101
|
Mochizuki Y, Imai H, Oaki Y. A Layered Polydiacetylene Containing Hydrogen-Bonding 4,4'-Bipyridyl Guests: Reversible Color Changes with a Wide-Range Temperature Response. Chempluschem 2021; 86:1563-1568. [PMID: 34432949 DOI: 10.1002/cplu.202100300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/03/2021] [Indexed: 11/06/2022]
Abstract
Layered organic polymers have intercalation capabilities and dynamic properties. In classical intercalation chemistry, the interlayer guests are intercalated in the host layers via electrostatic interaction. The present work shows the organic layered materials with the host-guest interlayer interaction via hydrogen bond. Polydiacetylene (PDA) exhibits color changes from blue to red with the application of external stimuli, such as thermal and mechanical stresses. Here we report on a layered PDA containing 4,4'-bipyridyl in the interlayer space as a hydrogen-bonding guest. Whereas the layered PDA without interlayer guest shows the color transition at 65 °C, gradual color changes with two-stage reversibility are observed in the temperature range of -20-240 °C by the introduction of the hydrogen-bonding guest. The weaker interlayer interaction via the hydrogen bond promotes the dynamic motion directing the thermoresponsive color changes in a wide temperature range.
Collapse
Affiliation(s)
- Yuki Mochizuki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Hiroaki Imai
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
102
|
Li Z, Ji X, Xie H, Tang BZ. Aggregation-Induced Emission-Active Gels: Fabrications, Functions, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100021. [PMID: 34216407 DOI: 10.1002/adma.202100021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/14/2021] [Indexed: 05/07/2023]
Abstract
Chromophores that exhibit aggregation-induced emission (i.e., aggregation-induced emission luminogens [AIEgens]) emit intense fluorescence in their aggregated states, but show negligible emission as discrete molecular species in solution due to the changes in restriction and freedom of intramolecular motions. As solvent-swollen quasi-solids with both a compact phase and a free space, gels enable manipulation of intramolecular motions. Thus, AIE-active gels have attracted significant interest owing to their various distinctive properties and promising application potential. Herein, a comprehensive overview of AIE-active gels is provided. The fabrication strategies employed are detailed, and the applications of AIEgens are summarized. In addition, the gel functions arising from the AIE moieties are revealed, along with their structure-property relationships. Furthermore, the applications of AIE-active gels in diverse areas are illustrated. Finally, ongoing challenges and potential means to address them are discussed, along with future perspectives on AIE-active gels, with the overall aim of inspiring research on novel materials and ideas.
Collapse
Affiliation(s)
- Zhao Li
- Institute of Engineering Medicine, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Xiaofan Ji
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huilin Xie
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan, Shenzhen, 518055, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan, Shenzhen, 518055, China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institutes, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
103
|
Jeevan AK, Gopidas KR. Self-Assembly and Photochemistry of a Pyrene-Methyl Viologen Supramolecular Fiber System. J Phys Chem B 2021; 125:8539-8549. [PMID: 34313435 DOI: 10.1021/acs.jpcb.1c04417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This paper reports the self-assembly of a donor-acceptor system into nanoscopic structures and the photo processes taking place within these structures. The donor employed is pyrene linked to two β-cyclodextrin molecules (CD-PY-CD), and adamantane-linked methyl viologen attached to the three arms of mesitylene (Ms-(MV2+-AD)3) is the acceptor. CD-PY-CD and Ms-(MV2+-AD)3 when dissolved in water self-assembled into vesicles, which joined together to give long fibers. The self-assembly was studied using spectroscopic and microscopic techniques. Fluorescence of the pyrene chromophore was quenched within the self-assembled system due to efficient photoinduced electron transfer to methyl viologen. Photoinduced electron transfer within the assembly is confirmed through identification of product radical ions in flash photolysis experiments. Steady-state irradiation of the self-assembled system in an optical bench led to the formation of methyl viologen radical cation, which was stable for a few hours. Longevity of the radical cation was attributed to the fast reaction of pyrene radical cation with adjacent pyrene to give an unstable adduct, which slows down the back electron transfer process.
Collapse
Affiliation(s)
- Athira K Jeevan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 200 002, India
| | - Karical R Gopidas
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 200 002, India
| |
Collapse
|
104
|
Zhang L, Lin YJ, Li ZH, Fraser Stoddart J, Jin GX. Coordination-Driven Selective Formation of D 2 Symmetric Octanuclear Organometallic Cages. Chemistry 2021; 27:9524-9528. [PMID: 33882176 DOI: 10.1002/chem.202101204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Indexed: 11/09/2022]
Abstract
The coordination-driven self-assembly of organometallic half-sandwich iridium(III)- and rhodium(III)-based building blocks with asymmetric ambidentate pyridyl-carboxylate ligands is described. Despite the potential for obtaining a statistical mixture of multiple products, D2 symmetric octanuclear cages were formed selectively by taking advantage of the electronic effects emanating from the two types of chelating sites - (O,O') and (N,N') - on the tetranuclear building blocks. The metal sources and the lengths of bridging ligands influence the selectivity of the self-assembly. Experimental observations, supported by computational studies, suggest that the D2 symmetric cages are the thermodynamically favored products. Overall, the results underline the importance of electronic effects on the selectivity of coordination-driven self-assembly, and demonstrate that asymmetric ambidentate ligands can be used to control the design of discrete supramolecular coordination complexes.
Collapse
Affiliation(s)
- Long Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P.R. China.,Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
| | - Yue-Jian Lin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P.R. China
| | - Zhen-Hua Li
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P.R. China
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310021, P.R. China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P.R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P.R. China
| |
Collapse
|
105
|
Liu Z, Zhang Z, Li T, Zhao W. Three-Dimensional Diradical Metallacage with an Open-Shell Ground State. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Zhaoyue Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zhonghui Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Tao Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
106
|
Zagorodko O, Melnyk T, Rogier O, Nebot VJ, Vicent MJ. Higher-order interfiber interactions in the self-assembly of benzene-1,3,5-tricarboxamide-based peptides in water. Polym Chem 2021; 12:3478-3487. [PMID: 34262624 PMCID: PMC8230583 DOI: 10.1039/d1py00304f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/14/2021] [Indexed: 01/27/2023]
Abstract
Mimicking the complexity of biological systems with synthetic supramolecular materials requires a deep understanding of the relationship between the structure of the molecule and its self-assembly pattern. Herein, we report a series of water-soluble benzene-1,3,5-tricarboxamide-based di- and tripeptide derivatives modified with small non-bulky terminal amine salt to induce self-assembly into twisted one-dimensional higher-order nanofibers. The morphology of nanofibers strongly depends on the nature, order, and quantity of amino acids in the short peptide fragments and vary from simple cylindrical to complex helical. From observations of several fiber-splitting events, we detected interfiber interactions that always occur in a pairwise manner, which implies that the C3 symmetry of benzene-1,3,5-tricarboxamide-based molecules in higher-order fibers becomes gradually distorted, thus facilitating hydrophobic contact interactions between fibrils. The proposed mechanism of self-assembly through hydrophobic contact allowed the successful design of a compound with pH-responsive morphology, and may find use in the future development of complex hierarchical architectures with controlled functionality.
Collapse
Affiliation(s)
| | - Tetiana Melnyk
- Polymer Therapeutics Lab. Prince Felipe Research Center Valencia Spain
| | - Olivier Rogier
- Polymer Therapeutics Lab. Prince Felipe Research Center Valencia Spain
| | - Vicent J Nebot
- Polymer Therapeutics Lab. Prince Felipe Research Center Valencia Spain
- PTS SL Valencia Spain
| | - María J Vicent
- Polymer Therapeutics Lab. Prince Felipe Research Center Valencia Spain
| |
Collapse
|
107
|
Hierarchical self-assembly of crown ether based metal-carbene cages into multiple stimuli-responsive cross-linked supramolecular metallogel. Sci China Chem 2021. [DOI: 10.1007/s11426-021-9977-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
108
|
Chen LJ, Humphrey SJ, Zhu JL, Zhu FF, Wang XQ, Wang X, Wen J, Yang HB, Gale PA. A Two-Dimensional Metallacycle Cross-Linked Switchable Polymer for Fast and Highly Efficient Phosphorylated Peptide Enrichment. J Am Chem Soc 2021; 143:8295-8304. [PMID: 34042430 PMCID: PMC8193630 DOI: 10.1021/jacs.0c12904] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The selective and
efficient capture of phosphopeptides is critical
for comprehensive and in-depth phosphoproteome analysis. Here we report
a new switchable two-dimensional (2D) supramolecular polymer that
serves as an ideal platform for the enrichment of phosphopeptides.
A well-defined, positively charged metallacycle incorporated into
the polymer endows the resultant polymer with a high affinity for
phosphopeptides. Importantly, the stimuli-responsive nature of the
polymer facilitates switchable binding affinity of phosphopeptides,
thus resulting in an excellent performance in phosphopeptide enrichment
and separation from model proteins. The polymer has a high enrichment
capacity (165 mg/g) and detection sensitivity (2 fmol), high enrichment
recovery (88%), excellent specificity, and rapid enrichment and separation
properties. Additionally, we have demonstrated the capture of phosphopeptides
from the tryptic digest of real biosamples, thus illustrating the
potential of this polymeric material in phosphoproteomic studies.
Collapse
Affiliation(s)
- Li-Jun Chen
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sean J Humphrey
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jun-Long Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Fan-Fan Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jin Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.,Institute of Theoretical Chemistry, Faculty of Vienna, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Philip A Gale
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
109
|
Purba PC, Maity M, Bhattacharyya S, Mukherjee PS. A Self-Assembled Palladium(II) Barrel for Binding of Fullerenes and Photosensitization Ability of the Fullerene-Encapsulated Barrel. Angew Chem Int Ed Engl 2021; 60:14109-14116. [PMID: 33834590 DOI: 10.1002/anie.202103822] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 11/07/2022]
Abstract
Fullerene extracts obtained from fullerene soot lack their real application due to their poor solubility in common solvents and difficulty in purification. Encapsulation of these extracts in a suitable host is an important approach to address these issues. We present a new Pd6 barrel (1), which is composed of three 1,4-dihydropyrrolo[3,2-b]pyrrole panels, clipped through six cis-PdII acceptors. Large open windows and cavity make it an efficient host for a large guest. Favorable interactions between the ligand and fullerene (C60 and C70 ) allows the barrel to encapsulate fullerene efficiently. Thorough investigation reveals that barrel 1 has a stronger binding affinity towards C70 over C60 , resulting in the predominant extraction of C70 from a mixture of the two. Finally, the fullerene encapsulated barrels C60 ⊂1 and C70 ⊂1 were found to be efficient for visible-light-induced singlet oxygen generation. Such preferential binding of C70 and photosensitizing ability of C60 ⊂1 and C70 ⊂1 are noteworthy.
Collapse
Affiliation(s)
- Prioti Choudhury Purba
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Manoranjan Maity
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
110
|
Purba PC, Maity M, Bhattacharyya S, Mukherjee PS. A Self‐Assembled Palladium(II) Barrel for Binding of Fullerenes and Photosensitization Ability of the Fullerene‐Encapsulated Barrel. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103822] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Prioti Choudhury Purba
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Manoranjan Maity
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
111
|
Cheng K, Bai QX, Hu SJ, Guo XQ, Zhou LP, Xie TZ, Sun QF. Water-stable lanthanide-organic macrocycles from a 1,2,4-triazole-based chelate for enantiomeric excess detection and pesticide sensing. Dalton Trans 2021; 50:5759-5764. [PMID: 33949524 DOI: 10.1039/d1dt00726b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water-stable anionic Ln2L2-type (Ln = LaIII and EuIII) lanthanide-organic macrocycles have been constructed by deprotonation self-assembly of a bis-tridentate ligand consisting of two 2,6-bis-(1,2,4-triazole)-pyridine chelation arms bridged by a dibenzofuran chromophore, of which the luminescent Eu2L2 macrocycle can be used for enantiomeric excess (ee) detection toward pybox-type chiral ligands and selective colorimetric sensing of omethoate (OMA) in water.
Collapse
Affiliation(s)
- Kai Cheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China. and University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qi-Xia Bai
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials; Guangzhou University, Guangzhou 510006, China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China. and University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao-Qing Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China. and University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China.
| | - Ting-Zheng Xie
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials; Guangzhou University, Guangzhou 510006, China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China. and University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
112
|
Preparation of hemoglobin (Hb) imprinted polymers with CO2 response and its biosensing application. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04934-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
113
|
Xie X, Tang J, Xing Y, Wang Z, Ding T, Zhang J, Cai K. Intervention of Polydopamine Assembly and Adhesion on Nanoscale Interfaces: State-of-the-Art Designs and Biomedical Applications. Adv Healthc Mater 2021; 10:e2002138. [PMID: 33690982 DOI: 10.1002/adhm.202002138] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/26/2021] [Indexed: 12/11/2022]
Abstract
The translation of mussel-inspired wet adhesion to biomedical engineering fields have catalyzed the emergence of polydopamine (PDA)-based nanomaterials with privileged features and properties of conducting multiple interfacial interactions. Recent concerns and progress on the understanding of PDA's hierarchical structure and progressive assembly are inspiring approaches toward novel nanostructures with property and function advantages over simple nanoparticle architectures. Major breakthroughs in this field demonstrated the essential role of π-π stacking and π-cation interactions in the rational intervention of PDA self-assembly. In this review, the recently emerging concepts in the preparation and application of PDA nanomaterials, including 3D mesostructures, low-dimensional nanostructures, micelle/nanoemulsion based nanoclusters, as well as other multicomponent nanohybrids by the segregation and organization of PDA building blocks on nanoscale interfaces are outlined. The contribution of π-electron interactions on the interfacial loading/release of π electron-rich molecules (nucleic acids, drugs, photosensitizers) and the exogenous coupling of optical energy, as well as the impact of wet-adhesion interactions on the nano-bio interface interplay, are highlighted by discussing the structure-property relationships in their featured applications including fluorescent biosensing, gene therapy, drug delivery, phototherapy, combined therapy, etc. The limitations of current explorations, and future research directions are also discussed.
Collapse
Affiliation(s)
- Xiyue Xie
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Jia Tang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Yuxin Xing
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Zhenqiang Wang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Tao Ding
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| |
Collapse
|
114
|
Li B, Xiao D, Gai X, Yan B, Ye H, Tang L, Zhou Q. A multi-responsive organogel and colloid based on the self-assembly of a Ag(i)-azopyridine coordination polymer. SOFT MATTER 2021; 17:3654-3663. [PMID: 33666629 DOI: 10.1039/d1sm00013f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, through the coordination of C3 symmetric azopyridine ligands and Ag(i), coordination polymers with azo groups on the main chain were prepared. The trans coordination polymer formed an organogel with a network of nanofibers at low critical gelation concentrations, and it exhibited the abilities of self-healing and multi-stimuli response to heating, light, mechanical shearing, and chemicals due to the presence of dynamic coordinating bonds. On the other hand, the cis coordination polymer was found to assemble into nanoparticles to give a responsive colloid, which can produce fibrous precipitation in several days upon visible light irradiation due to the isomerization of the azo groups. This work provides a novel example for the design of a multi-responsive organogel and colloid based on the structural transformation of coordination polymers.
Collapse
Affiliation(s)
- Botian Li
- Department of Materials Science and Engineering, China University of Petroleum, Beijing, 102249, P. R. China
| | | | | | | | | | | | | |
Collapse
|
115
|
Dong L, Peng HQ, Niu LY, Yang QZ. Modulation of Aggregation-Induced Emission by Excitation Energy Transfer: Design and Application. Top Curr Chem (Cham) 2021; 379:18. [PMID: 33825076 DOI: 10.1007/s41061-021-00330-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Excitation energy transfer (EET) as a fundamental photophysical process is well-explored for developing functional materials with tunable photophysical properties. Compared to traditional fluorophores, aggregation-induced emission luminogens (AIEgens) exhibit unique advantages for building EET systems, especially serving as energy donors, due to their outstanding photophysical properties such as bright fluorescence in aggregation state, broad absorption and emission spectra, large Stokes shift, and high photobleaching resistance. In addition, the photophysical properties of AIEgens can be modulated by energy transfer for improved luminescence performance. Therefore, a variety of EET systems based on AIEgens have been constructed and their applications in different areas have been explored. In this review, we summarize recent progress in the design strategy of AIE-based energy transfer systems for light-harvesting, fluorescent probes and theranostic systems, with an emphasis on design strategies to achieve desirable properties. The limitations, challenges and future opportunities of AIE-EET systems are briefly outlined. Design strategies and applications (light-harvesting, fluorescent probe and theranostics) of AIEgen-based excitation energy systems are discussed in this review.
Collapse
Affiliation(s)
- Lei Dong
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Hui-Qing Peng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Li-Ya Niu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Qing-Zheng Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
116
|
Pepió B, Contreras-Pereda N, Suárez-García S, Hayati P, Benmansour S, Retailleau P, Morsali A, Ruiz-Molina D. Solvent-tuned ultrasonic synthesis of 2D coordination polymer nanostructures and flakes. ULTRASONICS SONOCHEMISTRY 2021; 72:105425. [PMID: 33388692 PMCID: PMC7803821 DOI: 10.1016/j.ultsonch.2020.105425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 05/08/2023]
Abstract
Herein, a new 2-dimensional coordination polymer based on copper (II), {Cu2(L)(DMF)2}n, where L stands for 1,2,4,5-benzenetetracarboxylate (complex 1) is synthesized. Interestingly, we demonstrate that both solvent and sonication are relevant in the top-down fabrication of nanostructures. Water molecules are intercalated in suspended crystals of complex 1 modifying not only the coordination sphere of Cu(II) ions but also the final chemical formula and crystalline structure obtaining {[Cu(L)(H2O)3]·H2O}n (complex 2). On the other hand, ultrasound is required to induce the nanostructuration. Remarkably, different morphologies are obtained using different solvents and interconversion from one morphology to another seems to occur upon solvent exchange. Both complexes 1 and 2, as well as the corresponding nanostructures, have been fully characterized by different means such as infrared spectroscopy, x-ray diffraction and microscopy.
Collapse
Affiliation(s)
- Belén Pepió
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Noemí Contreras-Pereda
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Salvio Suárez-García
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Payam Hayati
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Samia Benmansour
- Instituto de Ciencia Molecular, Parque Científico, Universidad de Valencia, José Beltrán 2, 46980 Paterna (Valencia), Spain
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Ali Morsali
- Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-4838, Tehran, Islamic Republic of Iran.
| | - Daniel Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
117
|
Suárez-García S, Solórzano R, Novio F, Alibés R, Busqué F, Ruiz-Molina D. Coordination polymers nanoparticles for bioimaging. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213716] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
118
|
Lovitt JI, Umadevi D, Raja Lakshmi P, Twamley B, Gunnlaugsson T, Shanmugaraju S. Synthesis, structural characterization, antibiotics sensing and coordination chemistry of a fluorescent 4-amino-1,8-naphthalimide Tröger’s base supramolecular scaffold. Supramol Chem 2021. [DOI: 10.1080/10610278.2021.1889551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- June I. Lovitt
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
- Synthesis and Solid-State Pharmaceutical Centre (SSPC) School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Deivasigamani Umadevi
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Pandi Raja Lakshmi
- Discipline of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
| | - Brendan Twamley
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
- Synthesis and Solid-State Pharmaceutical Centre (SSPC) School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- AMBER (Advanced Materials and Bioengineering Research) Centre, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | | |
Collapse
|
119
|
Juber S, Wingbermühle S, Nuernberger P, Clever GH, Schäfer LV. Thermodynamic driving forces of guest confinement in a photoswitchable cage. Phys Chem Chem Phys 2021; 23:7321-7332. [PMID: 33876092 DOI: 10.1039/d0cp06495e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Photoswitchable cages that confine small guest molecules inside their cavities offer a way to control the binding/unbinding process through irradiation with light of different wavelengths. However, detailed characterization of the structural and thermodynamic consequences of photoswitching is very challenging to achieve by experiments alone. Thus, all-atom molecular dynamics (MD) simulations were carried out to gain insight into the relationship between the structure and binding affinity. Binding free energies of the B12F122- guest were obtained for all photochemically accessible forms of a photoswitchable dithienylethene (DTE) based coordination cage. The MD simulations show that successive photo-induced closure of the four individual DTE ligands that form the cage gradually decreases the binding affinity. Closure of the first ligand significantly lowers the unbinding barrier and the binding free energy, and therefore favours guest unbinding both kinetically and thermodynamically. The analysis of different enthalpy contributions to the free energy shows that binding is enthalpically unfavourable and thus is an entropy-driven process, in agreement with the experimental data. Separating the enthalpy into the contributions from electrostatic, van der Waals, and bonded interactions in the force field shows that the unfavourable binding enthalpy is due to the bonded interactions being more favourable in the dissociated state, suggesting the presence of structural strain in the bound complex. Thus, the simulations provide microscopic explanations for the experimental findings and provide a possible route towards the targeted design of switchable nanocontainers with modified binding properties.
Collapse
Affiliation(s)
- Selina Juber
- Theoretical Chemistry, Ruhr-University Bochum, D-44780 Bochum, Germany.
| | | | | | | | | |
Collapse
|
120
|
Chen S, Chen L, Cai Y, Zhu WH. Photoswitchable Fluorescent Self-Assembled Metallacycles with High Photostability. Chemistry 2021; 27:5240-5245. [PMID: 33442888 DOI: 10.1002/chem.202005184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Indexed: 11/07/2022]
Abstract
In this study, photoswitchable fluorescent supramolecular metallacycles with high fatigue-resistance have been constructed by coordination-driven self-assembly by using bithienylethene with dipyridyl units (BTE) as a coordination donor and a fluorescent di-platinum(II) (Pt-F) as a coordination acceptor. The photo-triggered reversible transformation between the ring-open and ring-closed form of the metallacycles was confirmed by 1 H NMR, 31 P NMR, and UV/Vis spectroscopy. This unique property enabled a reversible noninvasive "off-on" switching of fluorescence through efficient Förster resonance energy transfer (FRET). Importantly, the metallacycles remained structurally intact after up to 10 photoswitching cycles. The photoresponsive property and exceptional photostability of the metallacycles posit their potential promising application in optical switching, image storage, and super-resolution microscopy.
Collapse
Affiliation(s)
- Shangjun Chen
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Lijun Chen
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, P. R. China
| | - Yunsong Cai
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Research Laboratory of Precision Chemistry, and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Research Laboratory of Precision Chemistry, and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
121
|
Isoda K, Orita Y. Stimuli-responsive Behaviors for Room-temperature Fluorescent Liquid Materials based on N-Heteroacenes and their Mixtures in Response to HCl Vapor and their Facile Synthesis. ANAL SCI 2021; 37:469-477. [PMID: 33162419 DOI: 10.2116/analsci.20scp05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this paper, we report on stimuli-responsive behaviors for room temperature fluorescent liquid materials based on N-heteroacene frameworks in response to HCl vapor. These liquid materials as well as their mixtures prepared by varying the combination can provide various emission colors and stimuli-responsive properties in liquid states. Also, we achieved an improvement in total synthetic yield (>40%) by redesigning the molecular structures of liquid materials as compared to previous liquid materials (<10%).
Collapse
Affiliation(s)
- Kyosuke Isoda
- Faculty of Engineering and Design, Kagawa University.,Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Yuya Orita
- Faculty of Engineering and Design, Kagawa University
| |
Collapse
|
122
|
Li RJ, Pezzato C, Berton C, Severin K. Light-induced assembly and disassembly of polymers with Pd n L 2n -type network junctions. Chem Sci 2021; 12:4981-4984. [PMID: 34163745 PMCID: PMC8179541 DOI: 10.1039/d1sc00127b] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/18/2021] [Accepted: 02/19/2021] [Indexed: 12/30/2022] Open
Abstract
Polymers containing Pd n L2n complexes as network junctions were obtained by reaction of poly(ethylene glycol)-linked N-donor ligands with Pd2+. The addition of a metastable state photoacid renders the networks light sensitive, and gel-sol transitions can be achieved by irradiation with light. The inverse process, a light-induced sol-gel transition, was realized by using a molecularly defined Pd complex as an acid-sensitive reservoir for Pd2+. Upon irradiation, Pd2+ ions are released, allowing the formation of an acid-resistant polymer network. Both the gel-sol and the sol-gel transitions are reversed in the dark.
Collapse
Affiliation(s)
- Ru-Jin Li
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Cristian Pezzato
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Cesare Berton
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
123
|
An Z, Shan T, He H, Ma M, Shi Y, Chen S, Wang X. Contradiction or Unity? Thermally Stable Fluorescent Probe for In Situ Fast Identification of Self-sort or Co-assembly of Multicomponent Gelators with Sensitive Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8774-8781. [PMID: 33561340 DOI: 10.1021/acsami.0c21630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Analyzing the assembly patterns of multicomponent gelators is important for understanding their assembly rules and precisely manipulating their molecular structure to form a tailored multifunctional supramolecular gel. But the fast in situ recognition technology to infer whether the assembly pattern is a self-sorting or co-assembled system is lacking. For developing a widely applicable stable and sensitive fluorescent probe to infer assembly patterns, we design and synthesize the multiple peripheral functional group tetraphenylethene (TPE) modified well-defined cubic core polyhedral oligomeric silsesquioxane (POSS) three-dimensional (3D) dendrimer. POSS-TPE can form a thermally stable self-assembly structure after being incubated in a wide temperature range, and the resultant special thermally stable photoluminescence (PL) intensity provides a novel possibility of fluorescent probe. Then, POSS-TPE sensitively catches the mechanical stress changes of the confined space provided by the gel networks and infers the assembly patterns by comparing the mechanical stress change laws of a self-sorting or co-assembled system. So, the application of fluorescent probe in assembly fields is enlarged in this research. In the future, this widely applicable fluorescent probe will be helpful to develop supramolecular assembly materials consisting of multicomponent gels.
Collapse
Affiliation(s)
- Zhihang An
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tianyu Shan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huiwen He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meng Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yanqin Shi
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Si Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xu Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
124
|
Grover N, Flanagan KJ, Trujillo C, Kingsbury CJ, Senge MO. An Insight into Non-Covalent Interactions on the Bicyclo[1.1.1]pentane Scaffold. European J Org Chem 2021; 2021:1113-1122. [PMID: 33776556 PMCID: PMC7986844 DOI: 10.1002/ejoc.202001564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/03/2020] [Indexed: 12/28/2022]
Abstract
Bicyclo[1.1.1]pentane (BCP) is studied extensively as a bioisosteric component of drugs. Not found in nature, this molecular unit approximates the distance of a para-disubstituted benzene which is replaced in medicines as a method of improving treatments. Predicting interactions of these drugs with specific active sites requires knowledge of the non-covalent interactions engaged by this subunit. Structure determinations and computational analysis (Hirshfeld analysis, 2D fingerprint plots, DFT) of seven BCP derivatives chosen to probe specific and directional interactions. X-ray analysis revealed the presence of various non-covalent interactions including I ⋅⋅⋅ I, I ⋅⋅⋅ N, N-H ⋅⋅⋅ O, C-H ⋅⋅⋅ O, and H-C ⋅⋅⋅ H-C contacts. The preference of halogen bonding (I ⋅⋅⋅ I or I ⋅⋅⋅ N) in BCP 1-4 strictly depends upon the electronic nature and angle between bridgehead substituents. The transannular distance in co-crystals 2 and 4 was longer as compared to monomers 1 and 3. Stronger N-H ⋅⋅⋅ O and weaker C-H ⋅⋅⋅ O contacts were observed for BCP 5 while the O ⋅⋅⋅ H interaction was a prominent contact for BCP 6. The presence of 3D BCP units prevented the π ⋅⋅⋅ π stacking between phenyl rings in 3, 4, and 7. The BCP skeleton was often rotationally averaged, indicating fewer interactions compared to bridgehead functional groups. Using DFT analysis, geometries were optimized and molecular electrostatic potentials were calculated on the BCP surfaces. These interaction profiles may be useful for designing BCP analogs of drugs.
Collapse
Affiliation(s)
- Nitika Grover
- School of ChemistryTrinity Biomedical Sciences InstituteTrinity College DublinThe University of Dublin152-160 Pearse StreetDublin 2Ireland
| | - Keith J. Flanagan
- School of ChemistryTrinity Biomedical Sciences InstituteTrinity College DublinThe University of Dublin152-160 Pearse StreetDublin 2Ireland
| | - Cristina Trujillo
- School of ChemistryTrinity Biomedical Sciences InstituteTrinity College DublinThe University of Dublin152-160 Pearse StreetDublin 2Ireland
| | - Christopher J. Kingsbury
- School of ChemistryTrinity Biomedical Sciences InstituteTrinity College DublinThe University of Dublin152-160 Pearse StreetDublin 2Ireland
| | - Mathias O. Senge
- Institute for Advanced Study (TUM-IAS)Technical University of Munich, Focus Group – Molecular and Interfacial Engineering of Organic NanosystemsLichtenberg-Str. 2a85748GarchingGermany
| |
Collapse
|
125
|
Hu YX, Wu GY, Wang XQ, Yin GQ, Zhang CW, Li X, Xu L, Yang HB. Acid-Activated Motion Switching of DB24C8 between Two Discrete Platinum(II) Metallacycles. Molecules 2021; 26:molecules26030716. [PMID: 33573149 PMCID: PMC7866548 DOI: 10.3390/molecules26030716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
The precise operation of molecular motion for constructing complicated mechanically interlocked molecules has received considerable attention and is still an energetic field of supramolecular chemistry. Herein, we reported the construction of two tris[2]pseudorotaxanes metallacycles with acid-base controllable molecular motion through self-sorting strategy and host-guest interaction. Firstly, two hexagonal Pt(II) metallacycles M1 and M2 decorated with different host-guest recognition sites have been constructed via coordination-driven self-assembly strategy. The binding of metallacycles M1 and M2 with dibenzo-24-crown-8 (DB24C8) to form tris[2]pseudorotaxanes complexes TPRM1 and TPRM2 have been investigated. Furthermore, by taking advantage of the strong binding affinity between the protonated metallacycle M2 and DB24C8, the addition of trifluoroacetic acid (TFA) as a stimulus successfully induces an acid-activated motion switching of DB24C8 between the discrete metallacycles M1 and M2. This research not only affords a highly efficient way to construct stimuli-responsive smart supramolecular systems but also offers prospects for precisely control multicomponent cooperative motion.
Collapse
Affiliation(s)
- Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China; (Y.-X.H.); (G.-Y.W.); (X.-Q.W.); (C.-W.Z.)
| | - Gui-Yuan Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China; (Y.-X.H.); (G.-Y.W.); (X.-Q.W.); (C.-W.Z.)
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China; (Y.-X.H.); (G.-Y.W.); (X.-Q.W.); (C.-W.Z.)
| | - Guang-Qiang Yin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China; (G.-Q.Y.); (X.L.)
| | - Chang-Wei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China; (Y.-X.H.); (G.-Y.W.); (X.-Q.W.); (C.-W.Z.)
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China; (G.-Q.Y.); (X.L.)
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China; (Y.-X.H.); (G.-Y.W.); (X.-Q.W.); (C.-W.Z.)
- Correspondence: (L.X.); (H.-B.Y.)
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China; (Y.-X.H.); (G.-Y.W.); (X.-Q.W.); (C.-W.Z.)
- Correspondence: (L.X.); (H.-B.Y.)
| |
Collapse
|
126
|
Cai LX, Yan DN, Cheng PM, Xuan JJ, Li SC, Zhou LP, Tian CB, Sun QF. Controlled Self-Assembly and Multistimuli-Responsive Interconversions of Three Conjoined Twin-Cages. J Am Chem Soc 2021; 143:2016-2024. [PMID: 33471998 DOI: 10.1021/jacs.0c12064] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stimuli-responsive structural transformations between discrete coordination supramolecular architectures not only are essential to construct smart functional materials but also provide a versatile molecular-level platform to mimic the biological transformation process. We report here the controlled self-assembly of three topologically unprecedented conjoined twin-cages, i.e., one stapled interlocked Pd12L6 cage (2) and two helically isomeric Pd6L3 cages (3 and 4) made from the same cis-blocked palladium corners and a new bis-bidentate ligand (1). While cage 2 features three mechanically coupled cavities, cages 3 and 4 are topologically isomeric helicate-based twin-cages based on the same metal/ligand stoichiometry. Sole formation of cage 2 or a dynamic mixture of cages 3 and 4 can be controlled by changing the solvents employed during the self-assembly. Structural conversions between cages 3 and 4 can be triggered by changes in both temperature/solvent and induced-fit guest encapsulations. Well-controlled interconversion between such topologically complex superstructures may lay a solid foundation for achieving a variety of functions within a switchable system.
Collapse
Affiliation(s)
- Li-Xuan Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Dan-Ni Yan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Pei-Ming Cheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Jin-Jin Xuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Shao-Chuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Chong-Bin Tian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
127
|
Shi ZT, Hu YX, Hu Z, Zhang Q, Chen SY, Chen M, Yu JJ, Yin GQ, Sun H, Xu L, Li X, Feringa BL, Yang HB, Tian H, Qu DH. Visible-Light-Driven Rotation of Molecular Motors in Discrete Supramolecular Metallacycles. J Am Chem Soc 2021; 143:442-452. [PMID: 33371675 PMCID: PMC7809693 DOI: 10.1021/jacs.0c11752] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The organization of molecular motors in supramolecular assemblies to allow the amplification and transmission of motion and collective action is an important step toward future responsive systems. Metal-coordination-driven directional self-assembly into supramolecular metallacycles provides a powerful strategy to position several motor units in larger structures with well-defined geometries. Herein, we present a pyridyl-modified molecular motor ligand (MPY) which upon coordination with geometrically distinct di-Pt(II) acceptors assembles into discrete metallacycles of different sizes and shapes. This coordination leads to a red-shift of the absorption bands of molecular motors, making these motorized metallacycles responsive to visible light. Photochemical and thermal isomerization experiments demonstrated that the light-driven rotation of the motors in the metallacycles is similar to that in free MPY in solution. CD studies show that the helicity inversions associated with each isomerization step in the rotary cycle are preserved. To explore collective motion, the trimeric motor-containing metallacycle was aggregated with heparin through multiple electrostatic interactions, to construct a multi-component hierarchical system. SEM, TEM, and DLS measurements revealed that the photo- and thermal-responsive molecular motor units enabled selective manipulation of the secondary supramolecular aggregation process without dissociating the primary metallacycle structures. These visible-light-responsive metallacycles, with intrinsic multiple rotary motors, offer prospects for cooperative operations, dynamic hierarchical self-assembled systems, and adaptive materials.
Collapse
Affiliation(s)
- Zhao-Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.,Center for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Shao-Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.,Center for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Meng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jing-Jing Yu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guang-Qiang Yin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Ben L Feringa
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.,Center for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
128
|
Li H, Yang Y, Xu F, Duan Z, Li R, Wen H, Tian W. Sequence-controlled supramolecular copolymer constructed by self-sorting assembly of multiple noncovalent interactions. Org Chem Front 2021. [DOI: 10.1039/d0qo01540g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A sequence-controlled supramolecular copolymer was constructed by self-sorting assembly of metal coordination and two types of host–guest interactions.
Collapse
Affiliation(s)
- Hui Li
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Ying Yang
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Fenfen Xu
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Zhaozhao Duan
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Riqiang Li
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Herui Wen
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
- P. R. China
| |
Collapse
|
129
|
Gao X, Cui Z, Lin YJ, Jin GX. Construction of organometallic trefoil knots and one-dimensional chains featuring half-sandwich Cp*Rh corner units and an abnormal zwitterion ligand. Org Chem Front 2021. [DOI: 10.1039/d0qo01279c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An abnormal flexible O-coordinated zwitterion ligand L shows self-adaptive conformation behaviour in chemical self-assembly. Two trefoil knots were obtained with C-shaped ligand L and two novel 1D chains were obtained with Z-shaped ligand L.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200438
| | - Zheng Cui
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200438
| | - Yue-Jian Lin
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200438
| | - Guo-Xin Jin
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200438
| |
Collapse
|
130
|
Shao YG, He L, Mao QQ, Hong T, Ying XW, Zhang Z, Li S, Stang PJ. Efficient one-pot synthesis of [3]catenanes based on Pt( ii) metallacycles with a flexible building block. Org Chem Front 2021. [DOI: 10.1039/d1qo00910a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three [3]catenanes were fabricated in high efficiency through the self-assembly of a 90° platinum(ii) receptor, a flexible bis(4,4′-bipyridinium) donor and a crown ether (DB24C8 or DB30C10).
Collapse
Affiliation(s)
- Yuan-Guang Shao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Lang He
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Qian-Qian Mao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Tao Hong
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xin-Wen Ying
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Zibin Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, USA
| |
Collapse
|
131
|
Bora HJ, Barman P, Bordoloi S, Gogoi G, Gogoi B, Sen Sarma N, Kalita A. Realization of multi-configurable logic gate behaviour on fluorescence switching signalling of naphthalene diimide congeners. RSC Adv 2021; 11:35274-35279. [PMID: 35493194 PMCID: PMC9043018 DOI: 10.1039/d1ra06728a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/17/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022] Open
Abstract
Organic entities like suitably functionalized naphthalene diimide (NDI) exhibited logical behaviours in response to various external stimuli and can be used to develop digital logic operations. The present findings include utilization of two congeners of NDI i.e., N1 and N2 for the successive turning ON/OFF of fluorescence with inclusion of acid and base. The recognition of the switching phenomenon of the probes N1 and N2 are applied to construct fundamental digital logic gates such as NOT, YES, IMPLICATION, INHIBIT, etc. The inputs to each of the logic gates are defined by the presence or absence of acid and base. Accordingly, the outputs generated from the gates are in the form of fluorescence ON or OFF status denoted by “1” and “0” respectively. Likewise, we have adopted Boolean algebra and its associated De-Morgan's theorem to build the combined logic gates such as XOR and XNOR gates. The proposed logic gates are validated by the optical behaviour of the congeners N1 and N2 in response to acid as well as base and the experimental results are confirmed by the theoretical predictions. The proposed work can have potential applications in next-generation logic based analytical applications. The implementation of functional congeners of naphthalene diimide experiencing fluorescence ON/OFF switching signalling in response to external stimuli, is suitably realized to construct multi-configurable molecular logic gates.![]()
Collapse
Affiliation(s)
- Hridoy Jyoti Bora
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati-781035, Assam, India
| | - Pranjal Barman
- Department of Electronics and Communication Technology, Gauhati University, Guwahati-781014, Assam, India
| | - Sushanta Bordoloi
- Department of Electronics and Communication Engineering, National Institute of Technology Mizoram, Aizawl-796012, India
| | - Gautomi Gogoi
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati-781035, Assam, India
| | - Bedanta Gogoi
- Department of Chemistry, Gauhati University, Guwahati-781014, Assam, India
| | - Neelotpal Sen Sarma
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati-781035, Assam, India
| | - Anamika Kalita
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati-781035, Assam, India
| |
Collapse
|
132
|
Bi F, Zhang C, Yang G, Wang J, Zheng W, Hua Z, Li X, Wang Z, Chen G. Photoresponsive glyco-nanostructures integrated from supramolecular metallocarbohydrates for the reversible capture and release of lectins. Polym Chem 2021. [DOI: 10.1039/d1py00146a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photo-controllable capture and release of proteins by glyco-nanostructures.
Collapse
Affiliation(s)
- Feihu Bi
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering
- School of Forestry and Landscape Architecture
- Anhui Agricultural University
- Hefei
- China
| | - Changwei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Guang Yang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering
- School of Forestry and Landscape Architecture
- Anhui Agricultural University
- Hefei
- China
| | - Jie Wang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering
- School of Forestry and Landscape Architecture
- Anhui Agricultural University
- Hefei
- China
| | - Wei Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Zan Hua
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering
- School of Forestry and Landscape Architecture
- Anhui Agricultural University
- Hefei
- China
| | - Xiaopeng Li
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| | - Zhongkai Wang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering
- School of Forestry and Landscape Architecture
- Anhui Agricultural University
- Hefei
- China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- P. R. China
| |
Collapse
|
133
|
Wu GY, Liang C, Li H, Zhang X, Yao G, Zhu FF, Hu YX, Yin GQ, Zheng W, Lu Z. A multi-responsive supramolecular heparin-based biohybrid metallogel constructed by controlled self-assembly based on metal–ligand, host–guest and electrostatic interactions. Org Chem Front 2021. [DOI: 10.1039/d1qo00692d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new family of supramolecular heparin-based biohybrid metallogels with multiple stimuli-responsive behaviours was constructed through the controlled self-assembly based on three orthogonal interactions within a single system.
Collapse
Affiliation(s)
- Gui-Yuan Wu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| | - Chao Liang
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| | - Hao Li
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| | - Xianyi Zhang
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| | - Guanxin Yao
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| | - Fan-Fan Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, China
| | - Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, China
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, China
| | - Wei Zheng
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Zhou Lu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
134
|
Hu YX, Jia PP, Zhang CW, Xu XD, Niu Y, Zhao X, Xu Q, Xu L, Yang HB. A supramolecular dual-donor artificial light-harvesting system with efficient visible light-harvesting capacity. Org Chem Front 2021. [DOI: 10.1039/d1qo00771h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A supramolecular dual-donor artificial light-harvesting system with efficient visible light-harvesting capacity was constructed through the hierarchical self-assembly approach.
Collapse
Affiliation(s)
- Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Pei-Pei Jia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Chang-Wei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Xing-Dong Xu
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Yanfei Niu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Xiaoli Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Qian Xu
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
135
|
Krykun S, Croué V, Alévêque O, Levillain E, Allain M, Mézière C, Carré V, Aubriet F, Voïtenko Z, Goeb S, Sallé M. A self-assembled tetrathiafulvalene box. Org Chem Front 2021. [DOI: 10.1039/d0qo01543a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A M8L2 metalla-cage constructed through coordination-driven self-assembly from a quinonato bis-ruthenium complex and an electron-rich tetrathiafulvalene (TTF) tetrapyridyl ligand is depicted.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vincent Carré
- LCP-A2MC
- FR 3624
- Université de Lorraine
- ICPM
- 57078 Metz Cedex 03
| | | | - Zoia Voïtenko
- Taras Shevchenko National University of Kyiv
- Kyiv 01033
- Ukraine
| | | | - Marc Sallé
- Univ Angers
- CNRS
- MOLTECH-ANJOU
- F-49000 Angers
- France
| |
Collapse
|
136
|
Mahesha, Pampa KJ, Karthik CS, Hema MK, Mallu P, Lokanath NK. Post-synthetic modification of supramolecular assemblies of β-diketonato Cu( ii) complexes: comparing and contrasting the molecular topology by crystal structure and quantum computational studies. CrystEngComm 2021. [DOI: 10.1039/d1ce00304f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Solvent-induced structural transformations on the metal coordination sphere in homoleptic (1 and 2) and heteroleptic (3 and 4) Cu(ii) complexes were analyzed and investigated by crystallographic and quantum computational studies.
Collapse
Affiliation(s)
- Mahesha
- Department of Studies in Physics
- University of Mysore
- Mysuru-570 006
- India
| | - K. J. Pampa
- Department of Biotechnology
- University of Mysore
- Mysuru-570 006
- India
| | - C. S. Karthik
- Department of Chemistry
- SJCE
- JSS Science and Technology University
- Mysuru-570 006
- India
| | - M. K. Hema
- Department of Studies in Physics
- University of Mysore
- Mysuru-570 006
- India
| | - P. Mallu
- Department of Chemistry
- SJCE
- JSS Science and Technology University
- Mysuru-570 006
- India
| | - N. K. Lokanath
- Department of Studies in Physics
- University of Mysore
- Mysuru-570 006
- India
| |
Collapse
|
137
|
Zhang Z, Hong T, Li S, Crawley MR, Cook TR, Huang XC, Pollock JB, Stang PJ. Multicomponent Coordination-Driven Self-Assembly of Fused C3v Polygons. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zibin Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| | - Tao Hong
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| | - Matthew R. Crawley
- Department of Chemistry, University at Buffalo, The State University of New York, 856 Natural Sciences Complex, Buffalo, New York 14260, United States
| | - Timothy R. Cook
- Department of Chemistry, University at Buffalo, The State University of New York, 856 Natural Sciences Complex, Buffalo, New York 14260, United States
| | - Xue-Chun Huang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| | - J. Bryant Pollock
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
138
|
Jiang WL, Peng Z, Huang B, Zhao XL, Sun D, Shi X, Yang HB. TEMPO Radical-Functionalized Supramolecular Coordination Complexes with Controllable Spin–Spin Interactions. J Am Chem Soc 2020; 143:433-441. [DOI: 10.1021/jacs.0c11738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Wei-Ling Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Zhiyong Peng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Bin Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Di Sun
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
139
|
Wu GY, Liang C, Hu YX, Wang XQ, Yin GQ, Lu Z. Hierarchical self-assembly of discrete bis-[2]pseudorotaxane metallacycle with bis-pillar[5]arene via host-guest interactions and their redox-responsive behaviors. RSC Adv 2020; 11:1187-1193. [PMID: 35423686 PMCID: PMC8693504 DOI: 10.1039/d0ra09920a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/20/2020] [Indexed: 11/21/2022] Open
Abstract
A discrete rhomboidal metallacycle R functionalized with bis-[2]pseudorotaxane of [Cu(phenanthroline)2]+ derivatives was successfully synthesized via coordination-driven self-assembly. Furthermore, the host-guest complexation of such a bis-[2]pseudorotaxane metallacycle with a bis-pillar[5]arene (bisP5) allowed for the formation of a new family of cross-linked supramolecular polymers R⊃(bisP5)2, which displayed interesting redox-responsive properties. By taking advantage of the substantial structural differences between the coordination geometries of [Cu(phenanthroline)2]+ and [Cu(phenanthroline)2]2+, the weight-average diffusion coefficients D of the supramolecular polymer were adjusted through changing the redox state of the Cu(i)/Cu(ii) complexes.
Collapse
Affiliation(s)
- Gui-Yuan Wu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University Wuhu Anhui 241002 China
| | - Chao Liang
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University Wuhu Anhui 241002 China
| | - Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai China
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai China
| | - Zhou Lu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University Wuhu Anhui 241002 China
| |
Collapse
|
140
|
Nakamura N, Mochida Y, Toh K, Fukushima S, Cabral H, Anraku Y. Effect of Mixing Ratio of Oppositely Charged Block Copolymers on Polyion Complex Micelles for In Vivo Application. Polymers (Basel) 2020; 13:polym13010005. [PMID: 33375035 PMCID: PMC7792805 DOI: 10.3390/polym13010005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 01/15/2023] Open
Abstract
Self-assembled supramolecular structures based on polyion complex (PIC) formation between oppositely charged polymers are attracting much attention for developing drug delivery systems able to endure harsh in vivo environments. As controlling polymer complexation provides an opportunity for engineering the assemblies, an improved understanding of the PIC formation will allow constructing assemblies with enhanced structural and functional capabilities. Here, we focused on the influence of the mixing charge ratio between block aniomers and catiomers on the physicochemical characteristics and in vivo biological performance of the resulting PIC micelles (PIC/m). Our results showed that by changing the mixing charge ratio, the structural state of the core was altered despite the sizes of PIC/m remaining almost the same. These structural variations greatly affected the stability of the PIC/m in the bloodstream after intravenous injection and determined their biodistribution.
Collapse
Affiliation(s)
- Noriko Nakamura
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; (Y.M.); (K.T.); (S.F.)
| | - Yuki Mochida
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; (Y.M.); (K.T.); (S.F.)
| | - Kazuko Toh
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; (Y.M.); (K.T.); (S.F.)
| | - Shigeto Fukushima
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; (Y.M.); (K.T.); (S.F.)
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; (Y.M.); (K.T.); (S.F.)
- Correspondence: (H.C.); (Y.A.); Tel.: +81-3-5841-7138 (Y.A.)
| | - Yasutaka Anraku
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; (Y.M.); (K.T.); (S.F.)
- Correspondence: (H.C.); (Y.A.); Tel.: +81-3-5841-7138 (Y.A.)
| |
Collapse
|
141
|
Li RH, Feng XY, Zhou J, Yi F, Zhou ZQ, Men D, Sun Y. Rhomboidal Pt(II) Metallacycle-Based Hybrid Viral Nanoparticles for Cell Imaging. Inorg Chem 2020; 60:431-437. [DOI: 10.1021/acs.inorgchem.0c03095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Run-Hao Li
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Xia-Yi Feng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Juan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fan Yi
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Zhong-Qiang Zhou
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Dong Men
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yue Sun
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
142
|
Sun H, Du J. Intramolecular Cyclization-Induced Crystallization-Driven Self-Assembly of an Amorphous Poly(amic acid). Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hui Sun
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jianzhong Du
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
143
|
Li Y, Yuan X, Yu J, Fan Y, He T, Lu S, Li X, Qiu H, Yin S. Amphiphilic Rhomboidal Organoplatinum(II) Metallacycles with Encapsulated Doxorubicin for Synergistic Cancer Therapy. ACS APPLIED BIO MATERIALS 2020; 3:8061-8068. [PMID: 35019545 DOI: 10.1021/acsabm.0c01163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synergistic therapy with nanocarriers is a promising strategy for effective cancer treatment. Here, we synthesized an amphiphilic rhomboidal metallacycle M, in which a glucose-modified pyridine ligand was used to improve water-solubility and an organoplatinum(II) receptor acted as a platinum-based anticancer agent. Moreover, because of the amphiphilic properties, M self-assembled into micelles or nanobelts at different concentrations, and a drug delivery system (DDS) was developed by encapsulating the anticancer drug doxorubicin (DOX) into the micelles. The morphology, cell uptake, cytotoxicity, internalization, and antitumor effect of the DDS were investigated. Under low intracellular pH conditions, the DDS disassembled to release the loaded DOX in situ. The designed DDS exhibited good biocompatibility, synergistic antitumor efficacy, and negligible adverse effects in a U87 tumor-bearing mice model.
Collapse
Affiliation(s)
- Yang Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Xinchao Yuan
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Jialin Yu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Yiqi Fan
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Tian He
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China.,College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Huayu Qiu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China.,Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Shouchun Yin
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
144
|
Abstract
Silk fibroin produced from silkworms has been intensively utilized as a scaffold material for a variety of biotechnological applications owing to its remarkable mechanical strength, extensibility, biocompatibility, and ease of biofunctionalization. In this research, we engineered silk as a novel trap platform capable of capturing microorganisms. Specifically, we first fabricated the silk material into a silk sponge by lyophilization, yielding a 3D scaffold with porous microstructures. The sponge stability in water was significantly improved by ethanol treatment with elevated β-sheet content and crystallinity of silk. Next, we biofunctionalized the silk sponge with a poly-specific microbial targeting molecule, ApoH (apolipoprotein H), to enable a novel silk-based microbial trap. The recombinant ApoH engineered with an additional penta-tyrosine was assembled onto the silk sponge through the horseradish peroxidase (HRP) mediated dityrosine cross-linking. Last, the ApoH-decorated silk sponge was demonstrated to be functional in capturing our model microorganism targets, E. coli and norovirus-like particles. We envision that this biofabricated silk platform, capable of trapping a variety of microbial entities, could serve as a versatile scaffold for rapid isolation and enrichment of microbial samples toward future diagnostics and therapeutics. This strategy, in turn, can expedite advancing future biodevices with functionality and sustainability.
Collapse
Affiliation(s)
- Shan-Ru Wu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Jheng-Liang Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsuan-Chen Wu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
145
|
Yang D, Greenfield JL, Ronson TK, von Krbek LKS, Yu L, Nitschke JR. LaIII and ZnII Cooperatively Template a Metal–Organic Capsule. J Am Chem Soc 2020; 142:19856-19861. [DOI: 10.1021/jacs.0c09991] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Dong Yang
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Jake L. Greenfield
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Tanya K. Ronson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Larissa K. S. von Krbek
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Le Yu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Jonathan R. Nitschke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
146
|
Affiliation(s)
- Yali Hou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| |
Collapse
|
147
|
|
148
|
Bhattacharyya S, Ali SR, Venkateswarulu M, Howlader P, Zangrando E, De M, Mukherjee PS. Self-Assembled Pd12 Coordination Cage as Photoregulated Oxidase-Like Nanozyme. J Am Chem Soc 2020; 142:18981-18989. [DOI: 10.1021/jacs.0c09567] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sk Rajab Ali
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mangili Venkateswarulu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Prodip Howlader
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
149
|
Arumugaperumal R, Shellaiah M, Srinivasadesikan V, Awasthi K, Sun KW, Lin MC, Ohta N, Chung WS. Diversiform Nanostructures Constructed from Tetraphenylethene and Pyrene-Based Acid/Base Controllable Molecular Switching Amphiphilic [2]Rotaxanes with Tunable Aggregation-Induced Static Excimers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45222-45234. [PMID: 32985177 DOI: 10.1021/acsami.0c14107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Dual-emissive tetraphenylethene (TPE) and pyrene-containing amphiphilic molecules are of great interest because they can be integrated to form stimuli responsive materials with various biological applications. Herein, we report the study of mechanically interlocked molecules (MIMs) with aggregation-induced static excimer emission (AISEE) property through a series of TPE and pyrene-based amphiphilic [2]rotaxanes, where t-butylcalix[4]arene with hydrophobic nature was used as the macrocycle. Evidently, by adorning TPE and pyrene units in [2]rotaxanes P1, P2, P1-b, and P2-b, they display remarkable emission bands in 70% of water fraction (fw) in tetrahydrofuran (THF)/water mixture, which could be attributed to the restricted intramolecular rotation of phenyl groups, whereas prominent blue-shifted excimer emission of pyrene started to appear as fw reached 80% for P1 and 90% for P1-b, P2, and P2-b, which was ascribed to the favorable π-π stacking and hydrophobic interactions of the pyrene rings that enabled their static excimer formation. The well-defined distinct amphiphilic nanostructures of [2]rotaxanes including hollowspheres, mesoporous nanostructures, spheres, and network linkages can be driven smoothly depending on the molecular structures and their aggregated states in THF/water mixture. These fascinating diversiform nanostructures were mainly controlled by the skillful manner of reversible molecular shuttling of t-butylcalix[4]arene macrocycle and also the interplay of multinoncovalent interactions. To further understand the aggregation capabilities of [2]rotaxanes, the human lung fibroblasts (MRC-5) living cell incubated with either P1, P2, P1-b, or P2-b was studied and monitored by confocal laser scanning microscopy. The AISEE property was achieved at an astonishing level by integrating TPE and pyrene to MIM-based reversible molecular switching [2]rotaxanes; furthermore, distinct nanostructures, especially hollowspheres and mesoporous nanostructures, were observed, which are rarely reported in the literature but are highly desirable for future applications.
Collapse
Affiliation(s)
- Reguram Arumugaperumal
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Muthaiah Shellaiah
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Venkatesan Srinivasadesikan
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
- Division Chemistry, Department of Sciences and Humanities, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur 522 213, Andhra Pradesh, India
| | - Kamlesh Awasthi
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Kien Wen Sun
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Ming-Chang Lin
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Nobuhiro Ohta
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Wen-Sheng Chung
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| |
Collapse
|
150
|
Li A, Zhai H, Li J, He Q. Practical Applications of Supramolecular Extraction with Macrocycles. CHEM LETT 2020. [DOI: 10.1246/cl.200409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Aimin Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Huijuan Zhai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jilian Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Qing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|