101
|
Rossetti MF, Stoker C, Ramos JG. Agrochemicals and neurogenesis. Mol Cell Endocrinol 2020; 510:110820. [PMID: 32315720 DOI: 10.1016/j.mce.2020.110820] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
Agrochemicals or pesticides are compounds widely used to prevent, destroy or mitigate pests such as insects, rodents, herbs and weeds. However, most of them also act as environmental estrogens, anti-estrogens and/or antiandrogenic chemicals. In addition, both herbicides (such as glyphosate and paraquat) and insecticides (such as pyrethroids, organophosphates, neonicotinoids and rotenone) have been shown to exert significant adverse effects on hippocampal neurogenesis. These effects are particularly important because neurogenesis dysregulation could be associated with cognitive decline and neuropathologies such as Alzheimer's disease. This review focuses on the most commonly used agrochemicals in Argentina and their effects on the hippocampal neurogenesis of mammals. It also discusses the disruption of hormone synthesis and action as a possible mechanism through which these chemical compounds could alter the brain functions. Finally, we propose some lines of research to study the potential endocrine mechanisms involved in the effects of agrochemicals on human health and biodiversity.
Collapse
Affiliation(s)
- M Florencia Rossetti
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina
| | - Cora Stoker
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina
| | - Jorge G Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| |
Collapse
|
102
|
Tang J, Hu Q, Lei D, Wu M, Zeng C, Zhang Q. Characterization of deltamethrin degradation and metabolic pathway by co-culture of Acinetobacter junii LH-1-1 and Klebsiella pneumoniae BPBA052. AMB Express 2020; 10:106. [PMID: 32495133 PMCID: PMC7270285 DOI: 10.1186/s13568-020-01043-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 01/18/2023] Open
Abstract
Deltamethrin and its major metabolite 3‐phenoxybenzoic acid (3‐PBA) have caused serious threat to the environment as well as human health, yet little is known about their degradation pathways by bacterial co-cultures. In this study, the growth and degradation kinetics of Acinetobacter junii LH-1-1 and Klebsiella pneumoniae BPBA052 during deltamethrin and 3-PBA degradation were established, respectively. When the inoculum proportion of the strains LH-1-1 and BPBA052 was 7.5:2.5, and LH-1-1 was inoculated 24 h before inoculation of strain BPBA052, 94.25% deltamethrin was degraded and 9.16 mg/L of 3-PBA remained within 72 h, which was 20.36% higher and 10.25 mg/L lesser than that in monoculture of LH-1-1, respectively. And the half-life of deltamethrin was shortened from 38.40 h to 24.58 h. Based on gas chromatography–mass spectrometry, 3-phenoxybenzaldehyde, 1,2-benzenedicarboxylic butyl dacyl ester, and phenol were identified as metabolites during deltamethrin degradation in co-culture. This is the first time that a co-culture degradation pathway of deltamethrin has been proposed based on these identified metabolites. Bioremediation of deltamethrin-contaminated soils with co-culture of strains LH-1-1 and BPBA052 significantly enhanced deltamethrin degradation and 3-PBA removal. This study provides a platform for further studies on deltamethrin and 3-PBA biodegradation mechanism in co-culture, and it also proposes a promising approach for efficient bioremediation of environment contaminated by pyrethroid pesticides and their associated metabolites.
Collapse
|
103
|
|
104
|
Kaur P, Balomajumder C. Effective mycoremediation coupled with bioaugmentation studies: An advanced study on newly isolated Aspergillus sp. in Type-II pyrethroid-contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114073. [PMID: 32078877 DOI: 10.1016/j.envpol.2020.114073] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/14/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
The intensive application of type-II pyrethroid worldwide in agricultural and residential practices potentially contributes to soil and water pollution, raising various concerns about environmental and public health. In the present study, robust fungus (strain PYR-P2) with high pyrethroids degradation potential was isolated from pesticide-contaminated soil. The strain was identified based on morphology and molecular characteristics, as Aspergillus sp. The screening of the transforming ability of strain PYR-P2 was evaluated in minimal salt media (MSM), where the fungus utilized up to 500 mg L-1 of pyrethroid mixture (cypermethrin (CYP), cyfluthrin (CYF), cyhalothrin (CYH)). With this in view, central composite design (CCD) with three independent variables (pH, temperature, and initial concentration) was employed to identify the optimal conditions for achieving maximum pyrethroid removal. Under optimal conditions, strain PYR-P2 was implemented for the bioaugmentation studies in natural and sterile soil (NS/SS) systems spiked with pyrethroid (single and mixture) at a concentration of 100 mg kg-1. The highest pyrethroid removal percentages were observed in fungally augmented NS, accompanied by a decrease in pyrethroid half-life (t1/2). Herein, the observed half-life (t1/2) of pyrethroids in the fungally augmented NS varied between 1.48 and 2.69 d, with equally good values recorded in SS as 1.65-3.10 d. Taken together, the mycoremediation study employing fungal (strain PYR-P2) augmentation under optimized conditions represents an efficient strategy to restore pyrethroid-contaminated soil.
Collapse
Affiliation(s)
- Parminder Kaur
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| | - Chandrajit Balomajumder
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| |
Collapse
|
105
|
Ding F, Peng W, Peng YK, Liu BQ. Estimating the potential toxicity of chiral diclofop-methyl: Mechanistic insight into the enantioselective behavior. Toxicology 2020; 438:152446. [DOI: 10.1016/j.tox.2020.152446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/26/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
|
106
|
Khalil SR, Elhakim YA, Abd El-Fattah AH, Ragab Farag M, Abd El-Hameed NE, El-Murr AE. Dual immunological and oxidative responses in Oreochromis niloticus fish exposed to lambda cyhalothrin and concurrently fed with Thyme powder (Thymus vulgaris L.): Stress and immune encoding gene expression. FISH & SHELLFISH IMMUNOLOGY 2020; 100:208-218. [PMID: 32165248 DOI: 10.1016/j.fsi.2020.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
The present study was performed to explore the immunotoxicological effects of the lambda cyhalothrin (LCH) insecticide and evaluate the efficiency of Thyme powder (TP) as a fish supplement in attenuation of LCH impact on Oreochromis niloticus (O. niloticus) fish. Fish was sampled following 30-days exposure to LCH (1/6 LC50: 0.48 μg/L) and TP (2%) supplementation, individually or in combination. The growth performance, immune status, biochemical indices, and mRNA expression pattern changes of stress and immune-encoding genes in the liver and spleen tissues, respectively, through real-time polymerase chain reaction (RT-PCR) analysis, were evaluated. The findings showed that LCH exposure caused a significant lowering in most of the estimated variables including growth performance, hematological and immunological indices. Moreover, LCH disrupted the oxidant/antioxidant status and dysregulated the expression of stress and immune-related genes, downregulating the mRNA transcript level of Immunoglobulin M heavy chain (IgM), Interferon (IFN-γ), CXC-chemokine, and Toll-like receptors (TLR-7) in the spleen. However, mRNA expression of Myxovirus resistance (Mx) gene remained unaffected. In liver tissue, the heat shock protein (HSP-70) expression was upregulated, while that of cytochrome P450 1A (CYP 1A) was downregulated. TP (2%) supplementation elicited a significant modulation in aforementioned indices; however, their levels did not attain that of the control values. Our findings concluded that LCH affects the O. niloticus immune response through the negative transcriptional influence on genes linked to immunity and induction of oxidative injury of the immune organs. Besides, dietary TP (2%) could be a proper candidate to modulate the compromised immunity in response to LCH exposure in O. niloticus aquaculture.
Collapse
Affiliation(s)
- Samah R Khalil
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Egypt.
| | - Yasser Abd Elhakim
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Amir H Abd El-Fattah
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Mayada Ragab Farag
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | | | - Abd Elhakeem El-Murr
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Egypt
| |
Collapse
|
107
|
Wang Q, Shen JY, Zhang R, Hong JW, Li Z, Ding Z, Wang HX, Zhang JP, Zhang MR, Xu LC. Effects and mechanisms of pyrethroids on male reproductive system. Toxicology 2020; 438:152460. [PMID: 32278050 DOI: 10.1016/j.tox.2020.152460] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022]
Abstract
Synthetic pyrethroids are used as insecticides in agriculture and a variety of household applications worldwide. Pyrethroids are widely distributed in all environmental compartments and the general populations are exposed to pyrethroids through various routes. Pyrethroids have been identified as endocrine-disrupting chemicals (EDCs) which are responsible for the male reproductive impairments. The data confirm pyrethroids cause male reproductive damages. The insecticides exert the toxic effects on male reproductive system through various complex mechanisms including antagonizing androgen receptor (AR), inhibiting steroid synthesis, affecting the hypothalamic-pituitary-gonadal (HPG) axis, acting as estrogen receptor (ER) modulators and inducing oxidative stress. The mechanisms of male reproductive toxicity of pyrethroids involve multiple targets and pathways. The review will provide further insight into pyrethroid-induced male reproductive toxicity and mechanisms, which is crucial to preserve male reproductive health.
Collapse
Affiliation(s)
- Qi Wang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Jun-Yu Shen
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Rui Zhang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Jia-Wei Hong
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Zheng Li
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Zhen Ding
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Heng-Xue Wang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Jin-Peng Zhang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Mei-Rong Zhang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Li-Chun Xu
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
108
|
Ji C, Song Q, Chen Y, Zhou Z, Wang P, Liu J, Sun Z, Zhao M. The potential endocrine disruption of pesticide transformation products (TPs): The blind spot of pesticide risk assessment. ENVIRONMENT INTERNATIONAL 2020; 137:105490. [PMID: 32007685 DOI: 10.1016/j.envint.2020.105490] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
The ecological and health risk assessment of environmental pesticide residues have attracted ever-growing attention; however, their transformation products (TPs) have seldom been considered. Herein, we examined the endocrine-disrupting effects of 4 widely used pesticides as pyriproxyfen (Pyr), malathion (ML), benalaxyl (BX), and fenoxaprop-ethyl (FE), together with their 21 TPs through in vitro and in silico approaches, and found approximately 50% of the TPs exhibited stronger endocrine-disrupting effects than their corresponding parent compounds. Specifically, Pyr and 9 TPs (five TPs of Pyr, one of ML, one of BX, and two of FE) exhibited estrogen-disrupting effects, which were also confirmed by results of E-screen and pS2 expression assays, and molecular docking showed that certain hydroxylated TPs could well mimic the binding mode of estrogen with ERα. Meanwhile, two TPs of Pyr, ML and its TP demonstrated weak glucocorticoid antagonistic activities partially contributed by hydrogen bonds. We also discovered that in H295R cells, all the endocrine disruptors increased hormone secretion and the related gene expression levels. Conclusively, since an increasing number of pesticide TPs have been being detected in various environmental media, a more comprehensive understanding of the ecological risk of pesticide TPs is imperative for risk assessments more extensively and regulatory policy-making on pesticide restriction in the future.
Collapse
Affiliation(s)
- Chenyang Ji
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Qin Song
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yuanchen Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Peng Wang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Jing Liu
- College of Environment & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhe Sun
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Meirong Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
109
|
Gonçalves ÍFS, Souza TM, Vieira LR, Marchi FC, Nascimento AP, Farias DF. Toxicity testing of pesticides in zebrafish-a systematic review on chemicals and associated toxicological endpoints. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10185-10204. [PMID: 32062774 DOI: 10.1007/s11356-020-07902-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The use of zebrafish (Danio rerio) has arisen as a promising biological platform for toxicity testing of pesticides such as herbicides, insecticides, and fungicides. Therefore, it is relevant to assess the use of zebrafish in models of exposure to investigate the diversity of pesticide-associated toxicity endpoints which have been reported. Thus, this review aimed to assess the recent literature on the use of zebrafish in pesticide toxicity studies to capture data on the types of pesticide used, classes of pesticides, and zebrafish life stages associated with toxicity endpoints and phenotypic observations. A total of 352 articles published between September 2012 and May 2019 were curated. The results show an increased trend in the use of zebrafish for testing the toxicity of pesticides, with a great diversity of pesticides (203) and chemical classes (58) with different applications (41) being used. Furthermore, experimental outcomes could be clustered in 13 toxicity endpoints, mainly developmental toxicity, oxidative stress, and neurotoxicity. Organophosphorus, pyrethroid, azole, and triazine were the most studied classes of pesticides and associated with various toxicity endpoints. Studies frequently opted for early life stages (embryos and larvae). Although there is an evident lack of standardization of nomenclatures and phenotypic alterations, the information gathered here highlights associations between (classes of) pesticides and endpoints, which can be used to relate mechanisms of action specific to certain classes of chemicals.
Collapse
Affiliation(s)
- Íris Flávia Sousa Gonçalves
- Laboratory of Risk Assessment for Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, Campus I, CEP, João Pessoa, 58051-900, Brazil
- Post-Graduation Program in Biochemistry, Federal University of Ceara, Campus Pici, CEP, Fortaleza, 60440-900, Brazil
| | - Terezinha Maria Souza
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, 6229 ER, The Netherlands.
| | - Leonardo Rogério Vieira
- Post-Graduation Program in Biochemistry, Federal University of Ceara, Campus Pici, CEP, Fortaleza, 60440-900, Brazil
| | - Filipi Calbaizer Marchi
- Laboratory of Risk Assessment for Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, Campus I, CEP, João Pessoa, 58051-900, Brazil
| | - Adailton Pascoal Nascimento
- Laboratory of Risk Assessment for Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, Campus I, CEP, João Pessoa, 58051-900, Brazil
| | - Davi Felipe Farias
- Laboratory of Risk Assessment for Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, Campus I, CEP, João Pessoa, 58051-900, Brazil.
- Post-Graduation Program in Biochemistry, Federal University of Ceara, Campus Pici, CEP, Fortaleza, 60440-900, Brazil.
| |
Collapse
|
110
|
Demeneix B, Leemans M, Couderq S. Pyrethroid exposure: not so harmless after all. Lancet Diabetes Endocrinol 2020; 8:266-268. [PMID: 32066529 DOI: 10.1016/s2213-8587(20)30039-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Barbara Demeneix
- Centre national de la recherche scientifique, Muséum National d'Histoire Naturelle, 75005 Paris, France; Université Paris-Sorbonne, Paris, France.
| | - Michelle Leemans
- Centre national de la recherche scientifique, Muséum National d'Histoire Naturelle, 75005 Paris, France; Université Paris-Sorbonne, Paris, France
| | - Stephan Couderq
- Centre national de la recherche scientifique, Muséum National d'Histoire Naturelle, 75005 Paris, France; Université Paris-Sorbonne, Paris, France
| |
Collapse
|
111
|
Warner GR, Mourikes VE, Neff AM, Brehm E, Flaws JA. Mechanisms of action of agrochemicals acting as endocrine disrupting chemicals. Mol Cell Endocrinol 2020; 502:110680. [PMID: 31838026 PMCID: PMC6942667 DOI: 10.1016/j.mce.2019.110680] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
Agrochemicals represent a significant class of endocrine disrupting chemicals that humans and animals around the world are exposed to constantly. Agrochemicals can act as endocrine disrupting chemicals through a variety of mechanisms. Recent studies have shown that several mechanisms of action involve the ability of agrochemicals to mimic the interaction of endogenous hormones with nuclear receptors such as estrogen receptors, androgen receptors, peroxisome proliferator activated receptors, the aryl hydrocarbon receptor, and thyroid hormone receptors. Further, studies indicate that agrochemicals can exert toxicity through non-nuclear receptor-mediated mechanisms of action. Such non-genomic mechanisms of action include interference with peptide, steroid, or amino acid hormone response, synthesis and degradation as well as epigenetic changes (DNA methylation and histone modifications). This review summarizes the major mechanisms of action by which agrochemicals target the endocrine system.
Collapse
Affiliation(s)
- Genoa R Warner
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Vasiliki E Mourikes
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Alison M Neff
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Emily Brehm
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States.
| |
Collapse
|
112
|
Highly Selective Electrochemiluminescence Sensor Based on Molecularly Imprinted-quantum Dots for the Sensitive Detection of Cyfluthrin. SENSORS 2020; 20:s20030884. [PMID: 32046019 PMCID: PMC7038674 DOI: 10.3390/s20030884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 01/18/2023]
Abstract
A highly selective and sensitive molecularly imprinted electrochemiluminescence (MIECL) sensor was developed based on the multiwall carbon nanotube (MWCNT)-enhanced molecularly imprinted quantum dots (MIP-QDs) for the rapid determination of cyfluthrin (CYF). The MIP-QDs fabricated by surface grafting technique exhibited excellent selective recognition to CYF, resulting in a specific decrease of ECL signal at the MWCNT/MIP-QD modified electrode. Under optimal conditions, the MIECL signal was proportional to the logarithm of the CYF concentration in the range of 0.2 µg/L to 1.0 × 103 µg/L with a determination coefficient of 0.9983. The detection limit of CYF was 0.05 µg/L, and good recoveries ranging from 86.0% to 98.6% were obtained in practical samples. The proposed MIECL sensor provides a novel, rapid, high sensitivity detection strategy for successfully analyzing CYF in fish and seawater samples.
Collapse
|
113
|
Tobrman T, Krupička M, Polák P, Dvořáková H, Čubiňák M, Babor M, Dvořák D. Diastereoselective Cyclopropanation through Michael Addition-Initiated Ring Closure between α,α-Dibromoketones and α,β-Unsaturated Fischer Carbene Complexes. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tomáš Tobrman
- Department of Organic Chemistry; University of Chemistry and Technology; Technická 5, Prague 6 166 28 Prague Czech Republic
| | - Martin Krupička
- Department of Organic Chemistry; University of Chemistry and Technology; Technická 5, Prague 6 166 28 Prague Czech Republic
| | - Peter Polák
- Department of Organic Chemistry; University of Chemistry and Technology; Technická 5, Prague 6 166 28 Prague Czech Republic
| | - Hana Dvořáková
- Laboratory of NMR Spectroscopy; University of Chemistry and Technology; Technická 5, Prague 6 166 28 Prague Czech Republic
| | - Marek Čubiňák
- Department of Organic Chemistry; University of Chemistry and Technology; Technická 5, Prague 6 166 28 Prague Czech Republic
| | - Martin Babor
- Department of Solid State Chemistry; University of Chemistry and Technology; Technická 5, Prague 6 166 28 Prague Czech Republic
| | - Dalimil Dvořák
- Department of Organic Chemistry; University of Chemistry and Technology; Technická 5, Prague 6 166 28 Prague Czech Republic
| |
Collapse
|
114
|
Dou R, Sun J, Deng F, Wang P, Zhou H, Wei Z, Chen M, He Z, Lai M, Ye T, Zhu L. Contamination of pyrethroids and atrazine in greenhouse and open-field agricultural soils in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134916. [PMID: 31726407 DOI: 10.1016/j.scitotenv.2019.134916] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
A national-scale survey was conducted to assess the levels and distribution of two extensively used pesticides (pyrethroids and atrazine) in greenhouse and open-field soils in 20 provinces across China. Concentrations between 1.30 and 113 ng/g and 0.51-85.4 ng/g for the total pyrethroids (PYs) and of LOD-137 ng/g and LOD-134 ng/g for atrazine were found in greenhouse and open-field soils, respectively. Higher contaminations were found in the greenhouse than in the open fields. The levels of total pyrethroids in 80% of the greenhouses and of atrazine in 60% of the greenhouses were significantly higher than those in the nearby open-field soils (p < 0.05), respectively. The contamination of PYs and atrazine was generally more serious in the northern provinces of China, such as Heilongjiang, Jilin, Liaoning, Beijing, and Hebei. Pearson correlation analysis revealed that the contamination of PYs was significantly correlated with the soil total organic carbon (TOC) value in both greenhouse and open-field soils. Canonical correspondence analysis (CCA) showed that PYs might have an impact on the microbial alpha diversity, while cyhalothrin and cypermethrin may be the key factors affecting the microbial community in the greenhouse and open-field soils. The soil samples containing pesticide residues showed distinct taxonomic and functional communities, where an increased diversity and abundance of microorganisms able to degrade pesticides was observed with high-level PYs contamination. These findings provide useful information for evaluating PYs and atrazine pollution and for contamination management in greenhouse agriculture.
Collapse
Affiliation(s)
- Rongni Dou
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Fucai Deng
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Pingli Wang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Haijun Zhou
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Zi Wei
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Meiqin Chen
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Zhenxian He
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Menglan Lai
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Tiancai Ye
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
115
|
Impacts of Human-Induced Pollution on Wild Fish Welfare. Anim Welf 2020. [DOI: 10.1007/978-3-030-41675-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
116
|
Dispersive solid-phase extraction based on β-cyclodextrin grafted hyperbranched polymers for determination of pyrethroids in environmental water samples. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
117
|
Eni G, Ibor OR, Andem AB, Oku EE, Chukwuka AV, Adeogun AO, Arukwe A. Biochemical and endocrine-disrupting effects in Clarias gariepinus exposed to the synthetic pyrethroids, cypermethrin and deltamethrin. Comp Biochem Physiol C Toxicol Pharmacol 2019; 225:108584. [PMID: 31394255 DOI: 10.1016/j.cbpc.2019.108584] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 12/24/2022]
Abstract
In the present study, we investigated plasma biochemical and steroid hormone responses, together with gonado-histopathological alterations in Clarias gariepinus exposed to sublethal concentrations of two synthetic pyrethroids (cypermethrin and deltamethrin). Fish were exposed to environmentally-relevant concentrations of cypermethrin at 0 (ethanol solvent control), 0.07, 0.014, 0.028, 0.056) and deltamethrin at 0.22, 0.44, 0.88 and 1.76 μg/L, for 7, 14, 21 and 28 days. Plasma enzyme (aspartate transaminase: AST, alanine transaminase: ALT and alkaline phosphatase: ALP) and steroid hormones (estradiol-17β: E2, testosterone: T) levels were analyzed. Gonado-histopathological evaluation shows the presence of ovo-testis (intersex), oocytes atresia, cytoplasmic degeneration and clumping of vitellogenic oocytes in females, while male fish displayed enlargement and degeneration of testicular seminiferous tubules after 28 days exposure to cypermethrin and deltamethrin. Plasma biochemical analysis in pesticides exposed fish revealed that AST, ALT and ALP were significantly increased in a concentration-dependent manner. In addition, we observed respective and apparent concentration- and time-dependent increase and decrease of plasma E2 and T levels, compared to control. Interestingly, the significant increase in E2 levels paralleled gonadal ovo-testis (intersex) condition in exposed fish, indicating endocrine disruptive effects of cypermethrin and deltamethrin that favor the estrogenic pathway, in addition to overt negative consequences on reproductive, biochemical and physiological health of the exposed fish.
Collapse
Affiliation(s)
- George Eni
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria
| | - Oju R Ibor
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria; Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, N-7491 Trondheim, Norway
| | - Andem B Andem
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria
| | - Ene E Oku
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria
| | | | - Aina O Adeogun
- Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, N-7491 Trondheim, Norway.
| |
Collapse
|
118
|
de Souza GC, Viana MD, Goés LDM, Sanchez-Ortiz BL, Silva GAD, Pinheiro WBDS, Santos CBRD, Carvalho JCT. Reproductive toxicity of the hydroethanolic extract of the flowers ofAcmella oleraceaand spilanthol in zebrafish: In vivo and in silico evaluation. Hum Exp Toxicol 2019; 39:127-146. [DOI: 10.1177/0960327119878257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hydroethanolic preparations of Acmella oleracea is used in the north of Brazil as a female aphrodisiac. Thus, the objective of this study was to evaluate the action of the hydroethanolic extract of Acmella oleracea (EHFAo) flowers (21.873 and 44.457 mg/kg) and spilanthol (3 mg/kg) administered orally on reproductive performance and effects on the embryonic development of zebrafish F1 generation. It was observed that in the groups in which males and females received EHFAo and spilanthol, the spawning was interrupted, whereas in the groups in which only the females were treated, spawning occurred during the 21 days. Thus, in the histopathological evaluation of the gonads, it was possible to observe that the percentage of mature cells in the spermatozoa and females was significantly reduced. Only the embryo groups in which parental generation was treated with EHFAo showed lethal and teratogenic effects. On the other hand, the parental groups treated with the spilanthol presented only the lethality. Spilanthol and some metabolites showed good oral availability and important toxicological properties. Thus, it is suggested that the treatment of parental generation of zebrafish with EHFAo and spilanthol caused severe changes in the gonads and on fertility. However, on the embryo, the most striking effects in the development were recorded in the groups in which the parental generation was treated with the EHFAo, while the spilanthol influenced the lethality of the embryos.
Collapse
Affiliation(s)
- GC de Souza
- Programa de Pós-Graduação em Inovação Farmacêutica, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá, Amapá, Brasil
- Laboratório de Pesquisa em Fármacos, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá, Amapá, Brasil
| | - MD Viana
- Laboratório de Pesquisa em Fármacos, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá, Amapá, Brasil
| | - LDM Goés
- Programa de Pós-Graduação em Inovação Farmacêutica, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá, Amapá, Brasil
| | - BL Sanchez-Ortiz
- Laboratório de Pesquisa em Fármacos, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá, Amapá, Brasil
| | - GA da Silva
- Programa de Pós-Graduação em Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| | - WB de Souza Pinheiro
- Programa de Pós-Graduação em Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Pará, Belém, Pará, Brasil
| | - CB Rodrigues dos Santos
- Programa de Pós-Graduação em Inovação Farmacêutica, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá, Amapá, Brasil
- Laboratório de Modelagem e Química Computacional, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá, Amapá, Brasil
| | - JC Tavares Carvalho
- Programa de Pós-Graduação em Inovação Farmacêutica, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá, Amapá, Brasil
- Laboratório de Pesquisa em Fármacos, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá, Amapá, Brasil
| |
Collapse
|
119
|
Taylor AR, Li J, Wang J, Schlenk D, Gan J. Occurrence and Probable Sources of Urban-Use Insecticides in Marine Sediments off the Coast of Los Angeles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9584-9593. [PMID: 31366195 DOI: 10.1021/acs.est.9b02825] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Insecticides such as pyrethroids and fipronil are used in large amounts in both agricultural and urban settings and have the potential to elicit toxicity to nontarget aquatic organisms. In California, like in many other regions of the world, urban centers are located along the coast, and it is documented that urban-use insecticides enter the marine environment, where little is known about their occurrence and consequences. In this study, we measured the spatial distribution of pyrethroids and fipronil (and its metabolites) on the Palos Verdes Shelf off the coast of Los Angeles. Total pyrethroid levels ranged from nd to 170 μg/kg (dry weight), and fipronil sulfide levels ranged from 1.8 to 5.6 μg/kg. Two pyrethroids were traced to wastewater effluent discharge, while two others and fipronil sulfide were traced to to surface runoff. Toxicity units (TUs) were estimated for benthic invertebrates, which ranged from no toxicity (nt) to 146 for total pyrethroids, and 0.09 to 1.6 and 4.2 to 75 for fipronil sulfide, depending on the indicator species. Therefore, near-shore deposition of urban-use insecticides due to wastewater discharge and surface runoff poses a significant risk to marine benthic invertebrates and highlights the importance of monitoring near-shore ocean environments and developing mitigation strategies to reduce seaward movement.
Collapse
Affiliation(s)
- Allison R Taylor
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
| | - Jun Li
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
- School of Earth Sciences and Resources , China University of Geosciences , Beijing 100083 , China
| | - Jie Wang
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
| | - Daniel Schlenk
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
| | - Jay Gan
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
| |
Collapse
|
120
|
Bhatt P, Huang Y, Zhan H, Chen S. Insight Into Microbial Applications for the Biodegradation of Pyrethroid Insecticides. Front Microbiol 2019; 10:1778. [PMID: 31428072 PMCID: PMC6687851 DOI: 10.3389/fmicb.2019.01778] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Pyrethroids are broad-spectrum insecticides and presence of chiral carbon differentiates among various forms of pyrethroids. Microbial approaches have emerged as a popular solution to counter pyrethroid toxicity to marine life and mammals. Bacterial and fungal strains can effectively degrade pyrethroids into non-toxic compounds. Different strains of bacteria and fungi such as Bacillus spp., Raoultella ornithinolytica, Psudomonas flourescens, Brevibacterium sp., Acinetobactor sp., Aspergillus sp., Candida sp., Trichoderma sp., and Candia spp., are used for the biodegradation of pyrethroids. Hydrolysis of ester bond by enzyme esterase/carboxyl esterase is the initial step in pyrethroid biodegradation. Esterase is found in bacteria, fungi, insect and mammalian liver microsome cells that indicates its hydrolysis ability in living cells. Biodegradation pattern and detected metabolites reveal microbial consumption of pyrethroids as carbon and nitrogen source. In this review, we aim to explore pyrethroid degrading strains, enzymes and metabolites produced by microbial strains. This review paper covers in-depth knowledge of pyrethroids and recommends possible solutions to minimize their environmental toxicity.
Collapse
Affiliation(s)
| | | | | | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
121
|
Zhang Z, Du G, Gao B, Hu K, Kaziem AE, Li L, He Z, Shi H, Wang M. Stereoselective endocrine-disrupting effects of the chiral triazole fungicide prothioconazole and its chiral metabolite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:30-36. [PMID: 31071630 DOI: 10.1016/j.envpol.2019.04.124] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
The wide use of chiral fungicides has generated interest in the stereoselectivity of their ecotoxicological effects. However, there are few studies about the potential endocrine-disrupting effects (EDEs) of chiral fungicides. This study evaluated the hormone receptor activities of the chiral triazole fungicide prothioconazole and its metabolite using reporter gene assays. The results indicated that prothioconazole and its metabolite possessed EDEs, and the metabolite exerted more activities than the activities of the parent compound, suggesting that the metabolic process is toxification. Stereoselective EDEs were observed, and the S-enantiomers possessed greater hormonal effects than those possessed by the R-enantiomers; the REC20 values ranged from 7.9 × 10-10 to 6.4 × 10-7 M for the thyroid hormone effects and from 3.2 × 10-9 to 7.8 × 10-8 M for the estrogenic effects. The molecular docking results revealed that the stereoselective EDEs of prothioconazole and its metabolite were partially attributed to enantiospecific receptor binding affinities. Overall, our results reveal that prothioconazole and its metabolite might disrupt the balance of the endocrine system by affecting the function of multiple nuclear hormone receptors and that they have the potential to affect the developmental and reproductive systems in humans.
Collapse
Affiliation(s)
- Zhaoxian Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, PR China
| | - Guizhen Du
- School of Public Health, Nanjing Medical University, Nanjing, 211166, PR China
| | - Beibei Gao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, PR China
| | - Kunming Hu
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, PR China
| | - Amir E Kaziem
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, PR China; Department of Environmental Agricultural Science, Institute of Environmental Studies and Research, Ain Shams University, Cairo, 11566, Egypt
| | - Lianshan Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, PR China
| | - Zongzhe He
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, PR China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, PR China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, PR China.
| |
Collapse
|
122
|
Guo C, Yang Y, Shi MX, Wang B, Liu JJ, Xu DX, Meng XH. Critical time window of fenvalerate-induced fetal intrauterine growth restriction in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:186-193. [PMID: 30708230 DOI: 10.1016/j.ecoenv.2019.01.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/08/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
Fenvalerate (FEN), a representative type II pyrethroid, is a widely used pyrethroid insecticide and a potential environmental contaminant. Several studies demonstrated that gestational FEN exposure induced intrauterine growth restriction (IUGR). However, the critical time window of FEN-induced fetal IUGR remains obscure. The present study aimed to identify the critical window of FEN-induced fetal IUGR. Pregnant mice were administered corn oil or FEN (20 mg/kg) by gavage daily at the early gestational stage (GD0-GD6), middle gestational stage (GD7-GD12) or late gestational stage (GD13-GD17). The results showed that the rates of fetal IUGR were markedly increased only in the mice exposed to FEN on GD13-GD17 but not in the mice exposed to FEN on GD7-GD12 or GD0-GD6. Further analysis showed that the blood sinusoid area in the placental labyrinth layer was reduced in the mice exposed to FEN on GD13-GD17. In addition, CD34+ microvessel density in the labyrinthine region was decreased in the male and female fetuses whose mothers were exposed to FEN on GD13-GD17. Mechanistic analysis found that the glutathione level was decreased in the FEN-exposed placentas. In contrast, the levels of 3-nitrotyrosine and malondialdehyde, two oxidative stress markers, were increased in FEN-exposed placentas. Heme oxygenase-1, inducible nitric oxide synthase, catalase and peroxiredoxin-3, which are antioxidant enzymes, were upregulated in the FEN-exposed placentas. The present study suggests that the late gestational stage is a critical time window of FEN-induced fetal IUGR. Placental oxidative stress may be, at least partially, involved in the process of FEN-induced placental damage and fetal IUGR.
Collapse
Affiliation(s)
- Ce Guo
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
| | - Yang Yang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
| | - Meng-Xing Shi
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
| | - Bo Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
| | - Ji-Jie Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
| | - De-Xiang Xu
- Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Xiu-Hong Meng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China.
| |
Collapse
|
123
|
Ligocki IY, Munson A, Farrar V, Viernes R, Sih A, Connon RE, Calisi RM. Environmentally relevant concentrations of bifenthrin affect the expression of estrogen and glucocorticoid receptors in brains of female western mosquitofish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 209:121-131. [PMID: 30769158 DOI: 10.1016/j.aquatox.2018.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
In recent decades, pyrethroid pesticides have been deemed a safer alternative to previously used pesticides. While some evidence supports this assumption in mammals and birds, exposure to certain pyrethroids can affect concentrations of hormones vital to reproduction in fish. Thus, we hypothesized that pyrethroid exposure impacts fish reproductive behavior and the expression of genes associated with reproduction. We tested our hypothesis by examining effects of the widely used pyrethroid pesticide, bifenthrin, on the reproductive behaviors of the broadly distributed livebearing western mosquitofish, Gambusia affinis. We exposed sexually mature female fish to one of five environmentally relevant concentrations of bifenthrin and conducted behavioral assays to assess reproductive, social, and space use behaviors before and after exposure. We did not detect changes in behaviors measured in response to bifenthrin. However, exposure was associated with increased expression of an estrogen receptor gene (ER-α) and glucocorticoid receptor (GR) in brain tissue at bifenthrin concentrations at concentrations of 5.90 and 24.82 ng/L, and 5.90 and 12.21 ng/L, respectively. Our study supports the perspective that the use of multiple endpoints through integrative approaches is essential for understanding the cumulative impact of pollutants. Integrating physiological, morphological, and behavioral investigations of nonlethal concentrations of pollutants like bifenthrin may heighten our potential to predict their impact on individuals, populations, and communities.
Collapse
Affiliation(s)
- Isaac Y Ligocki
- Dept. of Evolution, Ecology, and Org. Biology, The Ohio State University, 43210, United States; Department of Neurobiology, Physiology, and Behavior, University of California, Davis, United States.
| | - Amelia Munson
- Department of Environmental Science and Policy, University of California, Davis, United States
| | - Victoria Farrar
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, United States
| | - Rechelle Viernes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, United States
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, Davis, United States
| | - Richard E Connon
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, United States
| | - Rebecca M Calisi
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, United States
| |
Collapse
|
124
|
Giroux M, Gan J, Schlenk D. The effects of bifenthrin and temperature on the endocrinology of juvenile Chinook salmon. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:852-861. [PMID: 30681194 DOI: 10.1002/etc.4372] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/20/2018] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
The San Francisco Bay delta (USA) is experiencing seasonally warmer waters attributable to climate change and receives rainstorm runoff containing pyrethroid pesticides. Chinook salmon (Oncorhynchus tshawytscha) inhabit the affected waterways from hatch through smoltification, and thus juvenile fish may experience both pyrethroid and warmer water exposures. The effects of higher temperatures and pesticide exposure on presmolt Chinook are unknown. To improve understanding of the potential interaction between temperature and pesticide exposure on salmonid development, juvenile alevin and fry were reared in 11, 16.4, and 19 °C freshwater for 11 d and 2 wk, respectively, and exposed to nominal concentrations of 0, 0.15, and 1.5 µg/L bifenthrin for the final 96 h of rearing. Estradiol-17β (E2), testosterone, triiodothyronine, and thyroxine levels were measured in whole-body homogenates using hormone-specific enzyme-linked immunosorbent assays. Brain gonadotropin-releasing hormone receptor (GnRH2), dopamine receptor 2A, and growth hormone 1 (GH1) mRNA levels were measured using quantitative PCR. Results showed significantly decreased survival and condition factors observed with increasing temperature in alevin. Alevin thyroid hormones increased significantly with temperature, but fry thyroid hormones trended toward a decrease at lower temperatures with increasing bifenthrin exposure. There were significant reductions in fry testosterone and E2 at 11 °C with increasing bifenthrin treatments and significant changes in GnRH2 and GH1 gene expression in both alevin and fry, indicating potential disruption of hormonal and signaling pathways. Environ Toxicol Chem 2019;38:852-861. © 2019 SETAC.
Collapse
Affiliation(s)
- Marissa Giroux
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, California, USA
| | - Jay Gan
- Department of Environmental Sciences, University of California Riverside, Riverside, California, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, California, USA
| |
Collapse
|
125
|
Kirici M, Nedzvetsky VS, Agca CA, Gasso VY. Sublethal doses of copper sulphate initiate deregulation of glial cytoskeleton, NF-kB and PARP expression in Capoeta umbla brain tissue. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Copper sulphate pentahydrate (CuSO4∙5H2O) is widely used as a pesticide not only in agricultural but in aquaculture farming as well. Copper sulphate is a cheap chemical and able to contaminate the environment, especially water sources, which is crucial for fish harvesting and farming. The copper contamination in some areas is caused over decades because this pesticide has long been used everywhere. Copper ions inhibit invasive aquatic plants and many microorganisms but contaminate soil and natural water resources. The family of copper-containing chemicals is frequently used as algaecides in swimming pools. Despite the high toxicity of copper ions for fish in freshwater ponds, copper sulphate remains one of the prevalent pesticides in fish farming everywhere. High cytotoxicity and accumulation of the copper ions in sediments require study and calculation of the optimal dosage for its use as an antiseptic agent which will not have a detrimental effect on various tissue types of aquatic organisms. The main recognized mechanism which accompanies the toxic effect of copper ions is the generation of oxidative stress. Neural tissue cells are extremely susceptible to oxidative damage and the functions of the CNS are critical to the vitality of organisms. Glial cells maintain the structure and many vital functions of neurons. The cytoskeleton glial fibrillary acidic protein (GFAP), transcriptional nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) and Poly(ADP-ribose) polymerase (PARP) are critical participants in a cellular response to a toxic agent impact. As this takes place, it could be applied in biomarking of heavy metal toxicity. In the presented study, we investigated the effects of copper ions on PARP, NF-kB, and GFAP expression in the Tigris scraper Capoeta umbla brain tissue. For 96 hours the fish were exposed to copper sulphate at sublethal concentrations, namely 1/2, 1/4 and 1/8 of the LD50 value. Western blot analysis of GFAP and PARP was used to assess further effects in the brain tissue. Every studied dose of copper significantly downregulated the expression of GFAP after 72 hours of treatment. In spite of the common increment in the GFAP content, 48 hours exposure to copper initiated the upregulation of that cytoskeleton marker. Moreover, treatment with copper sulphate induced several changes in the β-actin level, especially in the fish group treated for 72 hours. The observed effect of copper in the fish brain evidences the unspecific toxic effect of the copper ions in the brain tissue cells. The obtained results demonstrated meaningful disturbance in the expression of transcriptional factor NF-kB in the brain of the fish group exposed to copper. The changes found in the fish brain indicate the dose-dependent effect in a concentration range 185–740 µg/L of copper sulphate during 72 hours. However, the exposure to low dose of copper ions showed no effect in the fish group treated for 24 hours. Comparative analyses of the PARP content in the brain of fish exposed to copper for 72 hours was significantly less than in the groups treated with copper for both 24 and 48 hours. Thus, the copper ions in the dose range 185–740 µg/L can suppress PARP expression in a time-dependent manner. The results showed that copper ions could induce astroglial response accompanied by modulations of NF-kB and PARP-1 expression. The data obtained in this study suggest that copper sulphate has a significant effect on astrogliosis and DNA damage in the fish brain.
Collapse
|
126
|
Dazed, confused, and then hungry: pesticides alter predator-prey interactions of estuarine organisms. Oecologia 2019; 189:815-828. [PMID: 30830264 DOI: 10.1007/s00442-019-04361-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/18/2019] [Indexed: 10/27/2022]
Abstract
Like predators, contaminant stressors such as pesticides may have large and interacting effects on natural communities by removing species or altering behaviors and species interactions. Yet, few studies in estuarine systems have evaluated the effects of a single, low-dose exposure to pesticides on key predators. Here, we investigated the effects of a common pyrethroid (resmethrin) + synergist (piperonyl butoxide; PBO) mixture used for mosquito abatement on two life stages (adult and juvenile) of an important invertebrate estuarine predator, prey, and fishery species: the blue crab (Callinectes sapidus). The effects of resmethrin with PBO (Res-PBO) were assessed using behavioral and mesocosm experiments to link effects on individuals with changes in predator-prey interactions: (1) In static non-renewal exposures, crabs exposed to 1:3, 10:30, or 100:300 µg l-1 Res-PBO or PBO-alone had increased mortality and reduced locomotor ability within 1-12 h, with higher effects in adults than juveniles. (2) In mesocosms, sublethal exposure to 1:3 µg l-1 Res-PBO altered abult and juvnile foraging ability by lowering the ability of adult crabs to cannibalize juvenile crabs but increasing juvenile crab foraging rates. Juvenile crabs were also more vulnerable to predation following pesticide exposure. Thus, a single, sublethal exposure to low, environmentally occurring pesticide concentrations reduced blue crab survivorship and locomotor functioning, and altered predator-prey interactions by changing foraging rates and increasing vulnerability to predators. Pesticide stressors may therefore play an important but underestimated role in shaping coastal ecosystems in which invertebrate predators are important and may contribute to U.S. blue crab population declines.
Collapse
|
127
|
Chang J, Xu P, Li W, Li J, Wang H. Enantioselective Elimination and Gonadal Disruption of Lambda-Cyhalothrin on Lizards ( Eremias argus). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2183-2189. [PMID: 30721048 DOI: 10.1021/acs.jafc.8b05990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, the different metabolic pathways of lambda-cyhalothrin (LCT) enantiomers in Eremias argus feces and enantioselective disruption on hypothalamus-pituitary-gonad (HPG) system were investigated. After 7 days oral exposure to LCT enantiomers, the concentration of 3-phenoxybenzoic acid (PBA), hydroxylated and sulfated LCT were higher in the (+)-LCT exposure group than that in the (-)-LCT exposure group, which indicated a higher metabolic rate of (+)-LCT than (-)-LCT. Although no significant differences were seen on lizard body weight after enantiomers' exposure, the gonadosomatic index was dramatically decreased. The testicular impacts such as increased seminiferous tubule diameters were only observed in the (+)-LCT exposure group. Consistent with this result, the expression of ar gene in the (+)-LCT exposure was significantly higher than that in the (-)-LCT exposure group. In addition, the stronger binding affinity of AR with (+)-LCT further demonstrated the more serious disruption of (+)-LCT on lizard HPG axis than (-)-LCT. This study first elucidated the metabolic pathway and endocrine effects of LCT in lizards at enantiomeric level and provided some evidence for lizard population decline.
Collapse
Affiliation(s)
- Jing Chang
- Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Shuangqing Road 18 , Beijing 100085 , China
| | - Peng Xu
- Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Shuangqing Road 18 , Beijing 100085 , China
| | - Wei Li
- Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Shuangqing Road 18 , Beijing 100085 , China
| | - Jitong Li
- Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Shuangqing Road 18 , Beijing 100085 , China
| | - Huili Wang
- Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Shuangqing Road 18 , Beijing 100085 , China
| |
Collapse
|
128
|
Bertotto LB, Dasgupta S, Vliet S, Dudley S, Gan J, Volz DC, Schlenk D. Evaluation of the estrogen receptor alpha as a possible target of bifenthrin effects in the estrogenic and dopaminergic signaling pathways in zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2424-2431. [PMID: 30336432 PMCID: PMC6283662 DOI: 10.1016/j.scitotenv.2018.10.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 05/14/2023]
Abstract
Bifenthrin (BF) is a pyrethroid insecticide widely used in urban and agricultural applications. Previous studies in embryos of zebrafish have shown that BF can affect estradiol biosynthesis and the dopaminergic system. To examine the role of the estrogen receptor (ER) in the endocrine effects of BF, embryos were exposed for 96 h to a mixture of 0.15 and 1.5 μg/L BF and an ER agonist (17α-ethynylestradiol - EE2) at 0.09 μg/L. Transcripts related to estrogenic (vitellogenin VTG) and dopaminergic (tyrosine hydroxylase (TH), dopamine receptor 1 (DR1), monoamine oxidase (MAO), and catechol-O-methyltransferase b (COMTb)) signaling pathways were investigated by qRT-PCR. Dopamine (DA) and its metabolites (homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC)) were also measured. There was a significant increase in VTG, DR1, MAO and COMTb mRNA levels and HVA-DA ratios within all zebrafish embryos exposed to EE2, including EE2 alone, 0.15 μg/L BF + EE2 and 1.5 μg/L BF + EE2. A significant decrease in homogenate concentrations of DA was observed within all zebrafish embryos exposed to EE2, which included EE2 alone, 0.15 μg/L BF + EE2 and 1.5 μg/L BF + EE2. Co-exposure of BF with EE2 failed to diminish estrogenic or dopaminergic signaling in embryos. Additionally, embryos with diminished ERα expression by morpholino injection were exposed to 0.15 μg/L BF, 1.5 μg/L BF and 0.09 μg/L EE2, with subsequent gene expression measurements. ERα knockdown did not prevent the effects of BF, indicating ERα may have a limited role in the estrogenic and dopaminergic effects caused by BF in zebrafish embryos.
Collapse
Affiliation(s)
- Luísa Becker Bertotto
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA.
| | - Subham Dasgupta
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Sara Vliet
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Stacia Dudley
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
129
|
Crane JL. Distribution, Toxic Potential, and Influence of Land Use on Conventional and Emerging Contaminants in Urban Stormwater Pond Sediments. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 76:265-294. [PMID: 30637461 DOI: 10.1007/s00244-019-00598-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/04/2019] [Indexed: 05/14/2023]
Abstract
This study examined the distribution and toxic potential of conventional and emerging contaminants in composite sediment samples from 15 stormwater ponds in the Minneapolis-St. Paul, MN metropolitan area. Previously, coal tar-based sealants were shown to be a major source of polycyclic aromatic hydrocarbons to these ponds, and concentrations of carcinogenic benzo[a]pyrene (B[a]P) equivalents were influencing management options about pond maintenance. For the second component of this study, a complex mixture of 13 metal(loid)s, 4-nonylphenols, 8 brominated diphenyl ethers (BDEs), and total polybrominated diphenyl ethers (PBDEs) were detected in all surficial samples. Contaminants with detection frequencies ≥ 20% included: silver (46.7%), beryllium (20.0%), chloride (60.0%), bis(2-ethylhexyl)phthalate (60.0%), 10 per- and polyfluoroalkyl substances (PFASs; 26.7-80.0%), 4-nonylphenol monoethoxylate (66.7%), 4-nonylphenol diethoxylate (40.0%), bifenthrin (20.0%), total permethrins (33.3%), and 24 other BDE congener groups (20.0-93.3%). Five stormwater ponds had contaminants exceeding benchmarks likely to be associated with harmful effects to benthic organisms. Ponds with watersheds dominated by either commercial and/or industrial land uses had significantly higher (p < 0.05) concentrations of zinc, 4-nonylphenol, six BDEs (28 + 33, 47, 99, 100, 154, and 209), and total PBDEs than those dominated by residential land uses. Multivariate statistical analyses verified that updated B[a]P equivalents were an effective chemical proxy for making management decisions about excavated pond sediment. Jurisdictions that do not test their stormwater pond sediments prior to maintenance dredging should consider the environmental ramifications of applying this potentially contaminated material to land.
Collapse
Affiliation(s)
- Judy L Crane
- Minnesota Pollution Control Agency, 520 Lafayette Road North, St. Paul, MN, 55155-4194, USA.
| |
Collapse
|
130
|
Venturini FP, de Moraes FD, Rossi PA, Avilez IM, Shiogiri NS, Moraes G. A multi-biomarker approach to lambda-cyhalothrin effects on the freshwater teleost matrinxa Brycon amazonicus: single-pulse exposure and recovery. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:341-353. [PMID: 30269262 DOI: 10.1007/s10695-018-0566-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
Effects of the pyrethroid lambda-cyhalothrin (LCH) were investigated in matrinxa Brycon amazonicus, a non-target freshwater teleost. The fish were submitted to a single-pulse exposure (10% of LC50; 96 h, 0.65 μg L-1), followed by 7 days of recovery in clean water. Hematologic parameters indicated impairments in oxygen transport, which were not recovered. Plasma [Na+], [Cl-], and protein were diminished, and only [Na+] remained low after recovery. Gill Na+/K+ATPase activity was increased and recovered to basal values. Brain acetylcholinesterase activity was not responsive to LCH. Liver ascorbic acid concentration was not altered, and reduced glutathione levels remained augmented even after recovery. LCH inhibited hepatic superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, while glutathione-S-transferase (GST) and glucose-6-phosphate dehydrogenase (G6PDH) activities were steady. After recovery, SOD remained low, and GPx was augmented. Liver depicted lipid peroxidation, which was not observed after recovery. Hepatic morphology was affected by LCH and was not completely recovered. These responses, combined with the persistence of changes even after recovery span, clearly show the feasibility of these biomarkers in evaluating LCH toxic potential to non-target organisms, highlighting the importance of pyrethroids' responsible use.
Collapse
Affiliation(s)
- F P Venturini
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, Avenida Trabalhador Sãocarlense, 400, São Carlos, SP, 13560-970, Brazil.
- Department of Genetics and Evolution, Federal University of Sao Carlos, Rodovia Washington Luiz, Km 235, Sao Carlos, SP, CEP 13565-905, Brazil.
| | - F D de Moraes
- Department of Genetics and Evolution, Federal University of Sao Carlos, Rodovia Washington Luiz, Km 235, Sao Carlos, SP, CEP 13565-905, Brazil
| | - P A Rossi
- Department of Genetics and Evolution, Federal University of Sao Carlos, Rodovia Washington Luiz, Km 235, Sao Carlos, SP, CEP 13565-905, Brazil
| | - I M Avilez
- Department of Genetics and Evolution, Federal University of Sao Carlos, Rodovia Washington Luiz, Km 235, Sao Carlos, SP, CEP 13565-905, Brazil
| | - N S Shiogiri
- Department of Physiological Sciences, Federal University of Sao Carlos, Rodovia Washington Luiz, Km 235, Sao Carlos, SP, CEP 13565-905, Brazil
| | - G Moraes
- Department of Genetics and Evolution, Federal University of Sao Carlos, Rodovia Washington Luiz, Km 235, Sao Carlos, SP, CEP 13565-905, Brazil
| |
Collapse
|
131
|
DeCourten BM, Connon RE, Brander SM. Direct and indirect parental exposure to endocrine disruptors and elevated temperature influences gene expression across generations in a euryhaline model fish. PeerJ 2019; 7:e6156. [PMID: 30643694 PMCID: PMC6329337 DOI: 10.7717/peerj.6156] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/24/2018] [Indexed: 12/22/2022] Open
Abstract
Aquatic organisms inhabiting polluted waterways face numerous adverse effects, including physiological disruption by endocrine disrupting compounds (EDCs). Little is known about how the temperatures associated with global climate change may influence the response of organisms exposed to EDCs, and the effects that these combined stressors may have on molecular endpoints such as gene expression. We exposed Menidia beryllina (inland silversides) to environmentally relevant concentrations (1 ng/L) of two estrogenic EDCs (bifenthrin and 17α-ethinylestradiol; EE2) at 22 °C and 28 °C. We conducted this experiment over multiple generations to better understand the potential effects to chronically exposed populations in the wild. We exposed adult parental fish (F0) for 14 days prior to spawning of the next generation. F1 larvae were then exposed from fertilization until 21 days post hatch (dph) before being transferred to clean water tanks. F1 larvae were reared to adulthood, then spawned in clean water to test for further effects of parental exposure on offspring (F2 generation). Gene expression was quantified by performing qPCR on F0 and F1 gonads, as well as F1 and F2 larvae. We did not detect any significant differences in the expression of genes measured in the parental or F1 adult gonads. We found that the 28 °C EE2 treatment significantly decreased the expression of nearly all genes measured in the F1 larvae. This pattern was transferred to the F2 generation for expression of the follicle-stimulating hormone receptor (FSHR) gene. Expression of 17β-hydroxysteroid dehydrogenase (17β-HSD) and G protein-coupled receptor 30 (GPR30) revealed changes not measured in the previous generation. Effects of the bifenthrin treatments were not observed until the F2 generation, which were exposed to the chemicals indirectly as germ cells. Our results indicate that effects of EDCs and their interactions with abiotic factors, may not be adequately represented by singular generation testing. These findings will contribute to the determination of the risk of EDC contamination to organisms inhabiting contaminated waterways under changing temperature regimes.
Collapse
Affiliation(s)
- Bethany M DeCourten
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States of America.,Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC, United States of America
| | - Richard E Connon
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, CA, United States of America
| | - Susanne M Brander
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States of America.,Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC, United States of America
| |
Collapse
|
132
|
Household exposure to pesticides and risk of leukemia in children and adolescents: Updated systematic review and meta-analysis. Int J Hyg Environ Health 2019; 222:49-67. [DOI: 10.1016/j.ijheh.2018.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/16/2018] [Accepted: 08/06/2018] [Indexed: 11/21/2022]
|
133
|
|
134
|
Vieira CED, Dos Reis Martinez CB. The pyrethroid λ-cyhalothrin induces biochemical, genotoxic, and physiological alterations in the teleost Prochilodus lineatus. CHEMOSPHERE 2018; 210:958-967. [PMID: 30208556 DOI: 10.1016/j.chemosphere.2018.07.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
The λ-cyhalothrin (CL) is a globally used pyrethroid insecticide that has been detected in different water bodies worldwide. However, studies on the effects of CL on freshwater fishes are still incipient. In this context, we evaluated the acute effects of a commercial formulation containing CL (Karate Zeon® CS 50) in juveniles of the teleost Prochilodus lineatus exposed for 96 h to four concentrations of the active ingredient (5, 50, 250 and 500 ng.L-1). Biochemical, physiological, and genotoxic biomarkers were evaluated in different organs of the fish. Exposure to CL induced significant changes in the enzymatic profiles of P. lineatus, with specific alterations in biotransformation enzymes and antioxidant defence in different tissues. Lipid peroxidation was observed in fish gills and kidney. Increases in esterases were observed in the liver of fish exposed to all CL concentrations evaluated, whereas acetylcholinesterase activity decreased in the muscles of fish at all concentrations. CL also promoted osmoregulatory disorders, with decreases in calcium and magnesium gill ATPases, with consequent hypocalcaemia, in addition an increase in sodium-potassium ATPase activity was observed in the gills of fish exposed to the highest CL concentration, probably in order to compensate a reduction in plasma sodium. Besides, increases in DNA damage were observed in the erythrocytes of fish exposed to all CL concentrations. Thus, despite the low CL concentrations and the short exposure time, this pyrethroid caused hematological adjustments, oxidative stress, osmoregulatory disorders, and DNA damage in P. lineatus, showing that the species is highly sensitive to the deleterious effects of CL.
Collapse
Affiliation(s)
- Carlos Eduardo Delfino Vieira
- Laboratório de Ecofisiologia Animal, Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, Paraná, Brazil.
| | - Claudia Bueno Dos Reis Martinez
- Laboratório de Ecofisiologia Animal, Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, Paraná, Brazil
| |
Collapse
|
135
|
Wang T, Hu C, Zhang R, Sun A, Li D, Shi X. Mechanism study of cyfluthrin biodegradation by Photobacterium ganghwense with comparative metabolomics. Appl Microbiol Biotechnol 2018; 103:473-488. [PMID: 30374672 DOI: 10.1007/s00253-018-9458-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 10/28/2022]
Abstract
A high-efficiency pyrethroid-degrading bacterium, Photobacterium ganghwense strain 6046 (PGS6046), was first isolated from an offshore seawater environment. Metabolomics method was used to investigate the biotransformation pathway of PGS6046 to cyfluthrin wherein 156 metabolites were identified. The growth rates of the PGS6046 cultivated in nourishing media were much higher than those cultivated in seawater, regardless of the presence of cyfluthrin. Statistical analyses revealed that the metabolic profile of PGS6046 was associated with the culture medium, the presence of cyfluthrin, and culture time. The PGS6046 cultivated in a nourishing medium was characterized by higher levels of amino acids, a lower abundance of intermediates in the tricarboxylic acid cycle, and the presence of some fatty acids than those cultivated in seawater. The effects of cyfluthrin on PGS6046 metabolism varied based on the culture medium, whereas the cyanoalanine levels increased under both culture conditions. Culture time significantly affected the metabolism of amino acids and carbohydrates in PGS6046. The present study revealed the metabolic characteristics of PGS6046 under different culture conditions and will further facilitate the exploration of the fundamental questions regarding PGS6046 and its potential applications in environmental bioremediation.
Collapse
Affiliation(s)
- Tengzhou Wang
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, 315211, Ningbo, People's Republic of China
| | - Chaoyang Hu
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, 315211, Ningbo, People's Republic of China
| | - Rongrong Zhang
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, 315211, Ningbo, People's Republic of China
| | - Aili Sun
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, 315211, Ningbo, People's Republic of China
| | - Dexiang Li
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, 315211, Ningbo, People's Republic of China
| | - Xizhi Shi
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, 315211, Ningbo, People's Republic of China.
| |
Collapse
|
136
|
Maternal fenvalerate exposure during pregnancy impairs growth and neurobehavioral development in mouse offspring. PLoS One 2018; 13:e0205403. [PMID: 30321209 PMCID: PMC6188755 DOI: 10.1371/journal.pone.0205403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/25/2018] [Indexed: 01/08/2023] Open
Abstract
Although use of fenvalerate has increased dramatically over the past decade, little is known about their potential adverse effects on growth and development. The purpose of this study was to examine the effects of maternal fenvalerate exposure during pregnancy on growth and neurobehavioral development in the offspring. Pregnant mice were orally administered to fenvalerate (0.2, 2.0, and 20 mg/kg) daily throughout pregnancy. The tests of growth and neurobehavioral development were performed during lactation period. A series of neurobehavioral tasks were carried out from lactation to puberty. Anxiety-related behaviors were evaluated by open-field and elevated plus maze. Morris Water Maze was used to assess spatial learning and memory ability. Results showed that maternal fenvalerate exposure during pregnancy markedly delayed growth development of neonatal offspring during lactation. In addition, anxiety-like behaviors were increased in fenvalerate-exposed male offspring. Moreover, spatial learning and memory was severely impaired in female offspring. Taken together, maternal fenvalerate exposure during pregnancy delayed growth and neurobehavioral development in a gender-dependent manner. Additional study is required to explore the underlying mechanism through which maternal fenvalerate exposure during pregnancy induces impairment of growth and neurobehavioral development.
Collapse
|
137
|
Pan X, Cheng Y, Dong F, Liu N, Xu J, Liu X, Wu X, Zheng Y. Stereoselective bioactivity, acute toxicity and dissipation in typical paddy soils of the chiral fungicide propiconazole. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:194-202. [PMID: 30036749 DOI: 10.1016/j.jhazmat.2018.07.061] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Propiconazole is a widely used systemic agricultural triazole fungicide with two chiral centers. In the present study, systemic assessments of propiconazole stereoisomers are reported for the first time, including absolute configuration, stereoselective bioactivity toward pathogens (Ustilaginoidea virens, Magnaporthe oryzae, Fusarium moniliforme, Thanatephorus cucumeris, and Rhizoctonia solani), and stereoselective acute toxicity toward aquatic organisms (Scenedesmus obliquus, and Daphnia magna). Moreover, the stereoselective dissipation of propiconazole in three types of paddy soil under laboratory-controlled conditions (aerobic, anaerobic and sterile) was investigated. The degree of bioactivity and acute toxicity of the propiconazole stereoisomers differed depending on the type of target pathogens and non-target organisms. There were 2.43-23.47 and 1.48-2.13 fold differences between the best and worst stereoisomer in bioactivity and toxicity, respectively. Under aerobic conditions, (2S,4S)-propiconazole and (2S,4R)-propiconazole were preferentially degraded in the three types of soils. However, no significant stereoselectivity was observed under anaerobic and sterile conditions. Propiconazole was configurationally stable throughout the study. In comprehensive consideration of bioactivity, toxicity and environmental behavior, using stereoisomer mixture rather than pure stereoisomer may help to control more species of disease in practical application, and the stereoselectivity should be taken into consideration in risk assessment.
Collapse
Affiliation(s)
- Xinglu Pan
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Youpu Cheng
- Tianjin Agricultural University, Tianjin, PR China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Na Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Shenyang Agricultural University, Shenyang, PR China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| |
Collapse
|
138
|
Maternal peripartum urinary pyrethroid metabolites are associated with thinner children at 3.5 years in the VHEMBE birth cohort (Limpopo, South Africa). Environ Epidemiol 2018; 2. [PMID: 31106288 PMCID: PMC6516496 DOI: 10.1097/ee9.0000000000000026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Supplemental Digital Content is available in the text. Background: Pyrethroids are the most widely used insecticides globally for domestic, agricultural, and malaria vector control. In 10 countries, dichlorodiphenyl trichloroethane (DDT) is also used for the latter. Thus, high exposure to pyrethroids and DDT have been reported among women and children from rural and/or malaria-endemic areas. Experimental studies suggest that fetal exposure to pyrethroids, particularly cypermethrin, and DDT may have sex-specific growth effects. However, epidemiologic investigations are scarce and inconsistent and have not considered postnatal environment or susceptibility factors. Methods: In 665 mother–child dyads participating in the Venda Health Examination of Mothers, Babies, and their Environment (VHEMBE), a rural South African birth cohort with high insecticide exposure, we examined associations of maternal peripartum urinary pyrethroid metabolites and serum DDT concentrations with child anthropometrics at 3.5 years using multivariable linear regression. We investigated effect modification by child sex, maternal nutrition and HIV status, and household poverty. Results: Pyrethroid metabolites cis-3-(2,2-dibromovinyl)-2,2-dimethyl-cyclopropane carboxylic acid (cis-DBCA), cis-3-(2,2,-dicholorvinyl)-2,2-dimethyl-cyclopropane carboxylic acid (cis-DCCA), trans-DCCA, and 3-phenoxybenzoic acid (3-PBA) were quantified in nearly all mothers. A 10-fold increase in cis-DCCA concentration was associated with 0.21 kg/m2 lower body mass index (95% confidence interval = −0.41, −0.01), with similar estimates for other cypermethrin or permethrin metabolites (trans-DCCA and 3-phenoxybenzoic acid). In stratified analyses, stronger associations were observed with lower weight, body mass index, arm circumference, and weight-for-height among boys relative to girls. Associations with cis-3-(2,2-dibromovinyl)-2,2-dimethyl-cyclopropane carboxylic acid, a metabolite specific to deltamethrin, were weaker or absent. No substantial associations were observed with DDT. Discussion: In a population with ubiquitous pyrethroid exposure, maternal concentrations of metabolites of cypermethrin and permethrin were associated with thinness at 3.5 years.
Collapse
|
139
|
Frank DF, Miller GW, Harvey DJ, Brander SM, Geist J, Connon RE, Lein PJ. Bifenthrin causes transcriptomic alterations in mTOR and ryanodine receptor-dependent signaling and delayed hyperactivity in developing zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:50-61. [PMID: 29727771 PMCID: PMC5992106 DOI: 10.1016/j.aquatox.2018.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 05/06/2023]
Abstract
Over the last few decades, the pyrethroid insecticide bifenthrin has been increasingly employed for pest control in urban and agricultural areas, putting humans and wildlife at increased risk of exposure. Exposures to nanomolar (nM) concentrations of bifenthrin have recently been reported to alter calcium oscillations in rodent neurons. Neuronal calcium oscillations are influenced by ryanodine receptor (RyR) activity, which modulates calcium-dependent signaling cascades, including the mechanistic target of rapamycin (mTOR) signaling pathway. RyR activity and mTOR signaling play critical roles in regulating neurodevelopmental processes. However, whether environmentally relevant levels of bifenthrin alter RyR or mTOR signaling pathways to influence neurodevelopment has not been addressed. Therefore, our main objectives in this study were to examine the transcriptomic responses of genes involved in RyR and mTOR signaling pathways in zebrafish (Danio rerio) exposed to low (ng/L) concentrations of bifenthrin, and to assess the potential functional consequences by measuring locomotor responses to external stimuli. Wildtype zebrafish were exposed for 1, 3 and 5 days to 1, 10 and 50 ng/L bifenthrin, followed by a 14 d recovery period. Bifenthrin elicited significant concentration-dependent transcriptional responses in the majority of genes examined in both signaling cascades, and at all time points examined during the acute exposure period (1, 3, and 5 days post fertilization; dpf), and at the post recovery assessment time point (19 dpf). Changes in locomotor behavior were not evident during the acute exposure period, but were observed at 19 dpf, with main effects (increased locomotor behavior) detected in fish exposed developmentally to bifenthrin at 1 or 10 ng/L, but not 50 ng/L. These findings illustrate significant influences of developmental exposures to low (ng/L) concentrations of bifenthrin on neurodevelopmental processes in zebrafish.
Collapse
Affiliation(s)
- Daniel F Frank
- Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; Aquatic Systems Biology, Department of Ecology and Ecosystem Management, Technical University of Munich, Mühlenweg 22, D-85354 Freising, Germany
| | - Galen W Miller
- Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Danielle J Harvey
- Department of Public Health Sciences, Division of Biostatistics, University of California, Davis, CA 95616, USA
| | - Susanne M Brander
- Biology & Marine Biology, University of North Carolina, Wilmington, NC 28403, USA
| | - Juergen Geist
- Aquatic Systems Biology, Department of Ecology and Ecosystem Management, Technical University of Munich, Mühlenweg 22, D-85354 Freising, Germany
| | - Richard E Connon
- Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Pamela J Lein
- Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
140
|
Huang J, Eskenazi B, Bornman R, Rauch S, Chevrier J. Maternal Peripartum Serum DDT/E and Urinary Pyrethroid Metabolite Concentrations and Child Infections at 2 Years in the VHEMBE Birth Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:067006. [PMID: 29906263 PMCID: PMC6108579 DOI: 10.1289/ehp2657] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Indoor residual spraying (IRS) of insecticides, conducted in low- and middle-income countries to control malaria, may result in high exposure to dichlorodiphenyltrichloroethane (DDT), its breakdown product dichlorodiphenyldichloroethylene (DDE), or pyrethroids. Animal studies suggest in utero exposure to these chemicals may increase childhood infection frequency. OBJECTIVES We investigated associations between maternal DDT/E and pyrethroid metabolite concentration and child infection associations in an IRS setting in which susceptibility factors are common and infections are leading causes of child morbidity and mortality. METHODS Using gas chromatography-mass spectrometry, we measured serum DDT/E and urinary pyrethroid metabolite concentrations in peripartum samples from 674 women participating in the Venda Health Examination of Mother, Babies and their Environment (VHEMBE) study. Counts of persistent child fevers, otitis media, and severe sore throat between 1 and 2 y of age were ascertained from maternal interviews. Associations between DDT/E and pyrethroid metabolite concentrations and infections were estimated using zero-inflated Poisson regression. We estimated relative excess risks due to interaction (RERI) with poverty, maternal energy intake, and maternal HIV status. RESULTS Concentrations of DDT/E, particularly p,p'-DDE, were associated with higher rates of persistent fevers [IRR=1.21 (95% CI: 1.01, 1.46)], for a 10-fold increase in p,p'-DDE). This association was stronger among children from households below versus above the South African food poverty line [IRR=1.31 (95% CI: 1.08, 1.59) vs. IRR=0.93 (95% CI: 0.69, 1.25), respectively] and for children whose mothers had insufficient versus sufficient caloric intake during pregnancy [IRR=1.30 (95% CI: 1.07, 1.58) vs. IRR=0.96 (95% CI: 0.72, 1.28), respectively]. CONCLUSIONS In utero IRS insecticide exposure may increase childhood infection rates. This was particularly apparent among children from poorer households or whose mothers had low energy intake during pregnancy. https://doi.org/10.1289/EHP2657.
Collapse
Affiliation(s)
- Jonathan Huang
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, California, USA
| | - Riana Bornman
- Centre for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Stephen Rauch
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, California, USA
| | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
141
|
Xiang D, Chu T, Li M, Wang Q, Zhu G. Effects of pyrethroid pesticide cis-bifenthrin on lipogenesis in hepatic cell line. CHEMOSPHERE 2018; 201:840-849. [PMID: 29554630 DOI: 10.1016/j.chemosphere.2018.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/01/2018] [Accepted: 03/03/2018] [Indexed: 06/08/2023]
Abstract
Mounting evidence suggests there is a link between exposure to synthetic pyrethroids (SPs) and the development of obesity. The information presented in this study suggests that cis-bifenthrin (cis-BF) could activate pregnane X receptor (PXR) mediated pathway and lead to the lipid accumulation of human hepatoma (HepG2) cells. Cells were incubated in the control or different concentrations of cis-BF for 24 h. The 1 × 10-7 M and 1 × 10-6 M cis-BF exposure were found to induce cellular triglyceride (TG) accumulation significantly. This phenomenon was further supported by Oil Red O Staining assay. The cis-BF exposure caused upregulation of PXR gene and protein. Correspondingly, we also observed the increased expression of downstream genes involved in lipid formation and the inhibition of the expression of β-oxidation. As chiral pesticide,cis-BF was further conformed to behave enantioselectivity in the lipid metabolism. Rather than 1R-cis-BF, HepG2 cells incubated with 1S-cis-BF exhibited a significant TG accumulation. 1S-cis-BF also showed a higher binding level, of which the KD value was 9.184 × 10-8 M in the SPR assay, compared with 1R-cis-BF (3.463 × 10-6 M). In addition, the molecular docking simulation analyses correlated well with the KD values measured by the SPR, indicating that 1S-cis-BF showed a better binding affinity with PXR. The results in this study also elucidates the differences between the two enantiomers of pyrethroid-induced toxicity in lipid metabolism of non-target organism.
Collapse
Affiliation(s)
- Dandan Xiang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Tianyi Chu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Meng Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Qiangwei Wang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China.
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
142
|
Yang J, Feng Y, Zhan H, Liu J, Yang F, Zhang K, Zhang L, Chen S. Characterization of a Pyrethroid-Degrading Pseudomonas fulva Strain P31 and Biochemical Degradation Pathway of D-Phenothrin. Front Microbiol 2018; 9:1003. [PMID: 29867894 PMCID: PMC5964208 DOI: 10.3389/fmicb.2018.01003] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/30/2018] [Indexed: 11/28/2022] Open
Abstract
D-phenothrin is one of the most popular pyrethroid insecticides for its broad spectrum and high insecticidal activity. However, continuous use of D-phenothrin has resulted in serious environmental contamination and raised public concern about its impact on human health. Biodegradation of D-phenothrin has never been investigated and its metabolic behaviors remain unknown. Here, a novel bacterial strain P31 was isolated from active sludge, which completely degraded (100%) D-phenothrin at 50 mg⋅L-1 in 72 h. Based on the morphology, 16S rRNA gene and Biolog tests, the strain was identified as Pseudomonas fulva. Biodegradation conditions were optimized as 29.5°C and pH 7.3 by utilizing response surface methodology. Strain P31 depicted high tolerance and strong D-phenothrin degradation ability through hydrolysis pathway. Strain P31 degraded D-phenothrin at inhibition constant (Ki) of 482.1673 mg⋅L-1 and maximum specific degradation constant (qmax) of 0.0455 h-1 whereas critical inhibitor concentration remained as 41.1189 mg⋅L-1. The 3-Phenoxybenzaldehyde and 1,2-benzenedicarboxylic butyl dacyl ester were identified as the major intermediate metabolites of D-phenothrin degradation pathway through high-performance liquid chromatography and gas chromatography-mass spectrometry. Bioaugmentation of D-phenothrin-contaminated soils with strain P31 dramatically enhanced its degradation, and over 75% of D-phenothrin was removed from soils within 10 days. Moreover, the strain illustrated a remarkable capacity to degrade other synthetic pyrethroids, including permethrin, cyhalothrin, β-cypermethrin, deltamethrin, fenpropathrin, and bifenthrin, exhibiting great potential in bioremediation of pyrethroid-contaminated environment.
Collapse
Affiliation(s)
- Jingjing Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yanmei Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Hui Zhan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Jie Liu
- Laboratory of Insect Toxicology, and Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Fang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Kaiyang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Lianhui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
143
|
Chen L, Lv X, Dai J, Sun L, Huo P, Li C, Yan Y. Direct Detection of Potential Pyrethroids in Yangtze River via an Imprinted Multilayer Phosphorescence Probe. ANAL SCI 2018; 34:613-618. [PMID: 29743435 DOI: 10.2116/analsci.17p497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A novel tailored multilayer probe for monitoring potential pyrethroids in the Yangtze River was proposed. The room-temperature phosphorescence method was applied to realize a detection strategy that is superior to the fluorescence method. Efficient Mn-doped ZnS quantum dots with uniform size of 4.6 nm were firstly coated with a mesoporous silica to obtain a suitable intermediate transition layer, then an imprinted layer containing bifenthrin specific recognition sites was anchored. Characterizations verified the multilayer structure convincingly and the detection process relied on the electron transfer-induced fluorescence quenching mechanism. Optional detection time and standard detection curve were obtained within a concentration range from 5.0 to 50 μmol L-1. The stability was verified to be good after 12 replicates. Feasibility of the probe was proved by monitoring water samples from the Zhenjiang reach of the Yangtze River. The probe offers promise for direct bifenthrin detection in unknown environmental water with an accurate and stable phosphorescence analysis strategy.
Collapse
Affiliation(s)
- Li Chen
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University
| | - Xiaodong Lv
- School of Mechanical Engineering, Jiangsu University
| | - Jiangdong Dai
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University
| | - Lin Sun
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University
| | - Pengwei Huo
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University
| | - Chunxiang Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University
| |
Collapse
|
144
|
Coker E, Chevrier J, Rauch S, Bradman A, Obida M, Crause M, Bornman R, Eskenazi B. Association between prenatal exposure to multiple insecticides and child body weight and body composition in the VHEMBE South African birth cohort. ENVIRONMENT INTERNATIONAL 2018; 113:122-132. [PMID: 29421401 PMCID: PMC5866210 DOI: 10.1016/j.envint.2018.01.016] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/21/2017] [Accepted: 01/19/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Pregnant women may be co-exposed to multiple insecticides in regions where both pyrethroids and dichlorodiphenyltrichloroethane (DDT) are used for indoor residual spraying (IRS) for malaria control. Despite the potential for adverse effects on offspring, there are few studies in areas where IRS is currently used and little is known about the effects of pyrethroids on children's health. METHODS We investigated the relationship between concentrations of four urinary pyrethroid metabolites in urine and organochlorine pesticide concentrations in maternal blood collected near delivery on body weight and body composition among children ≤2 years old participating in the prospective South Africa VHEMBE birth cohort (N = 708). We used measurements of length/height and weight collected at 1 and 2 years of age to calculate body mass index (BMI)-for-age, weight-for-age, and weight-for-height z-scores based on World Health Organization standards. We fit separate single-pollutant mixed effects models for each exposure of interest and also stratified by sex. We also fit all analyte concentrations jointly by using a Bayesian kernel machine regression (BKMR) statistical method to assess variable importance of each analyte and to explore the potential for joint effects of the multiple exposures. RESULTS Single-pollutant linear mixed effects models showed that, among girls only, p,p'-DDT was associated with higher BMI-for-age (adjusted [a]β = 0.22 [95% CI: 0.10, 0.35]; sex interaction p-value = 0.001), weight-for-height (aβ = 0.22 [95% CI: 0.09, 0.34]; sex interaction p-value = 0.002), and weight-for-age (aβ = 0.17 [95% CI: 0.05, 0.29], sex interaction p-value = 0.01). Although single-pollutant models suggested that p,p'-DDT and dichlorodiphenyldichloroethylene (p,p'-DDE) were also associated with these outcomes in girls, p,p'-DDE was no longer associated in multi-pollutant models with BKMR. The pyrethroid metabolites cis-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylicacid (cis-DBCA) and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (trans-DCCA) were inversely related to BMI-for-age and weight-for-height overall; however, results suggested that weight-for-age and weight-for-height associations for trans-DCCA (sex interaction p-valueweight-for-age = 0.02; p-valueweight-for-height = 0.13) and cis-DCCA (sex interaction p-valueweight-for-age = 0.02; p-valueweight-for-height = 0.08) were strongest and most consistent in boys relative to girls. BKMR also revealed joint effects from the chemical mixture. For instance, with increased concentrations of p,p'-DDE, the negative exposure-response relationship for cis-DBCA on BMI-for-age became steeper. CONCLUSIONS Our single-pollutant and multi-pollutant model results show that maternal serum p,p'-DDT concentration was consistently and positively associated with body composition and body weight in young girls and that maternal urinary pyrethroid metabolite concentrations (particularly cis-DBCA and trans-DCCA) were negatively associated with body weight and body composition in young boys. Joint effects of the insecticide exposure mixture were also apparent, underscoring the importance of using advanced statistical methods to examine the health effects of chemical mixtures.
Collapse
Affiliation(s)
- Eric Coker
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California at Berkeley, 1995 University Ave, Berkeley, CA, USA.
| | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 1020 Pine Avenue West, Room 42, Montreal, Quebec, Canada.
| | - Stephen Rauch
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California at Berkeley, 1995 University Ave, Berkeley, CA, USA.
| | - Asa Bradman
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California at Berkeley, 1995 University Ave, Berkeley, CA, USA.
| | - Muvhulawa Obida
- School of Health Systems and Public Health (SHSPH), University of Pretoria Institute for Sustainable Malaria Control (UP ISMC), MRC Collaborating Centre for Malaria Research, CMEG Laboratory, University of Pretoria, Hatfield Campus, Floor 3, NWII Building, Pretoria 0028, South Africa
| | - Madelein Crause
- School of Health Systems and Public Health (SHSPH), University of Pretoria Institute for Sustainable Malaria Control (UP ISMC), MRC Collaborating Centre for Malaria Research, CMEG Laboratory, University of Pretoria, Hatfield Campus, Floor 3, NWII Building, Pretoria 0028, South Africa
| | - Riana Bornman
- School of Health Systems and Public Health (SHSPH), University of Pretoria Institute for Sustainable Malaria Control (UP ISMC), MRC Collaborating Centre for Malaria Research, CMEG Laboratory, University of Pretoria, Hatfield Campus, Floor 3, NWII Building, Pretoria 0028, South Africa.
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California at Berkeley, 1995 University Ave, Berkeley, CA, USA.
| |
Collapse
|
145
|
Chang J, Hao W, Xu Y, Xu P, Li W, Li J, Wang H. Stereoselective degradation and thyroid endocrine disruption of lambda-cyhalothrin in lizards (Eremias argus) following oral exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:300-309. [PMID: 28970022 DOI: 10.1016/j.envpol.2017.09.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
The disturbance of the thyroid system and elimination of chiral pyrethroid pesticides with respect to enantioselectivity in reptiles have so far received limited attention by research. In this study, bioaccumulation, thyroid gland lesions, thyroid hormone levels, and hypothalamus-pituitary-thyroid axis-related gene expression in male Eremias argus were investigated after three weeks oral administration of lambda-cyhalothrin (LCT) enantiomers. In the lizard liver, the concentration of LCT was negatively correlated with the metabolite-3-phenoxybenzoic acid (PBA) level during 21 days of exposure. (+)-LCT exposure induced a higher thyroid follicular epithelium height than (-)-LCT exposure. The thyroxine levels were increased in both treated groups while only (+)-LCT exposure induced a significant change in the triiodothyronine (T3) level. In addition, the expressions of hypothalamus-pituitary-thyroid axis-related genes including thyroid hormone receptors (trs), deiodinases (dios), uridinediphosphate glucuronosyltransferase (udp), and sulfotransferase (sult) were up-regulated after exposure to the two enantiomers. (+)-LCT treatment resulted in higher expression of trs and (-)-LCT exposure led to greater stimulation of dios in the liver, which indicated PBA-induced antagonism on thyroid hormone receptors and LCT-induced disruption of thyroxine (T4) deiodination. The results suggest the (-)-LCT exposure causes higher residual level in lizard liver while induces less disruption on lizard thyroid activity than (+)-LCT.
Collapse
Affiliation(s)
- Jing Chang
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Weiyu Hao
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | | | - Peng Xu
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Wei Li
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Jianzhong Li
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Huili Wang
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China.
| |
Collapse
|
146
|
Bertotto LB, Richards J, Gan J, Volz DC, Schlenk D. Effects of bifenthrin exposure on the estrogenic and dopaminergic pathways in zebrafish embryos and juveniles. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:236-246. [PMID: 28815728 DOI: 10.1002/etc.3951] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/15/2017] [Accepted: 08/13/2017] [Indexed: 05/27/2023]
Abstract
Bifenthrin is a pyrethroid insecticide used in urban and agricultural applications. Previous studies have shown that environmentally relevant (ng/L) concentrations of bifenthrin increased plasma concentrations of 17β-estradiol (E2) and altered the expression of dopaminergic pathway components. The dopaminergic neurons can indirectly regulate E2 biosynthesis, suggesting that bifenthrin may disrupt the hypothalamic-pituitary-gonadal (HPG) axis. Because embryos do not have a complete HPG axis, the hypothesis that bifenthrin impairs dopamine regulation was tested in embryonic and 1-mo-old juvenile zebrafish (Danio rerio) with exposure to measured concentrations of 0.34 and 3.1 µg/L bifenthrin for 96 h. Quantitative reverse transcriptase polymerase chain reaction was used to investigate transcripts of tyrosine hydroxylase (TH), dopamine receptor 1 (DR1) and 2A (DR2A), dopamine active transporter (DAT), estrogen receptor α (ERα), ERβ1, ERβ2, luteinizing hormone β (LHβ), follicle-stimulating hormone β (FSHβ), vitellogenin (VTG), cytochrome P450 cyp19a1a, and cyp19a1b. Levels of E2 were measured by enzyme-linked immunosorbent assay (ELISA). Dopamine and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) concentrations were measured by liquid chromatrography-tandem mass spectrometry (LC-MS/MS). Significant decreases in TH and DR1 transcripts and HVA levels, as well as ratios of HVA/dopamine and HVA+DOPAC/dopamine, in zebrafish embryos were observed after bifenthrin treatment. In juveniles, a significant increase in the expression of ERβ1 and the DOPAC to dopamine ratio was noted. These results show a possible antiestrogenic effect of bifenthrin in embryos, and estrogenicity in juveniles, indicating life-stage-dependent toxicity in developing fish. Environ Toxicol Chem 2018;37:236-246. © 2017 SETAC.
Collapse
Affiliation(s)
- Luísa Becker Bertotto
- Department of Environmental Sciences, University of California, Riverside, California, USA
| | - Jaben Richards
- Department of Environmental Sciences, University of California, Riverside, California, USA
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, California, USA
| | - David Christopher Volz
- Department of Environmental Sciences, University of California, Riverside, California, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California, USA
| |
Collapse
|
147
|
Bille L, Binato G, Gabrieli C, Manfrin A, Pascoli F, Pretto T, Toffan A, Dalla Pozza M, Angeletti R, Arcangeli G. First report of a fish kill episode caused by pyrethroids in Italian freshwater. Forensic Sci Int 2017; 281:176-182. [PMID: 29190591 DOI: 10.1016/j.forsciint.2017.10.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/19/2017] [Accepted: 10/29/2017] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Fish kills are events of strong emotional impact on the population because of the frequent suspicion that they can be the result of serious pollution accidents. As a matter of fact, they are often due to natural occurrences, such as low levels of dissolved oxygen in the water, but in many cases the causes remain unknown. Fish are particularly sensitive to pesticides and pyrethroids are reported to be the most ecotoxicologically active in the aquatic environment. Nevertheless, the reported cases of massive wild fish mortalities due to these toxicants are very few. This paper describes a fish kill episode occurred in the Padua Province (Veneto Region - North Eastern Italy) which involved several fish species and for which it was possible to identify the cause in the presence of pyrethroids in the water. CASE PRESENTATION When a whitish liquid coming from the rainwater drain of an industrial area was seen to be spilling into a drainage channel, a fish massive mortality was noticed and investigated. The collected water samples showed the presence of relevant concentrations of cypermethrin, permethrin, deltamethrin and tetramethrin. Analyses on the fish tissues revealed the presence of cypermethrin and permethrin at a concentration range of 476-2834μg/kg and 346-2826μg/kg on a lipid basis, respectively. DISCUSSION According to the results of the performed analyses, we can reasonably state that the described episode had been caused by the exposure of biota to high concentrations of pyrethroids. The present case report significantly contributes to the limited literature available on pesticides-related fish kills. Moreover, it highlights the importance of sharing protocols for fish kill management at a national level, as this would help to better define the roles of the different institutions involved and to improve the investigation and the reporting of these events.
Collapse
Affiliation(s)
- Laura Bille
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro (PD), 35020, Italy.
| | - Giovanni Binato
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro (PD), 35020, Italy
| | - Claudio Gabrieli
- Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto, Via Ospedale Civile 24, Padova, 35121, Italy
| | - Amedeo Manfrin
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro (PD), 35020, Italy
| | - Francesco Pascoli
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro (PD), 35020, Italy
| | - Tobia Pretto
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro (PD), 35020, Italy
| | - Anna Toffan
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro (PD), 35020, Italy
| | - Manuela Dalla Pozza
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro (PD), 35020, Italy
| | - Roberto Angeletti
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro (PD), 35020, Italy
| | - Giuseppe Arcangeli
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro (PD), 35020, Italy
| |
Collapse
|
148
|
Madhubabu G, Yenugu S. Exposure to allethrin-based mosquito coil smoke during gestation and postnatal development affects reproductive function in male offspring of rat. Inhal Toxicol 2017; 29:374-385. [DOI: 10.1080/08958378.2017.1385661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Golla Madhubabu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Suresh Yenugu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
149
|
Yurdakök-Dikmen B, Vejselova D, Kutlu HM, Filazi A, Erkoç F. Effects of synthetic pyrethroids on RTG-2 cells. TOXIN REV 2017. [DOI: 10.1080/15569543.2017.1366922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Begüm Yurdakök-Dikmen
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Djanan Vejselova
- Department of Biology, Faculty of Science, Anadolu University, Eskisehir, Turkey
| | - H. Mehtap Kutlu
- Department of Biology, Faculty of Science, Anadolu University, Eskisehir, Turkey
| | - Ayhan Filazi
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Figen Erkoç
- Department of Biology Education, Gazi University, Ankara, Turkey
| |
Collapse
|
150
|
Pesticide Residues in Honey from the Major Honey Producing Forest Belts in Ghana. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2017; 2017:7957431. [PMID: 28951746 PMCID: PMC5603740 DOI: 10.1155/2017/7957431] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/02/2017] [Indexed: 12/21/2022]
Abstract
Concentrations of pesticides residues in honey sampled from the major honey producing forest belts in Ghana were determined. Samples were purposively collected and extracted using the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method and analysed for synthetic pyrethroids, organochlorine, and organophosphate pesticide residues. Aldrin, γ-HCH, β-HCH, ∑endosulfan, cyfluthrin, cypermethrin, deltamethrin, permethrin methoxychlor, ∑DDT, chlorpyrifos, fenvalerate, malathion, dimethoate, and diazinon were all detected at the concentration of 0.01 mg/kg, while cyfluthrin and permethrin were detected at mean concentrations of 0.02 and 0.04 mg/kg, respectively. All the pesticide residues detected were very low and below their respective maximum residue limits set by the European Union. Hence, pesticide residues in honey samples analyzed do not pose any health risk to consumers.
Collapse
|