101
|
Bianchi R, Kastrisianaki E, Giambanco I, Donato R. S100B protein stimulates microglia migration via RAGE-dependent up-regulation of chemokine expression and release. J Biol Chem 2011; 286:7214-26. [PMID: 21209080 PMCID: PMC3044978 DOI: 10.1074/jbc.m110.169342] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 12/29/2010] [Indexed: 01/11/2023] Open
Abstract
The Ca(2+)-binding protein of the EF-hand type, S100B, is abundantly expressed in and secreted by astrocytes, and release of S100B from damaged astrocytes occurs during the course of acute and chronic brain disorders. Thus, the concept has emerged that S100B might act an unconventional cytokine or a damage-associated molecular pattern protein playing a role in the pathophysiology of neurodegenerative disorders and inflammatory brain diseases. S100B proinflammatory effects require relatively high concentrations of the protein, whereas at physiological concentrations S100B exerts trophic effects on neurons. Most if not all of the extracellular (trophic and toxic) effects of S100B in the brain are mediated by the engagement of RAGE (receptor for advanced glycation end products). We show here that high S100B stimulates murine microglia migration in Boyden chambers via RAGE-dependent activation of Src kinase, Ras, PI3K, MEK/ERK1/2, RhoA/ROCK, Rac1/JNK/AP-1, Rac1/NF-κB, and, to a lesser extent, p38 MAPK. Recruitment of the adaptor protein, diaphanous-1, a member of the formin protein family, is also required for S100B/RAGE-induced migration of microglia. The S100B/RAGE-dependent activation of diaphanous-1/Rac1/JNK/AP-1, Ras/Rac1/NF-κB and Src/Ras/PI3K/RhoA/diaphanous-1 results in the up-regulation of expression of the chemokines, CCL3, CCL5, and CXCL12, whose release and activity are required for S100B to stimulate microglia migration. Lastly, RAGE engagement by S100B in microglia results in up-regulation of the chemokine receptors, CCR1 and CCR5. These results suggests that S100B might participate in the pathophysiology of brain inflammatory disorders via RAGE-dependent regulation of several inflammation-related events including activation and migration of microglia.
Collapse
Affiliation(s)
- Roberta Bianchi
- From the Department of Experimental Medicine and Biochemical Sciences, Section of Anatomy, University of Perugia, 06122 Perugia, Italy
| | - Eirini Kastrisianaki
- From the Department of Experimental Medicine and Biochemical Sciences, Section of Anatomy, University of Perugia, 06122 Perugia, Italy
| | - Ileana Giambanco
- From the Department of Experimental Medicine and Biochemical Sciences, Section of Anatomy, University of Perugia, 06122 Perugia, Italy
| | - Rosario Donato
- From the Department of Experimental Medicine and Biochemical Sciences, Section of Anatomy, University of Perugia, 06122 Perugia, Italy
| |
Collapse
|
102
|
Koch M, Chitayat S, Dattilo BM, Schiefner A, Diez J, Chazin WJ, Fritz G. Structural basis for ligand recognition and activation of RAGE. Structure 2011; 18:1342-52. [PMID: 20947022 DOI: 10.1016/j.str.2010.05.017] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 05/06/2010] [Accepted: 05/15/2010] [Indexed: 01/13/2023]
Abstract
The receptor for advanced glycation end products (RAGE) is a pattern recognition receptor involved in inflammatory processes and is associated with diabetic complications, tumor outgrowth, and neurodegenerative disorders. RAGE induces cellular signaling events upon binding of a variety of ligands, such as glycated proteins, amyloid-β, HMGB1, and S100 proteins. The X-ray crystal structure of the VC1 ligand-binding region of the human RAGE ectodomain was determined at 1.85 Å resolution. The VC1 ligand-binding surface was mapped onto the structure from titrations with S100B monitored by heteronuclear NMR spectroscopy. These NMR chemical shift perturbations were used as input for restrained docking calculations to generate a model for the VC1-S100B complex. Together, the arrangement of VC1 molecules in the crystal and complementary biochemical studies suggest a role for self-association in RAGE function. Our results enhance understanding of the functional outcomes of S100 protein binding to RAGE and provide insight into mechanistic models for how the receptor is activated.
Collapse
Affiliation(s)
- Michael Koch
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | | | | | | | |
Collapse
|
103
|
Wolf S, Haase-Kohn C, Lenk J, Hoppmann S, Bergmann R, Steinbach J, Pietzsch J. Expression, purification and fluorine-18 radiolabeling of recombinant S100A4: a potential probe for molecular imaging of receptor for advanced glycation endproducts in vivo? Amino Acids 2010; 41:809-20. [DOI: 10.1007/s00726-010-0822-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 11/26/2010] [Indexed: 01/27/2023]
|
104
|
Wu L, Ma L, Nicholson LFB, Black PN. Advanced glycation end products and its receptor (RAGE) are increased in patients with COPD. Respir Med 2010; 105:329-36. [PMID: 21112201 DOI: 10.1016/j.rmed.2010.11.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/28/2010] [Accepted: 11/04/2010] [Indexed: 01/08/2023]
Abstract
UNLABELLED Advanced Glycation End products (AGEs) are the products of nonenzymatic glycation and oxidation of proteins and lipids. Formation of AGEs is increased in response to hyperglycaemia, reactive oxygen species and ageing. AGEs are proinflammatory and can modify the extracellular matrix. RAGE (Receptor for Advanced Glycation End Products) mediates some of the effects of AGEs. METHODS Formalin-fixed lung tissue from patients who had lobectomy for bronchial carcinoma was used to investigate the presence of AGEs and RAGE. Subjects were divided into those with COPD and controls. Immunostaining for AGEs and RAGE was performed and the intensity of staining measured. RESULTS Subjects with COPD and controls were similar in age and smoking history but FEV(1)% predicted was lower for COPD than controls. Intensity of staining for AGEs was greater in the airways (p = 0.025) and alveolar walls (p = 0.004) in COPD. Intensity of staining for RAGE was also significantly increased in alveolar walls (p = 0.03) but not the airways. FEV(1)% predicted was correlated with the intensity of staining for AGEs in the airways and alveoli. CONCLUSIONS The increased staining for both AGEs and RAGE in COPD lung raises the possibility that the RAGE-AGEs interaction may have a role in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Lian Wu
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | | | | | | |
Collapse
|
105
|
Advanced glycation endproducts: from precursors to RAGE: round and round we go. Amino Acids 2010; 42:1151-61. [PMID: 20957395 DOI: 10.1007/s00726-010-0773-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Accepted: 09/01/2010] [Indexed: 12/14/2022]
Abstract
The formation of advanced glycation endproducts (AGEs) occurs in diverse settings such as diabetes, aging, renal failure, inflammation and hypoxia. The chief cellular receptor for AGEs, RAGE, transduces the effects of AGEs via signal transduction, at least in part via processes requiring the RAGE cytoplasmic domain binding partner, diaphanous-1 or mDia1. Data suggest that RAGE perpetuates the inflammatory signals initiated by AGEs via multiple mechanisms. AGE-RAGE interaction stimulates generation of reactive oxygen species and inflammation--mechanisms which enhance AGE formation. Further, recent data in type 1 diabetic kidney reveal that deletion of RAGE prevents methylglyoxal accumulation, at least in part via RAGE-dependent regulation of glyoxalase-1, a major enzyme involved in methylglyoxal detoxification. Taken together, these considerations place RAGE in the center of biochemical and molecular stresses that characterize the complications of diabetes and chronic disease. Stopping RAGE-dependent signaling may hold the key to interrupting cycles of cellular perturbation and tissue damage in these disorders.
Collapse
|
106
|
Intertwined Structured and Unstructured Regions of exRAGE Identified by Monitoring Hydrogen–Deuterium Exchange. J Mol Biol 2010; 403:52-65. [DOI: 10.1016/j.jmb.2010.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/11/2010] [Accepted: 08/13/2010] [Indexed: 11/24/2022]
|
107
|
Srikrishna G, Nayak J, Weigle B, Temme A, Foell D, Hazelwood L, Olsson A, Volkmann N, Hanein D, Freeze HH. Carboxylated N-glycans on RAGE promote S100A12 binding and signaling. J Cell Biochem 2010; 110:645-59. [PMID: 20512925 DOI: 10.1002/jcb.22575] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The receptor for advanced glycation end products (RAGE) is a signaling receptor protein of the immunoglobulin superfamily implicated in multiple pathologies. It binds a diverse repertoire of ligands, but the structural basis for the interaction of different ligands is not well understood. We earlier showed that carboxylated glycans on the V-domain of RAGE promote the binding of HMGB1 and S100A8/A9. Here we study the role of these glycans on the binding and intracellular signaling mediated by another RAGE ligand, S100A12. S100A12 binds carboxylated glycans, and a subpopulation of RAGE enriched for carboxylated glycans shows more than 10-fold higher binding potential for S100A12 than total RAGE. When expressed in mammalian cells, RAGE is modified by complex glycans predominantly at the first glycosylation site (N25IT) that retains S100A12 binding. Glycosylation of RAGE and maximum binding sites for S100A12 on RAGE are also cell type dependent. Carboxylated glycan-enriched population of RAGE forms higher order multimeric complexes with S100A12, and this ability to multimerize is reduced upon deglycosylation or by using non-glycosylated sRAGE expressed in E. coli. mAbGB3.1, an antibody against carboxylated glycans, blocks S100A12-mediated NF-kappaB signaling in HeLa cells expressing full-length RAGE. These results demonstrate that carboxylated N-glycans on RAGE enhance binding potential and promote receptor clustering and subsequent signaling events following oligomeric S100A12 binding.
Collapse
Affiliation(s)
- Geetha Srikrishna
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Zong H, Madden A, Ward M, Mooney MH, Elliott CT, Stitt AW. Homodimerization is essential for the receptor for advanced glycation end products (RAGE)-mediated signal transduction. J Biol Chem 2010; 285:23137-46. [PMID: 20504772 PMCID: PMC2906307 DOI: 10.1074/jbc.m110.133827] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 05/24/2010] [Indexed: 01/11/2023] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor that binds to diverse ligands and initiates a downstream proinflammatory signaling cascade. RAGE activation has been linked to diabetic complications, Alzheimer disease, infections, and cancers. RAGE is known to mediate cell signaling and downstream proinflammatory gene transcription activation, although the precise mechanism surrounding receptor-ligand interactions is still being elucidated. Recent fluorescence resonance energy transfer evidence indicates that RAGE may form oligomers on the cell surface and that this could be related to signal transduction. To investigate whether RAGE forms oligomers, protein-protein interaction assays were carried out. Here, we demonstrate the interaction between RAGE molecules via their N-terminal V domain, which is an important region involved in ligand recognition. By protein cross-linking using water-soluble and membrane-impermeable cross-linker bis(sulfosuccinimidyl) suberate and nondenaturing gels, we show that RAGE forms homodimers at the plasma membrane, a process potentiated by S100B and advanced glycation end products. Soluble RAGE, the RAGE inhibitor, is also capable of binding to RAGE, similar to V peptide, as shown by surface plasmon resonance. Incubation of cells with soluble RAGE or RAGE V domain peptide inhibits RAGE dimerization, subsequent phosphorylation of intracellular MAPK proteins, and activation of NF-kappaB pathways. Thus, the data indicate that dimerization of RAGE represents an important component of RAGE-mediated cell signaling.
Collapse
Affiliation(s)
| | | | - Micheal Ward
- From the
Centre for Vision and Vascular Science and
| | - Mark H. Mooney
- School of Biological Sciences, Queen's University Belfast, Belfast BT12 6BA, Northern Ireland, United Kingdom
| | - Christopher T. Elliott
- School of Biological Sciences, Queen's University Belfast, Belfast BT12 6BA, Northern Ireland, United Kingdom
| | | |
Collapse
|
109
|
Gore A, Muralidhar M, Espey MG, Degenhardt K, Mantell LL. Hyperoxia sensing: from molecular mechanisms to significance in disease. J Immunotoxicol 2010; 7:239-54. [PMID: 20586583 DOI: 10.3109/1547691x.2010.492254] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oxygen therapy using mechanical ventilation with hyperoxia is necessary to treat patients with respiratory failure and distress. However, prolonged exposure to hyperoxia leads to the generation of excessive reactive oxygen species (ROS), causing cellular damage and multiple organ dysfunctions. As the lungs are directly exposed, hyperoxia can cause both acute and chronic inflammatory lung injury and compromise innate immunity. ROS may contribute to pulmonary oxygen toxicity by overwhelming redox homeostasis, altering signaling cascades that affect cell fate, ultimately leading to hyperoxia-induced acute lung injury (HALI). HALI is characterized by pronounced inflammatory responses with leukocyte infiltration, injury, and death of pulmonary cells, including epithelia, endothelia, and macrophages. Under hyperoxic conditions, ROS mediate both direct and indirect modulation of signaling molecules such as protein kinases, transcription factors, receptors, and pro- and anti-apoptotic factors. The focus of this review is to elaborate on hyperoxia-activated key sensing molecules and current understanding of their signaling mechanisms in HALI. A better understanding of the signaling pathways leading to HALI may provide valuable insights on its pathogenesis and may help in designing more effective therapeutic approaches.
Collapse
Affiliation(s)
- Ashwini Gore
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Allied Health Professions, Queens, NY, USA
| | | | | | | | | |
Collapse
|
110
|
Wang Y, Wang H, Piper MG, McMaken S, Mo X, Opalek J, Schmidt AM, Marsh CB. sRAGE induces human monocyte survival and differentiation. THE JOURNAL OF IMMUNOLOGY 2010; 185:1822-35. [PMID: 20574008 DOI: 10.4049/jimmunol.0903398] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The receptor for advanced glycation end products (RAGE) is produced either as a transmembrane or soluble form (sRAGE). Substantial evidence supports a role for RAGE and its ligands in disease. sRAGE is reported to be a competitive, negative regulator of membrane RAGE activation, inhibiting ligand binding. However, some reports indicate that sRAGE is associated with inflammatory disease. We sought to define the biological function of sRAGE on inflammatory cell recruitment, survival, and differentiation in vivo and in vitro. To test the in vivo impact of sRAGE, the recombinant protein was intratracheally administered to mice, which demonstrated monocyte- and neutrophil-mediated lung inflammation. We also observed that sRAGE induced human monocyte and neutrophil migration in vitro. Human monocytes treated with sRAGE produced proinflammatory cytokines and chemokines. Our data demonstrated that sRAGE directly bound human monocytes and monocyte-derived macrophages. Binding of sRAGE to monocytes promoted their survival and differentiation to macrophages. Furthermore, sRAGE binding to cells increased during maturation, which was similar in freshly isolated mouse monocytes compared with mature tissue macrophages. Because sRAGE activated cell survival and differentiation, we examined intracellular pathways that were activated by sRAGE. In primary human monocytes and macrophages, sRAGE treatment activated Akt, Erk, and NF-kappaB, and their activation appeared to be critical for cell survival and differentiation. Our data suggest a novel role for sRAGE in monocyte- and neutrophil-mediated inflammation and mononuclear phagocyte survival and differentiation.
Collapse
Affiliation(s)
- Yijie Wang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Abstract
Increasing evidence suggests that the small EF-hand calcium-binding protein S100B plays an important role in Alzheimer's disease. Among other evidences are the increased levels of both S100B and its receptor, the Receptor for Advanced Glycation Endproducts (RAGEs) in the AD diseased brain. The regulation of RAGE signaling by S100B is complex and probably involves other ligands including the amyloid beta peptide (Aβ), the Advanced Glycation Endproducts (AGEs), or transtheyretin. In this paper we discuss the current literature regarding the role of S100B/RAGE activation in Alzheimer's disease.
Collapse
|
112
|
Meneghini V, Francese MT, Carraro L, Grilli M. A novel role for the Receptor for Advanced Glycation End-products in neural progenitor cells derived from adult SubVentricular Zone. Mol Cell Neurosci 2010; 45:139-50. [PMID: 20600932 DOI: 10.1016/j.mcn.2010.06.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 05/12/2010] [Accepted: 06/09/2010] [Indexed: 01/04/2023] Open
Abstract
The Receptor for Advanced Glycation End-products (RAGE) is a member of the immunoglobulin superfamily of cell surface receptors which interacts with a wide range of ligands, such as High-Mobility Group Box-1 (HMGB-1), S100B, advanced glycation end-products (AGEs). Here we provided evidence for the restricted expression of RAGE in the undifferentiated neural stem/progenitor cells of mouse adult SubVentricular Zone (SVZ) neurogenic region and adult SVZ-derived neurospheres. Additionally, RAGE ligands stimulated both proliferation and neuronal differentiation of SVZ-derived neural progenitor cells (NPC) in vitro. NF-kappaB nuclear translocation occurred upon RAGE activation in SVZ-derived neurospheres and its blockade (by SN-50) or its absence (in p50(-/-) derived NPC) resulted in the inhibition of the ligand-mediated effects on neuronal differentiation. These novel findings delineate an interesting scenario where the RAGE-NF-kappaB axis may contribute to regulate adult neural stem/progenitor cell function in physiological and possibly pathological conditions where this axis is upregulated.
Collapse
Affiliation(s)
- Vasco Meneghini
- DiSCAFF, University of Piemonte Orientale A. Avogadro, Novara, Italy
| | | | | | | |
Collapse
|
113
|
Rao NV, Argyle B, Xu X, Reynolds PR, Walenga JM, Prechel M, Prestwich GD, MacArthur RB, Walters BB, Hoidal JR, Kennedy TP. Low anticoagulant heparin targets multiple sites of inflammation, suppresses heparin-induced thrombocytopenia, and inhibits interaction of RAGE with its ligands. Am J Physiol Cell Physiol 2010; 299:C97-110. [PMID: 20375277 DOI: 10.1152/ajpcell.00009.2010] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
While heparin has been used almost exclusively as a blood anticoagulant, important literature demonstrates that it also has broad anti-inflammatory activity. Herein, using low anti-coagulant 2-O,3-O-desulfated heparin (ODSH), we demonstrate that most of the anti-inflammatory pharmacology of heparin is unrelated to anticoagulant activity. ODSH has low affinity for anti-thrombin III, low anti-Xa, and anti-IIa anticoagulant activities and does not activate Hageman factor (factor XII). Unlike heparin, ODSH does not interact with heparin-platelet factor-4 antibodies present in patients with heparin-induced thrombocytopenia and even suppresses platelet activation in the presence of activating concentrations of heparin. Like heparin, ODSH inhibits complement activation, binding to the leukocyte adhesion molecule P-selectin, and the leukocyte cationic granular proteins azurocidin, human leukocyte elastase, and cathepsin G. In addition, ODSH and heparin disrupt Mac-1 (CD11b/CD18)-mediated leukocyte adhesion to the receptor for advanced glycation end products (RAGE) and inhibit ligation of RAGE by its many proinflammatory ligands, including the advanced glycation end-product carboxymethyl lysine-bovine serum albumin, the nuclear protein high mobility group box protein-1 (HMGB-1), and S100 calgranulins. In mice, ODSH is more effective than heparin in reducing selectin-mediated lung metastasis from melanoma and inhibits RAGE-mediated airway inflammation from intratracheal HMGB-1. In humans, 50% inhibitory concentrations of ODSH for these anti-inflammatory activities can be achieved in the blood without anticoagulation. These results demonstrate that the anticoagulant activity of heparin is distinct from its anti-inflammatory actions and indicate that 2-O and 3-O sulfate groups can be removed to reduce anticoagulant activity of heparin without impairing its anti-inflammatory pharmacology.
Collapse
Affiliation(s)
- Narayanam V Rao
- Department of Internal Medicine, University of Utah Medical Center, Salt Lake City, UT 84132, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in Inflammation and Cancer. Annu Rev Immunol 2010; 28:367-88. [DOI: 10.1146/annurev.immunol.021908.132603] [Citation(s) in RCA: 1016] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Gary P. Sims
- Department of Respiratory, Inflammation and Autoimmune Disease, MedImmune, One Medimmune Way, Gaithersburg, Maryland 20878;
| | - Daniel C. Rowe
- Department of Respiratory, Inflammation and Autoimmune Disease, MedImmune, One Medimmune Way, Gaithersburg, Maryland 20878;
| | - Svend T. Rietdijk
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, NL-1105 AZ, The Netherlands
| | - Ronald Herbst
- Department of Respiratory, Inflammation and Autoimmune Disease, MedImmune, One Medimmune Way, Gaithersburg, Maryland 20878;
| | - Anthony J. Coyle
- Department of Respiratory, Inflammation and Autoimmune Disease, MedImmune, One Medimmune Way, Gaithersburg, Maryland 20878;
| |
Collapse
|
115
|
Yan SF, Ramasamy R, Schmidt AM. Soluble RAGE: therapy and biomarker in unraveling the RAGE axis in chronic disease and aging. Biochem Pharmacol 2010; 79:1379-86. [PMID: 20096667 DOI: 10.1016/j.bcp.2010.01.013] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 01/11/2010] [Accepted: 01/13/2010] [Indexed: 01/13/2023]
Abstract
The multi-ligand Receptor for Advanced Glycation Endproducts (RAGE) is implicated in the pathogenesis and progression of chronic diseases such as diabetes and immune/inflammatory disorders. Recent studies are uncovering the precise mechanisms by which distinct RAGE ligands bind the extracellular (soluble) domain of the receptor at the V-, C1- and/or C2-immunoglobulin like domains. Experiments using soluble RAGE in animals as a ligand decoy have illustrated largely beneficial effects in reducing vascular and inflammatory stress and, thereby, preventing long-term tissue damage in models of diabetes and immune/inflammatory disorders. Measurement of soluble RAGE levels in the human, both "total" soluble RAGE and a splice variant-derived product known as endogenous secretory or esRAGE, holds promise for the identification of potential therapeutic targets and/or biomarkers of RAGE activity in disease. In this article, we review the evidence from the rodent to the human implicating RAGE in the diverse disease states in which its ligands accumulate.
Collapse
Affiliation(s)
- Shi Fang Yan
- Department of Surgery, Columbia University, New York, NY 10032, United States
| | | | | |
Collapse
|
116
|
Negre-Salvayre A, Salvayre R, Augé N, Pamplona R, Portero-Otín M. Hyperglycemia and glycation in diabetic complications. Antioxid Redox Signal 2009; 11:3071-109. [PMID: 19489690 DOI: 10.1089/ars.2009.2484] [Citation(s) in RCA: 260] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is a multifactorial disease, classically influenced by genetic determinants of individual susceptibility and by environmental accelerating factors, such as lifestyle. It is considered a major health concern,as its incidence is increasing at an alarming rate, and the high invalidating effects of its long-term complications affect macro- and microvasculature, heart, kidney, eye, and nerves. Increasing evidence indicates that hyperglycemia is the initiating cause of the tissue damage occurring in diabetes, either through repeated acute changes in cellular glucose metabolism, or through the long-term accumulation of glycated biomolecules and advanced glycation end products (AGEs). AGEs represent a heterogeneous group of chemical products resulting from a nonenzymatic reaction between reducing sugars and proteins, lipids, nucleic acids, or a combination of these.The glycation process (glucose fixation) affects circulating proteins (serum albumin, lipoprotein, insulin, hemoglobin),whereas the formation of AGEs implicates reactive intermediates such as methylglyoxal. AGEs form cross-links on long-lived extracellular matrix proteins or react with their specific receptor RAGE, resulting inoxidative stress and proinflammatory signaling implicated in endothelium dysfunction, arterial stiffening, and microvascular complications. This review summarizes the mechanism of glycation and of AGEs formation and the role of hyperglycemia, AGEs, and oxidative stress in the pathophysiology of diabetic complications.
Collapse
|
117
|
Bierhaus A, Nawroth PP. Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. Diabetologia 2009; 52:2251-63. [PMID: 19636529 DOI: 10.1007/s00125-009-1458-9] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 06/29/2009] [Indexed: 12/12/2022]
Abstract
The pattern recognition receptor or receptor for AGE (RAGE) is constitutionally expressed in a few cell types only. However in almost all cells studied so far it is induced by reactions known to initiate inflammation. Its biological activity seems to be mainly dependent on the presence of its various ligands, including AGE, S100-calcium binding protein/calgranulins, high-mobility group protein 1, amyloid-beta-peptides and the family of beta-sheet fibrils, all known to be elevated in chronic metabolic, malignant and inflammatory diseases. The RAGE pathway interacts with cytokine-, lipopolysaccharide-, oxidised LDL- and glucose-triggered cellular reactions by turning a short-lasting inflammatory response into a sustained change of cellular function driven by perpetuated activation of the proinflammatory transcription factor, nuclear factor kappa-B. RAGE-mediated persistent cell activation is of pivotal importance in various experimental and clinical settings, including diabetes and its complications, neurodegeneration, ageing, tumour growth, and autoimmune and infectious inflammatory disease. Due to RAGE's central role in maintaining perpetuated cell activation, various therapeutic attempts to block RAGE or its ligands are currently under investigation. Despite broad experimental evidence for the role of RAGE in chronic disease, knowledge of its physiological function is still missing, limiting predictions about safety of long-term inhibition of RAGE x ligand interaction in chronic diseases.
Collapse
Affiliation(s)
- A Bierhaus
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| | | |
Collapse
|
118
|
Xu HL, Vetri F, Lee HK, Ye S, Paisansathan C, Mao L, Tan F, Pelligrino DA. Estrogen replacement therapy in diabetic ovariectomized female rats potentiates postischemic leukocyte adhesion in cerebral venules via a RAGE-related process. Am J Physiol Heart Circ Physiol 2009; 297:H2059-67. [PMID: 19820198 DOI: 10.1152/ajpheart.00445.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this study, we tested the hypothesis that the documented transformation of 17beta-estradiol (E2) from a counterinflammatory hormone in nondiabetic (ND) rats to a proinflammatory agent in rats with diabetes mellitus (DM) is due to an enhanced contribution from the receptor for advanced glycation end products (RAGE). Rhodamine 6G-labeled leukocytes were observed through a closed cranial window in rats. In vivo pial venular leukocyte adherence and infiltration were measured over 10 h reperfusion after transient forebrain ischemia in DM (streptozotocin) versus ND intact, ovariectomized (OVX), and E2-replaced (for 7-10 days) OVX (OVE) females. The role of RAGE was examined in two ways: 1) RAGE knockdown via topical application of RAGE antisense versus missense oligodeoxynucleotide or 2) intracerebroventricular injection of the RAGE decoy inhibitor, soluble RAGE. Among diabetic rats, the lowest levels of cortical RAGE mRNA and immunoreactivity of the RAGE ligand, AGE, were seen in OVX females, with significantly higher levels exhibited in intact and OVE females. However, results from the analysis of cortical RAGE protein only partially tracked those findings. When comparing ND to DM rats, cortical AGE immunoreactivity was significantly lower in OVE and intact females but similar in OVX rats. In DM rats, the level of postischemic leukocyte adhesion and infiltration (highest to lowest) was OVE>intact>>untreated OVX. In NDs, adhesion was highest in the untreated OVX group. Leukocyte extravasation was observed at >6 h postischemia but only in diabetic OVE and intact females and in ND OVX (untreated) rats. Pretreatment with RAGE antisense-oligodeoxynucleotide or soluble RAGE attenuated postischemic leukocyte adhesion and prevented infiltration but only in the diabetic OVE and intact groups. These results indicate that the exacerbation of postischemic leukocyte adhesion by chronic E2 replacement therapy in diabetic OVX females involves a RAGE-related mechanism. Targeting RAGE may restore the neuroprotective effect of E2 replacement therapy in diabetic females.
Collapse
Affiliation(s)
- Hao-Liang Xu
- Neuroanesthesia Research Laboratory, Department of Anesthesiology, University of Illinois at Chicago, 835 S. Wolcott Ave., Rm. E-714C, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Endogenous damage-associated molecular pattern molecules at the crossroads of inflammation and cancer. Neoplasia 2009; 11:615-28. [PMID: 19568407 DOI: 10.1593/neo.09284] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/07/2009] [Accepted: 04/09/2009] [Indexed: 02/06/2023] Open
Abstract
Inflammatory mediators play important roles in the development and progression of cancer. Cellular stress, damage, inflammation, and necrotic cell death cause release of endogenous damage-associated molecular pattern (DAMP) molecules or alarmins, which alert the host of danger by triggering immune responses and activating repair mechanisms through their interaction with pattern recognition receptors. Recent studies show that abnormal persistence of these molecules in chronic inflammation and in tumor microenvironments underlies carcinogenesis and tumor progression, indicating that DAMP molecules and their receptors could provide novel targets for therapy. This review focuses on the role of DAMP molecules high-mobility group box 1 and S100 proteins in inflammation, tumor growth, and early metastatic events.
Collapse
|
120
|
Yan SD, Bierhaus A, Nawroth PP, Stern DM. RAGE and Alzheimer's disease: a progression factor for amyloid-beta-induced cellular perturbation? J Alzheimers Dis 2009; 16:833-43. [PMID: 19387116 DOI: 10.3233/jad-2009-1030] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Receptor for Advanced Glycation Endproducts (RAGE) is a multiligand member of the immunoglobulin superfamily of cell surface molecules which serves as a receptor for amyloid-beta peptide (Abeta) on neurons, microglia, astrocytes, and cells of vessel wall. Increased expression of RAGE is observed in regions of the brain affected by Alzheimer's disease (AD), and Abeta-RAGE interaction in vitro leads to cell stress with the generation of reactive oxygen species and activation of downstream signaling mechanisms including the MAP kinase pathway. RAGE-mediated activation of p38 MAP kinase in neurons causes Abeta-induced inhibition of long-term potentiation in slices of entorhinal cortex. Increased expression of RAGE in an Abeta-rich environment, using transgenic mouse models, accelerates and accentuates pathologic, biochemical, and behavioral abnormalities compared with mice overexpressing only mutant amyloid-beta protein precursor. Interception of Abeta interaction with RAGE, by infusion of soluble RAGE, decreases Abeta content and amyloid load, as well as improving learning/memory and synaptic function, in a murine transgenic model of Abeta accumulation. These data suggest that RAGE may be a therapeutic target for AD.
Collapse
Affiliation(s)
- Shi Du Yan
- Department of Pathology, College of Physicians & Surgeons of Columbia University, New York City, NY, USA
| | | | | | | |
Collapse
|
121
|
Kumano-Kuramochi M, Ohnishi-Kameyama M, Xie Q, Niimi S, Kubota F, Komba S, Machida S. Minimum stable structure of the receptor for advanced glycation end product possesses multi ligand binding ability. Biochem Biophys Res Commun 2009; 386:130-4. [PMID: 19501570 DOI: 10.1016/j.bbrc.2009.05.142] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 05/30/2009] [Indexed: 11/15/2022]
Abstract
The receptor for advanced glycation end products (RAGE) is a multi-ligand receptor involved in the development of diabetic complications. Although the soluble form of the extracellular domain maintains the ability to bind multi-ligands, it is unstable and degrades into several peptide species during storage. Proteolysis with thrombin or factor Xa revealed several protease sensitive sites. Most sensitive site is located between Arg228 and Val229, and peptide bond next to Arg216, Arg116, Arg114 and Trp271 are also cleaved. Seven truncated extracellular domains of RAGE were engineered in order to obtain a stable soluble fragment. RAGE 143 (Ala23-Thr143) is not only protease resistant but also shows the same ligand-binding ability as that of the full-length extracellular domain. The resultant minimum RAGE 143 works as a stable recognition devise to detect advanced glycation end products (AGEs).
Collapse
Affiliation(s)
- M Kumano-Kuramochi
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | | | | | |
Collapse
|
122
|
Abstract
RAGE [receptor for AGEs (advanced glycation end-products)] plays an important role in the development and progression of vascular disease. Studies in cultured cells and small animal models of disease have clearly demonstrated that RAGE is central to the pathogenesis of vascular disease of the macro- and micro-vessels in both the diabetic and non-diabetic state. Emerging results from human clinical studies have revealed that levels of circulating soluble RAGE in the plasma may reflect the presence and/or extent of vascular disease state. Additionally, genetic variants of the RAGE gene (AGER in HUGO nomenclature) have been associated with vascular disease risk. Combining RAGE circulating protein levels and the presence of particular RAGE polymorphisms may be a useful clinical tool for the prediction of individuals at risk for vascular disease. Therapeutic intervention targeted at the RAGE gene may therefore be a useful means of treating pathologies of the vasculature.
Collapse
|
123
|
Yan SF, Ramasamy R, Schmidt AM. The receptor for advanced glycation endproducts (RAGE) and cardiovascular disease. Expert Rev Mol Med 2009; 11:e9. [PMID: 19278572 PMCID: PMC2670065 DOI: 10.1017/s146239940900101x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recent and compelling investigation has expanded our view of the biological settings in which the products of nonenzymatic glycation and oxidation of proteins and lipids - the advanced glycation endproducts (AGEs) - form and accumulate. Beyond diabetes, natural ageing and renal failure, AGEs form in inflammation, oxidative stress and in ischaemia-reperfusion. The chief signal transduction receptor for AGEs - the receptor for AGEs (RAGE) - is a multiligand-binding member of the immunoglobulin superfamily. In addition to AGEs, RAGE binds certain members of the S100/calgranulin family, high-mobility group box 1 (HMGB1), and beta-amyloid peptide and beta-sheet fibrils. Recent studies demonstrate beneficial effects of RAGE antagonism and genetic deletion in rodent models of atherosclerosis and ischaemia-reperfusion injury in the heart and great vessels. Experimental evidence is accruing that RAGE ligand generation and release during ischaemia-reperfusion may signal through RAGE, thus suggesting that antagonism of this receptor might provide a novel form of therapeutic intervention in heart disease. However, it is plausible that innate, tissue-regenerative roles for these RAGE ligands may also impact the failing heart - perhaps through RAGE and/or distinct receptors. In this review, we focus on RAGE and the consequences of its activation in the cardiovasculature.
Collapse
Affiliation(s)
- Shi Fang Yan
- Division of Surgical Science, Department of Surgery, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ravichandran Ramasamy
- Division of Surgical Science, Department of Surgery, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ann Marie Schmidt
- Division of Surgical Science, Department of Surgery, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
124
|
Lin L, Park S, Lakatta EG. RAGE signaling in inflammation and arterial aging. Front Biosci (Landmark Ed) 2009; 14:1403-13. [PMID: 19273137 DOI: 10.2741/3315] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The receptor for advanced glycation end products (RAGE) is a pattern recognition receptor (PRR) that interacts with diverse endogenous ligands. Ligation of RAGE triggers a series of cellular signaling events, including the activation of transcription factor NF-kappaB, leading to the production of pro-inflammatory cytokines, and causing inflammation. While acute inflammation serves to resolve pathogen infection and stresses, which promote tissue repair, persistent inflammation results in maladaptive tissue remodeling and damage. RAGE signaling has been implicated in multiple detrimental human illnesses including diabetes, atherosclerosis, arthritis, and Alzheimer's disease. In addition, prolonged inflammation often serves as the precursor for arterial remodeling that underlies the exponential increase of age-associated arterial diseases. Despite the significant progress and exciting discoveries in RAGE research, little is known on the biochemistry of RAGE and the signaling mechanism of RAGE remains poorly defined. The biological impact of RAGE signaling in clinical situations and aging-associated diseases also remains to be fully realized. This review attempts to provide a comprehensive summary on both recent findings and missing pieces of the RAGE puzzle.
Collapse
Affiliation(s)
- Li Lin
- Laboratory of Cardiovascular Sciences, National Institute on Aging, Baltimore, Maryland, 21224, USA.
| | | | | |
Collapse
|
125
|
Leclerc E, Fritz G, Vetter SW, Heizmann CW. Binding of S100 proteins to RAGE: an update. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:993-1007. [PMID: 19121341 DOI: 10.1016/j.bbamcr.2008.11.016] [Citation(s) in RCA: 371] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 11/24/2008] [Accepted: 11/28/2008] [Indexed: 12/21/2022]
Abstract
The Receptor for Advanced Glycation Endproducts (RAGE) is a multi-ligand receptor of the immunoglobulin family. RAGE interacts with structurally different ligands probably through the oligomerization of the receptor on the cell surface. However, the exact mechanism is unknown. Among RAGE ligands are members of the S100 protein family. S100 proteins are small calcium binding proteins with high structural homology. Several members of the family have been shown to interact with RAGE in vitro or in cell-based assays. Interestingly, many RAGE ligands appear to interact with distinct domains of the extracellular portion of RAGE and to trigger various cellular effects. In this review, we summarize the modes of S100 protein-RAGE interaction with regard to their cellular functions.
Collapse
Affiliation(s)
- Estelle Leclerc
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, Fl 33431, USA
| | | | | | | |
Collapse
|
126
|
Rich RL, Myszka DG. Survey of the year 2007 commercial optical biosensor literature. J Mol Recognit 2008; 21:355-400. [DOI: 10.1002/jmr.928] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
127
|
Matsumoto S, Yoshida T, Murata H, Harada S, Fujita N, Nakamura S, Yamamoto Y, Watanabe T, Yonekura H, Yamamoto H, Ohkubo T, Kobayashi Y. Solution Structure of the Variable-Type Domain of the Receptor for Advanced Glycation End Products: New Insight into AGE−RAGE Interaction,. Biochemistry 2008; 47:12299-311. [DOI: 10.1021/bi800910v] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shigeyuki Matsumoto
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan, Department of Biochemistry, Kanazawa Medical University, 1-1 Daigaku, Uchida, Kahoku-gun, Ishikawa 920-0293, Japan, and Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Takuya Yoshida
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan, Department of Biochemistry, Kanazawa Medical University, 1-1 Daigaku, Uchida, Kahoku-gun, Ishikawa 920-0293, Japan, and Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Hiroko Murata
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan, Department of Biochemistry, Kanazawa Medical University, 1-1 Daigaku, Uchida, Kahoku-gun, Ishikawa 920-0293, Japan, and Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Shusaku Harada
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan, Department of Biochemistry, Kanazawa Medical University, 1-1 Daigaku, Uchida, Kahoku-gun, Ishikawa 920-0293, Japan, and Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Naoko Fujita
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan, Department of Biochemistry, Kanazawa Medical University, 1-1 Daigaku, Uchida, Kahoku-gun, Ishikawa 920-0293, Japan, and Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Shota Nakamura
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan, Department of Biochemistry, Kanazawa Medical University, 1-1 Daigaku, Uchida, Kahoku-gun, Ishikawa 920-0293, Japan, and Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yasuhiko Yamamoto
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan, Department of Biochemistry, Kanazawa Medical University, 1-1 Daigaku, Uchida, Kahoku-gun, Ishikawa 920-0293, Japan, and Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Takuo Watanabe
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan, Department of Biochemistry, Kanazawa Medical University, 1-1 Daigaku, Uchida, Kahoku-gun, Ishikawa 920-0293, Japan, and Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Hideto Yonekura
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan, Department of Biochemistry, Kanazawa Medical University, 1-1 Daigaku, Uchida, Kahoku-gun, Ishikawa 920-0293, Japan, and Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Hiroshi Yamamoto
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan, Department of Biochemistry, Kanazawa Medical University, 1-1 Daigaku, Uchida, Kahoku-gun, Ishikawa 920-0293, Japan, and Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Tadayasu Ohkubo
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan, Department of Biochemistry, Kanazawa Medical University, 1-1 Daigaku, Uchida, Kahoku-gun, Ishikawa 920-0293, Japan, and Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yuji Kobayashi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan, Department of Biochemistry, Kanazawa Medical University, 1-1 Daigaku, Uchida, Kahoku-gun, Ishikawa 920-0293, Japan, and Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
128
|
Xie J, Reverdatto S, Frolov A, Hoffmann R, Burz DS, Shekhtman A. Structural basis for pattern recognition by the receptor for advanced glycation end products (RAGE). J Biol Chem 2008; 283:27255-69. [PMID: 18667420 DOI: 10.1074/jbc.m801622200] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The receptor for advanced glycated end products (RAGE) is a multiligand receptor that is implicated in the pathogenesis of various diseases, including diabetic complications, neurodegenerative disorders, and inflammatory responses. The ability of RAGE to recognize advanced glycated end products (AGEs) formed by nonenzymatic glycoxidation of cellular proteins places RAGE in the category of pattern recognition receptors. The structural mechanism of AGE recognition was an enigma due to the diversity of chemical structures found in AGE-modified proteins. Here, using NMR spectroscopy we showed that the immunoglobulin V-type domain of RAGE is responsible for recognizing various classes of AGEs. Three distinct surfaces of the V domain were identified to mediate AGE-V domain interactions. They are located in the positively charged areas of the V domain. The first interaction surface consists of strand C and loop CC ', the second interaction surface consists of strand C ', strand F, and loop FG, and the third interaction surface consists of strand A ' and loop EF. The secondary structure elements of the interaction surfaces exhibit significant flexibility on the ms-micros time scale. Despite highly specific AGE-V domain interactions, the binding affinity of AGEs for an isolated V domain is low, approximately 10 microm. Using in-cell fluorescence resonance energy transfer we show that RAGE is a constitutive oligomer on the plasma membrane. We propose that constitutive oligomerization of RAGE is responsible for recognizing patterns of AGE-modified proteins with affinities less than 100 nm.
Collapse
Affiliation(s)
- Jingjing Xie
- Department of Chemistry State University of New York, Albany, New York 12222, USA
| | | | | | | | | | | |
Collapse
|
129
|
Mukherjee TK, Mukhopadhyay S, Hoidal JR. Implication of receptor for advanced glycation end product (RAGE) in pulmonary health and pathophysiology. Respir Physiol Neurobiol 2008; 162:210-5. [PMID: 18674642 DOI: 10.1016/j.resp.2008.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 06/18/2008] [Accepted: 07/05/2008] [Indexed: 10/21/2022]
Abstract
Receptor for advanced glycation end products (RAGE) is a membrane bound receptor and member of the immunoglobulin super family and is normally present in a highly abundant basal level expression in lung. This high expression of RAGE in lung alveolar epithelial type I (ATI) cells is presumably involved in the proliferation and differentiation of pulmonary epithelial cells. However, typically higher than basal level expression of RAGE may indicate the existence of severe pathophysiological condition in lung, e.g. acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). During pulmonary tissue injury an endogenous secretory isoform of RAGE called EsRAGE is noticed at high levels in broncho-alveolar lavage (BAL) and plasma. Recently, a soluble form of RAGE (sRAGE) produced by recombinant gene technology was shown to exhibit a therapeutic potential in experimental animal models. Detailed study of RAGE in the pulmonary tissues will facilitate the understanding of the importance of RAGE signaling in the pulmonary health and pathophysiology.
Collapse
Affiliation(s)
- Tapan K Mukherjee
- Indian Institute of Science Education and Research, MGSIPA Complex, Chandigarh, Punjab 160019, India.
| | | | | |
Collapse
|
130
|
Raucci A, Cugusi S, Antonelli A, Barabino SM, Monti L, Bierhaus A, Reiss K, Saftig P, Bianchi ME. A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). FASEB J 2008; 22:3716-27. [PMID: 18603587 DOI: 10.1096/fj.08-109033] [Citation(s) in RCA: 420] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The receptor for advanced glycation endproducts (RAGE) mediates responses to cell danger and stress. When bound by its many ligands (which include advanced glycation endproducts, certain members of the S100/calgranulin family, extracellular high-mobility group box 1, the integrin Mac-1, amyloid beta-peptide and fibrils), RAGE activates programs responsible for acute and chronic inflammation. RAGE is therefore also involved in cancer progression, diabetes, atherosclerosis, and Alzheimer's disease. RAGE has several isoforms deriving from alternative splicing, including a soluble form called endogenous secretory RAGE (esRAGE). We show here that most soluble RAGE, either produced by cell lines or present in human blood, is not recognized by an anti-esRAGE antibody. Cells transfected with the cDNA for full-length RAGE, and thus not expressing esRAGE, produce a form of soluble RAGE, cleaved RAGE (cRAGE) that derives from proteolytic cleavage of the membrane-bound molecules and acts as a decoy receptor. By screening chemical inhibitors and genetically modified mouse embryonic fibroblasts (MEFs), we identify the sheddase ADAM10 as a membrane protease responsible for RAGE cleavage. Binding of its ligand HMGB1 promotes RAGE shedding. Our data do not disprove the interpretation that high levels of soluble forms of RAGE protect against chronic inflammation, but rather suggest that they correlate with high levels of ongoing inflammation.
Collapse
|
131
|
Bianchi R, Giambanco I, Donato R. S100B/RAGE-dependent activation of microglia via NF-kappaB and AP-1 Co-regulation of COX-2 expression by S100B, IL-1beta and TNF-alpha. Neurobiol Aging 2008; 31:665-77. [PMID: 18599158 DOI: 10.1016/j.neurobiolaging.2008.05.017] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 05/09/2008] [Accepted: 05/18/2008] [Indexed: 12/16/2022]
Abstract
Extracellular S100B is known to affect astrocytic, neuronal and microglial activities, with different effects depending on its concentration. Whereas at relatively low concentrations S100B exerts trophic effects on neurons and astrocytes, at relatively high concentrations the protein causes neuronal apoptosis and activates astrocytes and microglia, thus potentially representing an endogenous factor implicated in neuroinflammation. We have reported that RAGE ligation by S100B in BV-2 microglia results in the upregulation of expression of the pro-inflammatory cyclo-oxygenase 2 (COX-2) via parallel Ras-Cdc42-Rac1-dependent activation of c-Jun NH(2) terminal protein kinase (JNK) and Ras-Rac1-dependent stimulation of NF-kappaB transcriptional activity. We show here that: (1) S100B also stimulates AP-1 transcriptional activity in microglia via RAGE-dependent activation of JNK; (2) S100B upregulates IL-1beta and TNF-alpha expression in microglia via RAGE engagement; and (3) S100B/RAGE-induced upregulation of COX-2, IL-1beta and TNF-alpha expression requires the concurrent activation of NF-kappaB and AP-1. We also show that S100B synergizes with IL-1beta and TNF-alpha to upregulate on COX-2 expression in microglia. Given the crucial roles of COX-2, IL-1beta and TNF-alpha in the inflammatory response, we propose that, by engaging RAGE, S100B might play an important role in microglia activation in the course of brain damage.
Collapse
Affiliation(s)
- Roberta Bianchi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, C.P. 81 Succ. 3, 06122 Perugia, Italy
| | | | | |
Collapse
|
132
|
Abstract
In the genesis of Alzheimer's disease (AD), converging lines of evidence suggest that amyloid-beta peptide (Abeta) triggers a pathogenic cascade leading to neuronal loss. It was long assumed that Abeta had to be assembled into extracellular amyloid fibrils or aggregates to exert its cytotoxic effects. Over the past decade, characterization of soluble oligomeric Abeta species in the brains of AD patients and in transgenic models has raised the possibility that different conformations of Abeta may contribute to AD pathology via different mechanisms. The receptor for advanced glycation end products (RAGE), a member of the Ig superfamily, is a cellular binding site for Abeta. Here, we investigate the role of RAGE in apoptosis induced by distinct well characterized Abeta conformations: Abeta oligomers (AbetaOs), Abeta fibrils (AbetaFs), and Abeta aggregates (AbetaAs). In our in vitro system, treatment with polyclonal anti-RAGE antibodies significantly improves SHSY-5Y cell and neuronal survival exposed to either AbetaOs or AbetaAs but does not affect AbetaF toxicity. Interestingly, using site-specific antibodies, we demonstrate that targeting of the V(d) domain of RAGE attenuates AbetaO-induced toxicity in both SHSY-5Y cells and rat cortical neurons, whereas inhibition of AbetaA-induced apoptosis requires the neutralization of the C(1d) domain of the receptor. Thus, our data indicate that distinct regions of RAGE are involved in Abeta-induced cellular and neuronal toxicity with respect to the Abeta aggregation state, and they suggest the blockage of particular sites of the receptor as a potential therapeutic strategy to attenuate neuronal death.
Collapse
|
133
|
Englert JM, Ramsgaard L, Valnickova Z, Enghild JJ, Oury TD. Large scale isolation and purification of soluble RAGE from lung tissue. Protein Expr Purif 2008; 61:99-101. [PMID: 18558495 DOI: 10.1016/j.pep.2008.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 05/12/2008] [Accepted: 05/13/2008] [Indexed: 10/22/2022]
Abstract
The receptor for advanced glycation end-products (RAGE) has been implicated in numerous disease processes including: atherosclerosis, diabetic nephropathy, impaired wound healing and neuropathy to name a few. Treatment of animals with a soluble isoform of the receptor (sRAGE) has been shown to prevent and even reverse many disease processes. Isolating large quantities of pure sRAGE for in vitro and in vivo studies has hindered its development as a therapeutic strategy in other RAGE mediated diseases that require long-term therapy. This article provides an improvement in both yield and detail of a previously published method to obtain 10mg of pure, endotoxin free sRAGE from 65 g of lung tissue.
Collapse
Affiliation(s)
- Judson M Englert
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, W957 BST, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
134
|
Abstract
BACKGROUND The expression of the scavenger receptor for advanced glycation end products (RAGE) and various ligands of RAGE correlate significantly with cancer progression. However, the mechanism of RAGE/sRAGE-induced cancer cell activation and ligand usage remain largely unknown. METHODS Androgen-independent, highly invasive, as well as androgen-dependent, non-invasive human prostate carcinoma (CaP) cells were investigated for their interaction with the soluble form of RAGE (sRAGE). Using neutralizing antibodies and soluble proteins, the ligand for RAGE was identified on CaP cells and ligand binding with sRAGE was biochemically characterized. RESULTS Both androgen-independent, highly invasive and androgen-dependent, non-invasive CaP cells interacted with immobilized sRAGE in a surprisingly strong manner. Using C-terminal truncation variants of RAGE we identified the V domain being responsible for the adhesion of CaP cells to sRAGE. Moreover, we demonstrate that this adhesion cannot be blocked by S100B or neutralizing antibodies against beta integrins, or amphoterin. However, the CaP cell-RAGE interaction was inhibited with either AGE-modified proteins, or with neutralizing antibodies against AGE or RAGE. Despite similar binding kinetics between AGE-modified BSA and different RAGE domains, only applying an excess of sRAGE, but not the VC1 or V domain of RAGE, was able to block the CaP cell-RAGE interaction. CONCLUSIONS We identified AGEs as the ligand for RAGE on both invasive and non-invasive prostate cancer cells.
Collapse
|
135
|
Human S100A12: a novel key player in inflammation? Amino Acids 2008; 36:381-9. [DOI: 10.1007/s00726-008-0097-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 04/15/2008] [Indexed: 01/25/2023]
|
136
|
Ghavami S, Rashedi I, Dattilo BM, Eshraghi M, Chazin WJ, Hashemi M, Wesselborg S, Kerkhoff C, Los M. S100A8/A9 at low concentration promotes tumor cell growth via RAGE ligation and MAP kinase-dependent pathway. J Leukoc Biol 2008; 83:1484-92. [PMID: 18339893 DOI: 10.1189/jlb.0607397] [Citation(s) in RCA: 242] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The complex formed by two members of the S100 calcium-binding protein family, S100A8/A9, exerts apoptosis-inducing activity against various cells, especially tumor cells. Here, we present evidence that S100A8/A9 also has cell growth-promoting activity at low concentrations. Receptor of advanced glycation end product (RAGE) gene silencing and cotreatment with a RAGE-specific blocking antibody revealed that this activity was mediated via RAGE ligation. To investigate the signaling pathways, MAPK phosphorylation and NF-kappaB activation were characterized in S100A8/A9-treated cells. S100A8/A9 caused a significant increase in p38 MAPK and p44/42 kinase phosphorylation, and the status of stress-activated protein kinase/JNK phosphorylation remained unchanged. Treatment of cells with S100A8/A9 also enhanced NF-kappaB activation. RAGE small interfering RNA pretreatment abrogated the S100A8/A9-induced NF-kappaB activation. Our data indicate that S100A8/A9-promoted cell growth occurs through RAGE signaling and activation of NF-kappaB.
Collapse
Affiliation(s)
- Saeid Ghavami
- Manitoba Institute of Cell Biology and Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Gelain DP, de Bittencourt Pasquali MA, Caregnato FF, Zanotto-Filho A, Moreira JCF. Retinol up-regulates the receptor for advanced glycation endproducts (RAGE) by increasing intracellular reactive species. Toxicol In Vitro 2008; 22:1123-7. [PMID: 18396385 DOI: 10.1016/j.tiv.2008.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 02/12/2008] [Accepted: 02/26/2008] [Indexed: 12/27/2022]
Abstract
Retinol (vitamin A) and other retinoids have been suggested to exert an important antioxidant function in biological systems, besides their more established role as regulators of cell growth and differentiation. On the other hand, many authors have recently observed pro-oxidant activities of vitamin A and other retinoids in vitro and in vivo, resulting in cell death and/or transformation associated to increased oxidative damage. However, the mechanisms by which retinol causes oxidative stress are still not fully understood. Receptors for advanced glycation endproducts (RAGE) have been recently implied as promoters and/or amplifiers of oxidant-mediated cell death induced by diverse agents, and increased RAGE expression is observed in conditions related to unbalanced production of reactive species, such as in atherosclerosis and neurodegeneration. In the present work, we observed that retinol supplementation increases RAGE protein expression in cultured Sertoli cells, and antioxidant co-treatment reversed this effect. Retinol-increased RAGE expression was observed only at concentrations that induce intracellular reactive species production, as assessed by the DCFH assay. These results indicate that retinol is able to increase RAGE expression by an oxidant-dependent mechanism, and suggest that RAGE signaling may be involved in some of the deleterious effects observed in some retinol-supplementation therapies.
Collapse
Affiliation(s)
- Daniel Pens Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Laboratório 32, Rua Ramiro Barcelos 2600 anexo, CEP 90035-003, Porto Alegre, RS, Brazil.
| | | | | | | | | |
Collapse
|
138
|
Heizmann CW. The mechanism by which dietary AGEs are a risk to human health is via
their interaction with RAGE: Arguing against the motion. Mol Nutr Food Res 2007; 51:1116-9. [PMID: 17854011 DOI: 10.1002/mnfr.200600284] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We are interested in the regulation of intracellular calcium and the various diseases associated with an altered regulation of this second messenger. More recently, we also became interested in pathologies involving the Ca2+-binding S100 proteins and AGEs and their association with the multifunctional Receptor for Advanced Glycation Endproducts (RAGE).
Collapse
Affiliation(s)
- Claus W Heizmann
- Department of Pediatrics, Division of Clinical Chemistry and Biochemistry, University of Zurich, Switzerland.
| |
Collapse
|
139
|
Basta G. Receptor for advanced glycation endproducts and atherosclerosis: From basic mechanisms to clinical implications. Atherosclerosis 2007; 196:9-21. [PMID: 17826783 DOI: 10.1016/j.atherosclerosis.2007.07.025] [Citation(s) in RCA: 259] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 07/18/2007] [Accepted: 07/21/2007] [Indexed: 12/13/2022]
Abstract
The receptor for advanced glycation endproducts (RAGE) is a member of the immunoglobulin superfamily of cell-surface molecules with a diverse repertoire of ligands. In the atherosclerotic milieu, three classes of RAGE ligands, i.e., products of non-enzymatic glycoxidation, S100 proteins and amphoterin, appear to drive receptor-mediated cellular activation and potentially, acceleration of vascular disease. The interaction of RAGE-ligands effectively modulates several steps of atherogenesis, triggering an inflammatory-proliferative process and furthermore, critically contributing to propagation of vascular perturbation, mainly in diabetes. RAGE has a circulating truncated variant isoform, soluble RAGE (sRAGE), corresponding to its extracellular domain only. By competing with cell-surface RAGE for ligand binding, sRAGE may contribute to the removal/neutralization of circulating ligands thus functioning as a decoy. The critical role of RAGE in the chronic vascular inflammation processes highlights this receptor-ligand axis as a possible and attractive candidate for therapeutic intervention to limit vascular damage and its associated clinical disorders.
Collapse
Affiliation(s)
- Giuseppina Basta
- CNR, Institute of Clinical Physiology, San Cataldo Research Area, Via Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
140
|
Leclerc E, Fritz G, Weibel M, Heizmann CW, Galichet A. S100B and S100A6 differentially modulate cell survival by interacting with distinct RAGE (receptor for advanced glycation end products) immunoglobulin domains. J Biol Chem 2007; 282:31317-31. [PMID: 17726019 DOI: 10.1074/jbc.m703951200] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S100 proteins are EF-hand calcium-binding proteins with various intracellular functions including cell proliferation, differentiation, migration, and apoptosis. Some S100 proteins are also secreted and exert extracellular paracrine and autocrine functions. Experimental results suggest that the receptor for advanced glycation end products (RAGE) plays important roles in mediating S100 protein-induced cellular signaling. Here we compared the interaction of two S100 proteins, S100B and S100A6, with RAGE by in vitro assay and in culture of human SH-SY5Y neuroblastoma cells. Our in vitro binding data showed that S100B and S100A6, although structurally very similar, interact with different RAGE extracellular domains. Our cell assay data demonstrated that S100B and S100A6 differentially modulate cell survival. At micromolar concentration, S100B increased cellular proliferation, whereas at the same concentration, S100A6 triggered apoptosis. Although both S100 proteins induced the formation of reactive oxygen species, S100B recruited phosphatidylinositol 3-kinase/AKT and NF-kappaB, whereas S100A6 activated JNK. More importantly, we showed that S100B and S100A6 modulate cell survival in a RAGE-dependent manner; S100B specifically interacted with the RAGE V and C(1) domains and S100A6 specifically interacted with the C(1) and C(2) RAGE domains. Altogether these results highlight the complexity of S100/RAGE cellular signaling.
Collapse
MESH Headings
- Apoptosis
- Blotting, Western
- Caspase 3/metabolism
- Caspase 7/metabolism
- Cell Line, Tumor
- Cell Survival/physiology
- Culture Media, Serum-Free
- Electrophoresis, Polyacrylamide Gel
- Enzyme-Linked Immunosorbent Assay
- Escherichia coli/genetics
- Fluorescent Antibody Technique, Direct
- Glioblastoma/pathology
- Humans
- In Situ Nick-End Labeling
- Luminescent Measurements
- Models, Biological
- NF-kappa B/metabolism
- Neuroblastoma/pathology
- Protein Structure, Tertiary
- Reactive Oxygen Species/metabolism
- Receptor for Advanced Glycation End Products
- Receptors, Immunologic/immunology
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- S100 Proteins/genetics
- S100 Proteins/metabolism
- S100 Proteins/physiology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Time Factors
- Transfection
Collapse
Affiliation(s)
- Estelle Leclerc
- Division of Clinical Chemistry and Biochemistry, Department of Pediatrics, University of Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
141
|
Ostendorp T, Leclerc E, Galichet A, Koch M, Demling N, Weigle B, Heizmann CW, Kroneck PMH, Fritz G. Structural and functional insights into RAGE activation by multimeric S100B. EMBO J 2007; 26:3868-78. [PMID: 17660747 PMCID: PMC1952220 DOI: 10.1038/sj.emboj.7601805] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 06/29/2007] [Indexed: 01/06/2023] Open
Abstract
Nervous system development and plasticity require regulation of cell proliferation, survival, neurite outgrowth and synapse formation by specific extracellular factors. The EF-hand protein S100B is highly expressed in human brain. In the extracellular space, it promotes neurite extension and neuron survival via the receptor RAGE (receptor for advanced glycation end products). The X-ray structure of human Ca(2+)-loaded S100B was determined at 1.9 A resolution. The structure revealed an octameric architecture of four homodimeric units arranged as two tetramers in a tight array. The presence of multimeric forms in human brain extracts was confirmed by size-exclusion experiments. Recombinant tetrameric, hexameric and octameric S100B were purified from Escherichia coli and characterised. Binding studies show that tetrameric S100B binds RAGE with higher affinity than dimeric S100B. Analytical ultracentrifugation studies imply that S100B tetramer binds two RAGE molecules via the V-domain. In line with these experiments, S100B tetramer caused stronger activation of cell growth than S100B dimer and promoted cell survival. The structural and the binding data suggest that tetrameric S100B triggers RAGE activation by receptor dimerisation.
Collapse
Affiliation(s)
- Thorsten Ostendorp
- Fachbereich Biologie, Mathematisch-Naturwissenschaftliche Sektion, Universität Konstanz, Konstanz, Germany
| | - Estelle Leclerc
- Department of Pediatrics, Division of Clinical Chemistry and Biochemistry, University of Zurich, Zürich, Switzerland
| | - Arnaud Galichet
- Department of Pediatrics, Division of Clinical Chemistry and Biochemistry, University of Zurich, Zürich, Switzerland
| | - Michael Koch
- Fachbereich Biologie, Mathematisch-Naturwissenschaftliche Sektion, Universität Konstanz, Konstanz, Germany
| | - Nina Demling
- Institute of Immunology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Bernd Weigle
- Institute of Immunology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Claus W Heizmann
- Department of Pediatrics, Division of Clinical Chemistry and Biochemistry, University of Zurich, Zürich, Switzerland
| | - Peter M H Kroneck
- Fachbereich Biologie, Mathematisch-Naturwissenschaftliche Sektion, Universität Konstanz, Konstanz, Germany
| | - Günter Fritz
- Fachbereich Biologie, Mathematisch-Naturwissenschaftliche Sektion, Universität Konstanz, Konstanz, Germany
- Fachbereich Biologie, Mathematisch-Naturwissenschaftliche Sektion, Universität Konstanz, Universitätsstrasse 10, Konstanz 78457, Germany. Tel.: +49 7531 88 3205; Fax: +49 7531 88 2966; E-mail:
| |
Collapse
|