101
|
Chin SY, Lu Y, Di W, Ye K, Li Z, He C, Cao Y, Tang C, Xue K. Regulating polystyrene glass transition temperature by varying the hydration levels of aromatic ring/Li + interaction. Phys Chem Chem Phys 2023; 25:30223-30227. [PMID: 37817561 DOI: 10.1039/d3cp02995f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Polymer properties can be altered via lithium ion doping, whereby adsorbed Li+ binds with H2O within the polymer chain. However, direct spectroscopic evidence of the tightness of Li+/H2O binding in the solid state is limited, and the impact of Li+ on polymer sidechain packing is rarely reported. Here, we investigate a polystyrene/H2O/LiCl system using solid-state NMR, from which we determined a dipolar coupling of 11.4 kHz between adsorbed Li+ and H2O protons. This coupling corroborates a model whereby Li+ interacts with the oxygen atom in H2O via charge affinity, which we believe is the main driving force of Li+ binding. We demonstrated the impact of hydrated Li+ on sidechain packing and dynamics in polystyrene using proton-detected solid-state NMR. Experimental data and density functional theory (DFT) simulations revealed that the addition of Li+ and the increase in the hydration levels of Li+, coupled with aromatic ring binding, change the energy barrier of sidechain packing and dynamics and, consequently, changes the glass transition temperature of polystyrene.
Collapse
Affiliation(s)
- Sze Yuet Chin
- NTU Center of High Field NMR Spectroscopy and Imaging, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| | - Yunpeng Lu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Weishuai Di
- Collaborative Innovation Center for Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| | - Kai Ye
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639789, Singapore
| | - Zihan Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chenlu He
- Department of Chemistry, National University of Singapore, Singapore, 117549, Singapore
| | - Yi Cao
- Collaborative Innovation Center for Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, People's Republic of China
- Institute for Brain Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Chun Tang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Kai Xue
- NTU Center of High Field NMR Spectroscopy and Imaging, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
102
|
Chremos A, Mussel M, Douglas JF, Horkay F. Ion Partition in Polyelectrolyte Gels and Nanogels. Gels 2023; 9:881. [PMID: 37998971 PMCID: PMC10670699 DOI: 10.3390/gels9110881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023] Open
Abstract
Polyelectrolyte gels provide a load-bearing structural framework for many macroscopic biological tissues, along with the organelles within the cells composing tissues and the extracellular matrices linking the cells at a larger length scale than the cells. In addition, they also provide a medium for the selective transportation and sequestration of ions and molecules necessary for life. Motivated by these diverse problems, we focus on modeling ion partitioning in polyelectrolyte gels immersed in a solution with a single type of ionic valence, i.e., monovalent or divalent salts. Specifically, we investigate the distribution of ions inside the gel structure and compare it with the bulk, i.e., away from the gel structure. In this first exploratory study, we neglect solvation effects in our gel by modeling the gels without an explicit solvent description, with the understanding that such an approach may be inadequate for describing ion partitioning in real polyelectrolyte gels. We see that this type of model is nonetheless a natural reference point for considering gels with solvation. Based on our idealized polymer network model without explicit solvent, we find that the ion partition coefficients scale with the salt concentration, and the ion partition coefficient for divalent ions is higher than for monovalent ions over a wide range of Bjerrum length (lB) values. For gels having both monovalent and divalent salts, we find that divalent ions exhibit higher ion partition coefficients than monovalent salt for low divalent salt concentrations and low lB. However, we also find evidence that the neglect of an explicit solvent, and thus solvation, provides an inadequate description when compared to experimental observations. Thus, in future work, we must consider both ion and polymer solvation to obtain a more realistic description of ion partitioning in polyelectrolyte gels.
Collapse
Affiliation(s)
- Alexandros Chremos
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matan Mussel
- Department of Physics, University of Haifa, Haifa 3103301, Israel
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
103
|
Carré L, Gonzalez D, Girard É, Franzetti B. Effects of chaotropic salts on global proteome stability in halophilic archaea: Implications for life signatures on Mars. Environ Microbiol 2023; 25:2216-2230. [PMID: 37349893 DOI: 10.1111/1462-2920.16451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/28/2023] [Indexed: 06/24/2023]
Abstract
Halophilic archaea thriving in hypersaline environments, such as salt lakes, offer models for putative life in extraterrestrial brines such as those found on Mars. However, little is known about the effect of the chaotropic salts that could be found in such brines, such as MgCl2 , CaCl2 and (per)chlorate salts, on complex biological samples like cell lysates which could be expected to be more representative of biomarkers left behind putative extraterrestrial life forms. We used intrinsic fluorescence to study the salt dependence of proteomes extracted from five halophilic strains: Haloarcula marismortui, Halobacterium salinarum, Haloferax mediterranei, Halorubrum sodomense and Haloferax volcanii. These strains were isolated from Earth environments with different salt compositions. Among the five strains that were analysed, H. mediterranei stood out as a results of its high dependency on NaCl for its proteome stabilization. Interestingly, the results showed contrasting denaturation responses of the proteomes to chaotropic salts. In particular, the proteomes of strains that are most dependent or tolerant on MgCl2 for growth exhibited higher tolerance towards chaotropic salts that are abundant in terrestrial and Martian brines. These experiments bridge together global protein properties and environmental adaptation and help guide the search for protein-like biomarkers in extraterrestrial briny environments.
Collapse
Affiliation(s)
- Lorenzo Carré
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | | | - Éric Girard
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | | |
Collapse
|
104
|
Havemeister F, Ghaeidamini M, Esbjörner EK. Monovalent cations have different effects on the assembly kinetics and morphology of α-synuclein amyloid fibrils. Biochem Biophys Res Commun 2023; 679:31-36. [PMID: 37660641 DOI: 10.1016/j.bbrc.2023.08.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Formation of α-synuclein amyloid fibrils is a pathological hallmark of Parkinson's disease and a phenomenon that is strongly modulated by environmental factors. Here, we compared effects of different monovalent cations (Li+, Na+, K+) on the formation and properties of α-synuclein amyloid fibrils. Na+ > Li+ were found to have concentration-dependent catalytic effects on primary nucleation whereas K+ ions acted inhibitory. We discuss this discrepancy in terms of a superior affinity of Na+ and Li+ to carboxylic protein groups, resulting in reduced Columbic repulsion and by considering K+ as an ion with poor protein binding and slight chaotropic character, which could promote random coil protein structure. K+ ions, furthermore, appeared to lower the β-sheet content of the fibrils and increase their persistence lengths, the latter we interpret as a consequence of lesser ion binding and hence higher line charge of the fibrils. The finding that Na+ and K+ have opposite effects on α-synuclein aggregation is intriguing in relation to the significant transient gradients of these ions across axonal membranes, but also important for the design and interpretation of biophysical assays where buffers containing these monovalent cations have been intermixedly used.
Collapse
Affiliation(s)
- Fritjof Havemeister
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-41296, Gothenburg, Sweden
| | - Marziyeh Ghaeidamini
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-41296, Gothenburg, Sweden
| | - Elin K Esbjörner
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-41296, Gothenburg, Sweden.
| |
Collapse
|
105
|
Hanke M, Dornbusch D, Tomm E, Grundmeier G, Fahmy K, Keller A. Superstructure-dependent stability of DNA origami nanostructures in the presence of chaotropic denaturants. NANOSCALE 2023; 15:16590-16600. [PMID: 37747200 DOI: 10.1039/d3nr02045b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The structural stability of DNA origami nanostructures in various chemical environments is an important factor in numerous applications, ranging from biomedicine and biophysics to analytical chemistry and materials synthesis. In this work, the stability of six different 2D and 3D DNA origami nanostructures is assessed in the presence of three different chaotropic salts, i.e., guanidinium sulfate (Gdm2SO4), guanidinium chloride (GdmCl), and tetrapropylammonium chloride (TPACl), which are widely employed denaturants. Using atomic force microscopy (AFM) to quantify nanostructural integrity, Gdm2SO4 is found to be the weakest and TPACl the strongest DNA origami denaturant, respectively. Despite different mechanisms of actions of the selected salts, DNA origami stability in each environment is observed to depend on DNA origami superstructure. This is especially pronounced for 3D DNA origami nanostructures, where mechanically more flexible designs show higher stability in both GdmCl and TPACl than more rigid ones. This is particularly remarkable as this general dependence has previously been observed under Mg2+-free conditions and may provide the possibility to optimize DNA origami design toward maximum stability in diverse chemical environments. Finally, it is demonstrated that melting temperature measurements may overestimate the stability of certain DNA origami nanostructures in certain chemical environments, so that such investigations should always be complemented by microscopic assessments of nanostructure integrity.
Collapse
Affiliation(s)
- Marcel Hanke
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Daniel Dornbusch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, Dresden 01328, Germany.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden 01062, Germany
| | - Emilia Tomm
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Guido Grundmeier
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Karim Fahmy
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, Dresden 01328, Germany.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden 01062, Germany
| | - Adrian Keller
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| |
Collapse
|
106
|
Mandalaparthy V, Tripathy M, van der Vegt NFA. Anions and Cations Affect Amino Acid Dissociation Equilibria via Distinct Mechanisms. J Phys Chem Lett 2023; 14:9250-9256. [PMID: 37812174 DOI: 10.1021/acs.jpclett.3c02062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Salts reduce the pKa of weak acids by a mechanism sensitive to ion identity and concentration via charge screening of the deprotonated state. In this study, we utilize constant pH molecular dynamics simulations to understand the molecular mechanism behind the salt-dependent dissociation of aspartic acid (Asp). We calculate the pKa of Asp in the presence of a monovalent salt and investigate Hofmeister ion effects by systematically varying the ionic radii. We observe that increasing the anion size leads to a monotonic decrease in Asp pKa. Conversely, the cation size affects the pKa nonmonotonically, interpretable in the context of the law of matching water affinity. The net effect of salt on Asp acidity is governed by an interplay of solvation and competing ion interactions. The proposed mechanism is rather general and can be applicable to several problems in Hofmeister ion chemistry, such as pH effects on protein stability and soft matter interfaces.
Collapse
Affiliation(s)
- Varun Mandalaparthy
- Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Madhusmita Tripathy
- Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Nico F A van der Vegt
- Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
107
|
Gomes MC, Pinho AR, Custódio C, Mano JF. Self-Assembly of Platelet Lysates Proteins into Microparticles by Unnatural Disulfide Bonds for Bottom-Up Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304659. [PMID: 37354139 DOI: 10.1002/adma.202304659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Indexed: 06/26/2023]
Abstract
There is a demand to design microparticles holding surface topography while presenting inherent bioactive cues for applications in the biomedical and biotechnological fields. Using the pool of proteins present in human-derived platelet lysates (PLs), the production of protein-based microparticles via a simple and cost-effective method is reported, exploring the prone redox behavior of cysteine (Cy-SH) amino acid residues. The forced formation of new intermolecular disulfide bonds results in the precipitation of the proteins as spherical, pompom-like microparticles with adjustable sizes (15-50 µm in diameter) and surface topography consisting of grooves and ridges. These PL microparticles exhibit extraordinary cytocompatibility, allowing cell-guided microaggregates to form, while also working as injectable systems for cell support. Early studies also suggest that the surface topography provided by these PL microparticles can support osteogenic behavior. Consequently, these PL microparticles may find use to create live tissues via bottom-up procedures or injectable tissue-defect fillers, particularly for bone regeneration, with the prospect of working under xeno-free conditions.
Collapse
Affiliation(s)
- Maria C Gomes
- Department of Chemistry CICECO-Aveiro Institute of Materials University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Ana Rita Pinho
- Department of Chemistry CICECO-Aveiro Institute of Materials University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Catarina Custódio
- Department of Chemistry CICECO-Aveiro Institute of Materials University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry CICECO-Aveiro Institute of Materials University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
108
|
Lavoie RA, Zugates JT, Cheeseman AT, Teten MA, Ramesh S, Freeman JM, Swango S, Fitzpatrick J, Joshi A, Hollers B, Debebe Z, Lindgren TK, Kozak AN, Kondeti VK, Bright MK, Yearley EJ, Tracy A, Irwin JA, Guerrero M. Enrichment of adeno-associated virus serotype 5 full capsids by anion exchange chromatography with dual salt elution gradients. Biotechnol Bioeng 2023; 120:2953-2968. [PMID: 37256741 DOI: 10.1002/bit.28453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
Adeno-associated virus-based gene therapies have demonstrated substantial therapeutic benefit for the treatment of genetic disorders. In manufacturing processes, viral capsids are produced with and without the encapsidated gene of interest. Capsids devoid of the gene of interest, or "empty" capsids, represent a product-related impurity. As a result, a robust and scalable method to enrich full capsids is crucial to provide patients with as much potentially active product as possible. Anion exchange chromatography has emerged as a highly utilized method for full capsid enrichment across many serotypes due to its ease of use, robustness, and scalability. However, achieving sufficient resolution between the full and empty capsids is not trivial. In this work, anion exchange chromatography was used to achieve empty and full capsid resolution for adeno-associated virus serotype 5. A salt gradient screen of multiple salts with varied valency and Hofmeister series properties was performed to determine optimal peak resolution and aggregate reduction. Dual salt effects were evaluated on the same product and process attributes to identify any synergies with the use of mixed ion gradients. The modified process provided as high as ≥75% AAV5 full capsids (≥3-fold enrichment based on the percent full in the feed stream) with near baseline separation of empty capsids and achieved an overall vector genome step yield of >65%.
Collapse
Affiliation(s)
| | | | | | - Matt A Teten
- BridgeBio Gene Therapy LLC, Raleigh, North Carolina, USA
| | | | | | - Summer Swango
- BridgeBio Gene Therapy LLC, Raleigh, North Carolina, USA
| | | | - Amod Joshi
- BridgeBio Gene Therapy LLC, Raleigh, North Carolina, USA
| | | | | | | | - Amber N Kozak
- BridgeBio Gene Therapy LLC, Raleigh, North Carolina, USA
| | | | - Mary K Bright
- BridgeBio Gene Therapy LLC, Raleigh, North Carolina, USA
| | - Eric J Yearley
- BridgeBio Gene Therapy LLC, Raleigh, North Carolina, USA
| | | | - Jacob A Irwin
- BridgeBio Gene Therapy LLC, Raleigh, North Carolina, USA
| | | |
Collapse
|
109
|
Xavier JAM, Fuentes I, Nuez-Martínez M, Viñas C, Teixidor F. Single stop analysis of a protein surface using molecular probe electrochemistry. J Mater Chem B 2023; 11:8422-8432. [PMID: 37563960 DOI: 10.1039/d3tb00816a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Visualization of a protein in its native form and environment without any interference has always been a challenging task. Contrary to the assumption that protein surfaces are smooth, they are in fact highly irregular with undulating surfaces. Hence, in this study, we have tackled this ambiguous nature of the 'surface' of a protein by considering the 'effective' protein surface (EPS) with respect to its interaction with the geometrically well-defined and structurally inert anionic molecule [3,3'-Co(1,2-C2B9H11)2]-, abbreviated as [o-COSAN]-, whose stability, propensity for amine residues, and self-assembling abilities are well reported. This study demonstrates the intricacies of protein surfaces exploiting simple electrochemical measurements using a 'small molecule' redox-active probe. This technique offers the advantage of not utilizing any harsh experimental conditions that could alter the native structure of the protein and hence the protein integrity is retained. Identification of the amino acid residues which are most involved in the interactions with [3,3'-Co(1,2-C2B9H11)2]- and how a protein's environment affects these interactions can help in gaining insights into how to modify proteins to optimize their interactions particularly in the fields of drug design and biotechnology. In this research, we have demonstrated that [3,3'-Co(1,2-C2B9H11)2]- anionic small molecules are excellent candidates for studying and visualizing protein surfaces in their natural environment and allow proteins to be classified according to the surface composition, which imparts their properties. [3,3'-Co(1,2-C2B9H11)2]- 'viewed' each protein surface differently and hence has the potential to act as a simple and easy to handle cantilever for measuring and picturing protein surfaces.
Collapse
Affiliation(s)
- Jewel Ann Maria Xavier
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, Spain.
| | - Isabel Fuentes
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, Spain.
| | - Miquel Nuez-Martínez
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, Spain.
| | - Clara Viñas
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, Spain.
| | - Francesc Teixidor
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, Spain.
| |
Collapse
|
110
|
Kumar A, Craig VSJ, Robertson H, Page AJ, Webber GB, Wanless EJ, Mitchell VD, Andersson GG. Specific Ion Effects at the Vapor-Formamide Interface: A Reverse Hofmeister Series in Ion Concentration Depth Profiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12618-12626. [PMID: 37642667 DOI: 10.1021/acs.langmuir.3c01286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Employing neutral impact collision ion scattering spectroscopy (NICISS), we have directly measured the concentration depth profiles (CDPs) of various monovalent ions at the vapor-formamide interface. NICISS provides CDPs of individual ions by measuring the energy loss of neutral helium atoms backscattered from the solution interface. CDPs at the vapor-formamide interface of Cl-, Br-, I-, Na+, K+, and Cs+ are measured and compared to elucidate the interfacial specific ion trends. We report a reverse Hofmeister series in the presence of inorganic ions (anion and cation) at the vapor-formamide interface relative to the water-vapor interface, and the CDPs are found to be independent of the counterion for most ions studied. Thus, ions at the surface of formamide follow a "Hofmeister paradigm" where the counterion does not impact the ion series. These specific ion trends are complemented with surface tension and X-ray absorption near-edge structure (XANES) measurements on formamide electrolyte solutions.
Collapse
Affiliation(s)
- Anand Kumar
- Flinders Institute of Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Vincent S J Craig
- Department of Materials Physics, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - Hayden Robertson
- College of Science, Engineering, and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Alister J Page
- College of Science, Engineering, and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Grant B Webber
- College of Science, Engineering, and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Erica J Wanless
- College of Science, Engineering, and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | - Gunther G Andersson
- Flinders Institute of Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
- Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
111
|
Jeong HG, Kim J, Lee S, Jo K, Yong HI, Choi YS, Jung S. Differences in pork myosin solubility and structure with various chloride salts and their property of pork gel. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:1065-1080. [PMID: 37969338 PMCID: PMC10640935 DOI: 10.5187/jast.2023.e7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 01/14/2023] [Indexed: 11/17/2023]
Abstract
The solubility and structure of myosin and the properties of pork gel with NaCl, KCl, CaCl2, and MgCl2 were investigated. Myofibrillar proteins (MPs) with phosphate were more solubilized with NaCl than with KCl (p < 0.05). CaCl2 and MgCl2 showed lower MP solubilities than those of NaCl and KCl (p < 0.05). The α-helix content of myosin was lower in KCl, CaCl2, and MgCl2 than in NaCl (p < 0.05). The pH of pork batter decreased in the order of KCl, NaCl, MgCl2, and CaCl2 (p < 0.05). The cooking yield of the pork gel manufactured with monovalent salts was higher than that of the pork gel manufactured with divalent salts (p < 0.05). The pork gel manufactured with KCl and MgCl2 showed lower hardness than that of the pork gel manufactured with NaCl. The solubility and structure of myosin were different with the different chloride salts and those led the different quality properties of pork gel. Therefore, the results of this study can be helpful for understanding the quality properties of low-slat meat products manufactured by replacing sodium chloride with different chloride salts.
Collapse
Affiliation(s)
- Hyun Gyung Jeong
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Jake Kim
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Seonmin Lee
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Kyung Jo
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Hae In Yong
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Samooel Jung
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
112
|
Berntsson E, Vosough F, Noormägi A, Padari K, Asplund F, Gielnik M, Paul S, Jarvet J, Tõugu V, Roos PM, Kozak M, Gräslund A, Barth A, Pooga M, Palumaa P, Wärmländer SKTS. Characterization of Uranyl (UO 22+) Ion Binding to Amyloid Beta (Aβ) Peptides: Effects on Aβ Structure and Aggregation. ACS Chem Neurosci 2023; 14:2618-2633. [PMID: 37487115 PMCID: PMC10401651 DOI: 10.1021/acschemneuro.3c00130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
Uranium (U) is naturally present in ambient air, water, and soil, and depleted uranium (DU) is released into the environment via industrial and military activities. While the radiological damage from U is rather well understood, less is known about the chemical damage mechanisms, which dominate in DU. Heavy metal exposure is associated with numerous health conditions, including Alzheimer's disease (AD), the most prevalent age-related cause of dementia. The pathological hallmark of AD is the deposition of amyloid plaques, consisting mainly of amyloid-β (Aβ) peptides aggregated into amyloid fibrils in the brain. However, the toxic species in AD are likely oligomeric Aβ aggregates. Exposure to heavy metals such as Cd, Hg, Mn, and Pb is known to increase Aβ production, and these metals bind to Aβ peptides and modulate their aggregation. The possible effects of U in AD pathology have been sparsely studied. Here, we use biophysical techniques to study in vitro interactions between Aβ peptides and uranyl ions, UO22+, of DU. We show for the first time that uranyl ions bind to Aβ peptides with affinities in the micromolar range, induce structural changes in Aβ monomers and oligomers, and inhibit Aβ fibrillization. This suggests a possible link between AD and U exposure, which could be further explored by cell, animal, and epidemiological studies. General toxic mechanisms of uranyl ions could be modulation of protein folding, misfolding, and aggregation.
Collapse
Affiliation(s)
- Elina Berntsson
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Faraz Vosough
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Andra Noormägi
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Kärt Padari
- Institute
of Molecular and Cell Biology, University
of Tartu, 50090 Tartu, Estonia
| | - Fanny Asplund
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Maciej Gielnik
- Department
of Molecular Biology and Genetics, Aarhus
University, 8000 Aarhus, Denmark
| | - Suman Paul
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Jüri Jarvet
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| | - Vello Tõugu
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Per M. Roos
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- University
Healthcare Unit of Capio St. Göran Hospital, 112 81 Stockholm, Sweden
| | - Maciej Kozak
- Department
of Biomedical Physics, Institute of Physics, Faculty of Physics, Adam Mickiewicz University, 61-712 Poznań, Poland
- SOLARIS
National Synchrotron Radiation Centre, Jagiellonian
University, 31-007 Kraków, Poland
| | - Astrid Gräslund
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| | - Andreas Barth
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Margus Pooga
- Institute
of Technology, University of Tartu, 50090 Tartu, Estonia
| | - Peep Palumaa
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Sebastian K. T. S. Wärmländer
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| |
Collapse
|
113
|
Mukherji D, Kremer K. Smart Polymers for Soft Materials: From Solution Processing to Organic Solids. Polymers (Basel) 2023; 15:3229. [PMID: 37571124 PMCID: PMC10421237 DOI: 10.3390/polym15153229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Polymeric materials are ubiquitous in our everyday life, where they find a broad range of uses-spanning across common household items to advanced materials for modern technologies. In the context of the latter, so called "smart polymers" have received a lot of attention. These systems are soluble in water below their lower critical solution temperature Tℓ and often exhibit counterintuitive solvation behavior in mixed solvents. A polymer is known as smart-responsive when a slight change in external stimuli can significantly change its structure, functionm and stability. The interplay of different interactions, especially hydrogen bonds, can also be used for the design of lightweight high-performance organic solids with tunable properties. Here, a general scheme for establishing a structure-property relationship is a challenge using the conventional simulation techniques and also in standard experiments. From the theoretical side, a broad range of all-atom, multiscale, generic, and analytical techniques have been developed linking monomer level interaction details with macroscopic material properties. In this review, we briefly summarize the recent developments in the field of smart polymers, together with complementary experiments. For this purpose, we will specifically discuss the following: (1) the solution processing of responsive polymers and (2) their use in organic solids, with a goal to provide a microscopic understanding that may be used as a guiding tool for future experiments and/or simulations regarding designing advanced functional materials.
Collapse
Affiliation(s)
- Debashish Mukherji
- Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany;
| |
Collapse
|
114
|
Saska V, Contaldo U, Mazurenko I, de Poulpiquet A, Lojou E. High electrolyte concentration effect on enzymatic oxygen reduction. Bioelectrochemistry 2023; 153:108503. [PMID: 37429114 DOI: 10.1016/j.bioelechem.2023.108503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
The nature, the composition and the concentration of electrolytes is essential for electrocatalysis involving redox enzymes. Here, we discuss the effect of various electrolyte compositions with increasing ionic strengths on the stability and activity towards O2 reduction of the bilirubin oxidase from Myrothecium verrucaria (Mv BOD). Different salts, Na2SO4, (NH4)2SO4, NaCl, NaClO4, added to a phosphate buffer (PB) were evaluated with concentrations ranging from 100 mM up to 1.7 M. On functionalized carbon nanotube-modified electrodes, it was shown that the catalytic current progressively decreased with increasing salt concentrations. The process was reversible suggesting it was not related to enzyme leakage. The enzyme was then immobilized on gold electrodes modified by self-assembling of thiols. When the enzyme was simply adsorbed, the catalytic current decreased in a reversible way, thus behaving similarly as on carbon nanotubes. Enzyme mobility at the interface induced by a modification in the interactions between the protein and the electrode upon salt addition may account for this behavior. When the enzyme was covalently attached, the catalytic current increased. Enzyme compaction is proposed to be at the origin of such catalytic current increase because of shorter distances between the first copper site electron acceptor and the electrode.
Collapse
Affiliation(s)
- V Saska
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, UMR 7281, 31, chemin Joseph Aiguier, CS 70071, 13402 Marseille cedex 09, France
| | - U Contaldo
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, UMR 7281, 31, chemin Joseph Aiguier, CS 70071, 13402 Marseille cedex 09, France
| | - I Mazurenko
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, UMR 7281, 31, chemin Joseph Aiguier, CS 70071, 13402 Marseille cedex 09, France
| | - A de Poulpiquet
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, UMR 7281, 31, chemin Joseph Aiguier, CS 70071, 13402 Marseille cedex 09, France
| | - E Lojou
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, UMR 7281, 31, chemin Joseph Aiguier, CS 70071, 13402 Marseille cedex 09, France.
| |
Collapse
|
115
|
Goodarzi MM, Jalalirad R, Doroud D, Hozouri H, Aghasadeghi M, Paryan M. Determining buffer conditions for downstream processing of VLP-based recombinant hepatitis B surface antigen using multimodal resins in bind-elute and flow-through purification modes. Sci Rep 2023; 13:10745. [PMID: 37400485 DOI: 10.1038/s41598-023-37614-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/24/2023] [Indexed: 07/05/2023] Open
Abstract
The difficulties in purification of VLP-based recombinant hepatitis B surface antigen (rHBsAg) are mainly emerged from inefficient semi-purification step plus proteins physicochemical properties and these issues make the downstream processing (DSP) very lengthy and expensive. In this study, optimization of rHBsAg (recombinantly-expressed in Pichia pastoris) DSP was performed using selection of buffering conditions in the semi-purification step. In the semi-purification optimization step, up to 73% of the protein impurities were eliminated and the utmost increase in rHBsAg purity (ca. 3.6-fold) was achieved using 20 mM sodium acetate, pH 4.5. By using rHBsAg binding and nonbinding situations obtained from the response surface plot in design of experiments (DOE), additional bind-elute and flow-through purification mode experiments were conducted and rHBsAg with high purity (near 100%) and recovery (> 83%) was achieved. Following assessment of critical quality attributes (i.e., purity, particle size distribution, host cell DNA, host cell protein, secondary structures, specific activity and relative potency), it was indicated that the characteristics of rHBsAg purified by the new DSP were similar or superior to the ones obtained from conventional DSP. The purification performance of the resin was constantly retained (97-100%) and no significant resin damage took place after 10 adsorption-elution-cleaning cycles. The new DSP developed for production of rHBsAg in this study can substitute the conventional one with granting satisfactory target protein quality, long-lasting resin efficacy, shorter and less expensive process. This process may be also employable for purification of both non-VLP- and VLP- based target proteins expressed in the yeast.
Collapse
Affiliation(s)
- Maryam Moazami Goodarzi
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Karaj, 3159915111, Iran
| | - Reza Jalalirad
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Karaj, 3159915111, Iran.
| | - Delaram Doroud
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Karaj, 3159915111, Iran.
| | - Hamidreza Hozouri
- Department of Quality Management, Production and Research Complex, Pasteur Institute of Iran, Karaj, 3159915111, Iran
| | - Mohammadreza Aghasadeghi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, 1316943551, Iran
- Viral Vaccine Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Mahdi Paryan
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Karaj, 3159915111, Iran
| |
Collapse
|
116
|
Ong WSY, Ji K, Pathiranage V, Maydew C, Baek K, Villones RLE, Meloni G, Walker AR, Dodani SC. Rational Design of the β-Bulge Gate in a Green Fluorescent Protein Accelerates the Kinetics of Sulfate Sensing. Angew Chem Int Ed Engl 2023; 62:e202302304. [PMID: 37059690 PMCID: PMC10330437 DOI: 10.1002/anie.202302304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/16/2023]
Abstract
Detection of anions in complex aqueous media is a fundamental challenge with practical utility that can be addressed by supramolecular chemistry. Biomolecular hosts such as proteins can be used and adapted as an alternative to synthetic hosts. Here, we report how the mutagenesis of the β-bulge residues (D137 and W138) in mNeonGreen, a bright, monomeric fluorescent protein, unlocks and tunes the anion preference at physiological pH for sulfate, resulting in the turn-off sensor SulfOFF-1. This unprecedented sensing arises from an enhancement in the kinetics of binding, largely driven by position 138. In line with these data, molecular dynamics (MD) simulations capture how the coordinated entry and gating of sulfate into the β-barrel is eliminated upon mutagenesis to facilitate binding and fluorescence quenching.
Collapse
Affiliation(s)
- Whitney S. Y. Ong
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Ke Ji
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Vishaka Pathiranage
- Department of Chemistry, Wayne State University, 42 W. Warren Ave. Detroit, MI 48202, USA
| | - Caden Maydew
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Kiheon Baek
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Rhiza Lyne E. Villones
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| | - Alice R. Walker
- Department of Chemistry, Wayne State University, 42 W. Warren Ave. Detroit, MI 48202, USA
| | - Sheel C. Dodani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080-3021, USA
| |
Collapse
|
117
|
Walkowiak JJ, Nikam R, Ballauff M. Adsorption of Mono- and Divalent Ions onto Dendritic Polyglycerol Sulfate (dPGS) as Studied Using Isothermal Titration Calorimetry. Polymers (Basel) 2023; 15:2792. [PMID: 37447437 DOI: 10.3390/polym15132792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The effective charge of highly charged polyelectrolytes is significantly lowered by a condensation of counterions. This effect is more pronounced for divalent ions. Here we present a study of the counterion condensation to dendritic polyglycerol sulfate (dPGS) that consists of a hydrophilic dendritic scaffold onto which sulfate groups are appended. The interactions between the dPGS and divalent ions (Mg2+ and Ca2+) were analyzed using isothermal titration calorimetry (ITC) and showed no ion specificity upon binding, but clear competition between the monovalent and divalent ions. Our findings, in line with the latest theoretical studies, demonstrate that a large fraction of the monovalent ions is sequentially replaced with the divalent ions.
Collapse
Affiliation(s)
- Jacek J Walkowiak
- DWI-Leibniz-Institute for Interactive Materials e.V, Forckenbeckstraße 50, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Rohit Nikam
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Matthias Ballauff
- Institut für Chemie und Biochemie, Freie Universität Berlin, Taktstraße 3, 14195 Berlin, Germany
| |
Collapse
|
118
|
Chen Y, Barba-Bon A, Grüner B, Winterhalter M, Aksoyoglu MA, Pangeni S, Ashjari M, Brix K, Salluce G, Folgar-Cameán Y, Montenegro J, Nau WM. Metallacarborane Cluster Anions of the Cobalt Bisdicarbollide-Type as Chaotropic Carriers for Transmembrane and Intracellular Delivery of Cationic Peptides. J Am Chem Soc 2023; 145:13089-13098. [PMID: 37265356 PMCID: PMC10288510 DOI: 10.1021/jacs.3c01623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Indexed: 06/03/2023]
Abstract
Cobalt bisdicarbollides (COSANs) are inorganic boron-based anions that have been previously reported to permeate by themselves through lipid bilayer membranes, a propensity that is related to their superchaotropic character. We now introduce their use as selective and efficient molecular carriers of otherwise impermeable hydrophilic oligopeptides through both artificial and cellular membranes, without causing membrane lysis or poration at low micromolar carrier concentrations. COSANs transport not only arginine-rich but also lysine-rich peptides, whereas low-molecular-weight analytes such as amino acids as well as neutral and anionic cargos (phalloidin and BSA) are not transported. In addition to the unsubstituted isomers (known as ortho- and meta-COSAN), four derivatives bearing organic substituents or halogen atoms have been evaluated, and all six of them surpass established carriers such as pyrenebutyrate in terms of activity. U-tube experiments and black lipid membrane conductance measurements establish that the transport across model membranes is mediated by a molecular carrier mechanism. Transport experiments in living cells showed that a fluorescent peptide cargo, FITC-Arg8, is delivered into the cytosol.
Collapse
Affiliation(s)
- Yao Chen
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Andrea Barba-Bon
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Bohumir Grüner
- Institute
of Inorganic Chemistry, Czech Academy of Sciences, v.v.i. Hlavní 1001, CZ-250 68 Řež, Czech Republic
| | | | - M. Alphan Aksoyoglu
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Sushil Pangeni
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Maryam Ashjari
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Klaudia Brix
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Giulia Salluce
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Universidade
de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Yeray Folgar-Cameán
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Universidade
de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Javier Montenegro
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Universidade
de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Werner M. Nau
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
119
|
Sun J, Kleuskens S, Luan J, Wang D, Zhang S, Li W, Uysal G, Wilson DA. Morphogenesis of starfish polymersomes. Nat Commun 2023; 14:3612. [PMID: 37330564 PMCID: PMC10276845 DOI: 10.1038/s41467-023-39305-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 06/06/2023] [Indexed: 06/19/2023] Open
Abstract
The enhanced membrane stability and chemical versatility of polymeric vesicles have made them promising tools in micro/nanoreactors, drug delivery, cell mimicking, etc. However, shape control over polymersomes remains a challenge and has restricted their full potential. Here we show that local curvature formation on the polymeric membrane can be controlled by applying poly(N-isopropylacrylamide) as a responsive hydrophobic unit, while adding salt ions to modulate the properties of poly(N-isopropylacrylamide) and its interaction with the polymeric membrane. Polymersomes with multiple arms are fabricated, and the number of arms could be tuned by salt concentration. Furthermore, the salt ions are shown to have a thermodynamic effect on the insertion of poly(N-isopropylacrylamide) into the polymeric membrane. This controlled shape transformation can provide evidence for studying the role of salt ions in curvature formation on polymeric membranes and biomembranes. Moreover, potential stimuli-responsive non-spherical polymersomes can be good candidates for various applications, especially in nanomedicine.
Collapse
Affiliation(s)
- Jiawei Sun
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Sandra Kleuskens
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Jiabin Luan
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Danni Wang
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Shaohua Zhang
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Wei Li
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Gizem Uysal
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Daniela A Wilson
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands.
| |
Collapse
|
120
|
Raji F, Nguyen CV, Nguyen NN, Nguyen TAH, Nguyen AV. Probing interfacial water structure induced by charge reversal and hydrophobicity of silica surface in the presence of divalent heavy metal ions using sum frequency generation spectroscopy. J Colloid Interface Sci 2023; 647:152-162. [PMID: 37247479 DOI: 10.1016/j.jcis.2023.05.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
HYPOTHESIS Adsorption of divalent heavy metal ions (DHMIs) at the mineral-water interfaces changes interfacial chemical species and charges, interfacial water structure, Stern (SL), and diffuse (DL) layers. These molecular changes can be detected by probing changing orientation and hydrogen-bond network of interfacial water molecules in response to changing local charges and hydrophobicity. EXPERIMENTS Sum-frequency generation (SFG) spectroscopy was used to probe changes in vibrational resonances of interfacial OH vs. DHMI concentration and pH. SFG spectra were deconvoluted using the measured surface potential and maximum entropy method in conjunction with the electrical double-layer theory for the SL and DL structures and correlated by hydrophobicity. FINDINGS Three surface charge reversals (CRs) were detected at low (CR1), medium (CR2), and high (CR3) pHs. Unlike CR1, SFG signals were minimized at CR2 and CR3 for DHMIs-silica systems highlighting considerable alterations in the structure of interfacial waters due to the inner-sphere sorption of metal hydroxo complexes. SFG results showed "hydrophobic-like" stretching modes at > 3600 cm-1 for Pb-, Cu-, and Zn-treated silica. However, contact angle measurements revealed the hydrophobization of silica only in the presence of Pb(II), as confirmed by an in-depth SFG analysis of the hydrogen-bond network of the interfacial water molecules in the SL.
Collapse
Affiliation(s)
- Foad Raji
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cuong V Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ngoc N Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tuan A H Nguyen
- Sustainable Minerals Institute, The University of Queensland, QLD 4072, Australia
| | - Anh V Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
121
|
Seki T, Yu CC, Chiang KY, Greco A, Yu X, Matsumura F, Bonn M, Nagata Y. Ions Speciation at the Water-Air Interface. J Am Chem Soc 2023; 145:10622-10630. [PMID: 37139910 DOI: 10.1021/jacs.3c00517] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In typical aqueous systems, including naturally occurring sweet and salt water and tap water, multiple ion species are co-solvated. At the water-air interface, these ions are known to affect the chemical reactivity, aerosol formation, climate, and water odor. Yet, the composition of ions at the water interface has remained enigmatic. Here, using surface-specific heterodyne-detected sum-frequency generation spectroscopy, we quantify the relative surface activity of two co-solvated ions in solution. We find that more hydrophobic ions are speciated to the interface due to the hydrophilic ions. Quantitative analysis shows that the interfacial hydrophobic ion population increases with decreasing interfacial hydrophilic ion population at the interface. Simulations show that the solvation energy difference between the ions and the intrinsic surface propensity of ions determine the extent of an ion's speciation by other ions. This mechanism provides a unified view of the speciation of monatomic and polyatomic ions at electrolyte solution interfaces.
Collapse
Affiliation(s)
- Takakazu Seki
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Aomori, Japan
| | - Chun-Chieh Yu
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Kuo-Yang Chiang
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Alessandro Greco
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Xiaoqing Yu
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Fumiki Matsumura
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| |
Collapse
|
122
|
Chen S, Li Z, Voth GA. Acidic Conditions Impact Hydrophobe Transfer across the Oil-Water Interface in Unusual Ways. J Phys Chem B 2023; 127:3911-3918. [PMID: 37084419 PMCID: PMC10166083 DOI: 10.1021/acs.jpcb.3c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/09/2023] [Indexed: 04/23/2023]
Abstract
Molecular dynamics simulation and enhanced free energy sampling are used to study hydrophobic solute transfer across the water-oil interface with explicit consideration of the effect of different electrolytes: hydronium cation (hydrated excess proton) and sodium cation, both with chloride counterions (i.e., dissociated acid and salt, HCl and NaCl). With the Multistate Empirical Valence Bond (MS-EVB) methodology, we find that, surprisingly, hydronium can to a certain degree stabilize the hydrophobic solute, neopentane, in the aqueous phase and including at the oil-water interface. At the same time, the sodium cation tends to "salt out" the hydrophobic solute in the expected fashion. When it comes to the solvation structure of the hydrophobic solute in the acidic conditions, hydronium shows an affinity to the hydrophobic solute, as suggested by the radial distribution functions (RDFs). Upon consideration of this interfacial effect, we find that the solvation structure of the hydrophobic solute varies at different distances from the oil-liquid interface due to a competition between the bulk oil phase and the hydrophobic solute phase. Together with an observed orientational preference of the hydroniums and the lifetime of water molecules in the first solvation shell of neopentane, we conclude that hydronium stabilizes to a certain degree the dispersal of neopentane in the aqueous phase and eliminates any salting out effect in the acid solution; i.e., the hydronium acts like a surfactant. The present molecular dynamics study provides new insight into the hydrophobic solute transfer across the water-oil interface process, including for acid and salt solutions.
Collapse
Affiliation(s)
- Sijia Chen
- Department of Chemistry, Chicago Center
for Theoretical Chemistry, The James Franck Institute, and Institute
for Biophysical Dynamics, The University
of Chicago, Chicago, Illinois 60637, United States
| | - Zhefu Li
- Department of Chemistry, Chicago Center
for Theoretical Chemistry, The James Franck Institute, and Institute
for Biophysical Dynamics, The University
of Chicago, Chicago, Illinois 60637, United States
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center
for Theoretical Chemistry, The James Franck Institute, and Institute
for Biophysical Dynamics, The University
of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
123
|
Rana B, Fairhurst DJ, Jena KC. Ion-Specific Water-Macromolecule Interactions at the Air/Aqueous Interface: An Insight into Hofmeister Effect. J Am Chem Soc 2023; 145:9646-9654. [PMID: 37094217 DOI: 10.1021/jacs.3c00701] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The specificity of ions in inducing conformational changes in macromolecules is introduced as the Hofmeister series; however, the detailed underlying mechanism is not comprehensible yet. We utilized surface-specific sum frequency generation (SFG) vibrational spectroscopy to explore the Hofmeister effect at the air/polyvinylpyrrolidone (PVP)/water interface. The spectral signature observed from the ssp polarization scheme reveals ion-specific ordering of water molecules following the Hofmeister series attributed to the ion-macromolecule interactions. Along with this, the presence of ions does not reflect any significant influence on the structure of the PVP macromolecule. However, the ppp-SFG spectra in the CH-stretch region reveal the impact of ions on the orientation angle of vinyl chain CH2-groups, which follows the Hofmeister series: SO42- > Cl- > NO3- > Br- > ClO4- > SCN-. The minimal orientation angle of CH2-groups indicates significant reordering in PVP vinyl chains in the presence of chaotropic anions ClO4-, and SCN-. The observation is attributed to the ion-specific water-macromolecule interactions at the air/aqueous interface. It is compelling to observe the signature of spectral blue shifts in the OH-stretch region in the ppp configuration in the presence of chaotropic anions. The origin of spectral blue shifts has been ascribed to the existence of weaker interactions between the interfacial water molecules and the backbone CH- and CH2-moieties of the PVP macromolecules. The ion-specific modulation in water-macromolecule interactions is endorsed by the relative propensity of anion's adsorption toward the air/aqueous interface. The experimental findings highlight the existence and cooperative participation of ion-specific water-macromolecule interactions in the mechanism of the Hofmeister effect, along with the illustrious ion-water and ion-macromolecule interactions.
Collapse
Affiliation(s)
- Bhawna Rana
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - David J Fairhurst
- Department of Physics and Mathematics, School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, U.K
| | - Kailash C Jena
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
124
|
Hohenschutz M, Dufrêche JF, Diat O, Bauduin P. When Ions Defy Electrostatics: The Case of Superchaotropic Nanoion Adsorption. J Phys Chem Lett 2023; 14:3602-3608. [PMID: 37022948 DOI: 10.1021/acs.jpclett.3c00095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nanometer-sized anions, like polyoxometalates and borate clusters, bind to nonionic hydrated matter driven by the chaotropic effect, which arises from the favorable dehydration of the ions. Herein, we evaluate the adsorption and activity coefficient of the superchaotropic Keggin polyoxometalate SiW12O404- (SiW) on nonionic surfactant (C8E4) micelles by modeling small-angle X-ray and neutron-scattering spectra. Neither hard sphere nor electrostatic repulsion models reproduce the experimental activity coefficient of adsorbed SiW ions on the micelles. However, the activity and binding of SiW on the micelles is well-described by a Langmuir adsorption isotherm. These results imply that adsorbed SiW ions are non-interacting and "create" around themselves adsorption sites on the micelle. The temperature dependence of the adsorption constant showed that the SiW adsorption is enthalpically driven and entropically unfavorable, in line with the typical chaotropic thermochemical signature. The adsorption enthalpy can be split into an electrostatic term and a water-recovery term to evaluate and qualitatively predict the superchaotropicity of a nanoion.
Collapse
Affiliation(s)
- Max Hohenschutz
- ICSM, CEA, CNRS, ENSCM, Univ. Montpellier, Marcoule, France, Centre de Marcoule, 30207 Bagnols-sur-Cèze, France
| | - Jean-François Dufrêche
- ICSM, CEA, CNRS, ENSCM, Univ. Montpellier, Marcoule, France, Centre de Marcoule, 30207 Bagnols-sur-Cèze, France
| | - Olivier Diat
- ICSM, CEA, CNRS, ENSCM, Univ. Montpellier, Marcoule, France, Centre de Marcoule, 30207 Bagnols-sur-Cèze, France
| | - Pierre Bauduin
- ICSM, CEA, CNRS, ENSCM, Univ. Montpellier, Marcoule, France, Centre de Marcoule, 30207 Bagnols-sur-Cèze, France
| |
Collapse
|
125
|
Bourke T, Gregory KP, Page AJ. Hofmeister effects influence bulk nanostructure in a protic ionic liquid. J Colloid Interface Sci 2023; 645:420-428. [PMID: 37156150 DOI: 10.1016/j.jcis.2023.04.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023]
Abstract
HYPOTHESIS The origins and behaviour of specific ion effects have been studied in water for more than a century, and more recently in nonaqueous molecular solvents. However, the impacts of specific ion effects on more complex solvents such as nanostructured ionic liquids remains unclear. Here, we hypothesise that the influence of dissolved ions on the hydrogen bonding in the nanostructured ionic liquid propylammonium nitrate (PAN) constitutes a specific ion effect. EXPERIMENTS We performed molecular dynamics simulations of bulk PAN and 1-50 mol% PAN-PAX (X = halide anions F-, Cl-, Br-, I-) and PAN-YNO3 (Y = alkali metal cations, Li+, Na+, K+ and Rb+) solutions to investigate how monovalent salts influence the bulk nanostructure in PAN. FINDINGS The key structural characteristic in PAN is a well-defined hydrogen bond network formed within the polar and non-polar domains in its nanostructure. We show that dissolved alkali metal cations and halide anions have significant and unique influences on the strength of this network. Cations (Li+, Na+, K+ and Rb+) consistently promote hydrogen bonding in the PAN polar domain. Conversely, the influence of halide anions (F-, Cl-, Br-, I-) is ion specific; while F- disrupts PAN hydrogen bonding, I- promotes it. The manipulation of PAN hydrogen bonding therefore constitutes a specific ion effect - i.e. a physicochemical phenomena caused by the presence of dissolved ions, which are dependent on these ions' identity. We analyse these results using a recently proposed predictor of specific ion effects developed for molecular solvents, and show that it is also capable of rationalising specific ion effects in the more complex solvent environment of an ionic liquid.
Collapse
Affiliation(s)
- Thomas Bourke
- Discipline of Chemistry, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Kasimir P Gregory
- Discipline of Chemistry, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Materials Physics, Research School of Physics, The Australian National University, Canberra, ACT 0200, Australia; Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Alister J Page
- Discipline of Chemistry, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
126
|
He X, Ewing AG. Hofmeister Series: From Aqueous Solution of Biomolecules to Single Cells and Nanovesicles. Chembiochem 2023; 24:e202200694. [PMID: 37043703 DOI: 10.1002/cbic.202200694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Indexed: 04/14/2023]
Abstract
Hofmeister effects play a critical role in numerous physicochemical and biological phenomena, including the solubility and/or accumulation of proteins, the activities of enzymes, ion transport in biochannels, the structure of lipid bilayers, and the dynamics of vesicle opening and exocytosis. This minireview focuses on how ionic specificity affects the physicochemical properties of biomolecules to regulate cellular exocytosis, vesicular content, and nanovesicle opening. We summarize recent progress in further understanding Hofmeister effects on biomacromolecules and their applications in biological systems. These important steps have increased our understanding of the Hofmeister effects on cellular exocytosis, vesicular content, and nanovesicle opening. Increasing evidence is firmly establishing that the ions along the Hofmeister series play an important role in living organisms that has often been ignored.
Collapse
Affiliation(s)
- Xiulan He
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296, Gothenburg, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296, Gothenburg, Sweden
| |
Collapse
|
127
|
Rembert KB, Zhang J, Lee YJ. Effects of Salts and Surface Charge on the Biophysical Stability of a Low pI Monoclonal Antibody. J Pharm Sci 2023; 112:947-953. [PMID: 36395898 DOI: 10.1016/j.xphs.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
The impact of five representative Hofmeister salts (NaCl, KCl, MgCl2, Na2SO4, and NaSCN) on the thermal stability and aggregation kinetics of a slightly acidic monoclonal antibody (mAb) were investigated under different pH conditions. The thermal stability of the mAb was assessed by measuring the lowest unfolding transition temperature, Tm, with differential scanning fluorimetry. MgCl2 and NaSCN significantly decreased Tm at all three charged states of the mAb, but to the greatest extent when the mAb surface charge was net positive. Non-native aggregation kinetics was monitored by measuring Rayleigh light scattering. When the mAb surface charge was net positive or net neutral, the nucleation rate increased non-monotonically with MgCl2 and NaSCN but decreased monotonically with NaCl, KCl, and Na2SO4. By contrast, when the mAb surface was negatively charged, there were only minor changes in the nucleation rate with all salts tested. Furthermore, there was less structural perturbation and slower aggregation rates when the mAb was net negatively charged than when it was net neutrally or positively charged. The observed salt effects on thermal unfolding are consistent with ion-specific mechanisms dominated by short-range amide backbone binding. On the other hand, the salt effects on nucleation rates appear to be influenced by both amide backbone binding and long-range electrostatic binding of ions to charged amino acid side chains.
Collapse
Affiliation(s)
- Kelvin B Rembert
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Jifeng Zhang
- Department of Drug Delivery and Device Development, Medimmune-AstraZeneca, Gaithersburg, MD 20878, United States.
| | - Young Jong Lee
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States.
| |
Collapse
|
128
|
Välisalmi T, Roas-Escalona N, Meinander K, Mohammadi P, Linder MB. Highly Hydrophobic Films of Engineered Silk Proteins by a Simple Deposition Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4370-4381. [PMID: 36926896 PMCID: PMC10061925 DOI: 10.1021/acs.langmuir.2c03442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Molecular engineering of protein structures offers a uniquely versatile route for novel functionalities in materials. Here, we describe a method to form highly hydrophobic thin films using genetically engineered spider silk proteins. We used structurally engineered protein variants containing ADF3 and AQ12 spider silk sequences. Wetting properties were studied using static and dynamic contact angle measurements. Solution conditions and the surrounding humidity during film preparation were key parameters to obtain high hydrophobicity, as shown by contact angles in excess of 120°. Although the surface layer was highly hydrophobic, its structure was disrupted by the added water droplets. Crystal-like structures were found at the spots where water droplets had been placed. To understand the mechanism of film formation, different variants of the proteins, the topography of the films, and secondary structures of the protein components were studied. The high contact angle in the films demonstrates that the conformations that silk proteins take in the protein layer very efficiently expose their hydrophobic segments. This work reveals a highly amphiphilic nature of silk proteins and contributes to an understanding of their assembly mechanisms. It will also help in designing diverse technical uses for recombinant silk.
Collapse
Affiliation(s)
- Teemu Välisalmi
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
- Centre
of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Post Office Box 16100, 00076 Aalto, Finland
| | - Nelmary Roas-Escalona
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
- Centre
of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Post Office Box 16100, 00076 Aalto, Finland
| | - Kristoffer Meinander
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
- Centre
of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Post Office Box 16100, 00076 Aalto, Finland
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland, Limited (VTT), FI-02044 Espoo, Finland
- Centre
of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Post Office Box 16100, 00076 Aalto, Finland
| | - Markus B. Linder
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
- Centre
of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Post Office Box 16100, 00076 Aalto, Finland
| |
Collapse
|
129
|
Miranda-Quintana RA, Chen L, Craig VSJ, Smiatek J. Quantitative Solvation Energies from Gas-Phase Calculations: First-Principles Charge Transfer and Perturbation Approaches. J Phys Chem B 2023; 127:2546-2551. [PMID: 36917810 DOI: 10.1021/acs.jpcb.2c08907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
We present a first-principles approach for the calculation of solvation energies and enthalpies with respect to different ion pair combinations in various solvents. The method relies on the conceptual density functional theory (DFT) of solvation, from which detailed expressions for the solvation energies can be derived. In addition to fast and straightforward gas phase calculations, we also study the influence of modified chemical reactivity descriptors in terms of electronic perturbations. The corresponding phenomenological changes in molecular energy levels can be interpreted as the influence of continuum solvents. Our approach shows that the introduction of these modified expressions is essential for a quantitative agreement between the calculated and the experimental results.
Collapse
Affiliation(s)
- Ramón Alain Miranda-Quintana
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32603, United States
| | - Lexin Chen
- Department of Chemistry, University of Florida, Gainesville, Florida 32603, United States
| | - Vincent S J Craig
- Department of Applied Mathematics, Research School of Physics and Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| |
Collapse
|
130
|
Rhamnolipid Self-Aggregation in Aqueous Media: A Long Journey toward the Definition of Structure–Property Relationships. Int J Mol Sci 2023; 24:ijms24065395. [PMID: 36982468 PMCID: PMC10048978 DOI: 10.3390/ijms24065395] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
The need to protect human and environmental health and avoid the widespread use of substances obtained from nonrenewable sources is steering research toward the discovery and development of new molecules characterized by high biocompatibility and biodegradability. Due to their very widespread use, a class of substances for which this need is particularly urgent is that of surfactants. In this respect, an attractive and promising alternative to commonly used synthetic surfactants is represented by so-called biosurfactants, amphiphiles naturally derived from microorganisms. One of the best-known families of biosurfactants is that of rhamnolipids, which are glycolipids with a headgroup formed by one or two rhamnose units. Great scientific and technological effort has been devoted to optimization of their production processes, as well as their physicochemical characterization. However, a conclusive structure–function relationship is far from being defined. In this review, we aim to move a step forward in this direction, by presenting a comprehensive and unified discussion of physicochemical properties of rhamnolipids as a function of solution conditions and rhamnolipid structure. We also discuss still unresolved issues that deserve further investigation in the future, to allow the replacement of conventional surfactants with rhamnolipids.
Collapse
|
131
|
Sun W, Wang J, He M. Anisotropic cellulose nanocrystal composite hydrogel for multiple responses and information encryption. Carbohydr Polym 2023; 303:120446. [PMID: 36657839 DOI: 10.1016/j.carbpol.2022.120446] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/19/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Anisotropic composites based on well-ordered cellulose nanocrystals (CNCs) have received increasing attention due to their fascinating optical properties. In this study, we fabricated a multi-functional hydrogel with nematic organization of CNC by soaking a pre-stretched polyvinyl alcohol (PVA)/CNC cyrogel in Na2SO4, CaCl2 solution and DI water in sequence. The crystalline domains, water content and transmittance of the hydrogel are regulated via the Hofmeister effect and hydrophobic interactions, which makes the birefringence of the hydrogel observable by interference colors. The aligned CNC not only enhance the mechanical strength of hydrogel, but also endow it with stimuli-responsive ability to the varying environment such as ion strength (0 to 5 M NaCl solution) and external forces (pressure of 0 to 248 kPa). Moreover, the patterned hydrogels are successfully fabricated by the method of local solvent displacement. Due to the low light transmission, the pattern can be encrypted and only be observed between crossed polarizers. These optical properties made the hydrogel a promising candidate for environmental monitoring and anti-counterfeit material.
Collapse
Affiliation(s)
- Wen Sun
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Wang
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Ming He
- College of Science, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
132
|
Wortmann FJ, Hardie K, Schellenberg N, Jones C, Wortmann G, Wiesche ESZ. pH-equilibration of human hair: Kinetics and pH-dependence of the partition ratios for H − and OH -ions based on a Freundlich isotherm. Biophys Chem 2023; 297:107010. [PMID: 37060741 DOI: 10.1016/j.bpc.2023.107010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023]
Abstract
Hair is an insoluble, fibrous, α-keratinous, protein composite material, providing outer coverage, e.g., for mammals. In the context of a wider study on the effects of pH on human hair properties, we investigated the time-dependence of pH-equilibration study across the acid and the basic pH-range, using appropriate pure solutions of hydrochloric acid and sodium hydroxide. The results show that pH-equilibration follows essentially equal 1st-order kinetics across the pH-range. The characteristic process time does not change significantly and is in the range of 2.5-5 h. The analysis enables to determine the equilibrium uptakes of H+- and OH- -ions. These follow the expected U-shaped path across the pH-range. For both acidic and alkaline conditions, data are well described by two very similar sorption isotherms of the Freundlich-type. In consequence, partition ratios for both ions are highest near neutrality (pH 7: >6000) and drop off strongly towards low and high pHs (<50). Hair is thus a very strong 'sink' for H+ and OH-. This observation fundamentally challenges traditional views of limited ion uptake, namely, in the mid-pH-range due to hindered diffusion. It also does not support considerations on special roles of certain pHs, specific groups of amino acids, or morphological components. Our analysis thus suggests that established views of the interaction of hair and pH need to be reconsidered, The Freundlich isotherm approach appears to provide a versatile tool to refine our understanding of the interactions of hair and possibly other keratinous materials (horn, nail, feathers) with acids and bases.
Collapse
|
133
|
Tomioka Y, Sato R, Takahashi R, Nagatoishi S, Shiba K, Tsumoto K, Arakawa T, Akuta T. Agarose native gel electrophoresis analysis of thermal aggregation controlled by Hofmeister series. Biophys Chem 2023; 296:106977. [PMID: 36857888 DOI: 10.1016/j.bpc.2023.106977] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
The effects of salting-in and salting-out salts defined by Hofmeister series on the solution state of bovine serum albumin (BSA) in 50 mM Tris-HCl buffer at pH 7.4 before and after thermal unfolding at 80 °C for 5 min were examined using agarose native gel electrophoresis and mass photometry. Gel electrophoresis showed that salting-in MgCl2, CaCl2 and NaSCN resulted in formation of intermediate structures of BSA upon heating on native gel, while heating in buffer alone resulted in aggregated bands. Mass photometry showed large loss of monomer and oligomers when heated in this buffer, but retaining these structures in the presence of 1 M MgCl2 and NaSCN. To our surprise, salting-out MgSO4 also showed a similar effect on gel electrophoresis and mass photometry. Salting-out NaCl and (NH4)2SO4 resulted in smearing and aggregated bands, which were supported by mass photometry. Aggregation-suppressive ArgHCl also showed oligomer aggregates upon gel electrophoresis and mass photometry.
Collapse
Affiliation(s)
- Yui Tomioka
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki 318-0004, Japan.
| | - Ryo Sato
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki 318-0004, Japan.
| | - Ryo Takahashi
- Refeyn Japan, K.K., 1-1-14, Sakuraguchi-cho, Nada-ku, Kobe, Hyogo 6570036, Japan.
| | - Satoru Nagatoishi
- The Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Kohei Shiba
- Refeyn Japan, K.K., 1-1-14, Sakuraguchi-cho, Nada-ku, Kobe, Hyogo 6570036, Japan.
| | - Kouhei Tsumoto
- The Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Tsutomu Arakawa
- Alliance Protein Laboratories, 13380 Pantera Rd, San Diego, CA 92130, USA.
| | - Teruo Akuta
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki 318-0004, Japan.
| |
Collapse
|
134
|
Shaiken TE, Grimm SL, Siam M, Williams A, Rezaeian AH, Kraushaar D, Ricco E, Robertson MJ, Coarfa C, Jain A, Malovannaya A, Stossi F, Opekun AR, Price AP, Dubrulle J. Transcriptome, proteome, and protein synthesis within the intracellular cytomatrix. iScience 2023; 26:105965. [PMID: 36824274 PMCID: PMC9941065 DOI: 10.1016/j.isci.2023.105965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 11/07/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Despite the knowledge that protein translation and various metabolic reactions that create and sustain cellular life occur in the cytoplasm, the structural organization within the cytoplasm remains unclear. Recent models indicate that cytoplasm contains viscous fluid and elastic solid phases. We separated these viscous fluid and solid elastic compartments, which we call the cytosol and cytomatrix, respectively. The distinctive composition of the cytomatrix included structural proteins, ribosomes, and metabolome enzymes. High-throughput analysis revealed unique biosynthetic pathways within the cytomatrix. Enrichment of biosynthetic pathways in the cytomatrix indicated the presence of immobilized biocatalysis. Enzymatic immobilization and segregation can surmount spatial impediments, and the local pathway segregation may form cytoplasmic organelles. Protein translation was reprogrammed within the cytomatrix under the restriction of protein synthesis by drug treatment. The cytosol and cytomatrix are an elaborately interconnected network that promotes operational flexibility in healthy cells and the survival of malignant cells.
Collapse
Affiliation(s)
- Tattym E. Shaiken
- Department of Medicine-Gastroenterology and Hepatology Section, Michael E DeBakey Veteran’s Affairs Medical Center, Baylor College of Medicine, Houston, TX 77030, USA
- PeriNuc Labs, University of Houston Technology Bridge, Houston, TX 77023, USA
| | - Sandra L. Grimm
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mohamad Siam
- Department of Medicine-Gastroenterology and Hepatology Section, Michael E DeBakey Veteran’s Affairs Medical Center, Baylor College of Medicine, Houston, TX 77030, USA
- PeriNuc Labs, University of Houston Technology Bridge, Houston, TX 77023, USA
| | - Amanda Williams
- Department of Medicine-Gastroenterology and Hepatology Section, Michael E DeBakey Veteran’s Affairs Medical Center, Baylor College of Medicine, Houston, TX 77030, USA
- PeriNuc Labs, University of Houston Technology Bridge, Houston, TX 77023, USA
| | - Abdol-Hossein Rezaeian
- PeriNuc Labs, University of Houston Technology Bridge, Houston, TX 77023, USA
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Daniel Kraushaar
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Emily Ricco
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Cristian Coarfa
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Antrix Jain
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anna Malovannaya
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fabio Stossi
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Antone R. Opekun
- Department of Medicine-Gastroenterology and Hepatology Section, Michael E DeBakey Veteran’s Affairs Medical Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alyssa P. Price
- Department of Medicine-Gastroenterology and Hepatology Section, Michael E DeBakey Veteran’s Affairs Medical Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Julien Dubrulle
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
135
|
Kikuchi K, Date K, Ueno T. Design of a Hierarchical Assembly at a Solid-Liquid Interface Using an Asymmetric Protein Needle. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2389-2397. [PMID: 36734675 DOI: 10.1021/acs.langmuir.2c03146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Design and control of processes for a hierarchical assembly of proteins remain challenging because it requires consideration of design principles with atomic-level accuracy. Previous studies have adopted symmetry-based strategies to minimize the complexity of protein-protein interactions and this has placed constraints on the structures of the resulting protein assemblies. In the present work, we used an anisotropic-shaped protein needle, gene product 5 (gp5) from bacteriophage T4 with a C-terminal hexahistidine-tag (His-tag) (gp5_CHis), to construct a hierarchical assembly with two distinct protein-protein interaction sites. High-speed atomic force microscopy (HS-AFM) measurements reveal that it forms unique tetrameric clusters through its N-terminal head on a mica surface. The clusters further self-assemble into a monolayer through the C-terminal His-tag. The HS-AFM images and displacement analyses show that the monolayer is a network-like structure rather than a crystalline lattice. Our results expand the toolbox for constructing hierarchical protein assemblies based on structural anisotropy.
Collapse
Affiliation(s)
- Kosuke Kikuchi
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-55, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Koki Date
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-55, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Takafumi Ueno
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-55, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
136
|
Building a Hofmeister-like series for the maximum in density temperature of aqueous electrolyte solutions. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
137
|
Krevert CS, Gunkel L, Haese C, Hunger J. Ion-specific binding of cations to the carboxylate and of anions to the amide of alanylalanine. Commun Chem 2022; 5:173. [PMID: 36697920 PMCID: PMC9814750 DOI: 10.1038/s42004-022-00789-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Studies of ion-specific effects on oligopeptides have aided our understanding of Hofmeister effects on proteins, yet the use of different model peptides and different experimental sensitivities have led to conflicting conclusions. To resolve these controversies, we study a small model peptide, L-Alanyl-L-alanine (2Ala), carrying all fundamental chemical protein motifs: C-terminus, amide bond, and N-terminus. We elucidate the effect of GdmCl, LiCl, KCl, KI, and KSCN by combining dielectric relaxation, nuclear magnetic resonance (1H-NMR), and (two-dimensional) infrared spectroscopy. Our dielectric results show that all ions reduce the rotational mobility of 2Ala, yet the magnitude of the reduction is larger for denaturing cations than for anions. The NMR chemical shifts of the amide group are particularly sensitive to denaturing anions, indicative of anion-amide interactions. Infrared experiments reveal that LiCl alters the spectral homogeneity and dynamics of the carboxylate, but not the amide group. Interaction of LiCl with the negatively charged pole of 2Ala, the COO- group, can explain the marked cationic effect on dipolar rotation, while interaction of anions between the poles, at the amide, only weakly perturbs dipolar dynamics. As such, our results provide a unifying view on ions' preferential interaction sites at 2Ala and help rationalize Hofmeister effects on proteins.
Collapse
Affiliation(s)
- Carola Sophie Krevert
- grid.419547.a0000 0001 1010 1663Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Lucas Gunkel
- grid.419547.a0000 0001 1010 1663Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Constantin Haese
- grid.419547.a0000 0001 1010 1663Department of Molecular Electronics, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Johannes Hunger
- grid.419547.a0000 0001 1010 1663Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
138
|
Barrientos RC, Losacco GL, Azizi M, Wang H, Nguyen AN, Shchurik V, Singh A, Richardson D, Mangion I, Guillarme D, Regalado EL, Haidar Ahmad IA. Automated Hydrophobic Interaction Chromatography Screening Combined with In Silico Optimization as a Framework for Nondenaturing Analysis and Purification of Biopharmaceuticals. Anal Chem 2022; 94:17131-17141. [PMID: 36441925 DOI: 10.1021/acs.analchem.2c03453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mounting complexity of new modalities in the biopharmaceutical industry entails a commensurate level of analytical innovations to enable the rapid discovery and development of novel therapeutics and vaccines. Hydrophobic interaction chromatography (HIC) has become one of the widely preferred separation techniques for the analysis and purification of biopharmaceuticals under nondenaturing conditions. Inarguably, HIC method development remains very challenging and labor-intensive owing to the numerous factors that are typically optimized by a "hit-or-miss" strategy (e.g., the nature of the salt, stationary phase chemistry, temperature, mobile phase additive, and ionic strength). Herein, we introduce a new HIC method development framework composed of a fully automated multicolumn and multieluent platform coupled with in silico multifactorial simulation and integrated fraction collection for streamlined method screening, optimization, and analytical-scale purification of biopharmaceutical targets. The power and versatility of this workflow are showcased by a wide range of applications including trivial proteins, monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs), oxidation variants, and denatured proteins. We also illustrate convenient and rapid HIC method development outcomes from the effective combination of this screening setup with computer-assisted simulations. HIC retention models were built using readily available LC simulator software outlining less than a 5% difference between experimental and simulated retention times with a correlation coefficient of >0.99 for pharmaceutically relevant multicomponent mixtures. In addition, we demonstrate how this approach paves the path for a straightforward identification of first-dimension HIC conditions that are combined with mass spectrometry (MS)-friendly reversed-phase liquid chromatography (RPLC) detection in the second dimension (heart-cutting two-dimensional (2D)-HIC-RPLC-diode array detector (DAD)-MS), enabling the analysis and purification of biopharmaceutical targets.
Collapse
Affiliation(s)
- Rodell C Barrientos
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Gioacchino Luca Losacco
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Mohammadmehdi Azizi
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Heather Wang
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Anh Nguyet Nguyen
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Vladimir Shchurik
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Andrew Singh
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Douglas Richardson
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Ian Mangion
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 11 Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Erik L Regalado
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Imad A Haidar Ahmad
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
139
|
Otis JB, Sharpe S. Sequence Context and Complex Hofmeister Salt Interactions Dictate Phase Separation Propensity of Resilin-like Polypeptides. Biomacromolecules 2022; 23:5225-5238. [PMID: 36378745 DOI: 10.1021/acs.biomac.2c01027] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resilin is an elastic material found in insects with exceptional durability, resilience, and extensibility, making it a promising biomaterial for tissue engineering. The monomeric precursor, pro-resilin, undergoes thermo-responsive self-assembly through liquid-liquid phase separation (LLPS). Understanding the molecular details of this assembly process is critical to developing complex biomaterials. The present study investigates the interplay between the solvent, sequence syntax, structure, and dynamics in promoting LLPS of resilin-like-polypeptides (RLPs) derived from domains 1 and 3 of Drosophila melanogaster pro-resilin. NMR, UV-vis, and microscopy data demonstrate that while kosmotropic salts and low pH promote LLPS, the effects of chaotropic salts with increasing pH are more complex. Subtle variations between the repeating amino acid motifs of resilin domain 1 and domain 3 lead to significantly different salt and pH dependence of LLPS, with domain 3 sequence motifs more strongly favoring phase separation under most conditions. These findings provide new insight into the molecular drivers of RLP phase separation and the complex roles of both RLP sequence and solution composition in fine-tuning assembly conditions.
Collapse
Affiliation(s)
- James Brandt Otis
- Molecular Medicine, Hospital for Sick Children, 686 Bay St, Toronto, ONM5G 0A4, Canada.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ONM5S 1A8, Canada
| | - Simon Sharpe
- Molecular Medicine, Hospital for Sick Children, 686 Bay St, Toronto, ONM5G 0A4, Canada.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ONM5S 1A8, Canada
| |
Collapse
|
140
|
Walhout PK, He Z, Dutagaci B, Nawrocki G, Feig M. Molecular Dynamics Simulations of Rhodamine B Zwitterion Diffusion in Polyelectrolyte Solutions. J Phys Chem B 2022; 126:10256-10272. [PMID: 36440862 PMCID: PMC9813770 DOI: 10.1021/acs.jpcb.2c06281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyelectrolytes continue to find wide interest and application in science and engineering, including areas such as water purification, drug delivery, and multilayer thin films. We have been interested in the dynamics of small molecules in a variety of polyelectrolyte (PE) environments; in this paper, we report simulations and analysis of the small dye molecule rhodamine B (RB) in several very simple polyelectrolyte solutions. Translational diffusion of the RB zwitterion has been measured in fully atomistic, 2 μs long molecular dynamics simulations in four different polyelectrolyte solutions. Two solutions contain the common polyanion sodium poly(styrene sulfonate) (PSS), one with a 30-mer chain and the other with 10 trimers. The other two solutions contain the common polycation poly(allyldimethylammonium) chloride (PDDA), one with two 15-mers and the other with 10 trimers. RB diffusion was also simulated in several polymer-free solutions to verify its known experimental value for the translational diffusion coefficient, DRB, of 4.7 × 10-6 cm2/s at 300 K. RB diffusion was slowed in all four simulated PE solutions, but to varying degrees. DRB values of 3.07 × 10-6 and 3.22 × 10-6 cm2/s were found in PSS 30-mer and PSS trimer solutions, respectively, whereas PDDA 15-mer and trimer solutions yielded values of 2.19 × 10-6 and 3.34 × 10-6 cm2/s. Significant associations between RB and the PEs were analyzed and interpreted via a two-state diffusion model (bound and free diffusion) that describes the data well. Crowder size effects and anomalous diffusion were also analyzed. Finally, RB translation along the polyelectrolytes during association was characterized.
Collapse
Affiliation(s)
| | - Zhe He
- Wheaton College, Chemistry Department, 501 College Ave, Wheaton, IL 60187
| | - Bercem Dutagaci
- Michigan State University, Biochemistry and Molecular Biology, 603 Wilson Road, Room 218, East Lansing, MI 48824
| | - Grzegorz Nawrocki
- Michigan State University, Biochemistry and Molecular Biology, 603 Wilson Road, Room 218, East Lansing, MI 48824
| | - Michael Feig
- Michigan State University, Biochemistry and Molecular Biology, 603 Wilson Road, Room 218, East Lansing, MI 48824
| |
Collapse
|
141
|
Current insights into protein solubility: A review of its importance for alternative proteins. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
142
|
da Rocha L, Baptista AM, Campos SRR. Computational Study of the pH-Dependent Ionic Environment around β-Lactoglobulin. J Phys Chem B 2022; 126:9123-9136. [PMID: 36321840 PMCID: PMC9776516 DOI: 10.1021/acs.jpcb.2c03797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ions are involved in multiple biological processes and may exist bound to biomolecules or may be associated with their surface. Although the presence of ions in nucleic acids has traditionally gained more interest, ion-protein interactions, often with a marked dependency on pH, are beginning to gather attention. Here we present a detailed analysis on the binding and distribution of ions around β-lactoglobulin using a constant-pH MD (CpHMD) method, at a pH range 3-8, and compare it with the more traditional Poisson-Boltzmann (PB) model and the existing experimental data. Most analyses used ion concentration maps built around the protein, obtained from either the CpHMD simulations or PB calculations. The requirements of approximate charge neutrality and ionic strength equal to bulk, imposed on the MD box, imply that the absolute value of the ion excess should be half the protein charge, which is in agreement with experimental observation on other proteins ( Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2015879118) and lends support to this protocol. In addition, the protein total charge (including territorially bound ions) estimated with MD is in excellent agreement with electrophoretic measurements. Overall, the CpHMD simulations show good agreement with the nonlinear form of the PB (NLPB) model but not with its linear form, which involves a theoretical inconsistency in the calculation of the concentration maps. In several analyses, the observed pH-dependent trends for the counterions and co-ions are those generally expected, and the ion concentration maps correctly converge to the bulk ionic strength as one moves away from the protein. Despite the overall similarity, the CpHMD and NLPB approaches show some discrepancies when analyzed in more detail, which may be related to an apparent overestimation of counterion excess and underestimation of co-ion exclusion by the NLPB model, particularly at short distances from the protein.
Collapse
|
143
|
Yue C, Ding C, Yang N, Luo Y, Su J, Cao L, Cheng B. Strong and tough collagen/cellulose nanofibril composite films via the synergistic effect of hydrogen and metal–ligand bonds. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
144
|
Takekiyo T, Yamada N, Amo T, Nakazawa CT, Asano A, Ichimura T, Kato M, Yoshimura Y. Dissolution of Amyloid Aggregates by Direct Addition of Alkali Halides. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
145
|
Konstantinovsky D, Perets EA, Santiago T, Velarde L, Hammes-Schiffer S, Yan ECY. Detecting the First Hydration Shell Structure around Biomolecules at Interfaces. ACS CENTRAL SCIENCE 2022; 8:1404-1414. [PMID: 36313165 PMCID: PMC9615115 DOI: 10.1021/acscentsci.2c00702] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 05/15/2023]
Abstract
Understanding the role of water in biological processes remains a central challenge in the life sciences. Water structures in hydration shells of biomolecules are difficult to study in situ due to overwhelming background from aqueous environments. Biological interfaces introduce additional complexity because biomolecular hydration differs at interfaces compared to bulk solution. Here, we perform experimental and computational studies of chiral sum frequency generation (chiral SFG) spectroscopy to probe chirality transfer from a protein to the surrounding water molecules. This work reveals that chiral SFG probes the first hydration shell around the protein almost exclusively. We explain the selectivity to the first hydration shell in terms of the asymmetry induced by the protein structure and specific protein-water hydrogen-bonding interactions. This work establishes chiral SFG as a powerful technique for studying hydration shell structures around biomolecules at interfaces, presenting new possibilities to address grand research challenges in biology, including the molecular origins of life.
Collapse
Affiliation(s)
- Daniel Konstantinovsky
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department
of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Ethan A. Perets
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Ty Santiago
- Department
of Chemistry, University at Buffalo, Buffalo, New York 14260, United States
| | - Luis Velarde
- Department
of Chemistry, University at Buffalo, Buffalo, New York 14260, United States
| | | | - Elsa C. Y. Yan
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
146
|
Zhang MH, Xiao W, Wang WM, Zhang R, Zhang CL, Zhang XC, Zhang LL. Highly sensitive detection of broadband terahertz waves using aqueous salt solutions. OPTICS EXPRESS 2022; 30:39142-39151. [PMID: 36258461 DOI: 10.1364/oe.472753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Water-based coherent detection of broadband terahertz (THz) wave has been recently proposed with superior performances, which can alleviate the limited detection bandwidth and high probe laser energy requirement in the solid- and air-based detection schemes, respectively. Here, we demonstrate that the water-based detection method can be extended to the aqueous salt solutions and the sensitivity can be significantly enhanced. The THz coherent detection signal intensity scales linearly with the third-order nonlinear susceptibility χ(3) or quadratically with the linear refractive index η0 of the aqueous salt solutions, while the incoherent detection signal intensity scales quadratically with χ(3) or quartically with η0, proving the underlying mechanism is the four-wave mixing. Both the coherent and incoherent detection signal intensities appear positive correlation with the solution concentration. These results imply that the liquid-based THz detection scheme could provide a new technique to measure χ(3) and further investigate the physicochemical properties in the THz band for various liquids.
Collapse
|
147
|
Ionic liquids as protein stabilizers for biological and biomedical applications: A review. Biotechnol Adv 2022; 61:108055. [DOI: 10.1016/j.biotechadv.2022.108055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 11/22/2022]
|
148
|
Saha R, Mitra RK. Trivalent cation-induced phase separation in proteins: ion specific contribution in hydration also counts. Phys Chem Chem Phys 2022; 24:23661-23668. [PMID: 36148614 DOI: 10.1039/d2cp01061e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multivalent (specifically trivalent) metal ions are known to induce microscopic phase separation (commonly termed as liquid-liquid phase separation (LLPS)) in negatively charged globular proteins even at ambient temperatures, the process being mostly driven by protein charge neutralization followed by aggregation. Recent simulation studies have revealed that such self-aggregation of proteins is entropy driven; however, it is associated with a solvation effect, which could as well be different from the usual notion of hydrophobic hydration. In this contribution we have experimentally probed the explicit change in hydration associated with ion-induced LLPS formation of a globular protein bovine serum albumin (BSA) at ambient temperature using FIR-THz FTIR spectroscopy (50-750 cm-1; 1.5-22.5 THz). We have used ions of different charges: Na+, K+, Ca2+, Mg2+, La3+, Y3+, Ho3+ and Al3+. We found that all the trivalent ions induce LLPS; the formation of large aggregates has been evidenced from dynamic light scattering (DLS) measurements, but without perturbing the protein structure as confirmed from circular dichroism (CD) measurements. From the frequency dependent absorption coefficient (α(ν)) measurements in the THz frequency domain we estimate the various stretching/vibrational modes of water and we found that ions, forming LLPS, produce definite perturbation in the overall hydration, the extent of which is ion specific, invoking the definite role of hydrophilic (electrostatic) hydration of ions in the observed LLPS process.
Collapse
Affiliation(s)
- Ria Saha
- Department of Chemical, Biological & Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences, Block-JD; Sector-III, Salt Lake, Kolkata-700106, India.
| | - Rajib Kumar Mitra
- Department of Chemical, Biological & Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences, Block-JD; Sector-III, Salt Lake, Kolkata-700106, India.
| |
Collapse
|
149
|
Stevens MJ, Rempe SLB. Carboxylate binding prefers two cations to one. Phys Chem Chem Phys 2022; 24:22198-22205. [PMID: 36093927 DOI: 10.1039/d2cp03561h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Almost all studies of specific ion binding by carboxylates (-COO-) have considered only a single cation, but clustering of ions and ligands is a common phenomenon. We apply density functional theory to investigate how variations in the number of acetate ligands in binding to two monovalent cations affects ion binding preferences. We study a series of monovalent (Li+, Na+, K+, Cs+) ions relevant to experimental work on many topics, including ion channels, battery storage, water purification and solar cells. We find that the preferred optimal structure has 3 acetates except for Cs+, which has 2 acetates. The optimal coordination of the cation by the carboxylate O atoms is 4 for both Na+ and K+, and 3 for Li+ and Cs+. There is a 4-fold coordination minimum just a few kcal mol-1 higher than the optimal 3-fold structure for Li+. For two cations, multiple minima occur in the vicinity of the lowest free energy state. We find that, for Li, Na and K, the preferred optimal structure with two cations is favored over a mixture of single cation complexes, providing a basis for understanding ionic cluster formation that is relevant for engineering proteins and other materials for rapid, selective ion transport.
Collapse
Affiliation(s)
- Mark J Stevens
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA.
| | - Susan L B Rempe
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA. .,CBRN Defense and Energy Technologies, Sandia National Laboratories, Albuquerque, NM, 87185, USA.
| |
Collapse
|
150
|
Ferrage F, Laage D. The soft breeze of the cation atmosphere around DNA. Biophys J 2022; 121:3307-3308. [PMID: 35998616 PMCID: PMC9514999 DOI: 10.1016/j.bpj.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/02/2022] Open
Affiliation(s)
- Fabien Ferrage
- Laboratoire des Biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Damien Laage
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|