101
|
Díaz N, Suárez D, Valdés H. Unraveling the molecular structure of the catalytic domain of matrix metalloproteinase-2 in complex with a triple-helical peptide by means of molecular dynamics simulations. Biochemistry 2013; 52:8556-69. [PMID: 24164447 DOI: 10.1021/bi401144p] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Herein, we present the results of a computational study that employed various simulation methodologies to build and validate a series of molecular models of a synthetic triple-helical peptide (fTHP-5) both in its native state and in a prereactive complex with the catalytic domain of the MMP-2 enzyme. First, the structure and dynamical properties of the fTHP-5 substrate are investigated by means of molecular dynamics (MD) simulations. Then, the propensity of each of the three peptide chains in fTHP-5 to be distorted around the scissile peptide bond is assessed by carrying out potential of mean force calculations. Subsequently, the distorted geometries of fTHP-5 are docked within the MMP-2 active site following a semirigid protocol, and the most stable docked structures are fully relaxed and characterized by extensive MD simulations in explicit solvent. Following a similar approach, we also investigate a hypothetical ternary complex formed between two MMP-2 catalytic units and a single fTHP-5 molecule. Overall, our models for the MMP-2/fTHP-5 complexes unveil the extent to which the triple helix is distorted to allow the accommodation of an individual peptide chain within the MMP active site.
Collapse
Affiliation(s)
- Natalia Díaz
- Departamento de Química Física y Analítica, Universidad de Oviedo , Julián Clavería 8, Oviedo (Asturias) 33006, Spain
| | | | | |
Collapse
|
102
|
Eckhard U, Huesgen PF, Brandstetter H, Overall CM. Proteomic protease specificity profiling of clostridial collagenases reveals their intrinsic nature as dedicated degraders of collagen. J Proteomics 2013; 100:102-14. [PMID: 24125730 PMCID: PMC3985423 DOI: 10.1016/j.jprot.2013.10.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 09/27/2013] [Accepted: 10/03/2013] [Indexed: 12/15/2022]
Abstract
Clostridial collagenases are among the most efficient degraders of collagen. Most clostridia are saprophytes and secrete proteases to utilize proteins in their environment as carbon sources; during anaerobic infections, collagenases play a crucial role in host colonization. Several medical and biotechnological applications have emerged utilizing their high collagenolytic efficiency. However, the contribution of the functionally most important peptidase domain to substrate specificity remains unresolved. We investigated the active site sequence specificity of the peptidase domains of collagenase G and H from Clostridium histolyticum and collagenase T from Clostridium tetani. Both prime and non-prime cleavage site specificity were simultaneously profiled using Proteomic Identification of protease Cleavage Sites (PICS), a mass spectrometry-based method utilizing database searchable proteome-derived peptide libraries. For each enzyme we identified > 100 unique-cleaved peptides, resulting in robust cleavage logos revealing collagen-like specificity patterns: a strong preference for glycine in P3 and P1′, proline at P2 and P2′, and a slightly looser specificity at P1, which in collagen is typically occupied by hydroxyproline. This specificity for the classic collagen motifs Gly-Pro-X and Gly-X-Hyp represents a remarkable adaptation considering the complex requirements for substrate unfolding and presentation that need to be fulfilled before a single collagen strand becomes accessible for cleavage. Biological significance We demonstrate the striking sequence specificity of a family of clostridial collagenases using proteome derived peptide libraries and PICS, Proteomic Identification of protease Cleavage Sites. In combination with the previously published crystal structures of these proteases, our results represent an important piece of the puzzle in understanding the complex mechanism underlying collagen hydrolysis, and pave the way for the rational design of specific test substrates and selective inhibitors. This article is part of a Special Issue entitled: Can Proteomics Fill the Gap Between Genomics and Phenotypes? Active site specificity profiling of 3 clostridial collagenases—ColG and H from C. histolyticum, and ColT from C. tetani. Their high sequence specificity to collagen-like sequence points towards a co-evolution with the mammalian substrate. Significant differences to MMPs and a more promiscuous cleavage mechanism facilitating rapid collagenolysis were revealed. Human proteome-derived peptide libraries & PICS are suitable for active site specificity profiling of pathogenic proteases. Results pave the way for rational design of test substrates and selective inhibitors.
Collapse
Affiliation(s)
- Ulrich Eckhard
- Centre for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada; Division of Structural Biology, Department of Molecular Biology, University of Salzburg, Billrothstr, 11, 5020 Salzburg, Austria
| | - Pitter F Huesgen
- Centre for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Hans Brandstetter
- Division of Structural Biology, Department of Molecular Biology, University of Salzburg, Billrothstr, 11, 5020 Salzburg, Austria
| | - Christopher M Overall
- Centre for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
103
|
The inhibitory effect of proanthocyanidin on soluble and collagen-bound proteases. J Dent 2013; 41:832-9. [DOI: 10.1016/j.jdent.2013.06.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 01/06/2023] Open
|
104
|
Xu XY, Shen YB, Fu JJ, Liu F, Guo SZ, Li JL. Characterization of MMP-9 gene from grass carp (Ctenopharyngodon idella): an Aeromonas hydrophila-inducible factor in grass carp immune system. FISH & SHELLFISH IMMUNOLOGY 2013; 35:801-807. [PMID: 23791859 DOI: 10.1016/j.fsi.2013.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/03/2013] [Accepted: 06/10/2013] [Indexed: 06/02/2023]
Abstract
Matrix metalloproteinase-9 (MMP-9) belongs to a family of zinc-dependent endopeptidases and is associated with vital inflammatory processes. Here, we isolated and characterized MMP-9 cDNA from grass carp (Ctenopharyngodon idella) (designated as CiMMP-9). The cDNA was 2880 bp long and encoded a putative protein of 675 amino acids, with a predicted molecular mass of 75.816 kDa and an isoelectric point (pI) of 5.25. CiMMP-9 contained all three classical MMP-9 family signatures. The mRNA of CiMMP-9 was constitutively expressed in all tested tissues of untreated grass carp, with the highest expression levels in the blood, trunk kidney, head kidney and spleen. CiMMP9 transcript was present in unfertilized eggs, which suggests that CiMMP9 transcription is maternally inherited. Fluorescent real-time quantitative RT-PCR was used to examine the expression of the CiMMP-9 gene in C. idella after being challenged with Aeromonas hydrophila. A clear time-dependent expression pattern of CiMMP-9 was found after the bacterial challenge, and mRNA expression reached a maximum level at 7 days post challenge. This indicates that MMP-9 is inducible and is involved in immune responses, thus suggesting that CiMMP-9 plays an important role in A. hydrophila-related diseases and in early embryonic development stages in C. idella.
Collapse
Affiliation(s)
- Xiao-Yan Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
| | | | | | | | | | | |
Collapse
|
105
|
Butler GS, Overall CM. Matrix metalloproteinase processing of signaling molecules to regulate inflammation. Periodontol 2000 2013; 63:123-48. [DOI: 10.1111/prd.12035] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2013] [Indexed: 12/12/2022]
|
106
|
Patterson NL, Iyer RP, de Castro Brás LE, Li Y, Andrews TG, Aune GJ, Lange RA, Lindsey ML. Using proteomics to uncover extracellular matrix interactions during cardiac remodeling. Proteomics Clin Appl 2013; 7:516-27. [PMID: 23532927 DOI: 10.1002/prca.201200100] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 01/30/2013] [Accepted: 02/18/2013] [Indexed: 01/13/2023]
Abstract
The left ventricle (LV) responds to a myocardial infarction with an orchestrated sequence of events that result in fundamental changes to both the structure and function of the myocardium. This collection of responses is termed as LV remodeling. Myocardial ischemia resulting in necrosis is the initiating event that culminates in the formation of an extracellular matrix (ECM) rich infarct scar that replaces necrotic myocytes. While the cardiomyocyte is the major cell type that responds to ischemia, infiltrating leukocytes and cardiac fibroblasts coordinate the subsequent wound healing response. The matrix metalloproteinase family of enzymes regulates the inflammatory and ECM responses that modulate scar formation. Matridomics is the proteomic evaluation focused on ECM, while degradomics is the proteomic evaluation of proteases as well as their inhibitors and substrates. This review will summarize the use of proteomics to better understand matrix metalloproteinase roles in post myocardial infarction LV remodeling.
Collapse
Affiliation(s)
- Nicolle L Patterson
- San Antonio Cardiovascular Proteomics Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets. Tumour Biol 2013; 34:2041-51. [PMID: 23681802 DOI: 10.1007/s13277-013-0842-8] [Citation(s) in RCA: 273] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/03/2013] [Indexed: 02/07/2023] Open
Abstract
Biomarkers are used as tools in cancer diagnostics and in treatment stratification. In most cancers, there are increased levels of one or several members of the matrix metalloproteinases (MMPs). This is a family of proteolytic enzymes that are involved in many phases of cancer progression, including angiogenesis, invasiveness, and metastasis. It has therefore been expected that MMPs could serve as both diagnostic and prognostic markers in cancer patients, but despite a huge number of studies, it has been difficult to establish MMPs as cancer biomarkers. In the present paper, we assess some of the challenges associated with MMP research as well as putative reasons for the conflicting data on the value of these enzymes as diagnostic and prognostic markers in cancer patients. We also review the prognostic value of a number of MMPs in patients with lung, colorectal, breast, and prostate cancers. The review also discusses MMPs as potential target molecules for therapeutic agents and new strategies for development of such drugs.
Collapse
|
108
|
Malla N, Berg E, Theocharis AD, Svineng G, Uhlin-Hansen L, Winberg JO. In vitroreconstitution of complexes between pro-matrix metalloproteinase-9 and the proteoglycans serglycin and versican. FEBS J 2013; 280:2870-87. [DOI: 10.1111/febs.12291] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/08/2013] [Accepted: 04/16/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Nabin Malla
- Department of Medical Biology; University of Tromsø; Norway
| | - Eli Berg
- Department of Medical Biology; University of Tromsø; Norway
| | | | | | | | | |
Collapse
|
109
|
Mitochondrial impairment induced by 3-nitropropionic acid is enhanced by endogenous metalloprotease activity inhibition in cultured rat striatal neurons. Neurosci Lett 2013; 546:16-20. [PMID: 23643981 DOI: 10.1016/j.neulet.2013.04.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 04/12/2013] [Accepted: 04/13/2013] [Indexed: 11/22/2022]
Abstract
Metalloproteases from the metzincin family mediate molecule processing at the cell membrane termed ectodomain shedding (ES). This mechanism enables the generation of intracellular and extracellular fragments from cell membrane molecules that exert additional functions involved in cell processes including cell death, beyond those of full length molecules. Micotoxin 3-nitropropionic acid (3-NP) induces striatal neuronal degeneration in vivo and in vitro through mitochondrial complex II inhibition. In this study, we hypothesized that metalloproteases regulate mitochondrial activity in cultured rat striatal neurons undergoing degeneration. To test this idea, striatal neuronal cultures characterized by NeuN and GAD-67 expression were treated with 3-NP together with the metalloprotease inhibitor GM6001 and their mitochondrial activity was evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Our results showed that metalloprotease inhibition potentiated mitochondrial activity impairment induced by 3-NP whereas the inhibitor alone had no effect. These results indicate that metalloproteases regulate and promote mitochondrial functionality in striatal neurons undergoing degeneration induced by 3-NP. Since NMDA receptor is involved in the excitotoxic neuronal death triggered by 3-NP and is known to undergo ES, we analyzed NMDAR subunit NR1 phenotypic distribution by immunofluorescence. 3-NP and GM6001 induced abnormal perinuclear NR1 accumulation that was not observed with 3-NP or GM6001 alone. This observation suggests that metalloproteases are involved in NR1 cellular reorganization induced by 3-NP, and that their inhibition results in abnormal NR1 distribution. Together results indicate that endogenous metalloproteases are activated during striatal neurodegeneration induced by 3-NP eliciting an adaptative or compensatory response that protects mitochondrial functionality.
Collapse
|
110
|
Global remodelling of cellular microenvironment due to loss of collagen VII. Mol Syst Biol 2013; 9:657. [PMID: 23591773 PMCID: PMC3658272 DOI: 10.1038/msb.2013.17] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/13/2013] [Indexed: 01/18/2023] Open
Abstract
Loss of collagen VII causes recessive dystrophic epidermolysis bullosa. Quantitative proteomics analysis of the extracellular matrix and secretome of human fibroblasts derived from pathologically altered skin reveals a global remodelling of the cellular microenvironment. ![]()
A global analysis of the microenvironment of human skin fibroblasts was carried out to reveal disease-related alterations in the extracellular proteome. The loss of collagen VII causes a deregulation of the basement membrane and dermal matrix proteome. Post-translational modifications of secreted proteins were altered in fibroblasts from recessive dystrophic epidermolysis bullosa samples. Metalloproteases displayed reduced activity and turnover in collagen VII-deficient cells.
The mammalian cellular microenvironment is shaped by soluble factors and structural components, the extracellular matrix, providing physical support, regulating adhesion and signalling. A global, quantitative mass spectrometry strategy, combined with bioinformatics data processing, was developed to assess proteome differences in the microenvironment of primary human fibroblasts. We studied secreted proteins of fibroblasts from normal and pathologically altered skin and their post-translational modifications. The influence of collagen VII, an important structural component, which is lost in genetic skin fragility, was used as model. Loss of collagen VII had a global impact on the cellular microenvironment and was associated with proteome alterations highly relevant for disease pathogenesis including decrease in basement membrane components, increase in dermal matrix proteins, TGF-β and metalloproteases, but not higher protease activity. The definition of the proteome of fibroblast microenvironment and its plasticity in health and disease identified novel disease mechanisms and potential targets of intervention.
Collapse
|
111
|
Verslegers M, Lemmens K, Van Hove I, Moons L. Matrix metalloproteinase-2 and -9 as promising benefactors in development, plasticity and repair of the nervous system. Prog Neurobiol 2013; 105:60-78. [PMID: 23567503 DOI: 10.1016/j.pneurobio.2013.03.004] [Citation(s) in RCA: 310] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/01/2013] [Accepted: 03/28/2013] [Indexed: 11/16/2022]
Abstract
It has been 50 years since Gross and Lapiere discovered collagenolytic activity during tadpole tail metamorphosis, which was later on revealed as MMP-1, the founding member of the matrix metalloproteinases (MMPs). Currently, MMPs constitute a large group of endoproteases that are not only able to cleave all protein components of the extracellular matrix, but also to activate or inactivate many other signaling molecules, such as receptors, adhesion molecules and growth factors. Elevated MMP levels are associated with an increasing number of injuries and disorders, such as cancer, inflammation and auto-immune diseases. Yet, MMP upregulation has also been implicated in many physiological functions such as embryonic development, wound healing and angiogenesis and therefore, these proteinases are considered to be crucial mediators in many biological processes. Over the past decennia, MMP research has gained considerable attention in several pathologies, most prominently in the field of cancer metastasis, and more recent investigations also focus on the nervous system, with a striking emphasis on the gelatinases, MMP-2 and MMP-9. Unfortunately, the contribution of these gelatinases to neuropathological disorders, like multiple sclerosis and Alzheimer's disease, has overshadowed their potential as modulators of fundamental nervous system functions. Within this review, we wish to highlight the currently known or suggested actions of MMP-2 and MMP-9 in the developing and adult nervous system and their potential to improve repair or regeneration after nervous system injury.
Collapse
Affiliation(s)
- Mieke Verslegers
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
112
|
Solli AI, Fadnes B, Winberg JO, Uhlin-Hansen L, Hadler-Olsen E. Tissue- and cell-specific co-localization of intracellular gelatinolytic activity and matrix metalloproteinase 2. J Histochem Cytochem 2013; 61:444-61. [PMID: 23482328 DOI: 10.1369/0022155413484765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Matrix metalloproteinase 2 (MMP-2) is a proteolytic enzyme that degrades extracellular matrix proteins. Recent studies indicate that MMP-2 also has a role in intracellular proteolysis during various pathological conditions, such as ischemic injuries in heart and brain and in tumor growth. The present study was performed to map the distribution of intracellular MMP-2 activity in various mouse tissues and cells under physiological conditions. Samples from normal brain, heart, lung, liver, spleen, pancreas, kidney, adrenal gland, thyroid gland, gonads, oral mucosa, salivary glands, esophagus, intestines, and skin were subjected to high-resolution in situ gelatin zymography and immunohistochemical staining. In hepatocytes, cardiac myocytes, kidney tubuli cells, epithelial cells in the oral mucosa as well as in excretory ducts of salivary glands, and adrenal cortical cells, we found strong intracellular gelatinolytic activity that was significantly reduced by the metalloprotease inhibitor EDTA but not by the cysteine protease inhibitor E-64. Furthermore, the gelatinolytic activity was co-localized with MMP-2. Western blotting and electron microscopy combined with immunogold labeling revealed the presence of MMP-2 in different intracellular compartments of isolated hepatocytes. Our results indicate that MMP-2 takes part in intracellular proteolysis in specific tissues and cells during physiological conditions.
Collapse
Affiliation(s)
- Ann Iren Solli
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | | | | | | | | |
Collapse
|
113
|
Abstract
The extracellular matrix (ECM) is a complex entity containing a large portfolio of structural proteins, signaling molecules, and proteases. Changes in the overall integrity and activational state of these ECM constituents can contribute to tissue structure and function, which is certainly true of the myocardium. Changes in the expression patterns and activational states of a family of ECM proteolytic enzymes, the matrix metalloproteinases (MMPs), have been identified in all forms of left ventricle remodeling and can be a contributory factor in the progression to heart failure. However, new clinical and basic research has identified some surprising and unpredicted changes in MMP profiles in left ventricle remodeling processes, such as with pressure or volume overload, as well as with myocardial infarction. From these studies, it has become recognized that proteolytic processing of signaling molecules by certain MMP types, particularly the transmembrane MMPs, actually may facilitate ECM accumulation and modulate fibroblast transdifferentiation; both are critical events in adverse left ventricle remodeling. Based on the ever-increasing substrates and diversity of biological actions of MMPs, it is likely that continued research about the relationship of left ventricle remodeling in this family of proteases will yield new insights into the ECM remodeling process and new therapeutic targets.
Collapse
Affiliation(s)
- Francis G Spinale
- Cardiovascular Translational Research Center, CBA, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, USA.
| | | | | |
Collapse
|
114
|
Spinale FG. Epilysin (Matrix Metalloproteinase-28) Joins the Matrix Metalloproteinase Team on the Field of Postmyocardial Infarction Remodeling. Circ Res 2013; 112:579-82. [DOI: 10.1161/circresaha.113.300811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Francis G. Spinale
- From the Cardiovascular Translational Research Center (F.G.S.), University of South Carolina School of Medicine, Department of Cell Biology and Anatomy (F.G.S.), University of South Carolina School of Medicine, WJB Dorn Veteran Affairs Medical Center (F.G.S.), Columbia, SC
| |
Collapse
|
115
|
Paladini RD, Wei G, Kundu A, Zhao Q, Bookbinder LH, Keller GA, Shepard HM, Frost GI. Mutations in the catalytic domain of human matrix metalloproteinase-1 (MMP-1) that allow for regulated activity through the use of Ca2+. J Biol Chem 2013; 288:6629-39. [PMID: 23322779 DOI: 10.1074/jbc.m112.364729] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conditionally active proteins regulated by a physiological parameter represent a potential new class of protein therapeutics. By systematically creating point mutations in the catalytic and linker domains of human MMP-1, we generated a protein library amenable to physiological parameter-based screening. Mutants screened for temperature-sensitive activity had mutations clustered at or near amino acids critical for metal binding. One mutant, GVSK (Gly(159) to Val, Ser(208) to Lys), contains mutations in regions of the catalytic domain involved in calcium and zinc binding. The in vitro activity of GVSK at 37 °C in high Ca(2+) (10 mm) was comparable with MMP-1 (wild type), but in low Ca(2+) (1 mm), there was an over 10-fold loss in activity despite having similar kinetic parameters. Activity decreased over 50% within 15 min and correlated with the degradation of the activated protein, suggesting that GVSK was unstable in low Ca(2+). Varying the concentration of Zn(2+) had no effect on GVSK activity in vitro. As compared with MMP-1, GVSK degraded soluble collagen I at the high but not the low Ca(2+) concentration. In vivo, MMP-1 and GVSK degraded collagen I when perfused in Zucker rat ventral skin and formed higher molecular weight complexes with α2-macroglobulin, an inhibitor of MMPs. In vitro and in vivo complex formation and subsequent enzyme inactivation occurred faster with GVSK, especially at the low Ca(2+) concentration. These data suggest that the activity of the human MMP-1 mutant GVSK can be regulated by Ca(2+) both in vitro and in vivo and may represent a novel approach to engineering matrix-remodeling enzymes for therapeutic applications.
Collapse
|
116
|
Fluctuating roles of matrix metalloproteinase-9 in oral squamous cell carcinoma. ScientificWorldJournal 2013; 2013:920595. [PMID: 23365550 PMCID: PMC3556887 DOI: 10.1155/2013/920595] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/10/2012] [Indexed: 12/12/2022] Open
Abstract
One hallmark of cancer is the degradation of the extracellular matrix (ECM), which is caused by proteinases. In oral cancers, matrix metalloproteinases (MMPs), especially MMP-9, are associated with this degradation. MMPs break down the ECM allowing cancer to spread; they also release various factors from their cryptic sites, including cytokines. These factors modulate cell behavior and enhance cancer progression by regulating angiogenesis, migration, proliferation, and invasion. The development of early metastases is typical for oral cancer, and increased MMP-9 expression is associated with a poor disease prognosis. However, many studies fail to relate MMP-9 expression with metastasis formation. Contrary to earlier models, recent studies show that MMP-9 plays a protective role in oral cancers. Therefore, the role of MMP-9 is complicated and may fluctuate throughout the different types and stages of oral cancers.
Collapse
|
117
|
Role of N-acetylcysteine and GSH redox system on total and active MMP-2 in intestinal myofibroblasts of Crohn's disease patients. Int J Colorectal Dis 2013; 28:915-24. [PMID: 23271497 PMCID: PMC3712135 DOI: 10.1007/s00384-012-1632-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2012] [Indexed: 02/04/2023]
Abstract
PURPOSE Intestinal subepithelial myofibroblasts (ISEMFs)(1) are the predominant source of matrix metalloproteinase-2 (MMP-2) in gut, and a decrease in glutathione/oxidized glutathione (GSH/GSSG) ratio, intracellular redox state index, occurs in the ISEMFs of patients with Crohn's disease (CD). The aim of this study is to demonstrate a relationship between MMP-2 secretion and activation and changes of GSH/GSSG ratio in ISEMFs stimulated or not with tumor necrosis factor alpha (TNFα). METHODS ISEMFs were isolated from ill and healthy colon mucosa of patients with active CD. Buthionine sulfoximine, GSH synthesis inhibitor, and N-acetylcysteine (NAC), precursor of GSH synthesis, were used to modulate GSH/GSSG ratio. GSH and GSSG were measured by HPLC and MMP-2 by ELISA Kit. RESULTS In cells, stimulated or not with TNFα, a significant increase in MMP-2 secretion and activation, related to increased oxidative stress, due to low GSH/GSSG ratio, was detected. NAC treatment, increasing this ratio, reduced MMP-2 secretion and exhibited a direct effect on the secreted MMP-2 activity. In NAC-treated and TNFα-stimulated ISEMFs of CD patients' MMP-2 activity were restored to physiological value. The involvement of c-Jun N-terminal kinase pathway on redox regulation of MMP-2 secretion has been demonstrated. CONCLUSION For the first time, in CD patient ISEMFs, a redox regulation of MMP-2 secretion and activation related to GSH/GSSG ratio and inflammatory state have been demonstrated. This study suggests that compounds able to maintain GSH/GSSG ratio to physiological values can be useful to restore normal MMP-2 levels reducing in CD patient intestine the dysfunction of epithelial barrier.
Collapse
|
118
|
Korolenko TA, Tuzikov FV, Johnston TP, Tuzikova NA, Kisarova YA, Zhanaeva SY, Alexeenko TV, Zhukova NA, Brak IV, Spiridonov VK, Filjushina EE, Cherkanova MS, Monoszon AA. The influence of repeated administration of poloxamer 407 on serum lipoproteins and protease activity in mouse liver and heart. Can J Physiol Pharmacol 2012. [PMID: 23181274 DOI: 10.1139/y2012-118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effects of repeated administration of poloxamer 407 (P-407) on lipoprotein-cholesterol (LP-C) and lipoprotein-triglyceride (LP-TG) fractions and subfractions, as well as the effect on liver and heart proteases, were studied. Repeated administration of P-407 to male CBA mice resulted in a model of atherosclerosis with increased diastolic blood pressure; there was a drastic increase in total serum cholesterol and especially TG. A novel small-angle X-ray scattering method for the determination of the fractional and subfractional composition of LP-C and LP-TG was used. In chronically P-407-treated mice, P-407 significantly increased atherogenic low-density lipoprotein C (LDL-C) fractions, as well as intermediate-density lipoprotein C (IDL-C), and LDL₁₋₃-C subfractions, and very-low-density lipoprotein-C (VLDL-C) fractions, as well as VLDL₁₋₂-C and VLDL₃₋₅-C subfractions), to a lesser extent, the total anti-atherogenic high-density lipoprotein C (HDL-C) fraction, as well as HDL₂-C and HDL₃-C subfractions. Additionally, we demonstrated an increase in the serum chitotriosidase activity, without significant changes in serum matrix metalloprotease (MMP) activity. Morphological changes observed in P-407-treated mice included atherosclerosis in the heart and storage syndrome in the liver macrophages. P-407 significantly increased the activity of cysteine, aspartate proteases, and MMPs in the heart, and only the activity of cathepsin B and MMPs in the liver of mice. Thus, repeated administration of P-407 to mice induced atherosclerosis secondary to sustained dyslipidemia and formation of foamy macrophages in liver, and also modulated the activity of heart and liver proteases.
Collapse
Affiliation(s)
- Tatyana A Korolenko
- Institute of Physiology, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, Timakov Street 4, 630117, Russian Federation.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
An integrated computational approach to rationalize the activity of non-zinc-binding MMP-2 inhibitors. PLoS One 2012; 7:e47774. [PMID: 23144829 PMCID: PMC3493580 DOI: 10.1371/journal.pone.0047774] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/17/2012] [Indexed: 11/29/2022] Open
Abstract
Matrix metalloproteinases are a family of Zn-proteases involved in tissue remodeling and in many pathological conditions. Among them MMP-2 is one of the most relevant target in anticancer therapy. Commonly, MMP inhibitors contain a functional group able to bind the zinc ion and responsible for undesired side effects. The discovery of potent and selective MMP inhibitors not bearing a zinc-binding group is arising for some MMP family members and represents a new opportunity to find selective and non toxic inhibitors. In this work we attempted to get more insight on the inhibition process of MMP-2 by two non-zinc-binding inhibitors, applying a general protocol that combines several computational tools (docking, Molecular Dynamics and Quantum Chemical calculations), that all together contribute to rationalize experimental inhibition data. Molecular Dynamics studies showed both structural and mechanical-dynamical effects produced by the ligands not disclosed by docking analysis. Thermodynamic Integration provided relative binding free energies consistent with experimentally observed activity data. Quantum Chemical calculations of the tautomeric equilibrium involving the most active ligand completed the picture of the binding process. Our study highlights the crucial role of the specificity loop and suggests that enthalpic effect predominates over the entropic one.
Collapse
|
120
|
Huntley GW. Synaptic circuit remodelling by matrix metalloproteinases in health and disease. Nat Rev Neurosci 2012; 13:743-57. [PMID: 23047773 PMCID: PMC4900464 DOI: 10.1038/nrn3320] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Matrix metalloproteinases (MMPs) are extracellularly acting enzymes that have long been known to have deleterious roles in brain injury and disease. In particular, widespread and protracted MMP activity can contribute to neuronal loss and synaptic dysfunction. However, recent studies show that rapid and focal MMP-mediated proteolysis proactively drives synaptic structural and functional remodelling that is crucial for ongoing cognitive processes. Deficits in synaptic remodelling are associated with psychiatric and neurological disorders, and aberrant MMP expression or function may contribute to the molecular mechanisms underlying these deficits. This Review explores the paradigm shift in our understanding of the contribution of MMPs to normal and abnormal synaptic plasticity and function.
Collapse
Affiliation(s)
- George W Huntley
- Fishberg Department of Neuroscience, Friedman Brain Institute and the Graduate School of Biological Sciences, The Mount Sinai School of Medicine, New York, New York 10029, USA.
| |
Collapse
|
121
|
Development and validation of novel enzyme activity methods to assess inhibition of matrix metalloproteinases (MMPs) in human serum by antibodies against enzyme therapeutics. J Pharm Biomed Anal 2012; 70:408-14. [DOI: 10.1016/j.jpba.2012.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/31/2012] [Accepted: 06/04/2012] [Indexed: 01/22/2023]
|
122
|
Mikhailova M, Xu X, Robichaud TK, Pal S, Fields GB, Steffensen B. Identification of collagen binding domain residues that govern catalytic activities of matrix metalloproteinase-2 (MMP-2). Matrix Biol 2012; 31:380-8. [PMID: 23085623 DOI: 10.1016/j.matbio.2012.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 01/28/2023]
Abstract
An innovative approach to enhance the selectivity of matrix metalloproteinase (MMP) inhibitors comprises targeting these inhibitors to catalytically required substrate binding sites (exosites) that are located outside the catalytic cleft. In MMP-2, positioning of collagen substrate molecules occurs via a unique fibronectin-like domain (CBD) that contains three distinct modular collagen binding sites. To characterize the contributions of these exosites to gelatinolysis by MMP-2, seven MMP-2 variants were generated with single, or concurrent double and triple alanine substitutions in the three fibronectin type II modules of the CBD. Circular dichroism spectroscopy verified that recombinant MMP-2 wild-type (WT) and variants had the same fold. Moreover, the MMP-2 WT and variants had the same activity on a short FRET peptide substrate that is hydrolyzed independently of CBD binding. Among single-point variants, substitution in the module 3 binding site had greatest impact on the affinity of MMP-2 for gelatin. Simultaneous substitutions in two or three CBD modules further reduced gelatin binding. The rates of gelatinolysis of MMP-2 variants were reduced by 20-40% following single-point substitutions, by 60-75% after double-point modifications, and by >90% for triple-point variants. Intriguingly, the three CBD modules contributed differentially to cleavage of dissociated α-1(I) and α-2(I) collagen chains. Importantly, kinetic analyses (k(cat)/K(m)) revealed that catalysis of a triple-helical FRET peptide substrate by MMP-2 relied primarily on the module 3 binding site. Thus, we have identified three collagen binding site residues that are essential for gelatinolysis and constitute promising targets for selective inhibition of MMP-2.
Collapse
Affiliation(s)
- Margarita Mikhailova
- Department of Periodontics, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7894, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
123
|
Patel TR, Butler G, McFarlane A, Xie I, Overall CM, Stetefeld J. Site specific cleavage mediated by MMPs regulates function of agrin. PLoS One 2012; 7:e43669. [PMID: 22984437 PMCID: PMC3439447 DOI: 10.1371/journal.pone.0043669] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 07/23/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Agrin is the key inducer of postsynaptic differentiations at the neuromuscular junction. The multidomain heparan sulfate proteoglycan is mediating via its N-terminal segment the interaction with laminin, whereas the C-terminal portion is responsible for Dystroglycan binding and clustering of the Acetylcholine receptor. Matrix metalloproteinases (MMP) are known to play essential roles in matrix remodeling, degradation and regulation of extracellular signaling networks. PRINCIPAL FINDINGS Site-specific processing of Agrin provides key insight into regulatory effects of Matrix metalloproteinases (MMPs). Here, we present a detailed study of agrin processing by different MMPs together with a molecular understanding of binding and cleavage at both terminal fragments. The data suggest for a regulatory effect of MMP cleavage at particularly important functional sites of agrin. Cleave of agrin abolishes the agrin-laminin complex formation and the Acetylcholine receptor clustering at the neuromuscular junction. CONCLUSION/SIGNIFICANCE Agrin is a target of specific MMP processing resulting in agrin subfragments with different regulatory activities. MMP processing is a powerful tool to regulate extracellular signaling networks.
Collapse
Affiliation(s)
- Trushar R. Patel
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Georgina Butler
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ainsley McFarlane
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Irene Xie
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christopher M. Overall
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
124
|
Engelke R, Becker AC, Dengjel J. The degradative inventory of the cell: proteomic insights. Antioxid Redox Signal 2012; 17:803-12. [PMID: 22074050 DOI: 10.1089/ars.2011.4393] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
SIGNIFICANCE Protein degradation has been identified as being deregulated in numerous human diseases. Hence, proteins involved in proteasomal as well as lysosomal degradation are regarded as interesting potential drug targets and are thoroughly investigated in clinical studies. RECENT ADVANCES Technical advances in the field of quantitative mass spectrometry (MS)-based proteomics allow for detailed investigations of protein degradation dynamics and identifications of responsible protein-protein interaction networks enabling a systematic analysis of the degradative inventory of the cell and its underlying molecular mechanisms. CRITICAL ISSUES In the current review we outline recent technical advances and their limitations in MS-based proteomics and discuss their use for the analysis of protein dynamics involved in degradation processes. FUTURE DIRECTIONS In the next years the analysis of crosstalk between different posttranslational modifications (PTMs) will be a major focus of MS-based proteomics studies. Increasing evidence highlights the complexity of PTMs with positive and negative feedbacks being discovered. In this regard, the generation of absolute quantitative proteomic data will be essential for theoretical scientists to construct predictive network models that constitute a valuable tool for fast hypothesis testing and for explaining underlying molecular mechanisms.
Collapse
Affiliation(s)
- Rudolf Engelke
- Freiburg Institute for Advanced Studies, School of Life Science-LifeNet, University of Freiburg, Germany
| | | | | |
Collapse
|
125
|
Guryča V, Lamerz J, Ducret A, Cutler P. Qualitative improvement and quantitative assessment of N-terminomics. Proteomics 2012; 12:1207-16. [PMID: 22577022 DOI: 10.1002/pmic.201100430] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proteolysis represents one of the most tightly controlled physiological processes, as proteases create events that will typically commit pathways in an irreversible manner. Despite their implication in nearly all biological systems, our understanding of the role of proteases in disease pathology is often limited. Several approaches to studying proteolytic activity as it relates to biology, pathophysiology, and drug therapy have been published, including the recently described terminal amine isotopic labeling of substrates (TAILS) strategy by Kleifeld and colleagues. Here, we investigate TAILS as a methodology based on targeted enrichment and mass spectrometric detection of endogenous N-terminal peptides from clinically relevant biological samples and its potential to provide quantitative information on proteolysis and elucidation of the protease cleavage sites. While optimizing the most current protocol, by switching to a streamlined one-tube format and simplifying the reagents' removal steps, we demonstrate the advantages over previously published methods and provide solutions to some of the technical challenges presented in the Kleifeld publication. We also identify some of the current and unresolved limitations. We use human plasma as a model system to provide data, which illustrates some of the key analytical parameters of the modified TAILS procedure, including specificity, sensitivity, quantitative precision, and accuracy.
Collapse
Affiliation(s)
- Vilém Guryča
- Translational Research Sciences, F. Hoffmann-La Roche AG, Basel, Switzerland
| | | | | | | |
Collapse
|
126
|
Kumar D, Kumar M, Saravanan C, Singh SK. Curcumin: a potential candidate for matrix metalloproteinase inhibitors. Expert Opin Ther Targets 2012; 16:959-72. [PMID: 22913284 DOI: 10.1517/14728222.2012.710603] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Curcumin, a natural yellow pigment of turmeric, has become focus of interest with regard to its role in regulation of matrix metalloproteinases (MMPs). MMPs are metal-dependent endopeptidases capable of degrading components of the extracellular matrix. MMPs are involved in chronic diseases such as arthritis, Alzheimer's disease, psoriasis, chronic obstructive pulmonary disease, asthma, cancer, neuropathic pain, and atherosclerosis. AREAS COVERED Curcumin regulates the expression and secretion of various MMPs. This review documents the matrix metalloproteinase inhibitory activity of curcumin on various diseases viz., cancer, arthritis, and ulcer. Finally, the steps to be taken for getting potent curcuminoids have also been discussed in the structure-activity relationship (SAR) section. From this review, readers can get answer to the question: Is curcumin a potential MMPI candidate? EXPERT OPINION Numerous approaches have been taken to beget a molecule with specificity restricted to a particular MMP as well as good oral bioavailability; however, nearly all the molecules lack these criteria. Using quantitative structure-activity relationship (QSAR) modeling and virtual screening, new analogs of curcumin can be designed which will be selectively inhibiting different MMPs.
Collapse
Affiliation(s)
- Dileep Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutics, Indian Institute of Technology, Varanasi-221005, India
| | | | | | | |
Collapse
|
127
|
Membrane Type-1 Matrix Metalloproteinase Expression in Acute Myeloid Leukemia and Its Upregulation by Tumor Necrosis Factor-α. Cancers (Basel) 2012; 4:743-62. [PMID: 24213464 PMCID: PMC3712719 DOI: 10.3390/cancers4030743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/11/2012] [Accepted: 07/13/2012] [Indexed: 01/11/2023] Open
Abstract
Membrane type-1 matrix metalloproteinase (MT1-MMP) has been implicated in tumor invasion, as well as trafficking of normal hematopoietic cells, and acts as a physiologic activator of proMMP-2. In this study we examined MT1-MMP expression in primary acute myeloid leukemia (AML) cells. Because tumor necrosis factor (TNF)-α is known to be elevated in AML, we also investigated the effect of TNF-α on MT1-MMP expression. We found (i) MT1-MMP mRNA expression in 41 out of 43 primary AML samples tested; (ii) activation of proMMP-2 in co-cultures of AML cells with normal bone marrow stromal cells; and (iii) inhibition of proMMP-2 activation and trans-Matrigel migration of AML cells by gene silencing using MT1-MMP siRNA. Moreover, recombinant human TNF-α upregulated MT1-MMP expression in AML cells resulting in enhanced proMMP-2 activation and trans-Matrigel migration. Thus, AML cells express MT1-MMP and TNF-α enhances it leading to increased MMP-2 activation and most likely contributing to the invasive phenotype. We suggest that MT1-MMP, together with TNF-α, should be investigated as potential therapeutic targets in AML.
Collapse
|
128
|
Bajor M, Michaluk P, Gulyassy P, Kekesi AK, Juhasz G, Kaczmarek L. Synaptic cell adhesion molecule-2 and collapsin response mediator protein-2 are novel members of the matrix metalloproteinase-9 degradome. J Neurochem 2012; 122:775-88. [DOI: 10.1111/j.1471-4159.2012.07829.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
129
|
Gkantidis N, Katsaros C, Chiquet M. Detection of gelatinolytic activity in developing basement membranes of the mouse embryo head by combining sensitive in situ zymography with immunolabeling. Histochem Cell Biol 2012; 138:557-71. [PMID: 22688677 DOI: 10.1007/s00418-012-0982-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2012] [Indexed: 12/16/2022]
Abstract
Genetic evidence indicates that the major gelatinases MMP-2 and MMP-9 are involved in mammalian craniofacial development. Since these matrix metalloproteinases are secreted as proenzymes that require activation, their tissue distribution does not necessarily reflect the sites of enzymatic activity. Information regarding the spatial and temporal expression of gelatinolytic activity in the head of the mammalian embryo is sparse. Sensitive in situ zymography with dye-quenched gelatin (DQ-gelatin) has been introduced recently; gelatinolytic activity results in a local increase in fluorescence. Using frontal sections of wild-type mouse embryo heads from embryonic day 14.5-15.5, we optimized and validated a simple double-labeling in situ technique for combining DQ-gelatin zymography with immunofluorescence staining. MMP inhibitors were tested to confirm the specificity of the reaction in situ, and results were compared to standard SDS-gel zymography of tissue extracts. Double-labeling was used to show the spatial relationship in situ between gelatinolytic activity and immunostaining for gelatinases MMP-2 and MMP-9, collagenase 3 (MMP-13) and MT1-MMP (MMP-14), a major activator of pro-gelatinases. Strong gelatinolytic activity, which partially overlapped with MMP proteins, was confirmed for Meckel's cartilage and developing mandibular bone. In addition, we combined in situ zymography with immunostaining for extracellular matrix proteins that are potential gelatinase substrates. Interestingly, gelatinolytic activity colocalized precisely with laminin-positive basement membranes at specific sites around growing epithelia in the developing mouse head, such as the ducts of salivary glands or the epithelial fold between tongue and lower jaw region. Thus, this sensitive method allows to associate, with high spatial resolution, gelatinolytic activity with epithelial morphogenesis in the embryo.
Collapse
Affiliation(s)
- Nikolaos Gkantidis
- Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| | | | | |
Collapse
|
130
|
Hugenberg V, Breyholz HJ, Riemann B, Hermann S, Schober O, Schäfers M, Gangadharmath U, Mocharla V, Kolb H, Walsh J, Zhang W, Kopka K, Wagner S. A new class of highly potent matrix metalloproteinase inhibitors based on triazole-substituted hydroxamates: (radio)synthesis and in vitro and first in vivo evaluation. J Med Chem 2012; 55:4714-27. [PMID: 22540974 DOI: 10.1021/jm300199g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In vivo imaging of MMPs is of great (pre)clinical interest and can potentially be realized with modern three-dimensional and noninvasive in vivo molecular imaging techniques such as positron emission tomography (PET). Consequently, MMP inhibitors (MMPIs) radiolabeled with positron emitting nuclides (e.g., (18)F) represent a suitable tool for the visualization of activated MMPs with PET. On the basis of our previous work and results regarding radiolabeled and unlabeled derivatives of the nonselective MMPIs, we discovered a new class of fluorinated MMPIs with a triazole-substituted hydroxamate substructure. These novel MMPIs are characterized by an increased hydrophilicity compared with the lead structures and excellent MMP inhibition potencies for MMP-2, MMP-8, MMP-9, and MMP-13 (IC(50) = 0.006-107 nM). Therefore, one promising fluorinated triazole-substituted hydroxamate (30b) was selected and resynthesised as its (18)F-labeled version to yield the potential PET radioligand [(18)F]30b. The biodistribution behavior of this novel compound was investigated with small animal PET.
Collapse
Affiliation(s)
- Verena Hugenberg
- Department of Nuclear Medicine, University Hospital Münster , Albert-Schweitzer-Campus 1, Building A1, D-48149 Münster, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases belonging to the metzincin clan. MMPs have been characterized in detail in mammals, and they have been shown to play key roles in many physiological and pathological processes. Plant MMP-like proteases exist, but relatively few have been characterized. It has been speculated that plant MMPs are involved in remodeling of the plant extracellular matrix during growth, development and stress response. However, the precise functions and physiological substrates in higher plants remain to be determined. In this brief overview, we summarize the current knowledge of MMPs in higher plants and algae.
Collapse
Affiliation(s)
- Giada Marino
- Department of Chemistry and Umeå Plant Science Centre, Umeå University, 90187 Umeå, Sweden.
| | | |
Collapse
|
132
|
Long term potentiation affects intracellular metalloproteinases activity in the mossy fiber-CA3 pathway. Mol Cell Neurosci 2012; 50:147-59. [PMID: 22555058 DOI: 10.1016/j.mcn.2012.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 04/06/2012] [Accepted: 04/13/2012] [Indexed: 01/08/2023] Open
Abstract
Matrix Metalloproteinases (MMPs) are a family of endopeptidases known to process extracellular proteins. In the last decade, studies carried out mainly on the Schaffer collateral-CA1 hippocampal projection have provided solid evidence that MMPs regulate synaptic plasticity and learning. Recently, our group has shown that MMP blockade disrupts LTP maintenance also in the mossy fiber-CA3 (mf-CA3) projection (Wojtowicz and Mozrzymas, 2010), where LTP mechanisms are profoundly different (NMDAR-independent and presynaptic expression site). However, how plasticity of this pathway correlates with activity and expression of MMPs remains unknown. Interestingly, several potential MMP substrates (especially of gelatinases) are localized intracellularly but little is known about MMP activity in this compartment. In the present study we have asked whether LTP is associated with the expression and activity of gelatinases in apparent intra- and extracellular compartments along mf-CA3 projection. In situ zymography showed that LTP induction was associated with increased gelatinases activity in the cytoplasm of the hilar and CA3 neurons. Using gelatin zymography, immunohistochemistry and immunofluorescent staining we found that this effect was due to de novo synthesis and activation of MMP-9 which, 2-3h after LTP induction was particularly evident in the cytoplasm. In contrast, MMP-2 was localized preferentially in the nuclei and was not affected by LTP induction. In conclusion, we demonstrate that LTP induction in the mf-CA3 pathway correlates with increased expression and activity of MMP-9 and provide the first evidence that this increase is particularly evident in the neuronal cytoplasm and nucleus.
Collapse
|
133
|
Lovett DH, Mahimkar R, Raffai RL, Cape L, Maklashina E, Cecchini G, Karliner JS. A novel intracellular isoform of matrix metalloproteinase-2 induced by oxidative stress activates innate immunity. PLoS One 2012; 7:e34177. [PMID: 22509276 PMCID: PMC3317925 DOI: 10.1371/journal.pone.0034177] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/27/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Experimental and clinical evidence has pinpointed a critical role for matrix metalloproteinase-2 (MMP-2) in ischemic ventricular remodeling and systolic heart failure. Prior studies have demonstrated that transgenic expression of the full-length, 68 kDa, secreted form of MMP-2 induces severe systolic failure. These mice also had unexpected and severe mitochondrial structural abnormalities and dysfunction. We hypothesized that an additional intracellular isoform of MMP-2, which affects mitochondrial function is induced under conditions of systolic failure-associated oxidative stress. METHODOLOGY AND PRINCIPAL FINDINGS Western blots of cardiac mitochondria from the full length MMP-2 transgenics, ageing mice and a model of accelerated atherogenesis revealed a smaller 65 kDa MMP-2 isoform. Cultured cardiomyoblasts subjected to transient oxidative stress generated the 65 kDa MMP-2 isoform. The 65 kDa MMP-2 isoform was also induced by hypoxic culture of cardiomyoblasts. Genomic database analysis of the MMP-2 gene mapped transcriptional start sites and RNA transcripts induced by hypoxia or epigenetic modifiers within the first intron of the MMP-2 gene. Translation of these transcripts yields a 65 kDa N-terminal truncated isoform beginning at M(77), thereby deleting the signal sequence and inhibitory prodomain. Cellular trafficking studies demonstrated that the 65 kDa MMP-2 isoform is not secreted and is present in cytosolic and mitochondrial fractions, while the full length 68 kDa isoform was found only in the extracellular space. Expression of the 65 kDa MMP-2 isoform induced mitochondrial-nuclear stress signaling with activation of the pro-inflammatory NF-κB, NFAT and IRF transcriptional pathways. By microarray, the 65 kDa MMP-2 induces an innate immunity transcriptome, including viral stress response genes, innate immunity transcription factor IRF7, chemokines and pro-apoptosis genes. CONCLUSION A novel N-terminal truncated intracellular isoform of MMP-2 is induced by oxidative stress. This isoform initiates a primary innate immune response that may contribute to progressive cardiac dysfunction in the setting of ischemia and systolic failure.
Collapse
Affiliation(s)
- David H Lovett
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, California, United States of America.
| | | | | | | | | | | | | |
Collapse
|
134
|
Park KS, Min Y, Park SR, Kim EH, Lee DJ, Bang D, Lee ES. Matrix metalloproteinase-2, -9, -12, and tissue inhibitor of metalloproteinase 2 gene polymorphisms and cutaneous expressions in patients with Behçet's disease. ACTA ACUST UNITED AC 2012; 79:333-9. [DOI: 10.1111/j.1399-0039.2012.01863.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
135
|
Hematopoietic Stem Cell Mobilization and Homing after Transplantation: The Role of MMP-2, MMP-9, and MT1-MMP. Biochem Res Int 2012; 2012:685267. [PMID: 22496978 PMCID: PMC3310200 DOI: 10.1155/2012/685267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/02/2011] [Indexed: 01/12/2023] Open
Abstract
Hematopoietic stem/progenitor cells (HSPCs) are used in clinical transplantation to restore hematopoietic function. Here we review the role of the soluble matrix metalloproteinases MMP-2 and MMP-9, and membrane type (MT)1-MMP in modulating processes critical to successful transplantation of HSPC, such as mobilization and homing. Growth factors and cytokines which are employed as mobilizing agents upregulate MMP-2 and MMP-9. Recently we demonstrated that MT1-MMP enhances HSPC migration across reconstituted basement membrane, activates proMMP-2, and contributes to a highly proteolytic bone marrow microenvironment that facilitates egress of HSPC. On the other hand, we reported that molecules secreted during HSPC mobilization and collection, such as hyaluronic acid and thrombin, increase MT1-MMP expression in cord blood HSPC and enhance (prime) their homing-related responses. We suggest that modulation of MMP-2, MMP-9, and MT1-MMP expression has potential for development of new therapies for more efficient mobilization, homing, and engraftment of HSPC, which could lead to improved transplantation outcomes.
Collapse
|
136
|
Díaz N, Suárez D. Alternative interdomain configurations of the full-length MMP-2 enzyme explored by molecular dynamics simulations. J Phys Chem B 2012; 116:2677-86. [PMID: 22324833 DOI: 10.1021/jp211088d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conformational freedom between the different domains of the matrix metalloproteinase family of enzymes has been repeatedly invoked to explain the mechanism of hydrolysis of some of their most complex macromolecular substrates. This proposed interdomain motion has been experimentally confirmed to occur in solution for matrix metalloproteinases MMP-1, MMP-9, and MMP-12. In this work, we computationally assess the likely conformational freedom in aqueous solution of the full-length form of the MMP-2 enzyme in the absence of its pro-peptide domain. To this end, we perform molecular dynamics (MD) simulations and approximate free energy analyses in four different arrangements of the protein domains that correspond to (a) the compact conformation observed in the X-ray structure; (b) an initially elongated structure in which the hemopexin (HPX) domain is separated from the catalytic (CAT) and fibronectin domains; and (c-d) two alternative conformations suggested by protein-protein docking calculations. Overall, our results indicate that the interdomain flexibility is very likely a general property of the MMP-2 enzyme in solution.
Collapse
Affiliation(s)
- Natalia Díaz
- Departamento de Química Física y Analítica, Julián Clavería 8, Universidad de Oviedo, Oviedo (Asturias), 33006 Spain.
| | | |
Collapse
|
137
|
Starr AE, Bellac CL, Dufour A, Goebeler V, Overall CM. Biochemical characterization and N-terminomics analysis of leukolysin, the membrane-type 6 matrix metalloprotease (MMP25): chemokine and vimentin cleavages enhance cell migration and macrophage phagocytic activities. J Biol Chem 2012; 287:13382-95. [PMID: 22367194 PMCID: PMC3339980 DOI: 10.1074/jbc.m111.314179] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The neutrophil-specific protease membrane-type 6 matrix metalloproteinase (MT6-MMP)/MMP-25/leukolysin is implicated in multiple sclerosis and cancer yet remains poorly characterized. To characterize the biological roles of MT6-MMP, it is critical to identify its substrates for which only seven are currently known. Here, we biochemically characterized MT6-MMP, profiled its tissue inhibitor of metalloproteinase inhibitory spectrum, performed degradomics analyses, and screened 26 chemokines for cleavage using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. MT6-MMP processes seven each of the CXC and CC chemokine subfamilies. Notably, cleavage of the neutrophil chemoattractant CXCL5 activates the chemokine, thereby increasing its agonist activity, indicating a feed-forward mechanism for neutrophil recruitment. Likewise, cleavage also activated CCL15 and CCL23 to increase monocyte recruitment. Utilizing the proteomics approach proteomic identification of cleavage site specificity (PICS), we identified 286 peptidic cleavage sites spanning from P6 to P6′ from which an unusual glutamate preference in P1 was identified. The degradomics screen terminal amine isotopic labeling of substrates (TAILS), which enriches for neo-N-terminal peptides of cleaved substrates, was used to identify 58 new native substrates in fibroblast secretomes after incubation with MT6-MMP. Vimentin, cystatin C, galectin-1, IGFBP-7, and secreted protein, acidic and rich in cysteine (SPARC) were among those substrates we biochemically confirmed. An extracellular “moonlighting” form of vimentin is a chemoattractant for THP-1 cells, but MT6-MMP cleavage abolished monocyte recruitment. Unexpectedly, the MT6-MMP-cleaved vimentin potently stimulated phagocytosis, which was not a property of the full-length protein. Hence, MT6-MMP regulates neutrophil and monocyte chemotaxis and by generating “eat-me” signals upon vimentin cleavage potentially increases phagocytic removal of neutrophils to resolve inflammation.
Collapse
Affiliation(s)
- Amanda E Starr
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
138
|
Assessment of potential cross-reactivity of human endogenous matrix metalloproteinases with collagenase Clostridium histolyticum antibodies in human sera obtained from patients with Dupuytren's contracture. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:562-9. [PMID: 22357647 DOI: 10.1128/cvi.00018-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Collagenase Clostridium histolyticum (CCH) contains a fixed ratio of class I (AUX-I) and class II (AUX-II) collagenases and is used as treatment for Dupuytren's contracture. These two Zn-dependent enzymes, produced by the Gram-positive bacterium Clostridium histolyticum, are related functionally to matrix metalloproteinases (MMPs) which, among other functions, degrade the extracellular matrix. Since AUX-I and AUX-II exhibit sequence similarities to human MMPs, we assessed MMP-1 (interstitial collagenase), MMP-2 (gelatinase A), MMP-3 (stromelysin 1), MMP-8 (collagenase 2), and MMP-13 (collagenase 3) for cross-reactivity with anti-AUX-I and anti-AUX-II antibodies in patient serum. Serum samples from 71 subjects enrolled in a long-term clinical study (58 males and 13 females; 63 ± 10 years old [mean ± standard error]) were evaluated for cross-reactivity with the five MMPs using the two validated enzyme-linked immunosorbent assays (ELISAs). Inhibition cutoff points for anti-AUX-I and anti-AUX-II antibodies were based on assay inhibition obtained with a nonspecific protein, bovine gamma globulin, which was tested for each clinical sample. No MMP cross-reactivity was found for any of the 71 clinical antibody-positive sera evaluated. Sequence identity assessments indicated minimal, nonmeaningful alignments of the MMPs and AUX-I/AUX-II. Furthermore, clinical adverse event assessments indicated no safety signals related to MMP inhibition. The bioanalytical results, sequence identity, and clinical assessments consistently did not demonstrate cross-reactivity between CCH antidrug antibodies and endogenous human matrix metalloproteinases. The results presented here suggest that treatment of Dupuytren's contracture patients with CCH does not lead to any clinical adverse events associated with MMP inhibition.
Collapse
|
139
|
Zitta K, Meybohm P, Bein B, Heinrich C, Renner J, Cremer J, Steinfath M, Scholz J, Albrecht M. Serum from patients undergoing remote ischemic preconditioning protects cultured human intestinal cells from hypoxia-induced damage: involvement of matrixmetalloproteinase-2 and -9. Mol Med 2012; 18:29-37. [PMID: 22009279 DOI: 10.2119/molmed.2011.00278] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/13/2011] [Indexed: 11/06/2022] Open
Abstract
Remote ischemic preconditioning (RIPC) can be induced by transient occlusion of blood flow to a limb with a blood pressure cuff and exerts multiorgan protection from ischemia/reperfusion injury. Ischemia/reperfusion injury in the intestinal tract leads to intestinal barrier dysfunction and can result in multiple organ failure. Here we used an intestinal cell line (CaCo-2) to evaluate the effects of RIPC-conditioned patient sera on hypoxia-induced cell damage in vitro and to identify serum factors that mediate RIPC effects. Patient sera (n = 10) derived before RIPC (T0), directly after RIPC (T1) and 1 h after RIPC (T2) were added to the culture medium at the onset of hypoxia until 48 h after hypoxia. Reverse transcription-polymerase chain reaction, lactate dehydrogenase (LDH) assays, caspase-3/7 assays, silver staining, gelatin zymography and Western blotting were performed. Hypoxia led to morphological signs of cell damage and increased the release of LDH in cultures containing sera T0 (P < 0.01) and T1 (P < 0.05), but not sera T2, which reduced the hypoxia-mediated LDH release compared with sera T0 (P < 0.05). Gelatin zymography revealed a significant reduction of activities of the matrixmetalloproteinase (MMP)-2 and MMP-9 in the protective sera T2 compared with the nonprotective sera T0 (MMP-2: P < 0.01; MMP-9: P < 0.05). Addition of human recombinant MMP-2 and MMP-9 to MMP-deficient culture media increased the sensitivity of CaCo-2 cells to hypoxia-induced cell damage (P < 0.05), but did not result in a reduced phosphorylation of prosurvival kinases p42/44 and protein kinase B (Akt) or increased activity of caspase-3/7. Our results suggest MMP-2 and MMP-9 as currently unknown humoral factors that may be involved in RIPC-mediated cytoprotection in the intestine.
Collapse
Affiliation(s)
- Karina Zitta
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Marquez-Curtis LA, Turner AR, Sridharan S, Ratajczak MZ, Janowska-Wieczorek A. The ins and outs of hematopoietic stem cells: studies to improve transplantation outcomes. Stem Cell Rev Rep 2011; 7:590-607. [PMID: 21140298 DOI: 10.1007/s12015-010-9212-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Deciphering the mechanisms of hematopoietic stem/progenitor cell (HSPC) mobilization and homing is important for the development of strategies to enhance the efficacy of HSPC transplantation and achieve the full potential of HSPC-based cellular therapy. Investigation of these mechanisms has revealed interdependence among the various molecules, pathways and cellular components involved, and underscored the complex nature of these two processes. This review summarizes recent progress in identifying the specific factors implicated in HSPC mobilization and homing, with emphasis on our own work. Particularly, we will discuss our studies on stromal cell-derived factor-1 and its interaction with its receptor CXCR4, proteases (matrix metalloproteinases and carboxypeptidase M), complement proteins (C1q, C3a, C5a, membrane attack complex), sphingosine-1-phosphate, and pharmacologic agents such as the histone deacetylase inhibitor valproic acid and hyaluronic acid.
Collapse
Affiliation(s)
- Leah A Marquez-Curtis
- Research & Development, Canadian Blood Services, CBS Edmonton Centre, 8249-114 St. NW, Edmonton, T6G 2R8, Alberta, Canada
| | | | | | | | | |
Collapse
|
141
|
Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates. Nat Protoc 2011; 6:1578-611. [PMID: 21959240 DOI: 10.1038/nprot.2011.382] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Analysis of the sequence and nature of protein N termini has many applications. Defining the termini of proteins for proteome annotation in the Human Proteome Project is of increasing importance. Terminomics analysis of protease cleavage sites in degradomics for substrate discovery is a key new application. Here we describe the step-by-step procedures for performing terminal amine isotopic labeling of substrates (TAILS), a 2- to 3-d (depending on method of labeling) high-throughput method to identify and distinguish protease-generated neo-N termini from mature protein N termini with all natural modifications with high confidence. TAILS uses negative selection to enrich for all N-terminal peptides and uses primary amine labeling-based quantification as the discriminating factor. Labeling is versatile and suited to many applications, including biochemical and cell culture analyses in vitro; in vivo analyses using tissue samples from animal and human sources can also be readily performed. At the protein level, N-terminal and lysine amines are blocked by dimethylation (formaldehyde/sodium cyanoborohydride) and isotopically labeled by incorporating heavy and light dimethylation reagents or stable isotope labeling with amino acids in cell culture labels. Alternatively, easy multiplex sample analysis can be achieved using amine blocking and labeling with isobaric tags for relative and absolute quantification, also known as iTRAQ. After tryptic digestion, N-terminal peptide separation is achieved using a high-molecular-weight dendritic polyglycerol aldehyde polymer that binds internal tryptic and C-terminal peptides that now have N-terminal alpha amines. The unbound naturally blocked (acetylation, cyclization, methylation and so on) or labeled mature N-terminal and neo-N-terminal peptides are recovered by ultrafiltration and analyzed by tandem mass spectrometry (MS/MS). Hierarchical substrate winnowing discriminates substrates from the background proteolysis products and non-cleaved proteins by peptide isotope quantification and bioinformatics search criteria.
Collapse
|
142
|
Peptide from the C-terminal domain of tissue inhibitor of matrix metalloproteinases-2 (TIMP-2) inhibits membrane activation of matrix metalloproteinase-2 (MMP-2). Matrix Biol 2011; 30:404-12. [PMID: 21839835 DOI: 10.1016/j.matbio.2011.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 07/13/2011] [Accepted: 07/13/2011] [Indexed: 12/15/2022]
Abstract
Cellular activation of latent matrix metalloproteinase-2 (proMMP-2) requires formation of a cell membrane-associated activation complex that involves specific binding between the hemopexin domain of proMMP-2 (PEX) and the C-terminal domain of tissue inhibitor of matrix metalloproteinases-2 (C-TIMP-2). In this study, we tested the feasibility of inhibiting activation of proMMP-2 by exogenous inhibitors, which block the binding between PEX and TIMP-2. The recombinant C-TIMP-2 and synthetic peptides from C-TIMP-2 were used as inhibitors for proMMP-2 activation. Recombinant C-TIMP-2 bound specifically to both the catalytically inactive MMP-2(E404A) and the C-terminal domain of MMP-2 (PEX) in a concentration dependent manner with apparent K(d) of 3.9×10(-7)M and 1.7×10(-7)M, respectively. Moreover, C-TIMP-2 competed the binding between MMP-2(E404A) and full-length TIMP-2. Finally, activity assays showed that addition of C-TIMP-2 to HT-1080 fibrosarcoma cells inhibited proMMP-2 activation in a concentration-dependent manner. We then designed a synthetic peptide, P175L, consisting of 20 residues from the PEX-binding tail region of C-TIMP-2. P175L bound PEX and inhibited cell membrane-mediated activation of proMMP-2 in a concentration dependent manner. Deletion of the last 9 tail residues of C-TIMP-2 in P175L abrogated the inhibitory activities of the peptide showing that these residues were essential for function. Overall, these experiments have demonstrated that proMMP-2 activation can be inhibited by exogenous inhibitors which points to a potential strategy for MMP-2 specific inhibition.
Collapse
|
143
|
Hadler-Olsen E, Winberg JO, Reinholt FP, Larsen T, Uhlin-Hansen L, Jenssen T, Berg E, Kolset SO. Proteases in Plasma and Kidney of db/db Mice as Markers of Diabetes-Induced Nephropathy. ISRN ENDOCRINOLOGY 2011; 2011:832642. [PMID: 22363890 PMCID: PMC3262622 DOI: 10.5402/2011/832642] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 05/31/2011] [Indexed: 11/29/2022]
Abstract
Db/db mice are overweight, dyslipidemic and develop diabetic complications, relevant for similar complications in human type 2 diabetes. We have used db/db and db/+ control mice to investigate alterations in proteinase expression and activity in circulation and kidneys by SDS-PAGE zymography, electron microscopy, immunohistochemistry, Western blotting, and in situ zymography. Plasma from db/db mice contained larger amounts of serine proteinases compared to db/+ mice. Kidneys from the db/db mice had a significantly larger glomerular surface area and somewhat thicker glomerular basement membranes compared to the db/+ mice. Furthermore, kidney extracts from db/+ mice contained metalloproteinases with Mr of approximately 92000, compatible with MMP-9, not observed in db/db mice. These results indicate that higher levels of serine proteinases in plasma may serve as potential markers for kidney changes in db/db mice, whereas a decrease in MMP-9 in the kidney may be related to the glomerular changes.
Collapse
Affiliation(s)
- E Hadler-Olsen
- Department of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Key events in microvascular damage induced by snake venom hemorrhagic metalloproteinases. J Proteomics 2011; 74:1781-94. [DOI: 10.1016/j.jprot.2011.03.026] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 01/28/2023]
|
145
|
Ganesan K, Sehgal PK, Mandal AB, Sayeed S. Protective effect of Withania somnifera and Cardiospermum halicacabum extracts against collagenolytic degradation of collagen. Appl Biochem Biotechnol 2011; 165:1075-91. [PMID: 21789568 DOI: 10.1007/s12010-011-9326-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 07/07/2011] [Indexed: 10/18/2022]
Abstract
The irreversible destruction of extracellular matrix (ECM) such as cartilage, tendon, and bone that comprise synovial joints is the hallmark of both rheumatoid arthritis and osteoarthritis by over-expression of matrix metalloproteinase (MMP)-collagenases. We report herein the detailed study on the inhibitory effects of Withania somnifera extract (WSE) and Cardiospermum halicacabum extract (CHE) on Clostridium histolyticum collagenase (ChC) activity against the degradation of the ECM component of bovine Achilles tendon type I collagen by hydroxyproline assay method. Interaction of WSE and CHE with ChC exhibited 71% and 88% inhibition, respectively, to the collagenolytic activity of ChC against collagen degradation, and the inhibition was found to be concentration-dependent. The inhibition kinetics of ChC by both the extracts has been deduced from the extent of hydrolysis of N-[3-(2-furyl) acryloyl]-Leu-Gly-Pro-Ala. Both WSE and CHE are provided competitive and mixed type inhibition on ChC activity, respectively. Circular dichroism studies of ChC on treatment with WSE and CHE revealed changes in the secondary structure of collagenase. These results suggest that the WSE and CHE facilitated collagen stabilization through collagenase inhibition.
Collapse
Affiliation(s)
- Krishnamoorthy Ganesan
- Bioproducts Laboratory, Central Leather Research Institute (Council of Scientific and Industrial Research), Adyar, Chennai, 600 020 Tamil Nadu, India.
| | | | | | | |
Collapse
|
146
|
Biosynthesis of promatrix metalloproteinase-9/chondroitin sulphate proteoglycan heteromer involves a Rottlerin-sensitive pathway. PLoS One 2011; 6:e20616. [PMID: 21673806 PMCID: PMC3105995 DOI: 10.1371/journal.pone.0020616] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 05/08/2011] [Indexed: 11/28/2022] Open
Abstract
Background Previously we have shown that a fraction of the matrix metalloproteinase-9 (MMP-9) synthesized by the macrophage cell line THP-1 was bound to a chondroitin sulphate proteoglycan (CSPG) core protein as a reduction sensitive heteromer. Several biochemical properties of the enzyme were changed when it was bound to the CSPG. Methodology/Principal Findings By use of affinity chromatography, zymography, and radioactive labelling, various macrophage stimulators were tested for their effect on the synthesis of the proMMP-9/CSPG heteromer and its components by THP-1 cells. Of the stimulators, only PMA largely increased the biosynthesis of the heteromer. As PMA is an activator of PKC, we determined which PKC isoenzymes were expressed by performing RT-PCR and Western Blotting. Subsequently specific inhibitors were used to investigate their involvement in the biosynthesis of the heteromer. Of the inhibitors, only Rottlerin repressed the biosynthesis of proMMP-9/CSPG and its two components. Much lower concentrations of Rottlerin were needed to reduce the amount of CSPG than what was needed to repress the synthesis of the heteromer and MMP-9. Furthermore, Rottlerin caused a minor reduction in the activation of the PKC isoenzymes δ, ε, θ and υ (PKD3) in both control and PMA exposed cells. Conclusions/Significance The biosynthesis of the proMMP-9/CSPG heteromer and proMMP-9 in THP-1 cells involves a Rottlerin-sensitive pathway that is different from the Rottlerin sensitive pathway involved in the CSPG biosynthesis. MMP-9 and CSPGs are known to be involved in various physiological and pathological processes. Formation of complexes may influence both the specificity and localization of the enzyme. Therefore, knowledge about biosynthetic pathways and factors involved in the formation of the MMP-9/CSPG heteromer may contribute to insight in the heteromers biological function as well as pointing to future targets for therapeutic agents.
Collapse
|
147
|
Yang SW, Lee SM, Choi EY, Lee KH, Kim SH, Shin MJ, Han YS, Kang SM, Chung JH. Matrix metalloproteinase-1 induces cleavage of exogenous alphaB-crystallin transduced by a cell-penetrating peptide. J Cell Biochem 2011; 112:2454-62. [PMID: 21538481 DOI: 10.1002/jcb.23167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell-penetrating peptides (CPPs), including TAT-CPP, have been used to deliver exogenous proteins into living cells. Although a number of proteins fused to TAT-CPP can be delivered into various cells, little is known about the proteolytic cleavage of TAT-fusion proteins in cells. In this study, we demonstrate that a small heat shock protein (sHSP), alphaB-crystallin (αB-crystallin), delivered by TAT-CPP is susceptible to proteolytic cleavage by matrix metalloproteinase-1 (MMP-1) in cardiac myoblast H9c2 cells. Recombinant TAT-αB-crystallin was efficiently transduced into H9c2 cells. For a few hours following protein transduction, generation of a 14-kDa fragment, a cleavage band of TAT-αB-crystallin, increased in a time-dependent manner. This fragment was observed only in detergent-insoluble fractions. Interestingly, treatment with MMP inhibitors blocked the cleavage of TAT-αB-crystallin. In test tubes, recombinant MMP-1 processed TAT-αB-crystallin to generate the major cleavage fragment 14-kDa, as observed in the cells treated with TAT-αB-crystallin. The N-terminal sequences of the 14-kDa fragment were identified as Leu-Arg-Ala-Pro-Ser-Trp-Phe, indicating that this fragment is generated by cleavage at Phe54-Leu55 of αB-crystallin. The MMP-1-selective inhibitor abolished the production of 14-kDa fragments in cells. In addition, the cleaved fragment of TAT-αB-crystallin was significantly reduced in cells transfected with MMP-1 siRNA. Moreover, the enzymatic activity of MMP-1 was markedly increased in TAT-αB-crystallin-treated cells. TAT-αB-crystallin has a cytoprotective effect on H9c2 cells under hypoxic insult, moreover, MMP-1-selective inhibitor treatment led to even increased cell viability. These results suggest that MMP-1 is responsible for proteolytic cleavage of TAT-αB-crystallin during its intracellular transduction in H9c2 cells.
Collapse
Affiliation(s)
- Seung Won Yang
- Department of Oral Histology and Developmental Biology & Program of Cell and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Hedberg A, Mortensen ES, Rekvig OP. Chromatin as a target antigen in human and murine lupus nephritis. Arthritis Res Ther 2011; 13:214. [PMID: 21542875 PMCID: PMC3132027 DOI: 10.1186/ar3281] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The present review focuses on pathogenic molecular and transcriptional events in patients with lupus nephritis. These factors are renal DNaseI, exposed chromatin fragments and the corresponding chromatin-reactive autoantibodies. Lupus nephritis is the most serious complication in human systemic lupus erythematosus, and is characterised by deposition of chromatin fragment-IgG complexes in the mesangial matrix and glomerular basement membranes. The latter deposition defines end-stage disease. This event is stringently linked to a renal-restricted shutdown of expression of the DNaseI gene, as determined by loss of DNaseI mRNA level and DNaseI enzyme activity. The major aim of the present review is to generate new therapeutic strategies based on new insight into the disease pathogenesis.
Collapse
Affiliation(s)
- Annica Hedberg
- Molecular Pathology Research Group, Institute of Medical Biology, Faculty of Health Science, University of Tromsø, N-9037 Tromsø, Norway
| | | | | |
Collapse
|
149
|
Grounds MD, Shavlakadze T. Growing muscle has different sarcolemmal properties from adult muscle: A proposal with scientific and clinical implications. Bioessays 2011; 33:458-68. [DOI: 10.1002/bies.201000136] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
150
|
Castro MM, Tanus-Santos JE, Gerlach RF. Matrix metalloproteinases: targets for doxycycline to prevent the vascular alterations of hypertension. Pharmacol Res 2011; 64:567-72. [PMID: 21514386 DOI: 10.1016/j.phrs.2011.04.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypertension is associated with well known structural and functional alterations in both resistance and conduit arteries, which may be the result from long-lasting high blood pressure and may also be the cause of maintained hypertension and its complications. Therefore, in addition to lowering blood pressure, therapeutic strategies targeting the structural and functional modifications found in hypertensive patients may prevent the cardiovascular events and decrease the death rates associated with hypertension. Mounting evidence indicates that many vascular alterations associated with sustained hypertension are due to imbalanced matrix metalloproteinases (MMPs), a family of zinc-endopeptidases that degrade not only proteins of extracellular matrix (ECM) but several other substrates. Recent observations showed that abnormal MMP activity is a feature of the pathogenesis of hypertension and other diseases, thus justifying the development of drugs aiming at MMP downregulation. This review focuses on the extracellular actions of MMPs in hypertension-induced chronic vascular alterations. We then discuss the effects of MMP inhibitors, especially doxycycline, on the vascular changes associated with hypertension. There is now strong evidence that MMP inhibition with doxycycline (and maybe other MMP inhibitors) may attenuate the functional and structural alterations associated with hypertension, including increases in arterial stiffness. These beneficial effects may be, at least in part, independent of their antihypertensive effects.
Collapse
Affiliation(s)
- Michele M Castro
- Department of Pharmacology, Cardiovascular Research Centre, 4-62 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | | | |
Collapse
|