacteria may not possess the enzymatic machinery necessary for PCB degradation. To overcome these limitations, bacterial genes involved in the metabolism of PCBs, such as biphenyl dioxygenases, have been introduced into higher plants, following a strategy similar to the development of transgenic crops. Similarly, bacteria have been genetically modified that exhibit improved biodegradation capabilities and are able to maintain stable relationships with plants. Transgenic plants and associated bacteria bring hope for a broader and more efficient application of phytoremediation for the treatment of PCBs.
Collapse
Affiliation(s)
- Benoit Van Aken
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, Pennsylvania, USA.
| | | | | |
Collapse
|
142
|
Mammalian cytochrome CYP2E1 triggered differential gene regulation in response to trichloroethylene (TCE) in a transgenic poplar. Funct Integr Genomics 2010; 10:417-24. [PMID: 20213342 DOI: 10.1007/s10142-010-0165-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/04/2010] [Accepted: 02/09/2010] [Indexed: 10/19/2022]
Abstract
Trichloroethylene (TCE) is an important environmental contaminant of soil, groundwater, and air. Studies of the metabolism of TCE by poplar trees suggest that cytochrome P450 enzymes are involved. Using poplar genome microarrays, we report a number of putative genes that are differentially expressed in response to TCE. In a previous study, transgenic hybrid poplar plants expressing mammalian cytochrome P450 2E1 (CYP2E1) had increased metabolism of TCE. In the vector control plants for this construct, 24 h following TCE exposure, 517 genes were upregulated and 650 genes were downregulated over 2-fold when compared with the non-exposed vector control plants. However, in the transgenic CYP2E1 plant, line 78, 1,601 genes were upregulated and 1,705 genes were downregulated over 2-fold when compared with the non-exposed transgenic CYP2E1 plant. It appeared that the CYP2E1 transgenic hybrid poplar plants overexpressing mammalian CYP2E1 showed a larger number of differentially expressed transcripts, suggesting a metabolic pathway for TCE to metabolites had been initiated by activity of CYP2E1 on TCE. These results suggest that either the over-expression of the CYP2E1 gene or the abundance of TCE metabolites from CYP450 2E1 activity triggered a strong genetic response to TCE. Particularly, cytochrome p450s, glutathione S-transferases, glucosyltransferases, and ABC transporters in the CYP2E1 transgenic hybrid poplar plants were highly expressed compared with in vector controls.
Collapse
|
143
|
Farinati S, DalCorso G, Varotto S, Furini A. The Brassica juncea BjCdR15, an ortholog of Arabidopsis TGA3, is a regulator of cadmium uptake, transport and accumulation in shoots and confers cadmium tolerance in transgenic plants. THE NEW PHYTOLOGIST 2010; 185:964-78. [PMID: 20028476 DOI: 10.1111/j.1469-8137.2009.03132.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
*A bZIP transcription factor from Brassica juncea (BjCdR15) was isolated by the cDNA-amplified fragment length polymorphism technique after cadmium treatment. Sequence analysis indicated high similarity between BjCdR15 and Arabidopsis TGA3. In Arabidopsis, TGA3 transcription is also induced by cadmium; hence, we investigated whether BjCdR15 is involved in cadmium tolerance and whether it can functionally replace TGA3 protein in Arabidopsis tga3-2 mutant plants. *BjCdR15 expression was detected mainly in the epidermis and vascular system of cadmium-treated plants, and increased in roots and leaves after cadmium treatment. The overexpression of BjCdR15 in Arabidopsis and tobacco enhanced cadmium tolerance: overexpressing plants showed high cadmium accumulation in shoots. Conversely, Arabidopsis tga3-2 mutant plants showed high cadmium content in roots and inhibition of its transport to the shoot. *We demonstrated that BjCdR15 can functionally replace TGA3: in 35S::BjCdR15-tga3-2 plants, the long-distance transport of cadmium from root to shoot was restored and these plants showed an increased cadmium content in shoots compared with all other assays. In addition, BjCdR15/TGA3 regulated the synthesis of phytochelatin synthase and the expression of several metal transporters. *The results indicate that BjCdR15/TGA3 transcription factors play a crucial role in the regulation of cadmium uptake by roots and in its long-distance root to shoot transport. BjCdR15/TGA3 may thus be considered as useful candidates for potential biotechnological applications in the phytoextraction of cadmium from polluted soils.
Collapse
Affiliation(s)
- Silvia Farinati
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
| | | | | | | |
Collapse
|
144
|
Vamerali T, Bandiera M, Mosca G. Field crops for phytoremediation of metal-contaminated land. A review. ENVIRONMENTAL CHEMISTRY LETTERS 2010; 8:1-17. [PMID: 0 DOI: 10.1007/s10311-009-0268-0] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|
145
|
Kim S, Baek K, Lee I. Phytoremediation and microbial community structure of soil from a metal-contaminated military shooting range: comparisons of field and pot experiments. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2010; 45:389-394. [PMID: 20390882 DOI: 10.1080/10934520903467832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this study, the heavy metal uptake ability of two plant species, barnyard grass and Indian mallow, and the effects of associated micro-communities on the rhizosphere of these plants were investigated in metal-contaminated sites. In addition, the effectiveness of phytoremediation using these plants was compared under field and pot conditions. To accomplish this analysis, phytoremediation of general military shooting range soil was conducted for 8 weeks under the two conditions. The results showed that metal uptake by plants and reductions in soil metal concentration were lower in the field than in pots. However, soil dehydrogenase activities and microbial diversity increased in response to phytoremediation in the field. Specifically, the soil dehydrogenase activities of barnyard grass in field soils were 3-fold higher than those of potted soils. Moreover, the denaturing gradient gel electrophoresis patterns revealed that groups formed according to plant species. Finally, the Shannon-Weaver diversity index and Simpson dominance index were higher in the rhizosphere of barnyard grass than in the rhizosphere of Indian mallow under field conditions. These results indicate that it is difficult to apply the results obtained from pot experiments to field conditions. These findings can be used to inform future studies conducted to determine if field sites are suitable for phytoremediation based on the results of pot studies.
Collapse
Affiliation(s)
- Sunghyun Kim
- Division of EcoScience, Ewha Womans University, Seoul, Korea
| | | | | |
Collapse
|
146
|
Wang Q, Li Z, Cheng S, Wu Z. Effects of humic acids on phytoextraction of Cu and Cd from sediment by Elodea nuttallii. CHEMOSPHERE 2010; 78:604-608. [PMID: 19959204 DOI: 10.1016/j.chemosphere.2009.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 11/06/2009] [Accepted: 11/09/2009] [Indexed: 05/28/2023]
Abstract
Growth and metal-accumulation of Elodea nuttallii exposed to Cu and Cd-contaminated sediment were examined and the effects of humic acids on phytoextraction of Cu and Cd were also investigated. The growth of plants were promoted with the increasing concentration of Cu in sediment, while inhibited by Cd during the 21d exposure. The concentrations of Cu in roots and shoots of E. nuttallii ranged 25-99mgkg(-1) dry weight (DW) and 23-83mgkg(-1)DW under different concentration of Cu treatments in sediment at the end of exposure, and they were 0-6.5mgkg(-1)DW and 0-7.9mgkg(-1)DW for Cd, respectively. With addition of humic acids from 3.0 to 7.8gkg(-1)DW, the bioavailability of heavy metals in the sediment were reduced significantly, therefore, the accumulation of Cd was inhibited and the Cd concentrations in roots and shoots of plants decreased. However, as the result of release Cu from sediment into water column with addition of humic acids, and E. nuttallii could uptake Cu from water directly, the Cu concentrations in roots and shoots in plant increased 26-69% and 40-78%, respectively. In conclusion, E. nuttallii could be suitable for remedying Cu and Cd-contaminated sediment in situ as a pioneer species, but for phytoextraction of Cd, the application of humic acids should be careful.
Collapse
Affiliation(s)
- Qian Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China
| | | | | | | |
Collapse
|
147
|
Gan S, Lau EV, Ng HK. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). JOURNAL OF HAZARDOUS MATERIALS 2009; 172:532-549. [PMID: 19700241 DOI: 10.1016/j.jhazmat.2009.07.118] [Citation(s) in RCA: 389] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 07/28/2009] [Accepted: 07/28/2009] [Indexed: 05/27/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic micropollutants which are resistant to environmental degradation due to their highly hydrophobic nature. Concerns over their adverse health effects have resulted in extensive studies on the remediation of soils contaminated with PAHs. This paper aims to provide a review of the remediation technologies specifically for PAH-contaminated soils. The technologies discussed here include solvent extraction, bioremediation, phytoremediation, chemical oxidation, photocatalytic degradation, electrokinetic remediation, thermal treatment and integrated remediation technologies. For each of these, the theories are discussed in conjunction with comparative evaluation of studies reported in the specialised literature.
Collapse
Affiliation(s)
- S Gan
- Department of Chemical and Environmental Engineering, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| | | | | |
Collapse
|
148
|
Singh N, Gadi R. Biological methods for speciation of heavy metals: different approaches. Crit Rev Biotechnol 2009; 29:307-12. [DOI: 10.3109/07388550903284462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
149
|
Bert V, Seuntjens P, Dejonghe W, Lacherez S, Thuy HTT, Vandecasteele B. Phytoremediation as a management option for contaminated sediments in tidal marshes, flood control areas and dredged sediment landfill sites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2009; 16:745-764. [PMID: 19533193 DOI: 10.1007/s11356-009-0205-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Accepted: 05/20/2009] [Indexed: 05/27/2023]
Abstract
BACKGROUND, AIM AND SCOPE Polluted sediments in rivers may be transported by the river to the sea, spread over river banks and tidal marshes or managed, i.e. actively dredged and disposed of on land. Once sedimented on tidal marshes, alluvial areas or control flood areas, the polluted sediments enter semi-terrestrial ecosystems or agro-ecosystems and may pose a risk. Disposal of polluted dredged sediments on land may also lead to certain risks. Up to a few years ago, contaminated dredged sediments were placed in confined disposal facilities. The European policy encourages sediment valorisation and this will be a technological challenge for the near future. Currently, contaminated dredged sediments are often not valorisable due to their high content of contaminants and their consequent hazardous properties. In addition, it is generally admitted that treatment and re-use of heavily contaminated dredged sediments is not a cost-effective alternative to confined disposal. For contaminated sediments and associated disposal facilities used in the past, a realistic, low cost, safe, ecologically sound and sustainable management option is required. In this context, phytoremediation is proposed in the literature as a management option. The aim of this paper is to review the current knowledge on management, (phyto)remediation and associated risks in the particular case of sediments contaminated with organic and inorganic pollutants. MAIN FEATURES This paper deals with the following features: (1) management and remediation of contaminated sediments and associated risk assessment; (2) management options for ecosystems on polluted sediments, based on phytoremediation of contaminated sediments with focus on phytoextraction, phytostabilisation and phytoremediation of organic pollutants and (3) microbial and mycorrhizal processes occurring in contaminated sediments during phytoremediation. RESULTS In this review, an overview is given of phytoremediation as a management option for semi-terrestrial and terrestrial ecosystems affected by polluted sediments, and the processes affecting pollutant bioavailability in the sediments. Studies that combine contaminated sediment and phytoremediation are relatively recent and are increasing in number since few years. Several papers suggest including phytoremediation in a management scheme for contaminated dredged sediments and state that phytoremediation can contribute to the revaluation of land-disposed contaminated sediments. The status of sediments, i.e. reduced or oxidised, highly influences contaminant mobility, its (eco)toxicity and the success of phytoremediation. Studies are performed either on near-fresh sediment or on sediment-derived soil. Field studies show temporal negative effects on plant growth due to oxidation and subsequent ageing of contaminated sediments disposed on land. The review shows that a large variety of plants and trees are able to colonise or develop on contaminated dredged sediment in particular conditions or events (e.g. high level of organic matter, clay and moisture content, flooding, seasonal hydrological variations). Depending on the studies, trees, high-biomass crop species and graminaceous species could be used to degrade organic pollutants, to extract or to stabilise inorganic pollutants. Water content of sediment is a limiting factor for mycorrhizal development. In sediment, specific bacteria may enhance the mobilisation of inorganic contaminants whereas others may participate in their immobilisation. Bacteria are also able to degrade organic pollutants. Their actions may be increased in the presence of plants. DISCUSSION Choice of plants is particularly crucial for phytoremediation success on contaminated sediments. Extremely few studies are long-term field-based studies. Short-term effects and resilience of ecosystems is observed in long-term studies, i.e. due to degradation and stabilisation of pollutants. Terrestrial ecosystems affected by polluted sediments range from riverine tidal marshes with several interacting processes and vegetation development mainly determined by hydrology, over alluvial soils affected by overbank sedimentation (including flood control areas), to dredged sediment disposal facilities where hydrology and vegetation might be affected or managed by human intervention. This gradient is also a gradient of systems with highly variable soil and hydrological conditions in a temporal scale (tidal marshes) versus systems with a distinct soil development over time (dredged sediment landfill sites). CONCLUSIONS In some circumstances (e.g. to avoid flooding or to ensure navigation) dredging operations are necessary. Management and remediation of contaminated sediments are necessary to reduce the ecological risks and risks associated with food chain contamination and leaching. Besides disposal, classical remediation technologies for contaminated sediment also extract or destroy contaminants. These techniques imply the sediment structure deterioration and prohibitive costs. On the contrary, phytoremediation could be a low-cost option, particularly suited to in situ remediation of large sites and environmentally friendly. However, phytoremediation is rarely included in the management scheme of contaminated sediment and accepted as a viable option. PERSPECTIVES Phytoremediation is still an emerging technology that has to prove its sustainability at field scale. Research needs to focus on optimisations to enhance applicability and to address the economic feasibility of phytoremediation.
Collapse
Affiliation(s)
- Valérie Bert
- Unité Technologies et Procédés Propres et Durables, INERIS, Parc Technologique ALATA, BP2, 60 550, Verneuil en Halatte, France.
| | | | | | | | | | | |
Collapse
|
150
|
Nagata T, Nakamura A, Akizawa T, Pan-Hou H. Genetic engineering of transgenic tobacco for enhanced uptake and bioaccumulation of mercury. Biol Pharm Bull 2009; 32:1491-5. [PMID: 19721220 DOI: 10.1248/bpb.32.1491] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To further enhance the efficiency and potential of plants for phytoremediation of mercury pollution, a genetically engineered tobacco to simultaneously express mercury transporter, mercury transporter (MerT) and mercury chelator, polyphosphate (polyP) was constructed by integrating bacterial merT gene in polyphosphate kinase gene (ppk)-transgenic tobacco, and its ability to phytoremediate mercury was evaluated. Integration of merT gene into ppk-transgenic tobacco did not significantly affect the mercury resistant phenotypes and polyP production. Transgenic expression of MerT in ppk-transgenic tobacco resulted in accelerated and enhanced mercury uptake into tobacco. In addition, tobacco expressing MerT and polyP accumulated significantly more mercury than the ppk-transgenic tobacco from medium containing a wide range of low concentrations of Hg(2+). The combination of accelerated mercury uptake and enhanced mercury accumulation mediated by MerT represents one way for shortening the purification completion time, and for improving tobacco plants to be more suitable for use in phytoremediation of low levels of mercury contamination.
Collapse
Affiliation(s)
- Takeshi Nagata
- Setsunan University, Nagaotogecho, Hirakata, Osaka, Japan
| | | | | | | |
Collapse
|