101
|
Wang L, Zhao Y, Liu X, Shi J. Enhancement of atmospheric oxidation capacity induced co-pollution of the O 3 and PM 2.5 in Lanzhou, northwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122951. [PMID: 37977361 DOI: 10.1016/j.envpol.2023.122951] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
In recent years, the co-pollution of surface ozone (O3) and fine particulate matter (PM2.5) has emerged as a critical concern within specific regions of China's atmospheric environment. This study employed a comprehensive approach by integrating statistical analysis with the interpretable ensemble machine learning model. Delving deeply into the intricate mechanisms behind O3 and PM2.5 co-pollution in Lanzhou city from 2019 to 2022, the research synthesized and analyzed an array of data sources, including ground observations, a multi-parameter lidar system, and meteorological data. Our findings, derived from ground observations to vertical distribution, unequivocally confirm that the enhancement of atmospheric oxidation capacity serves as a critical driver in the genesis of secondary particles, playing a substantial role in the augmented levels of O3 and PM2.5 experienced during the warm season. Moreover, the impact of local weather patterns is indispensable as it precipitates a relatively stable mid-level atmosphere, culminating in elevated surface concentrations of both PM2.5 and O3. Overall, this study emphatically underscores the importance of adopting a comprehensive approach to address these environmental challenges.
Collapse
Affiliation(s)
- Li Wang
- Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China
| | - Yuan Zhao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Xiaoyue Liu
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jinsen Shi
- Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
102
|
Zasimov PV, Volosatova AD, Góbi S, Keresztes B, Tyurin DA, Feldman VI, Tarczay G. Infrared spectroscopy of the α-hydroxyethyl radical isolated in cryogenic solid media. J Chem Phys 2024; 160:024308. [PMID: 38205854 DOI: 10.1063/5.0177189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The α-hydroxyethyl radical (CH3·CHOH, 2A) is a key intermediate in ethanol biochemistry, combustion, atmospheric chemistry, radiation chemistry, and astrochemistry. Experimental data on the vibrational spectrum of this radical are crucially important for reliable detection and understanding of the chemical dynamics of this species. This study represents the first detailed experimental report on the infrared absorption bands of the α-hydroxyethyl radical complemented by ab initio computations. The radical was generated in solid para-H2 and Xe matrices via the reactions of hydrogen atoms with matrix-isolated ethanol molecules and radiolysis of isolated ethanol molecules with x rays. The absorption bands with maxima at 3654.6, 3052.1, 1425.7, 1247.9, 1195.6 (1177.4), and 1048.4 cm-1, observed in para-H2 matrices appearing upon the H· atom reaction, were attributed to the OHstr, α-CHstr, CCstr, COstr + CCObend, COstr, and CCstr + CCObend vibrational modes of the CH3·CHOH radical, respectively. The absorption bands with the positions slightly red-shifted from those observed in para-H2 were detected in both the irradiated and post-irradiation annealed Xe matrices containing C2H5OH. The results of the experiments with the isotopically substituted ethanol molecules (CH3CD2OH and CD3CD2OH) and the quantum-chemical computations at the UCCSD(T)/L2a_3 level support the assignment. The photolysis with ultraviolet light (240-300 nm) results in the decay of the α-hydroxyethyl radical, yielding acetaldehyde and its isomer, vinyl alcohol. A comparison of the experimental and theoretical results suggests that the radical adopts the thermodynamically more stable anti-conformation in both matrices.
Collapse
Affiliation(s)
- Pavel V Zasimov
- MTA-ELTE Lendület Laboratory Astrochemistry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasia D Volosatova
- MTA-ELTE Lendület Laboratory Astrochemistry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sándor Góbi
- MTA-ELTE Lendület Laboratory Astrochemistry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
| | - Barbara Keresztes
- Laboratory of Molecular Spectroscopy, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
- Hevesy György PhD School of Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
| | - Daniil A Tyurin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir I Feldman
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - György Tarczay
- MTA-ELTE Lendület Laboratory Astrochemistry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
- Laboratory of Molecular Spectroscopy, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
- Centre for Astrophysics and Space Science, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
| |
Collapse
|
103
|
Upadhyay M, Töpfer K, Meuwly M. Molecular Simulation for Atmospheric Reactions: Non-Equilibrium Dynamics, Roaming, and Glycolaldehyde Formation following Photoinduced Decomposition of syn-Acetaldehyde Oxide. J Phys Chem Lett 2024; 15:90-96. [PMID: 38147042 DOI: 10.1021/acs.jpclett.3c03131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The decomposition dynamics of vibrationally excited syn-CH3CHOO to form vinoxy + hydroxyl (CH2CHO + OH) radicals or to recombine to form glycolaldehyde (CH2OHCHO) are characterized using statistically significant numbers of molecular dynamics simulations using a full-dimensional neural-network-based potential energy surface at the CASPT2 level of theory. The computed final OH-translational and rotational state distributions agree well with experiments and probe the still unknown O-O bond strength DeOO for which best values from 22 to 25 kcal/mol are found. OH-elimination rates are consistent with experiments and do not vary appreciably with DeOO due to the non-equilibrium nature of the process. In addition to the OH-elimination pathway, OH roaming is observed following O-O scission, which leads to glycolaldehyde formation on the picosecond time scale. Together with recent work involving the methyl-ethyl-substituted Criegee intermediate, we conclude that OH roaming is a general pathway to be included in molecular-level modeling of atmospheric processes. This work demonstrates that atomistic simulations with machine-learned energy functions provide a viable route for exploring the chemistry and reaction dynamics of atmospheric reactions.
Collapse
Affiliation(s)
- Meenu Upadhyay
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Kai Töpfer
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
104
|
Ge Z, Ma Z, Hong W, Liu K, Yan S, Song W, Zhang J. Temporal variations in reactive oxygen species in biofilms of submerged macrophytes: The key role of microbial metabolism mediated by oxygen fluctuations. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132542. [PMID: 37734308 DOI: 10.1016/j.jhazmat.2023.132542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Reactive oxygen species (ROS) play a crucial role in the biogeochemistry of aquatic environments, yet their occurrence and accumulation in the biofilm of submerged macrophytes have been poorly documented. Herein, we first investigated the light-dark cycling fluctuations of biofilm microenvironment and the temporal variations of a representative ROS (O2•-) during biofilm succession on the macrophyte leaves and subsequently quantified the photochemical processes in biofilms. The sustained production of O2•- exhibited a distinct rhythmic fluctuation from 32.49 ± 0.56 μmol/kg to 72.56 ± 0.92 μmol/kg FW, which simultaneously fluctuated with the dissolved oxygen, redox potential, and pH, all driven by the alternating oxic-anoxic conditions of biofilms. The intensities of O2•- and ROS firstly increased and then decreased throughout biofilm succession. The O2•- concentrations in biofilms from different waters followed the order of rural river water > landscape lake water > aquaculture pond water, and the leaf photosynthesis and microbial community played a key role. ROS production was significantly associated with Actinobacteria, Proteobacteria and Bacteroidetes, with contributions of 44.6%, 32.8%, and 15.2%, respectively. Partial least squares path modeling structural equation analysis showed that ROS production in leaf biofilms was mainly related to the microenvironment and microbial metabolism. These findings will facilitate the development of ecological restoration strategies in aquatic environments.
Collapse
Affiliation(s)
- Zuhan Ge
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Zihang Ma
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Wenjie Hong
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Kexuan Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Shuwen Yan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Weihua Song
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China; Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai 200233, PR China.
| |
Collapse
|
105
|
Castillo-Cabrera GX, Pliego-Cerdán CI, Méndez E, Espinoza-Montero PJ. Step-by-step guide for electrochemical generation of highly oxidizing reactive species on BDD for beginners. Front Chem 2024; 11:1298630. [PMID: 38239927 PMCID: PMC10794620 DOI: 10.3389/fchem.2023.1298630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024] Open
Abstract
Selecting the ideal anodic potential conditions and corresponding limiting current density to generate reactive oxygen species, especially the hydroxyl radical (•OH), becomes a major challenge when venturing into advanced electrochemical oxidation processes. In this work, a step-by-step guide for the electrochemical generation of •OH on boron-doped diamond (BDD) for beginners is shown, in which the following steps are discussed: i) BDD activation (assuming it is new), ii) the electrochemical response of BDD (in electrolyte and ferri/ferro-cyanide), iii) Tafel plots using sampled current voltammetry to evaluate the overpotential region where •OH is mainly generated, iv) a study of radical entrapment in the overpotential region where •OH generation is predominant according to the Tafel plots, and v) finally, the previously found ideal conditions are applied in the electrochemical degradation of amoxicillin, and the instantaneous current efficiency and relative cost of the process are reported.
Collapse
Affiliation(s)
| | | | - Erika Méndez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | |
Collapse
|
106
|
Qin L, Yang L, Shiraiwa M, Faiola F, Zhong H, Sonne C, Yang Y, Liu S, Liu G, Zheng M, Jiang G. Unexpected hydroxyl radical production in brewed tea under sunlight. PNAS NEXUS 2024; 3:pgae015. [PMID: 38274119 PMCID: PMC10810332 DOI: 10.1093/pnasnexus/pgae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024]
Abstract
Tea is one of the world's most popular and widely consumed beverages. It is a common pastime to enjoy a cup of tea in the sunshine. However, little attention has been given to understanding the possible photochemical reactions occurring beneath the calm surface of brewed tea. Epigallocatechin gallate (EGCG), which is widely used in food and beverages, is the most significant active ingredient found in tea. In this study, we investigated the presence of free radicals in both an aqueous EGCG solution and brewed tea under simulated sunlight conditions. To our surprise, we unexpectedly observed the production of hydroxyl radicals (•OH) in brewed tea. It was found that sunlight irradiation played a critical role in the formation of •OH, independent of the presence of metal ions. Furthermore, we demonstrated that the •OH generated from the EGCG aqueous solution induced cell cytotoxicity and DNA damage in vitro. Considering the crucial role of •OH in various fields, including human health and the environment, it is important to further explore the practical implications of •OH production in brewed tea under sunlight. In summary, our study unveils the unexpected formation of •OH in brewed tea and emphasizes the significance of sunlight-induced reactions. The observed cytotoxic and DNA-damaging effects of •OH emphasize the importance of understanding the potential health consequences associated with tea consumption. Further research in this area will contribute to a better understanding of the broader implications of •OH production in brewed tea under sunlight.
Collapse
Affiliation(s)
- Linjun Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Christian Sonne
- Department for Bioscience, Arctic Research Centre, Aarhus University, Roskilde DK-4000, Denmark
| | - Yujue Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Shuting Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
107
|
Zhou Z, Yang L, Qu X, Fu H. Dissolved black carbon mediated photo-oxidation of arsenic(III) to arsenic(V) in water: The key role of triplet states. CHEMOSPHERE 2024; 347:140718. [PMID: 37972870 DOI: 10.1016/j.chemosphere.2023.140718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Arsenic is a common contaminant found in natural waters, and has raised significant environmental concerns due to its toxicity and carcinogenicity. In this study, we investigated the mediated photo-oxidation of arsenite (As(III)) under simulated sunlight by dissolved black carbon (DBC), an important dissolved organic matter (DOM) constituent released from black carbon. Five DBC were collected from the water extracts of black carbons that were derived by pyrolyzing different biomass (i.e., bamboo, rice, peanuts, corn, and sorghum stalks), and four well-studied dissolved humic substances (DHS) were selected for benchmarking. The presence of DBC (i.e., 5 mg C-1) significantly accelerated the photo-oxidation of As(III) to arsenate (As(V)), with the observed pseudo-first-order rate constant of reaction increased by 5∼11 times. Quenching experiments of photochemically produced reactive intermediates suggested that As(III) was mainly oxidized by triplet-excited DBC (3DBC*, contribution of 48%), singlet oxygen (1O2, 18%) and superoxide anions (O2•-, 28%) in sunlight-irradiated DBC solutions. The average apparent quantum yield of As(III) photo-oxidation for DBC was found to be more than 4 times higher in comparison with DHS. Such a strong mediation efficiency of DBC was due to its smaller molecular size and higher aromaticity than DHS, which facilitated the non-charge-transfer process to produce triplet-excited states and their sensitized 1O2. Consistently, DBC exhibited a higher apparent quantum yield and a longer lifetime of triplet states as compared with DHS. The results imply that DBC may play a previously unrecognized important role in the fate of arsenic in aquatic environments.
Collapse
Affiliation(s)
- Zhicheng Zhou
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Lanqing Yang
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu 210046, China.
| |
Collapse
|
108
|
Meng X, Désesquelles P, Xu L. Decomposition mechanisms of nuclear-grade cationic exchange resin by advanced oxidation processes: Statistical molecular fragmentation model and DFT calculations. J Environ Sci (China) 2024; 135:433-448. [PMID: 37778817 DOI: 10.1016/j.jes.2023.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 10/03/2023]
Abstract
The treatment and disposal of radioactive waste are presently facing great challenges. Spent ion exchange resins have become a focus of attention due to their high production and serious environmental risks. In this paper, a simplified model of cationic exchange resin is proposed, and the degradation processes of cationic resin monomer initiated by hydroxyl radicals (·OH) are clarified by combining statistical molecular fragmentation (SMF) model and density functional theory (DFT) calculations. The prediction of active sites indicates that the S-O bonds and the C-S bond of the sulfonic group are more likely to react during the degradation. The meta-position of the sulfonic group on the benzene ring is the most active site, and the benzene ring without the sulfonic group has a certain reactivity. The C11-C14 and C17-C20 bonds, on the carbon skeleton, are the most easily broken. It is also found that dihydroxy addition and elimination reactions play a major role in the process of desulfonation, carbon skeleton cleavage and benzene ring separation. The decomposition mechanisms found through the combination of physical models and chemical calculations, provide theoretical guidance for the treatment of complex polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Xiang Meng
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Pierre Désesquelles
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, China; CNRS, Laboratoire de Physique des Gaz et des Plasmas, Université Paris-Saclay, Orsay 91405, France
| | - Lejin Xu
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, China; State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
109
|
Pino-Rios R, Pino E, Cárdenas-Jirón G. Deciphering the origin of the first steps in the degradation of azo dyes: a computational study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:657-667. [PMID: 38015401 DOI: 10.1007/s11356-023-31172-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Azo dyes find applications across various sectors including food, pharmaceuticals, cosmetics, printing, and textiles. The contaminating effects of dyes on aquatic environments arise from toxic effects caused by their long-term presence in the environment, buildup in sediments, particularly in aquatic species, degradation of pollutants into mutagenic or mutagenic compounds, and low aerobic biodegradability. Therefore, we theoretically propose the first steps of the degradation of azo dyes based on the interaction of hydroperoxyl radical (•OOH) with the dye. This interaction is studied by the OC and ON mechanisms in three azo dyes: azobenzene (AB), disperse orange 3 (DO3), and disperse red 1 (DR1). Rate constants calculated at several temperatures show a preference for the OC mechanism in all the dyes with lower activation energies than the ON mechanism. The optical properties were calculated and because the dye-•OOH systems are open shell, to verify the validity of the results, a study of the spin contamination of the ground [Formula: see text] and excited states [Formula: see text] was previously performed. Most of the excited states calculated are acceptable as doublet states. The absorption spectra of the dye-•OOH systems show a decrease in the intensity of the bands compared to the isolated dyes and the appearance of a new band of the type π → π* at a longer wavelength in the visible region, achieving up to 868 nm. This demonstrates that the reaction with the •OOH radical could be a good alternative for the degradation of the azo dyes.
Collapse
Affiliation(s)
- Ricardo Pino-Rios
- Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH), Santiago, Chile
| | - Eduardo Pino
- Laboratory of Kinetics and Photochemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH), Santiago, Chile
| | - Gloria Cárdenas-Jirón
- Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH), Santiago, Chile.
| |
Collapse
|
110
|
Liu T, Lester MI. Roaming in the Unimolecular Decay of syn-Methyl-Substituted Criegee Intermediates. J Phys Chem A 2023; 127:10817-10827. [PMID: 38109698 DOI: 10.1021/acs.jpca.3c05859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Alkene ozonolysis generates transient carbonyl oxide species, known as Criegee intermediates, which are a significant nonphotolytic source of OH radicals in the troposphere. This study demonstrates that unimolecular decay of syn-methyl-substituted Criegee intermediates proceeds via 1,4 H atom transfer to vinyl hydroperoxides, resulting in OH fission to O-O products or, alternatively, OH roaming to hydroxycarbonyl products. Newly generated Criegee intermediates are shown to yield hydroxycarbonyls with sufficient internal excitation to dissociate via C-C fission to acyl and hydroxymethyl (CH2OH) radicals. The stabilized Criegee intermediates and unimolecular products are rapidly cooled in a pulsed supersonic expansion for photoionization detection with time-of-flight mass spectrometry. CH2OH products are identified by 2 + 1 resonance-enhanced multiphoton ionization via the 3pz Rydberg state upon unimolecular decay of CH3CHOO, (CH3)2COO, (CH3)(CH3CH2)COO, and (CH3)(CH2═CH)COO (methyl vinyl ketone oxide). The stabilized Criegee intermediates are separately detected using 10.5 eV photoionization. This study provides the first experimental evidence of roaming in the unimolecular decay of isoprene-derived methyl vinyl ketone oxide and extends earlier studies that reported stabilized hydroxycarbonyl products.
Collapse
Affiliation(s)
- Tianlin Liu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Marsha I Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
111
|
Pawłowska M, Mila-Kierzenkowska C, Szczegielniak J, Woźniak A. Oxidative Stress in Parasitic Diseases-Reactive Oxygen Species as Mediators of Interactions between the Host and the Parasites. Antioxidants (Basel) 2023; 13:38. [PMID: 38247462 PMCID: PMC10812656 DOI: 10.3390/antiox13010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Oxidative stress plays a significant role in the development and course of parasitic infections, both in the attacked host organism and the parasite organism struggling to survive. The host uses large amounts of reactive oxygen species (ROS), mainly superoxide anion (O2•-) and hydrogen peroxide (H2O2), to fight the developing parasitic disease. On the other hand, the parasite develops the most effective defense mechanisms and resistance to the effects of ROS and strives to survive in the host organism it has colonized, using the resources and living environment available for its development and causing the host's weakening. The paper reviews the literature on the role of oxidative stress in parasitic diseases, which are the most critical epidemiological problem worldwide. The most common parasitosis in the world is malaria, with 300-500 million new cases and about 1 million deaths reported annually. In Europe and Poland, the essential problem is intestinal parasites. Due to a parasitic infection, the concentration of antioxidants in the host decreases, and the concentration of products of cellular components oxidation increases. In response to the increased number of reactive oxygen species attacking it, the parasites have developed effective defense mechanisms, including primarily the action of antioxidant enzymes, especially superoxide dismutase and nicotinamide adenine dinucleotide phosphate hydrogen (NADPH)-dependent complexes glutathione and thioredoxin.
Collapse
Affiliation(s)
- Marta Pawłowska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (C.M.-K.); (A.W.)
| | - Celestyna Mila-Kierzenkowska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (C.M.-K.); (A.W.)
| | - Jan Szczegielniak
- Physiotherapy Department, Faculty of Physical Education and Physiotherapy, Opole University of Technology, 45-758 Opole, Poland;
- Ministry of Internal Affairs and Administration’s Specialist Hospital of St. John Paul II, 48-340 Glucholazy, Poland
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (C.M.-K.); (A.W.)
| |
Collapse
|
112
|
Kutarna S, Chen W, Xiong Y, Liu R, Gong Y, Peng H. Screening of Indoor Transformation Products of Organophosphates and Organophosphites with an in Silico Spectral Database. ACS MEASUREMENT SCIENCE AU 2023; 3:469-478. [PMID: 38145028 PMCID: PMC10740125 DOI: 10.1021/acsmeasuresciau.3c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 12/26/2023]
Abstract
Numerous transformation products are formed indoors, but they are outside the scope of current chemical databases. In this study, an in silico spectral database was established to screen previously unknown indoor transformation products of organophosphorus compounds (OPCs). An R package was developed that incorporated four indoor reactions to predict the transformation products of 712 seed OPCs. By further predicting MS2 fragments, an in silico spectral database was established consisting of 3509 OPCs and 28,812 MS2 fragments. With this database, 40 OPCs were tentatively detected in 23 indoor dust samples. This is the greatest number of OPCs reported to date indoors, among which two novel phosphonates were validated using standards. Twenty-four of the detected OPCs were predicted transformation products in which oxidation from organophosphites plays a major role. To confirm this, the in silico spectral database was expanded to include organophosphites for suspect screening in five types of preproduction plastics. A broad spectrum of 14 organophosphites was detected, with a particularly high abundance in polyvinyl chloride plastics and indoor end-user goods. This demonstrated the significant contribution of organophosphites to indoor organophosphates via oxidation, highlighting the strength of in silico spectral databases for the screening of unknown indoor transformation products.
Collapse
Affiliation(s)
- Steven Kutarna
- Department
of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Wanzhen Chen
- Department
of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Ying Xiong
- School
of the Environment, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Runzeng Liu
- Shandong
Key Laboratory of Environmental Processes and Health, School of Environmental
Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yufeng Gong
- Department
of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Hui Peng
- Department
of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
- School
of the Environment, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
113
|
Liu W, Sun J, Li S, Zhao R. Impacts of local soil and vehicle NO x emissions on ground-level NO 2 concentrations on a university campus in the city of Shenyang, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:63. [PMID: 38112882 DOI: 10.1007/s10661-023-12098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/04/2023] [Indexed: 12/21/2023]
Abstract
Nitrogen dioxide (NO2) is a ubiquitous atmospheric pollutant, and fossil fuel combustion is generally considered its predominant source in and around urban areas. As the total nitrogen deposition is high over here, soil NOx emissions from urban green space might also be an important local source of ground-level NO2. In this study, Willems badge samplers were employed to monitor the spatial and seasonal variations of 2-week mean atmospheric NO2 concentrations at a height of 1.7 m on an urban campus in Northeast China from November 2020 to December 2021. We found considerable small-scale spatial variations of ground-level NO2 concentrations on the campus during the growing season, with local soil NOx emissions as the main driver. According to its linear correlation with green space coverage, the increment in ground-level NO2 concentration was partitioned into two components, with one ascribed to the local soil source (referred to as NO2-Isoil) and the other the local vehicle source (NO2-Ivehicle). NO2-Isoil generally reached a maximum (as high as 25.6 μg/m3) during early spring, while its ratio to the background value generally reached a maximum (could be >1) during late spring and could reach 0.52 to 0.92 during summer. Therefore, soil NOx emissions were an important source of ground-level NO2 on the campus, with the contribution even higher than those of other anthropogenic sources during late spring. Even with light traffic on the campus, NO2-Ivehicle could reach 0.48 times the background value at a site with high frequencies of warm starts.
Collapse
Affiliation(s)
- Wei Liu
- College of Environment and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, Liaoning, China.
| | - Jiahui Sun
- College of Environment and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, Liaoning, China
| | - Sulian Li
- Research Institute No. 240, China National Nuclear Corporation, Shenyang, 110135, Liaoning, China
| | - Rongbo Zhao
- College of Environment and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, Liaoning, China
| |
Collapse
|
114
|
Pan Y, Garg S, Fu QL, Peng J, Yang X, Waite TD. Copper Safeguards Dissolved Organic Matter from Sunlight-Driven Photooxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21178-21189. [PMID: 38064756 DOI: 10.1021/acs.est.3c07549] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Sunlight plays a crucial role in the transformation of dissolved organic matter (DOM) and the associated carbon cycle in aquatic environments. This study demonstrates that the presence of nanomolar concentrations of copper (Cu) significantly decreases the rate of photobleaching and the rate of loss of electron-donating moieties of three selected types of DOM (including both terrestrial and microbially derived DOM) under simulated sunlight irradiation. Employing Fourier transform ion cyclotron resonance mass spectrometry, we further confirm that Cu selectively inhibits the photooxidation of lignin- and tannin-like phenolic moieties present within the DOM, in agreement with the reported inhibitory impact of Cu on the photooxidation of phenolic compounds. On the basis of the inhibitory impact of Cu on the DOM photobleaching rate, we calculate the contribution of phenolic moieties to DOM photobleaching to be at least 29-55% in the wavelength range of 220-460 nm. The inhibition of loss of electrons from DOM during irradiation in the presence of Cu is also explained quantitatively by developing a mathematical model describing hydrogen peroxide (a proxy measure of loss of electrons from DOM) formation on DOM irradiation in the absence and presence of Cu. Overall, this study advances our understanding of DOM transformation in natural sunlit waters.
Collapse
Affiliation(s)
- Yanheng Pan
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Shikha Garg
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Qing-Long Fu
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Jianglin Peng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - T David Waite
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
115
|
Chen D, Zhou L, Liu S, Lian C, Wang W, Liu H, Li C, Liu Y, Luo L, Xiao K, Chen Y, Qiu Y, Tan Q, Ge M, Yang F. Primary sources of HONO vary during the daytime: Insights based on a field campaign. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166605. [PMID: 37640078 DOI: 10.1016/j.scitotenv.2023.166605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Nitrous acid (HONO) is an established precursor of hydroxyl (OH) radical and has significant impacts on the formation of PM2.5 and O3. Despite extensive research on HONO observation in recent years, knowledge regarding its sources and sinks in urban areas remains inadequate. In this study, we monitored the atmospheric concentrations of HONO and related pollutants, including gaseous nitric acid and particulate nitrate, simultaneously at a supersite in downtown Chengdu, a megacity in southwestern China during spring, when was chosen due to its tolerance for both PM2.5 and O3 pollution. Furthermore, we employed the random forest model to fill the missing data of HONO, which exhibited good predictive performance (R2 = 0.96, RMSE = 0.36 ppbv). During this campaign, the average mixing ratio of HONO was measured to be 1.0 ± 0.7 ppbv. Notably, during periods of high O3 and PM2.5 concentrations, the mixing ratio of HONO was >50 % higher compared to the clean period. We developed a comprehensive parameterization scheme for the HONO budget, and it performed well in simulating diurnal variations of HONO. Based on the HONO budget analysis, we identified different mechanisms that dominate HONO formation at different times of the day. Vehicle emissions and NO2 heterogeneous conversions were found to be the primary sources of HONO during nighttime (21.0 %, 30.2 %, respectively, from 18:00 to 7:00 the next day). In the morning (7:00-12:00), NO2 heterogeneous conversions and the reaction of NO with OH became the main sources (35.0 %, 32.2 %, respectively). However, in the afternoon (12:00-18:00), the heterogeneous photolysis of HNO3 on PM2.5 was identified as the most substantial source of HONO (contributing 52.5 %). This study highlights the significant variations in primary HONO sources throughout the day.
Collapse
Affiliation(s)
- Dongyang Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China
| | - Li Zhou
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China.
| | - Song Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China
| | - Chaofan Lian
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hefan Liu
- Chengdu Academy of Environmental Sciences, Chengdu 610000, China
| | - Chunyuan Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China
| | - Yuelin Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China
| | - Lan Luo
- Sichuan province Chengdu Ecological Environment Monitoring Center Station, Chengdu 610066, China
| | - Kuang Xiao
- Sichuan province Chengdu Ecological Environment Monitoring Center Station, Chengdu 610066, China
| | - Yong Chen
- Sichuan province Chengdu Ecological Environment Monitoring Center Station, Chengdu 610066, China
| | - Yang Qiu
- Department of Industrial Engineering, The Pittsburgh Institute, Sichuan University, Chengdu 610065, China
| | - Qinwen Tan
- Chengdu Academy of Environmental Sciences, Chengdu 610000, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fumo Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China
| |
Collapse
|
116
|
Xu Y, Ding J, Zhang C, Zhao M, Zhu S, Rao G, Zhang W, Zhang Z, Ma J. A precise method to monitor hydroxyl radical in natural waters based on a fluoride-containing fluorescence probe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166961. [PMID: 37696402 DOI: 10.1016/j.scitotenv.2023.166961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
In natural waters, hydroxyl radical (OH) can initiate many free radical-induced reactions, oxidizing various inorganic and organic compounds through electron transfer reactions, dehydrogenation reactions, addition reactions, and self-quenching reactions. However, due to its extremely low concentration and short lifetime in natural waters, studies on the quantitative measurement of OH levels are insufficient. In this work, we developed the first quinolinium-based fluorescence probe containing fluoride substituted donor that could detect hydroxyl radicals in the water system. This probe exhibits excellent selectivity towards OH with a large Stokes shift (114 nm) and 23-fold enhancement in fluorescence. Additionally, this probe has been proven to be low toxicity and applied to detect OH in living cells, zebrafish, and natural water samples with good recovery (over 92 %).
Collapse
Affiliation(s)
- Yaoyu Xu
- Henan Provincial Research Center for Precise Synthesis of Fluorine-Containing Drugs, Anyang Normal University, Anyang, Henan 455000, China
| | - Jiaying Ding
- Henan Provincial Research Center for Precise Synthesis of Fluorine-Containing Drugs, Anyang Normal University, Anyang, Henan 455000, China
| | - Chengjie Zhang
- Henan Provincial Research Center for Precise Synthesis of Fluorine-Containing Drugs, Anyang Normal University, Anyang, Henan 455000, China
| | - Mingtao Zhao
- Henan Provincial Research Center for Precise Synthesis of Fluorine-Containing Drugs, Anyang Normal University, Anyang, Henan 455000, China
| | - Shuaibo Zhu
- Henan Provincial Research Center for Precise Synthesis of Fluorine-Containing Drugs, Anyang Normal University, Anyang, Henan 455000, China
| | - Guowu Rao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wen Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhenxing Zhang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Junyan Ma
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Department of Chemistry, Clemson University, Clemson 29634, SC, United States.
| |
Collapse
|
117
|
Su C, Tang C, Sun Z, Hu X. Mechanisms of interaction between metal-organic framework-based material and persulfate in degradation of organic contaminants (OCs): Activation, reactive oxygen generation, conversion, and oxidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119089. [PMID: 37783089 DOI: 10.1016/j.jenvman.2023.119089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
Metal-organic frameworks (MOFs)-based materials have been of great public interest in persulfate (PS)-based catalytic oxidation for wastewater purification, because of their excellent performance and selectiveness in organic contaminants (OCs) removal in complex water environments. The formation, fountainhead and reaction mechanism of reactive oxygen species (ROSs) in PS-based catalytic oxidation are crucial for understanding the principles of PS activation and the degradation mechanism of OCs. In the paper, we presented the quantitative structure-activity relationship (QSAR) of MOFs-based materials for PS activation, including the relationship of structure and removal efficiency, active sites and ROSs as well as OCs. In various MOFs-based materials, there are many factors will affect their performances. We discussed how various surface modification projects affected the characteristics of MOFs-based materials used in PS activation. Moreover, we revealed the process of ROSs generation by active sites and the oxidation of OCs by ROSs from the micro level. At the end of this review, we putted forward an outlook on the development trends and faced challenges of MOFs for PS-based catalytic oxidation. Generally, this review aims to clarify the formation mechanisms of ROSs via the active sites on the MOFs and the reaction mechanism between ROSs and OCs, which is helpful for reader to better understand the QSAR in various MOFs/PS systems.
Collapse
Affiliation(s)
- Chenxin Su
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chenliu Tang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhirong Sun
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Xiang Hu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
118
|
Wu Y, Zhang P, Zhang PJ, Feng S, Du W, Li H, Pan B. The degradation of p-nitrophenol by biochar is dominated by its electron donating capacity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166115. [PMID: 37572893 DOI: 10.1016/j.scitotenv.2023.166115] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
The typical aromatic and phenolic pollutant, p-nitrophenol (PNP), is extensively used in the industry and can seriously threaten the environmental health. Biochar, as a solid carbon-rich material, can directly degrade PNP. It has been reported that the PNP degradation by biochar is closely related to the electron exchange capacity of biochar (the sum of electron donating and accepting capacities). However, the roles of electron donating and accepting capacity of biochar in PNP degradation have not been distinguished before. In this study, the biochar samples were chemically modified to manipulate the electron donating and accepting capacities of biochar samples. Compared with pristine biochar (3.67 %), modified biochar had higher degradation efficiencies of PNP (>7.81 %). The strictly positive correlation between the electron donating capacities and the PNP degradation rates of biochar samples (r = 0.98, p < 0.05) indicated that the PNP degradation process by biochar is dominated by the reduction process. Although both the oxidation and reduction degradation products were found in the degradation system, the quenching experiment of OH, a key radical in the process of oxidation degradation, further proved that the oxidation process just played a minor role (<10 %) in the PNP degradation by biochar. This study shed light on the degradation mechanism of PNP by biochar and could promote the application of biochar in the pollution remediation.
Collapse
Affiliation(s)
- Yufei Wu
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Peng Zhang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China.
| | - Peng Jim Zhang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Shihui Feng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Hao Li
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Bo Pan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| |
Collapse
|
119
|
Luo Q, Sun W, Li Z, Sun J, Xiao Y, Zhang J, Zhu C, Liu B, Ding J. Biomaterials-mediated targeted therapeutics of myocardial ischemia-reperfusion injury. Biomaterials 2023; 303:122368. [PMID: 37977009 DOI: 10.1016/j.biomaterials.2023.122368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Reperfusion therapy is widely used to treat acute myocardial infarction. However, its efficacy is limited by myocardial ischemia-reperfusion injury (MIRI), which occurs paradoxically due to the reperfusion therapy and contributes to the high mortality rate of acute myocardial infarction. Systemic administration of drugs, such as antioxidant and anti-inflammatory agents, to reduce MIRI is often ineffective due to the inadequate release at the pathological sites. Functional biomaterials are being developed to optimize the use of drugs by improving their targetability and bioavailability and reducing side effects, such as gastrointestinal irritation, thrombocytopenia, and liver damage. This review provides an overview of controlled drug delivery biomaterials for treating MIRI by triggering antioxidation, calcium ion overload inhibition, and/or inflammation regulation mechanisms and discusses the challenges and potential applications of these treatments clinically.
Collapse
Affiliation(s)
- Qiang Luo
- Department of Cardiology, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Wei Sun
- Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China
| | - Zhibo Li
- Department of Cardiology, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China
| | - Jinfeng Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Yu Xiao
- Department of Cardiology, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Jichang Zhang
- Department of Cardiology, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China
| | - Cuilin Zhu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433, PR China.
| |
Collapse
|
120
|
Lei X, Guan J, Lei Y, Yao L, Westerhoff P, Yang X. One-Electron Oxidant-Induced Transformations of Aromatic Alcohol to Ketone Moieties in Dissolved Organic Matter Increase Trichloromethane Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18597-18606. [PMID: 36563128 DOI: 10.1021/acs.est.2c06425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Radicals in advanced oxidation processes (AOPs) degrade micropollutants during water and wastewater treatment, but the transformation of dissolved organic matter (DOM) may be equally important. Ketone moieties in DOM are known disinfection byproduct precursors, but ketones themselves are intermediates produced during AOPs. We found that aromatic alcohols in DOM underwent transformation to ketones by one-electron oxidants (using SO4•- as a representative), and the formed ketones significantly increased trichloromethane (CHCl3) formation potential (FP) upon subsequent chlorination. CHCl3-FPs from aromatic ketones (Ar-CO-CH3, average of 22 mol/mol) were 6-24 times of CHCl3-FPs from aromatic alcohols (Ar-CH(OH)-CH3, average of 0.85 mol/mol). At a typical SO4•- exposure of 7.0 × 10-12 M·s, CHCl3-FPs from aromatic alcohol transformation increased by 24.8%-112% with an average increase of 53.4%. Notably, SO4•- oxidation of aliphatic alcohols resulted in minute changes in CHCl3-FPs due to their low reactivities with SO4•- (∼107 M-1 s-1). Other one-electron oxidants (Cl2•-, Br2•-,and CO3•-) are present in AOPs and also lead to aromatic alcohol-ketone transformations similar to SO4•-. This study highlights that subtle changes in DOM physicochemical properties due to one-electron oxidants can greatly affect the reactivity with free chlorine and the formation of chlorinated byproducts.
Collapse
Affiliation(s)
- Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jingmeng Guan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Lu Yao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
121
|
Wei S, Sun Y, Qiu YZ, Li A, Chiang CY, Xiao H, Qian J, Li Y. Self-carbon-thermal-reduction strategy for boosting the Fenton-like activity of single Fe-N 4 sites by carbon-defect engineering. Nat Commun 2023; 14:7549. [PMID: 37985662 PMCID: PMC10662205 DOI: 10.1038/s41467-023-43040-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Carbon-defect engineering in metal single-atom catalysts by simple and robust strategy, boosting their catalytic activity, and revealing the carbon defect-catalytic activity relationship are meaningful but challenging. Herein, we report a facile self-carbon-thermal-reduction strategy for carbon-defect engineering of single Fe-N4 sites in ZnO-Carbon nano-reactor, as efficient catalyst in Fenton-like reaction for degradation of phenol. The carbon vacancies are easily constructed adjacent to single Fe-N4 sites during synthesis, facilitating the formation of C-O bonding and lowering the energy barrier of rate-determining-step during degradation of phenol. Consequently, the catalyst Fe-NCv-900 with carbon vacancies exhibits a much improved activity than the Fe-NC-900 without abundant carbon vacancies, with 13.5 times improvement in the first-order rate constant of phenol degradation. The Fe-NCv-900 shows high activity (97% removal ratio of phenol in only 5 min), good recyclability and the wide-ranging pH universality (pH range 3-9). This work not only provides a rational strategy for improving the Fenton-like activity of metal single-atom catalysts, but also deepens the fundamental understanding on how periphery carbon environment affects the property and performance of metal-N4 sites.
Collapse
Affiliation(s)
- Shengjie Wei
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yibing Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yun-Ze Qiu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ang Li
- Faculty of Materials and Manufacturing, Beijing Key Lab of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Ching-Yu Chiang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan.
| | - Hai Xiao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Jieshu Qian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.
- School of Environmental Engineering, Wuxi University, Jiangsu, 214105, P. R. China.
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
122
|
Hao JN, Ge K, Chen G, Dai B, Li Y. Strategies to engineer various nanocarrier-based hybrid catalysts for enhanced chemodynamic cancer therapy. Chem Soc Rev 2023; 52:7707-7736. [PMID: 37874584 DOI: 10.1039/d3cs00356f] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Chemodynamic therapy (CDT) is a newly developed cancer-therapeutic modality that kills cancer cells by the highly toxic hydroxyl radical (˙OH) generated from the in situ triggered Fenton/Fenton-like reactions in an acidic and H2O2-overproduced tumor microenvironment (TME). By taking the advantage of the TME-activated catalytic reaction, CDT enables a highly specific and minimally-invasive cancer treatment without external energy input, whose efficiency mainly depends on the reactant concentrations of both the catalytic ions and H2O2, and the reaction conditions (including pH, temperature, and amount of glutathione). Unfortunately, it suffers from unsatisfactory therapy efficiency for clinical application because of the limited activators (i.e., mild acid pH and insufficient H2O2 content) and overexpressed reducing substance in TME. Currently, various synergistic strategies have been elaborately developed to increase the CDT efficiency by regulating the TME, enhancing the catalytic efficiency of catalysts, or combining with other therapeutic modalities. To realize these strategies, the construction of diverse nanocarriers to deliver Fenton catalysts and cooperatively therapeutic agents to tumors is the key prerequisite, which is now being studied but has not been thoroughly summarized. In particular, nanocarriers that can not only serve as carriers but are also active themselves for therapy are recently attracting increasing attention because of their less risk of toxicity and metabolic burden compared to nanocarriers without therapeutic capabilities. These therapy-active nanocarriers well meet the requirements of an ideal therapy system with maximum multifunctionality but minimal components. From this new perspective, in this review, we comprehensively summarize the very recent research progress on nanocarrier-based systems for enhanced CDT and the strategies of how to integrate various Fenton agents into the nanocarriers, with particular focus on the studies of therapy-active nanocarriers for the construction of CDT catalysts, aiming to guide the design of nanosystems with less components and more functionalities for enhanced CDT. Finally, the challenges and prospects of such a burgeoning cancer-theranostic modality are outlooked to provide inspirations for the further development and clinical translation of CDT.
Collapse
Affiliation(s)
- Ji-Na Hao
- Lab of Low Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Kaiming Ge
- Lab of Low Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Guoli Chen
- Lab of Low Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Bin Dai
- School of Chemistry and Chemical Engineering, Pharmacy School, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Yongsheng Li
- Lab of Low Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
- School of Chemistry and Chemical Engineering, Pharmacy School, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
123
|
Dai X, Liu Y, Meng F, Li Q, Wu F, Yuan J, Chen H, Lv H, Zhou Y, Chang Y. Amplification of oxidative damage using near-infrared II-mediated photothermal/thermocatalytic effects for periodontitis treatment. Acta Biomater 2023; 171:519-531. [PMID: 37714248 DOI: 10.1016/j.actbio.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/13/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Periodontitis is a biofilm-related disease characterized by damage to the periodontal tissue and the development of systemic diseases. However, treatment of periodontitis remains unsatisfactory, especially with deep-tissue infections. This study describes rationally designed multifunctional photothermocatalytic agents for near-infrared-II light-mediated synergistic antibiofilm treatment, through modification of Lu-Bi2Te3 with Fe3O4 and poly(ethylene glycol)-b-poly(l-arginine) (PEG-b-PArg). Notably, 1064-nm laser irradiation led to photothermal/thermocatalytic effects, resulting in the synergistic generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and consequent damage to the biofilm. This treatment was based on the thermoelectric and photothermal conversion properties of Lu-Bi2Te3, the peroxidase-like catalytic capacity of Fe3O4, and the guanidinium polymer, PEG-b-PArg. Oxidative damage to biofilm was further enhanced by H2O2, resulting in the effective elimination of biofilm both in vitro and in vivo. These findings suggest that this synergistic therapeutic strategy is effective for the clinical treatment of periodontitis. STATEMENT OF SIGNIFICANCE: The current treatment for periodontitis involves time-consuming and labor-intensive clinical scaling of the teeth. The present study is the first to assess the efficacy of a photothermal catalyst for periodontitis treatment. This used near-infrared-II light at 1064 nm to induce oxidative damage in the biofilm, resulting in its degradation. The synergistic photothermal/thermoelectric effect produced deep tissue penetration and was well tolerated, and can kill the biofilm formed by periodontitis pathogens up to 5 orders of magnitude, effectively treating the biofilm-induced periodontitis.
Collapse
Affiliation(s)
- Xinyu Dai
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, PR China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, PR China
| | - Yiping Liu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, PR China; Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, PR China
| | - Fanrong Meng
- Department of Stomatology, Aviation General Hospital, Beijing 100000, PR China
| | - Qiqing Li
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, PR China
| | - Fengxia Wu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, PR China
| | - Jianguo Yuan
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, PR China
| | - Haoran Chen
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, PR China
| | - Huixin Lv
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, PR China; Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, PR China
| | - Yanmin Zhou
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, PR China.
| | - Yulei Chang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, PR China.
| |
Collapse
|
124
|
Yang L, Wei J, Feng W. Co-immobilization of galactose oxidase, catalase, and Mn-superoxide dismutase for efficient conversion of 5-hydroxymethylfurfural to 2,5-diformylfuran in water. Colloids Surf B Biointerfaces 2023; 231:113541. [PMID: 37722253 DOI: 10.1016/j.colsurfb.2023.113541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/02/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023]
Abstract
The three enzymes galactose oxidase (GO), catalase (CAT), and Mn-superoxide dismutase (SOD) were simultaneously immobilized by coordinating to CuII in phosphate buffer saline. The biocatalyst GO&CAT&SOD@CuII was used for the conversion of 5-hydroxymethylfurfural (HMF). The immobilized GO catalyzes the oxidation of HMF to 2,5-diformylfuran (DFF), concomitantly the co-substrate O2 is reduced to hydrogen peroxide (H2O2). A portion of the byproduct H2O2 is broken down to O2 and H2O by the co-immobilized CAT, and the evolved O2 can be recycled and used as the co-substrate. A portion of the byproduct H2O2 is broken down to produce hydroxyl radicals •OH under the synergistic catalysis of the immobilized SOD and coordinated CuII, and the produced •OH can reactivate the immobilized galactose oxidase. Two aspects contribute to the high catalytic efficiency by GO&CAT&SOD@CuII: the reactivation of the immobilized galactose oxidase by producing •OH and the enrichment of the co-substate O2 by recycling the produced O2. For the conversion of 10 mM HMF, GO&CAT&SOD@CuII (with encapsulated GO 0.2 mg/mL) achieved 97% HMF conversion within 2 h reaction. In contrast, free galactose oxidase M3-5 variant (ACS Catalysis 2018, 8, 4025) (0.2 mg/mL) achieved 25.3% HMF conversion within 2 h reaction. All the reactions were carried out in pure water, not in PBS.
Collapse
Affiliation(s)
- Lu Yang
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jiaxing Wei
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Wei Feng
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
125
|
Rao Z, Fang YG, Pan Y, Yu W, Chen B, Francisco JS, Zhu C, Chu C. Accelerated Photolysis of H 2O 2 at the Air-Water Interface of a Microdroplet. J Am Chem Soc 2023. [PMID: 37914533 DOI: 10.1021/jacs.3c08101] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Photochemical homolysis of hydrogen peroxide (H2O2) occurs widely in nature and is a key source of hydroxyl radicals (·OH). The kinetics of H2O2 photolysis play a pivotal role in determining the efficiency of ·OH production, which is currently mainly investigated in bulk systems. Here, we report considerably accelerated H2O2 photolysis at the air-water interface of microdroplets, with a rate 1.9 × 103 times faster than that in bulk water. Our simulations show that due to the trans quasiplanar conformational preference of H2O2 at the air-water interface compared to the bulk or gas phase, the absorption peak in the spectrum of H2O2 is significantly redshifted by 45 nm, corresponding to greater absorbance of photons in the sunlight spectrum and faster photolysis of H2O2. This discovery has great potential to solve current problems associated with ·OH-centered heterogeneous photochemical processes in aerosols. For instance, we show that accelerated H2O2 photolysis in microdroplets could lead to markedly enhanced oxidation of SO2 and volatile organic compounds.
Collapse
Affiliation(s)
- Zepeng Rao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Ye-Guang Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875 China
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190 China
| | - Yishuai Pan
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Wanchao Yu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Chongqin Zhu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875 China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
126
|
Ge J, Du B, Shen M, Feng Z, Zeng L. A review of liquid crystal monomers: Environmental occurrence, degradation, toxicity, and human exposure of an emerging class of E-waste pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122267. [PMID: 37499966 DOI: 10.1016/j.envpol.2023.122267] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
Liquid crystal monomers (LCMs) are a class of organic compounds with diphenyl or dicyclohexane as the skeleton structure, which are widely used in the manufacturing of liquid crystal displays. They are recognized as novel organic compounds with persistence, bioaccumulation, toxicity, and potential for long-range transport. LCMs are inevitably released into the environment throughout the life cycle of electronic products, and their presence has been found in various abiotic matrixes (air, dust, sediment, leachate, soil) and biotic matrixes (aquatic organisms, human serum, and human skin wipe). Given that studies on LCMs are still in their infancy, this review comprehensively summarizes the extensive literature data on LCMs and identifies key knowledge gaps and future research needs. The physicochemical properties, production, and usage of LCMs are described. Their environmental distribution, degradation, toxicity, and human exposure are also discussed based on the available data and results. Existing data show that LCMs have large-scale environmental pollution and may pose potential ecological and health risks, but it is still insufficient to accurately assess their risks due to the lack of knowledge on LCMs in many areas, such as global contamination trend, environmental behavior, toxic effects, and human exposure assessment. We believe that future studies of LCMs need to investigate LCMs pollution on a large geographic scale, explore their sources, behavior, and fate in the environment, and assess their potential health hazards to organisms and humans.
Collapse
Affiliation(s)
- Jiali Ge
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China
| | - Bibai Du
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China
| | - Mingjie Shen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China
| | - Zhiqing Feng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
127
|
Geng P, Lv J, Zhao L, Wang Y. Online chemiluminescence determination of the hydroxyl radical using coumarin as a probe. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5233-5238. [PMID: 37782128 DOI: 10.1039/d3ay01476b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The hydroxyl radical (˙OH) is one of the strongest oxidizing species, which can react with a variety of organic and inorganic chemicals. Although ˙OH is widely used for degradation of environmental pollutants, detection of ˙OH remains a major challenge due to its high reactivity and short lifetime, especially online detection. In this study, a novel method for online detection of ˙OH by flow oxidization chemiluminescence (F-OCL) using coumarin as a probe was established. The concentrations of ˙OH determined by this new method were consistent with those determined by HPLC analysis. Because the new method has a short response speed, it was successfully used to quantify the dynamic change of ˙OH in the TiO2 photocatalytic process and Fenton reaction in real time. Furthermore, a combination of two chemiluminescence systems was developed to track the dynamics of ˙OH and hydrogen peroxide (H2O2) in homogeneous or heterogeneous Fenton reactions occurring in soil slurry. The proposed method and strategy have good application potential in online ROS monitoring of both natural and engineered systems.
Collapse
Affiliation(s)
- Pengyu Geng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
128
|
Nguyen LT, Hoang GHL, Tran UNP, Mai TVT, Nguyen HD, Huynh LK. Mechanistic and Kinetic Insights into OH-Initiated Atmospheric Oxidation of Hymexazol: A Computational Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15138-15152. [PMID: 37782022 DOI: 10.1021/acs.est.2c03095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Hymexazol is a volatile fungicide widely used in agriculture, causing its abundance in the atmosphere; thus, its atmospheric fate and conversion are of great importance when assessing its environmental impacts. Herein, we report a theoretical kinetic mechanism for the oxidation of hymexazol by OH radicals, as well as the subsequent reactions of its main products with O2 and then with NO by using the Rice-Ramsperger-Kassel-Marcus-based Master equation kinetic model on the potential energy surface explored at the ROCBS-QB3//M06-2X/aug-cc-pVTZ level. The predicted total rate constants ktotal(T, P) for the reaction between hymexazol and OH radicals show excellent agreement with scarcely available experimental values (e.g., 3.6 × 10-12 vs (4.4 ± 0.8) × 10-12 cm3/molecule/s at T = 300 K and P = 760 Torr); thus, the calculated kinetic parameters can be confidently used for modeling/simulation of N-heterocycle-related applications under atmospheric and even combustion conditions. The model shows that 3,4-dihydroxy-5-methyl-4,5-dihydro-1,2-oxazol-5-yl (IM2), 3,5-dihydroxy-5-methyl-4,5-dihydro-1,2-oxazol-4-yl (IM3), and (3-hydroxy-1,2-oxazol-5-yl)methyl (P8) are the main primary intermediates, which form the main secondary species of (3,4-dihydroxy-5-methyl-4,5-dihydro-1,2-oxazol-5-yl)dioxidanyl (IM4), (3,5-dihydroxy-5-methyl-4,5-dihydro-1,2-oxazol-4-yl)dioxidanyl (IM7), and ([(3-hydroxy-1,2-oxazol-5-yl)methyl]dioxidanyl (IM11), respectively, through the reactions with O2. The main secondary species then can react with NO to form the main tertiary species, namely, (3,4-dihydroxy-5-methyl-4,5-dihydro-1,2-oxazol-5-yl)oxidanyl (P19), (3,5-dihydroxy-5-methyl-4,5-dihydro-1,2-oxazol-4-yl)oxidanyl (P21), and [(3-hydroxy-1,2-oxazol-5-yl)methyl]oxidanyl (P23), respectively, together with NO2. Besides, hymexazol could be a persistent organic pollutant in the troposphere due to its calculated half-life τ1/2 of 13.7-68.1 h, depending on the altitude.
Collapse
Affiliation(s)
- Loc T Nguyen
- Vietnam National University, Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam
- School of Chemical and Environmental Engineering, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam
| | - Gia-Huy L Hoang
- Vietnam National University, Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam
- School of Chemical and Environmental Engineering, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam
| | - Uyen N-P Tran
- Vietnam National University, Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam
- School of Chemical and Environmental Engineering, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam
| | - Tam V-T Mai
- Vietnam National University, Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam
- Molecular Science and Nano-Materials Lab, Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam
- University of Science, 227 Nguyen Van Cu, Ward 4, District 5, Ho Chi Minh City 700000, Vietnam
| | - Huy D Nguyen
- Vietnam National University, Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam
- University of Science, 227 Nguyen Van Cu, Ward 4, District 5, Ho Chi Minh City 700000, Vietnam
| | - Lam K Huynh
- Vietnam National University, Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam
- School of Chemical and Environmental Engineering, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
129
|
Cheng D, Ding H, Tan Y, Yang D, Pan Y, Liao W, He F. Dramatically enhanced phenol degradation upon FeS oxygenation by low-molecular-weight organic acids. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132260. [PMID: 37586237 DOI: 10.1016/j.jhazmat.2023.132260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Oxidizing potential of FeS for organic contaminants degradation due to hydroxyl radicals (•OH) production has been recently documented, but the oxidizing efficiency was limited. Here, we revealed that low-molecular-weight organic acids (LMWOAs) can immensely enhance phenol degradation during FeS oxygenation due to increased utilization efficiency of FeS electron for •OH production. Upon oxygenation of 0.5 g/L FeS, phenol degradation boosted from 7.1% without LMWOAs to 91.5%, 84.6% and 95.0% with the addition of 1 mM oxalate, citrate and EDTA, respectively. Electron utilization efficiency of Fe(II) for •OH production dramatically rose from 0.3% with FeS alone to respective 2.0%, 2.5% and 2.7% in the LMWOAs systems. An increase in oxalate concentrations benefited •OH formation and phenol degradation. Coexisting oxalate led to an additional •OH production pathway from Fe(II)-oxalate oxidation, which expanded the O2 reduction to H2O2 from a two- to one-electron transfer process. Meanwhile, electron transfer from FeS to dissolved Fe(III)-oxalate promoted the redox cycling of Fe(III)/Fe(II), thus supplying the Fe(II) oxidation for •OH production. Moreover, the presence of oxalate decreased the crystallinity and particles size of lepidocrocite generated from FeS oxidation. Consequently, this study shed lights on the LMWOAs-enhanced contaminant degradation in either natural or engineered FeS oxidation systems.
Collapse
Affiliation(s)
- Dong Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haoran Ding
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuansen Tan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dezhi Yang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ying Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wenjuan Liao
- College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
130
|
Cao S, Long Y, Xiao S, Deng Y, Ma L, Adeli M, Qiu L, Cheng C, Zhao C. Reactive oxygen nanobiocatalysts: activity-mechanism disclosures, catalytic center evolutions, and changing states. Chem Soc Rev 2023; 52:6838-6881. [PMID: 37705437 DOI: 10.1039/d3cs00087g] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Benefiting from low costs, structural diversities, tunable catalytic activities, feasible modifications, and high stability compared to the natural enzymes, reactive oxygen nanobiocatalysts (RONBCs) have become dominant materials in catalyzing and mediating reactive oxygen species (ROS) for diverse biomedical and biological applications. Decoding the catalytic mechanism and structure-reactivity relationship of RONBCs is critical to guide their future developments. Here, this timely review comprehensively summarizes the recent breakthroughs and future trends in creating and decoding RONBCs. First, the fundamental classification, activity, detection method, and reaction mechanism for biocatalytic ROS generation and elimination have been systematically disclosed. Then, the merits, modulation strategies, structure evolutions, and state-of-art characterisation techniques for designing RONBCs have been briefly outlined. Thereafter, we thoroughly discuss different RONBCs based on the reported major material species, including metal compounds, carbon nanostructures, and organic networks. In particular, we offer particular insights into the coordination microenvironments, bond interactions, reaction pathways, and performance comparisons to disclose the structure-reactivity relationships and mechanisms. In the end, the future challenge and perspectives for RONBCs are also carefully summarised. We envision that this review will provide a comprehensive understanding and guidance for designing ROS-catalytic materials and stimulate the wide utilisation of RONBCs in diverse biomedical and biological applications.
Collapse
Affiliation(s)
- Sujiao Cao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yanping Long
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Sutong Xiao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Yuting Deng
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Lang Ma
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Mohsen Adeli
- Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Li Qiu
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Changsheng Zhao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| |
Collapse
|
131
|
Chu C, Yan Y, Ma J, Jin S, Spinney R, Dionysiou DD, Zhang H, Xiao R. Implementation of laser flash photolysis for radical-induced reactions and environmental implications. WATER RESEARCH 2023; 244:120526. [PMID: 37672949 DOI: 10.1016/j.watres.2023.120526] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/06/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
Confronted with the imperative crisis of water quality deterioration, the pursuit of state-of-the-art decontamination technologies for a sustainable future never stops. Fitting into the framework of suitability, advanced oxidation processes have been demonstrated as powerful technologies to produce highly reactive radicals for the degradation of toxic and refractory contaminants. Therefore, investigations on their radical-induced degradation have been the subject of scientistic and engineering interests for decades. To better understand the transient nature of these radical species and rapid degradation processes, laser flash photolysis (LFP) has been considered as a viable and powerful technique due to its high temporal resolution and rapid response. Although a number of studies exploited LFP for one (or one class of) specific reaction(s), reactions of many possible contaminants with radicals are largely unknown. Therefore, there is a pressing need to critically review its implementation for kinetic quantification and mechanism elucidation. Within this context, we introduce the development process and milestones of LFP with emphasis on compositions and operation principles. We then compare the specificity and suitability of different spectral modes for monitoring radicals and their decay kinetics. Radicals with high environmental relevance, namely hydroxyl radical, sulfate radical, and reactive chlorine species, are selected, and we discuss their generation, detection, and implications within the frame of LFP. Finally, we highlight remaining challenges and future perspectives. This review aims to advance our understandings of the implementation of LFP in radical-induced transient processes, and yield new insights for extrapolating this pump-probe technique to make significant strides in environmental implications.
Collapse
Affiliation(s)
- Chu Chu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Yiqi Yan
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Junye Ma
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Richard Spinney
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, Ohio, 45221, USA
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, Ohio, 45221, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Haijun Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China.
| |
Collapse
|
132
|
Oliveira RD, Sant'Ana AC. Plasmonic photocatalytic degradation of tebuconazole and 2,4-dichlorophenoxyacetic acid by Ag nanoparticles-decorated TiO 2 tracked by SERS analysis. CHEMOSPHERE 2023; 338:139490. [PMID: 37451641 DOI: 10.1016/j.chemosphere.2023.139490] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Chemical oxidation technologies have been notably used for the mineralization of organic pollutants from aqueous effluents, been especially relevant for the degradation of pesticides. In this context, both tebuconazole (TEB) and 2,4-dichlorophenoxyacetic acid (2,4-D) pesticides were photodegraded by a combined catalyst of TiO2 and silver nanoparticles irradiated by UV-A light (λmax = 368 nm), and the experiments were tracked by surface-enhanced Raman scattering (SERS) spectroscopy. For 2,4-D, the degradation of about 70% was observed after almost 200 min, while for TEB, a decrease of 80% of the initial concentration was observed after approximately 100 min. The SERS monitoring allowed the proposal of some by-products, such as oxidized aliphatic chain and triazole from TEB besides glycolic, glyoxylic and dihydroxyacetic acids from 2,4-D. Their toxicities were predicted through ECOSAR software, verifying that most of them were not harmful to populations of fish, Daphnia and green algae. Thus, the performed oxidative process was efficient in the photodecomposition of TEB and 2,4-D pesticides, inclusive in terms of the decreasing of the toxicity of contaminated effluents.
Collapse
Affiliation(s)
- Rafael de Oliveira
- Laboratório de Nanoestruturas Plasmônicas, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, MG, Brazil
| | - Antonio Carlos Sant'Ana
- Laboratório de Nanoestruturas Plasmônicas, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, MG, Brazil.
| |
Collapse
|
133
|
An J, Jiang Y, Cao H, Yi C, Li S, Qu M, Liu G. Photodegradation of glyphosate in water and stimulation of by-products on algae growth. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115211. [PMID: 37418942 DOI: 10.1016/j.ecoenv.2023.115211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Glyphosate is the most widely used herbicide in global agricultural cultivation. However, little is known about the environmental risks associated with its migration and transformation. We conducted light irradiation experiments to study the dynamics and mechanism of photodegradation of glyphosate in ditches, ponds and lakes, and evaluated the effect of glyphosate photodegradation on algae growth through algae culture experiments. Our results showed that glyphosate in ditches, ponds and lakes could undergo photochemical degradation under sunlight irradiation with the production of phosphate, and the photodegradation rate of glyphosate in ditches could reach 86% after 96 h under sunlight irradiation. Hydroxyl radicals (•OH) was the main reactive oxygen species (ROS) for glyphosate photodegradation, and its steady-state concentrations in ditches, ponds and lakes were 6.22 × 10-17, 4.73 × 10-17, and 4.90 × 10-17 M. The fluorescence emission-excitation matrix (EEM) and other technologies further indicated that the humus components in dissolved organic matter (DOM) and nitrite were the main photosensitive substances producing •OH. In addition, the phosphate generated by glyphosate photodegradation could greatly promote the growth of Microcystis aeruginosa, thereby increasing the risk of eutrophication. Thus, glyphosate should be scientifically and reasonably applied to avoid environmental risks.
Collapse
Affiliation(s)
- Jiaqi An
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongcan Jiang
- PowerChina Huadong Engineering Corporation Ltd., Hangzhou 311122, Zhejiang Province, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China.
| | - Huafen Cao
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ceng Yi
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Suxia Li
- Qinzhou Key Laboratory for Eco-Restoration of Environment, Beibu Gulf University, Qinzhou, Guangxi 535011, China
| | - Mengjie Qu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Guanglong Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Qinzhou Key Laboratory for Eco-Restoration of Environment, Beibu Gulf University, Qinzhou, Guangxi 535011, China.
| |
Collapse
|
134
|
Tan Z, Qin X, Cao P, Chen S, Yu H, Su Y, Quan X. Enhanced electrochemical-activation of H 2O 2 to produce •OH by regulating the adsorption of H 2O 2 on nitrogen-doped porous carbon for organic pollutants removal. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131925. [PMID: 37385100 DOI: 10.1016/j.jhazmat.2023.131925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023]
Abstract
The heterogeneous Fenton oxidation is regarded as a promising technology for refractory organic pollutants removal relying on highly active •OH generated via the decomposition of H2O2 catalyzed by iron-based catalyst that overcomes the issues of pH limitation and iron sludge discharge encountered in conventional Fenton reaction. However, the efficiency of •OH production in heterogeneous Fenton remains low as the limited mass transfer between H2O2 and catalysts caused by the poor H2O2 adsorption. Here, a nitrogen-doped porous carbon (NPC) catalyst with tunable N configuration was prepared for electrochemical-activation of H2O2 to •OH by enhancing the H2O2 adsorption on catalysts. The resultant •OH production yield on NPC reached 0.83 mM in 120 min. Notably, the NPC catalyst could be more energy-efficient for actual coking wastewater treatment with an energy consumption of 10.3 kWh kgCOD-1 than other electro-Fenton catalysts reported (20-29.7 kWh kgCOD-1). Density function theory (DFT) revealed that highly efficient •OH production was ascribed to the graphitic N which enhances the adsorption energy of H2O2 on NPC catalyst. This study provides new insight into the fabrication of efficient carbonaceous catalysts by rationally modulating electronic structures for refractory organic pollutants degradation.
Collapse
Affiliation(s)
- Zijun Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xin Qin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Peike Cao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yan Su
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
135
|
Madugula PPP, Balla R. Laser induced fluorescence and computational studies on the tropospheric photooxidation reactions of methyl secondary butyl ether initiated by OH radicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99748-99761. [PMID: 37615909 DOI: 10.1007/s11356-023-29053-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
The kinetics of the reaction of methyl secondary butyl ether with OH radicals was investigated experimentally using the pulsed laser photolysis-laser induced fluorescence technique (PLP-LIF) over temperatures ranging from 268 to 363 K. The rate coefficient value at 298 K was measured to be (1.09 ± 0.02) × 10-11 cm3 molecule-1 s-1 and the deduced Arrhenius expression is [Formula: see text]= (2.21 ± 0.29) × 10-12 exp ((471.71 ± 38.50)/T) cm3 molecule-1 s-1. To complement the experimental data, the kinetic study of the title reaction was performed computationally at CCSD(T)/cc-pVTZ//M06-2X/6-311 + G(d,p) level of theory with the incorporation of tunnelling correction from 200 to 400 K. The end products formed were qualitatively analyzed by using gas chromatography equipped with mass spectrometry (GC-MS) as detection technique and the mechanism for degradation was proposed. Thermochemical parameters were evaluated to determine the feasibility of individual reaction pathways. Atmospheric implications were evaluated and discussed in this manuscript.
Collapse
Affiliation(s)
| | - Rajakumar Balla
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India.
- Centre for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
136
|
Wu T, Liu Y, Zheng T, Dai Y, Li Z, Lin D. Fe-Based Nanomaterials and Plant Growth Promoting Rhizobacteria Synergistically Degrade Polychlorinated Biphenyls by Producing Extracellular Reactive Oxygen Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12771-12781. [PMID: 37583057 DOI: 10.1021/acs.est.3c02495] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Plant growth promoting rhizobacteria (PGPR) produce extracellular reactive oxygen species (ROS) to protect plants from external stresses. Fe-based nanomaterials can potentially interact with PGPR and synergistically degrade organic pollutants, yet they have received no study. Here, we studied how the interaction between a typical PGPR (Pseudomonas chlororaphis, JD37) and Fe-based nanomaterials facilitated the degradation of 2,4,4'-trichlorobiphenyl (PCB28), by comparing the zerovalent iron of 20 nm (nZVI20), 100 nm (nZVI100), and 5 μm; iron oxide nanomaterials (α-Fe2O3, γ-Fe2O3, and Fe3O4) of ca. 20 nm; and ferrous and ferric salts. Although all Fe materials (0.1 g L-1) alone could not degrade aqueous PCB28 (0.1 mg L-1) under dark or aerobic conditions, nZVI20, nZVI100, α-Fe2O3, and Fe2+ promoted PCB28 degradation by JD37, with the half-life of PCB28 shortened from 16.5 h by JD37 alone to 8.1 h with nZVI100 cotreatment. Mechanistically, the nanomaterials stimulated JD37 to secrete phenazine-1-carboxylic acid and accelerated the NADH/NAD+ conversion, promoting O2*- generation; JD37 increased Fe(II) dissolution from the nanomaterials, facilitating *OH generation; and the ROS gradually degraded PCB28 into benzoic acid through dihydroxy substitution, oxidation to quinone, and Michael addition. These findings provide a new strategy of nanoenabled biodegradation of organic pollutants by applying Fe-based nanomaterials and PGPR.
Collapse
Affiliation(s)
- Ting Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, P. R. China
- Xi'an Center, China Geological Survey, Ministry of Natural Resources, Xi'an 710119, P. R. China
| | - Yangzhi Liu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Tianying Zheng
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yunbu Dai
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhongyu Li
- Xi'an Center, China Geological Survey, Ministry of Natural Resources, Xi'an 710119, P. R. China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang Ecological Civilization Academy, Anji 313300, P. R. China
| |
Collapse
|
137
|
Yan Y, Wei Z, Duan X, Long M, Spinney R, Dionysiou DD, Xiao R, Alvarez PJJ. Merits and Limitations of Radical vs. Nonradical Pathways in Persulfate-Based Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12153-12179. [PMID: 37535865 DOI: 10.1021/acs.est.3c05153] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Urbanization and industrialization have exerted significant adverse effects on water quality, resulting in a growing need for reliable and eco-friendly treatment technologies. Persulfate (PS)-based advanced oxidation processes (AOPs) are emerging as viable technologies to treat challenging industrial wastewaters or remediate groundwater impacted by hazardous wastes. While the generated reactive species can degrade a variety of priority organic contaminants through radical and nonradical pathways, there is a lack of systematic and in-depth comparison of these pathways for practical implementation in different treatment scenarios. Our comparative analysis of reaction rate constants for radical vs. nonradical species indicates that radical-based AOPs may achieve high removal efficiency of organic contaminants with relatively short contact time. Nonradical AOPs feature advantages with minimal water matrix interference for complex wastewater treatments. Nonradical species (e.g., singlet oxygen, high-valent metals, and surface activated PS) preferentially react with contaminants bearing electron-donating groups, allowing enhancement of degradation efficiency of known target contaminants. For byproduct formation, analytical limitations and computational chemistry applications are also considered. Finally, we propose a holistically estimated electrical energy per order of reaction (EE/O) parameter and show significantly higher energy requirements for the nonradical pathways. Overall, these critical comparisons help prioritize basic research on PS-based AOPs and inform the merits and limitations of system-specific applications.
Collapse
Affiliation(s)
- Yiqi Yan
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Engineering, Aarhus University, Hangøvej 2, DK-8200 Aarhus N, Denmark
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide SA5005, Australia
| | - Mingce Long
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, 77005, United States
| |
Collapse
|
138
|
Li X, Zheng H, Liu J, Li H, Wang J, Yan K, Liu J, Dang F, Zhu K. Piezo-photocatalytic properties of BaTiO 3/CeO 2 nanoparticles with heterogeneous structure synthesized by a gel-assisted hydrothermal method. RSC Adv 2023; 13:24583-24593. [PMID: 37593666 PMCID: PMC10427892 DOI: 10.1039/d3ra04014c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023] Open
Abstract
BaTiO3/CeO2 nanoparticles with heterogeneous structure were successfully synthesized via a gel-assisted hydrothermal method. The molar ratio of Ti/Ce was set as 1 : 0, 0.925 : 0.075, 0.9 : 0.1; 0.875 : 0.125, and 0.85 : 0.15 in the dried gels. Affected by the values of Ti/Ce, the particle sizes of hydrothermal products decreased obviously, and the surface of nanoparticles became rough and even had small protrusions. XRD, SEM, HRTEM, XPS, DRS, ESR, and PFM were used to characterize the nanoparticle textures. We speculated that the main body and surface of nanoparticles were BaTiO3 and CeO2 protrusions, respectively. The catalytic performance of BaTiO3/CeO2 nanoparticles was characterized by their abilities to degrade RhB in water under different external conditions (light irradiation, ultrasonic oscillation, or both). In all test groups, BaTiO3/CeO2 nanoparticles with a Ti/Ce molar ratio of 0.875 : 0.125 in the initial dried gel exhibited the strongest catalytic ability when light irradiation and ultrasonication were applied simultaneously owing to the appropriate amount of Ce3+ and oxygen vacancies.
Collapse
Affiliation(s)
- Xia Li
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China +86-25-84895759 +86-25-84895982
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| | - Hongjuan Zheng
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China +86-25-84895759 +86-25-84895982
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| | - Jingjin Liu
- School of General Education, Wuchang University of Technology Wuhan 430223 P. R. China
| | - Hongcheng Li
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China +86-25-84895759 +86-25-84895982
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| | - Jing Wang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China +86-25-84895759 +86-25-84895982
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| | - Kang Yan
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China +86-25-84895759 +86-25-84895982
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| | - Jingsong Liu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| | - Feng Dang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials, Ministry of Education, Shandong University Jinan 250061 P. R. China
| | - Kongjun Zhu
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China +86-25-84895759 +86-25-84895982
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics Nanjing 210016 P. R. China
| |
Collapse
|
139
|
Mekic M, Schaefer T, Hoffmann EH, Aiyuk MBE, Tilgner A, Herrmann H. Temperature-Dependent Oxidation of Hydroxylated Aldehydes by •OH, SO 4•-, and NO 3• Radicals in the Atmospheric Aqueous Phase. J Phys Chem A 2023; 127:6495-6508. [PMID: 37498295 DOI: 10.1021/acs.jpca.3c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
T-dependent aqueous-phase rate constants were determined for the oxidation of the hydroxy aldehydes, glyceraldehyde, glycolaldehyde, and lactaldehyde, by the hydroxyl radicals (•OH), the sulfate radicals (SO4•-), and the nitrate radicals (NO3•). The obtained Arrhenius expressions for the oxidation by the •OH radical are: k(T,GLYCERALDEHYDE+OH•) = (3.3 ± 0.1) × 1010 × exp((-960 ± 80 K)/T)/L mol-1 s-1, k(T,GLYCOLALDEHYDE+OH•) = (4.3 ± 0.1) × 1011 × exp((-1740 ± 50 K)/T)/L mol-1 s-1, k(T,LACTALDEHYDE+OH•) = (1.6 ± 0.1) × 1011 × exp((-1410 ± 180 K)/T)/L mol-1 s-1; for the SO4•- radical: k(T,GLYCERALDEHYDE+SO4•-) = (4.3 ± 0.1) × 109 × exp((-1400 ± 50 K)/T)/L mol-1 s-1, k(T,GLYCOLALDEHYDE+SO4•-) = (10.3 ± 0.3) × 109 × exp((-1730 ± 190 K)/T)/L mol-1 s-1, k(T,LACTALDEHYDE+SO4•-) = (2.2 ± 0.1) × 109 × exp((-1030 ± 230 K)/T)/L mol-1 s-1; and for the NO3• radical: k(T,GLYCERALDEHYDE+NO3•) = (3.4 ± 0.2) × 1011 × exp((-3470 ± 460 K)/T)/L mol-1 s-1, k(T,GLYCOLALDEHYDE+NO3•) = (7.8 ± 0.2) × 1011 × exp((-3820 ± 240 K)/T)/L mol-1 s-1, k(T,LACTALDEHYDE+NO3•) = (4.3 ± 0.2) × 1010 × exp((-2750 ± 340 K)/T)/L mol-1 s-1, respectively. Targeted simulations of multiphase chemistry reveal that the oxidation by OH radicals in cloud droplets is important under remote and wildfire influenced continental conditions due to enhanced partitioning. There, the modeled average aqueous •OH concentration is 2.6 × 10-14 and 1.8 × 10-14 mol L-1, whereas it is 7.9 × 10-14 and 3.5 × 10-14 mol L-1 under wet particle conditions. During cloud periods, the aqueous-phase reactions by •OH contribute to the oxidation of glycolaldehyde, lactaldehyde, and glyceraldehyde by about 35 and 29%, 3 and 3%, and 47 and 37%, respectively.
Collapse
Affiliation(s)
- Majda Mekic
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstraße 15, 04318 Leipzig, Germany
| | - Thomas Schaefer
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstraße 15, 04318 Leipzig, Germany
| | - Erik H Hoffmann
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstraße 15, 04318 Leipzig, Germany
| | - Marvel B E Aiyuk
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstraße 15, 04318 Leipzig, Germany
| | - Andreas Tilgner
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstraße 15, 04318 Leipzig, Germany
| | - Hartmut Herrmann
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
140
|
Maksimchuk N, Puiggalí-Jou J, Zalomaeva OV, Larionov KP, Evtushok VY, Soshnikov IE, Solé-Daura A, Kholdeeva OA, Poblet JM, Carbó JJ. Resolving the Mechanism for H 2O 2 Decomposition over Zr(IV)-Substituted Lindqvist Tungstate: Evidence of Singlet Oxygen Intermediacy. ACS Catal 2023; 13:10324-10339. [PMID: 37560188 PMCID: PMC10407852 DOI: 10.1021/acscatal.3c02416] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/04/2023] [Indexed: 08/11/2023]
Abstract
The decomposition of hydrogen peroxide (H2O2) is the main undesired side reaction in catalytic oxidation processes of industrial interest that make use of H2O2 as a terminal oxidant, such as the epoxidation of alkenes. However, the mechanism responsible for this reaction is still poorly understood, thus hindering the development of design rules to maximize the efficiency of catalytic oxidations in terms of product selectivity and oxidant utilization efficiency. Here, we thoroughly investigated the H2O2 decomposition mechanism using a Zr-monosubstituted dimeric Lindqvist tungstate, (Bu4N)6[{W5O18Zr(μ-OH)}2] ({ZrW5}2), which revealed high activity for this reaction in acetonitrile. The mechanism of the {ZrW5}2-catalyzed H2O2 degradation in the absence of an organic substrate was investigated using kinetic, spectroscopic, and computational tools. The reaction is first order in the Zr catalyst and shows saturation behavior with increasing H2O2 concentration. The apparent activation energy is 11.5 kcal·mol-1, which is significantly lower than the values previously found for Ti- and Nb-substituted Lindqvist tungstates (14.6 and 16.7 kcal·mol-1, respectively). EPR spectroscopic studies indicated the formation of superoxide radicals, while EPR with a specific singlet oxygen trap, 2,2,6,6-tetramethylpiperidone (4-oxo-TEMP), revealed the generation of 1O2. The interaction of test substrates, α-terpinene and tetramethylethylene, with H2O2 in the presence of {ZrW5}2 corroborated the formation of products typical of the oxidation processes that engage 1O2 (endoperoxide ascaridole and 2,3-dimethyl-3-butene-2-hydroperoxide, respectively). While radical scavengers tBuOH and p-benzoquinone produced no effect on the peroxide product yield, the addition of 4-oxo-TEMP significantly reduced it. After optimization of the reaction conditions, a 90% yield of ascaridole was attained. DFT calculations provided an atomistic description of the H2O2 decomposition mechanism by Zr-substituted Lindqvist tungstate catalysts. Calculations showed that the reaction proceeds through a Zr-trioxidane [Zr-η2-OO(OH)] key intermediate, whose formation is the rate-determining step. The Zr-substituted POM activates heterolytically a first H2O2 molecule to generate a Zr-peroxo species, which attacks nucleophilically to a second H2O2, causing its heterolytic O-O cleavage to yield the Zr-trioxidane complex. In agreement with spectroscopic and kinetic studies, the lowest-energy pathway involves dimeric Zr species and an inner-sphere mechanism. Still, we also found monomeric inner- and outer-sphere pathways that are close in energy and could coexist with the dimeric one. The highly reactive Zr-trioxidane intermediate can evolve heterolytically to release singlet oxygen and also decompose homolytically, producing superoxide as the predominant radical species. For H2O2 decomposition by Ti- and Nb-substituted POMs, we also propose the formation of the TM-trioxidane key intermediate, finding good agreement with the observed trends in apparent activation energies.
Collapse
Affiliation(s)
| | - Jordi Puiggalí-Jou
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, 43005 Tarragona, Spain
| | - Olga V. Zalomaeva
- Boreskov
Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
| | - Kirill P. Larionov
- Boreskov
Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
| | | | - Igor E. Soshnikov
- Boreskov
Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
| | - Albert Solé-Daura
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, 43005 Tarragona, Spain
| | - Oxana A. Kholdeeva
- Boreskov
Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
| | - Josep M. Poblet
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, 43005 Tarragona, Spain
| | - Jorge J. Carbó
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, 43005 Tarragona, Spain
| |
Collapse
|
141
|
Ornelas C, Astruc D. Ferrocene-Based Drugs, Delivery Nanomaterials and Fenton Mechanism: State of the Art, Recent Developments and Prospects. Pharmaceutics 2023; 15:2044. [PMID: 37631259 PMCID: PMC10458437 DOI: 10.3390/pharmaceutics15082044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Ferrocene has been the most used organometallic moiety introduced in organic and bioinorganic drugs to cure cancers and various other diseases. Following several pioneering studies, two real breakthroughs occurred in 1996 and 1997. In 1996, Jaouen et al. reported ferrocifens, ferrocene analogs of tamoxifen, the chemotherapeutic for hormone-dependent breast cancer. Several ferrocifens are now in preclinical evaluation. Independently, in 1997, ferroquine, an analog of the antimalarial drug chloroquine upon the introduction of a ferrocenyl substituent in the carbon chain, was reported by the Biot-Brocard group and found to be active against both chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum. Ferroquine, in combination with artefenomel, completed phase IIb clinical evaluation in 2019. More than 1000 studies have been published on ferrocenyl-containing pharmacophores against infectious diseases, including parasitic, bacterial, fungal, and viral infections, but the relationship between structure and biological activity has been scarcely demonstrated, unlike for ferrocifens and ferroquines. In a majority of ferrocene-containing drugs, however, the production of reactive oxygen species (ROS), in particular the OH. radical, produced by Fenton catalysis, plays a key role and is scrutinized in this mini-review, together with the supramolecular approach utilizing drug delivery nanosystems, such as micelles, metal-organic frameworks (MOFs), polymers, and dendrimers.
Collapse
Affiliation(s)
- Catia Ornelas
- ChemistryX, R&D Department, R&D and Consulting Company, 9000-160 Funchal, Portugal
| | - Didier Astruc
- University of Bordeaux, ISM, UMR CNRS, No. 5255, 351 Cours de la Libération, CEDEX, 33405 Talence, France
| |
Collapse
|
142
|
Liu Y, Lee PKH, Nah T. Emerging investigator series: aqueous photooxidation of live bacteria with hydroxyl radicals under cloud-like conditions: insights into the production and transformation of biological and organic matter originating from bioaerosols. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1150-1168. [PMID: 37376782 DOI: 10.1039/d3em00090g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Live bacteria in clouds are exposed to free radicals such as the hydroxyl radical (˙OH), which is the main driver of many photochemical processes. While the ˙OH photooxidation of organic matter in clouds has been widely studied, equivalent investigations on the ˙OH photooxidation of bioaerosols are limited. Little is known about the daytime encounters between ˙OH and live bacteria in clouds. Here we investigated the aqueous ˙OH photooxidation of four bacterial strains, B. subtilis, P. putida, E. hormaechei B0910, and E. hormaechei pf0910, in microcosms composed of artificial cloud water that mimicked the chemical composition of cloud water in Hong Kong. The survival rates for the four bacterial strains decreased to zero within 6 hours during exposure to 1 × 10-16 M of ˙OH under artificial sunlight. Bacterial cell damage and lysis released biological and organic compounds, which were subsequently oxidized by ˙OH. The molecular weights of some of these biological and organic compounds were >50 kDa. The O/C, H/C, and N/C ratios increased at the initial onset of photooxidation. As the photooxidation progressed, there were few changes in the H/C and N/C, whereas the O/C continued to increase for hours after all the bacterial cells had died. The increase in the O/C was due to functionalization and fragmentation reactions, which increased the O content and decreased the C content, respectively. In particular, fragmentation reactions played key roles in transforming biological and organic compounds. Fragmentation reactions cleaved the C-C bonds of carbon backbones of higher molecular weight proteinaceous-like matter to form a variety of lower molecular weight compounds, including HULIS of molecular weight <3 kDa and highly oxygenated organic compounds of molecular weight <1.2 kDa. Overall, our results provided new insights at the process level into how daytime reactive interactions between live bacteria and ˙OH in clouds contribute to the formation and transformation of organic matter.
Collapse
Affiliation(s)
- Yushuo Liu
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Nanshan District, Shenzhen, China
| | - Patrick K H Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | - Theodora Nah
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Nanshan District, Shenzhen, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
143
|
Cheng F, Zhao W, Fang B, Zhang Y, Yang N, Zhou H, Zhang W. High band-width mid-infrared frequency-modulated Faraday rotation spectrometer for time resolved measurement of the OH radical. OPTICS EXPRESS 2023; 31:25058-25069. [PMID: 37475319 DOI: 10.1364/oe.493270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/02/2023] [Indexed: 07/22/2023]
Abstract
We present a novel mid-infrared frequency-modulated Faraday rotation spectrometer (FM-FRS) for highly sensitive and high bandwidth detection of OH radicals in a photolysis reactor. High frequency modulation (up to 150 MHz) of the probe laser using an electro-optical modulator (EOM) was used to produce a modulation sideband on the laser output. An axial magnetic field was applied to the multi-pass Herriott cell, causing the linearly polarized light to undergo Faraday rotation. OH radicals were generated in the cell by photolyzing a mixture of ozone (O3) and water (H2O) with a UV laser pulse. The detection limit of OH reaches 6.8 × 108 molecule/cm3 (1σ, 0.2 ms) after 3 and falling to 8.0 × 107 molecule/cm3 after 100 event integrations. Relying on HITRAN absorption cross section and line shape data, this corresponds to minimum detectable fractional absorption (Amin) of 1.9 × 10-5 and 2.2 × 10-6, respectively. A higher signal-to-noise ratio and better long-term stability was achieved than with conventional FMS because the approach was immune to interference from diamagnetic species and residual amplitude modulation noise. To our knowledge, this work reports the first detection of OH in a photolysis reactor by FM-FRS in the mid-infrared region, a technique that will provide a new and alternative spectroscopic approach for the kinetic study of OH and other intermediate radicals.
Collapse
|
144
|
Li Y, Sun J, Chen Y, Ma H, Zhu J, Chen Z, Meng L, Liu T. Fabrication of an in situ-grown TiO 2 nanowire thin film and its enhanced photocatalytic activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82560-82574. [PMID: 37326736 DOI: 10.1007/s11356-023-28229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
TiO2 is a promising photocatalyst used in practical environmental remediation. TiO2 photocatalysts are usually implemented in two forms: suspended powder and immobilized thin films. A simple technique for fabricating TiO2 thin film photocatalyst was developed in this work. The fabricated TiO2 thin film photocatalyst featured a homogeneous nanowire layer grown in situ on the parent Ti plate. The optimized fabrication protocol was to soak the ultrasonically cleaned and acid-washed Ti plate in 30% H2O2 solution containing 3.2 mM melamine and 0.29 M HNO3 at 80 °C for 72 h and then anneal at 450 °C for 1 h. TiO2 nanowires with uniform diameters were homogeneously arrayed on the Ti plate surface. The thickness of the TiO2 nanowire array layer was 1.5 μm. The pore properties of the TiO2 thin film were close to those of P25. The band gap of the fabricated photocatalyst was 3.14 eV. The photocatalytic activity of the fabricated photocatalyst toward 10 mg/L RhB and 1 mg/L CBZ demonstrated greater than 60% degradation under 2 h UVC irradiation. The RhB and CBZ degradation efficiencies remained at a good level after 5 consecutive cycles. Mechanical wearing, such as 2 min sonication, will not lead to significant suppression of the photocatalytic activity. Photocatalytic RhB and CBZ degradation using the fabricated photocatalyst favored an acidic > alkaline > neutral environment. The presence of Cl- slightly suppressed the photocatalytic degradation kinetics. However, RhB and CBZ photocatalytic degradation kinetics were promoted in the copresence of SO42- or NO3-.
Collapse
Affiliation(s)
- Yuyang Li
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, People's Republic of China
| | - Jian Sun
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, People's Republic of China
| | - Yihua Chen
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, People's Republic of China
| | - Hang Ma
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, People's Republic of China
| | - Jiaxin Zhu
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, People's Republic of China
| | - Zhiqiang Chen
- Shenzhen Rachel Carson Environmental Technology Co., Ltd, Shenzhen, 518052, People's Republic of China
| | - Liao Meng
- Shenzhen Xiaping Environmental Park, Shenzhen, 518047, People's Republic of China
| | - Tongzhou Liu
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
145
|
Celis F, Aracena A, García M, Segura del Río R, Sanchez-Cortes S, Leyton P. Plasmon Chemistry on Ag Nanostars: Experimental and Theoretical Raman/SERS Study of the Pesticide Thiacloprid Bond Cleavage by the Plasmon Deactivation Effect. ACS OMEGA 2023; 8:22887-22898. [PMID: 37396249 PMCID: PMC10308575 DOI: 10.1021/acsomega.3c01878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023]
Abstract
Silver nanoparticles (AgNPs) were synthetized and employed in surface-enhanced Raman scattering measurements to study the chemical behavior when thiacloprid (Thia) interacts with the surface of Ag nanospheres (AgNSp) and Ag nanostars (AgNSt) upon excitation of the system with a 785 nm laser. Experimental results show that the deactivation of the localized surface plasmon resonance induces structural changes in Thia. When AgNSp are used, it is possible to observe a mesomeric effect in the cyanamide moiety. On the other hand, when AgNSt are employed, it promotes the cleavage of the methylene (-CH2-) bridge in Thia to produce two molecular fragments. To support these results, theoretical calculations based on topological parameters described by the atoms in molecules theory, Laplacian of the electron density at the bond critical point (∇2ρ BCP), Laplacian bond order, and bond dissociation energies were made, confirming that the bond cleavage is centered at the -CH2- bridge in Thia.
Collapse
Affiliation(s)
- Freddy Celis
- Laboratorio
de Procesos Fotónicos y Electroquímicos, Facultad de
Ciencias Naturales y Exactas, Universidad
de Playa Ancha, Valparaíso 2360002, Chile
| | - Andrés Aracena
- Instituto
de Ciencias Naturales, Universidad de las
Américas, Manuel Montt 948, Santiago 7500000, Chile
| | - Macarena García
- Laboratorio
de Procesos Fotónicos y Electroquímicos, Facultad de
Ciencias Naturales y Exactas, Universidad
de Playa Ancha, Valparaíso 2360002, Chile
| | - Rodrigo Segura del Río
- Instituto
de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2362735, Chile
| | - Santiago Sanchez-Cortes
- Instituto
de Estructura de la Materia, Consejo Superior
de Investigaciones Científicas, CSIC, Serrano 121, Madrid 28006, Spain
| | - Patricio Leyton
- Pontificia
Universidad Católica de Valparaíso, Instituto de Química, Valparaíso 46383, Chile
| |
Collapse
|
146
|
Jangra R, Ahlawat K, Dixit A, Prakash R. Efficient deactivation of aerosolized pathogens using a dielectric barrier discharge based cold-plasma detergent in environment device for good indoor air quality. Sci Rep 2023; 13:10295. [PMID: 37357240 DOI: 10.1038/s41598-023-37014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023] Open
Abstract
Air pollution is one of the top 5 risks causing chronic diseases according to WHO and airborne transmitted pathogens infection is a huge challenge in the current era. Long living pathogens and small size aerosols are not effectively dealt with by the available indoor air purifiers. In this work, a dielectric barrier discharge (DBD) based portable cold-plasma detergent in environment device is reported and its disinfection efficiency has been analyzed in the indoor environment of sizes up to 3 × 2.4 × 2.4 m3. The deactivation efficiency of total microbial counts (TMCs) and total fungal counts (TFCs) is found to be more than 99% in 90 min of continuous operation of the device at the optimized parameters. The complete inactivation of MS2 phage and Escherichia coli bacteria with more than 5 log reduction (99.999%) has also been achieved in 30 min and 90 min of operation of the device in an enclosed environment. The device is able to produce negative ions predominantly dominated by natural plasma detergent along with positive ions in the environment similar to mother nature. The device comprises a coaxial DBD geometry plasma source with a specially designed wire mesh electrode of mild steel with a thickness of 1 mm. The need for feed gas, pellets and/or differential pressure has been eliminated from the DBD discharge source for efficient air purification. The existence of negative ions for more than 25 s on average is the key advantage, which can also deactivate long living pathogens and small size aerosols.
Collapse
Affiliation(s)
- Ramavtar Jangra
- Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342037, India
| | - Kiran Ahlawat
- Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342037, India
| | - Ambesh Dixit
- Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342037, India
| | - Ram Prakash
- Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
147
|
Maati H, Amadine O, Essamlali Y, Aboulhrouz S, Jioui I, Dânoun K, Zahouily M. Ultrasound-assisted degradation of organophosphorus pesticide methidathion using CuFe 2O 4@SiO 2-GO COOH as a magnetic separable sonocatalyst. RSC Adv 2023; 13:19617-19626. [PMID: 37388148 PMCID: PMC10305793 DOI: 10.1039/d3ra02773b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
Water contamination by pesticides is a critical environmental issue, necessitating the development of sustainable and efficient degradation methods. This study focuses on synthesizing and evaluating a novel heterogeneous sonocatalyst for degrading pesticide methidathion. The catalyst consists of graphene oxide (GO) decorated CuFe2O4@SiO2 nanocomposites. Comprehensive characterization using various techniques confirmed the superior sonocatalytic activity of the CuFe2O4@SiO2-GOCOOH nanocomposite compared to CuFe2O4@SiO2 alone. The enhanced performance is attributed to the combined effects of GO and CuFe2O4@SiO2, including increased surface area, enhanced adsorption capabilities, and efficient electron transfer pathways. Reaction parameters such as time, temperature, concentration, and pH significantly influenced the degradation efficiency of methidathion. Longer reaction times, higher temperatures, and lower initial pesticide concentrations favored faster degradation and higher efficiency. Optimal pH conditions were identified to ensure effective degradation. Remarkably, the catalyst demonstrated excellent recyclability, indicating its potential for practical implementation in pesticide-contaminated wastewater treatment. This research contributes to the development of sustainable methods for environmental remediation, highlighting the promising potential of the graphene oxide decorated CuFe2O4@SiO2 nanocomposite as an effective heterogeneous sonocatalyst for pesticide degradation.
Collapse
Affiliation(s)
- Houda Maati
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR) Benguerir Morocco
- Mohammed VI Polytechnic University Lot 660 - Hay Moulay Rachid, Ben Guerir 43150 Morocco
| | - Othmane Amadine
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR) Benguerir Morocco
- Mohammed VI Polytechnic University Lot 660 - Hay Moulay Rachid, Ben Guerir 43150 Morocco
| | - Younes Essamlali
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR) Benguerir Morocco
- Mohammed VI Polytechnic University Lot 660 - Hay Moulay Rachid, Ben Guerir 43150 Morocco
| | - Soumia Aboulhrouz
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR) Benguerir Morocco
- Mohammed VI Polytechnic University Lot 660 - Hay Moulay Rachid, Ben Guerir 43150 Morocco
| | - Ilham Jioui
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR) Benguerir Morocco
- Mohammed VI Polytechnic University Lot 660 - Hay Moulay Rachid, Ben Guerir 43150 Morocco
| | - Karim Dânoun
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR) Benguerir Morocco
- Mohammed VI Polytechnic University Lot 660 - Hay Moulay Rachid, Ben Guerir 43150 Morocco
| | - Mohamed Zahouily
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR) Benguerir Morocco
- Mohammed VI Polytechnic University Lot 660 - Hay Moulay Rachid, Ben Guerir 43150 Morocco
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, Hassan II University, FST-Mohammedia Morocco
| |
Collapse
|
148
|
Fabbri D, Carena L, Bertone D, Brigante M, Passananti M, Vione D. Assessing the photodegradation potential of compounds derived from the photoinduced weathering of polystyrene in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162729. [PMID: 36907419 DOI: 10.1016/j.scitotenv.2023.162729] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/21/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Benzoate (Bz-) and acetophenone (AcPh) are aromatic compounds known to be produced by sunlight irradiation of polystyrene aqueous suspensions. Here we show that these molecules could react with •OH (Bz-) and •OH + CO3•- (AcPh) in sunlit natural waters, while other photochemical processes (direct photolysis and reaction with singlet oxygen, or with the excited triplet states of chromophoric dissolved organic matter) are unlikely to be important. Steady-state irradiation experiments were carried out using lamps, and the time evolution of the two substrates was monitored by liquid chromatography. Photodegradation kinetics in environmental waters were assessed by a photochemical model (APEX: Aqueous Photochemistry of Environmentally-occurring Xenobiotics). In the case of AcPh, a competitive process to aqueous-phase photodegradation would be volatilisation followed by reaction with gas-phase •OH. As far as Bz- is concerned, elevated dissolved organic carbon (DOC) levels could be important in protecting this compound from aqueous-phase photodegradation. Limited reactivity of the studied compounds with the dibromide radical (Br2•-, studied by laser flash photolysis) suggests that •OH scavenging by bromide, which yields Br2•-, would be poorly offset by Br2•--induced degradation. Therefore, photodegradation kinetics of Bz- and AcPh should be slower in seawater (containing [Br-] ~ 1 mM) compared to freshwaters. The present findings suggest that photochemistry would play an important role in both formation and degradation of water-soluble organic compounds produced by weathering of plastic particles.
Collapse
Affiliation(s)
- Debora Fabbri
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125 Torino, Italy
| | - Luca Carena
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125 Torino, Italy
| | - Debora Bertone
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125 Torino, Italy
| | - Marcello Brigante
- Université Clermont Auvergne, CNRS, INP Clermont Auvergne, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Monica Passananti
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125 Torino, Italy; Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Davide Vione
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125 Torino, Italy.
| |
Collapse
|
149
|
Pan Y, Garg S, Ouyang Y, Yang X, Waite TD. Inhibition of photosensitized degradation of organic contaminants by copper under conditions typical of estuarine and coastal waters. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131812. [PMID: 37331060 DOI: 10.1016/j.jhazmat.2023.131812] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023]
Abstract
Dissolved organic matter (DOM) driven-photochemical processes play an important role in the redox cycling of trace metals and attenuation of organic contaminants in estuarine and coastal ecosystems. In this study, we evaluate the effect of Cu on 4-carboxybenzophenone (CBBP) and Suwannee River natural organic matter (SRNOM)-photosensitized degradation of seven target contaminants (TCs) including phenols and amines under pH conditions and salt concentrations typical of those encountered in estuarine and coastal waters. Our results show that trace amounts of Cu(II) (25 -500 nM) induce strong inhibition of the photosensitized degradation of all TCs in solutions containing CBBP. The influence of TCs on the photo-formation of Cu(I) and the decrease in the lifetime of transformation intermediates of contaminants (TC•+/ TC•(-H)) in the presence of Cu(I) indicated that the inhibition effect of Cu was mainly due to the reduction of TC•+/ TC•(-H) by the photo-produced Cu(I). The inhibitory effect of Cu on the photodegradation of TCs decreased with the increase in Cl- concentration since less reactive Cu(I)-Cl complexes dominate at high Cl- concentrations. The impact of Cu on the SRNOM-sensitized degradation of TCs is less pronounced compared to that observed in CBBP solution since the redox active moieties present in SRNOM competes with Cu(I) to reduce TC•+/ TC•(-H). A detailed mathematical model is developed to describe the photodegradation of contaminants and Cu redox transformations in irradiated SRNOM and CBBP solutions.
Collapse
Affiliation(s)
- Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Shikha Garg
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yiming Ouyang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - T David Waite
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
150
|
Wu M, Zhuang Q, Lin J, Peng Y, Luo F, Liu Z, Farooq U, Zhang Q. Enrichment of the flavonoid fraction from Eucommia ulmoides leaves by a liquid antisolvent precipitation method and evaluation of antioxidant activities in vitro and in vivo. RSC Adv 2023; 13:17406-17419. [PMID: 37313520 PMCID: PMC10258675 DOI: 10.1039/d3ra00800b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/27/2023] [Indexed: 06/15/2023] Open
Abstract
Eucommia ulmoides leaves originate from the dry leaves of the Eucommia ulmoides plant. Flavonoids are the main functional components of Eucommia ulmoides leaves. Some flavonoids such as rutin, kaempferol and quercetin are rich in Eucommia ulmoides, and they have outstanding antioxidant efficacy. However, the poor water solubility significantly affects the bioavailability of flavonoids. In this study, we used a liquid antisolvent precipitation (LAP) method to enrich the main flavonoid fractions in Eucommia ulmoides leaves, and prepared nanoparticles by the LAP method to increase flavonoids' solubility and antioxidant properties. The technological parameters were optimized by Box-Behnken Design (BBD) software and were displayed as follows: (1) total flavonoids (TFs) concentration: 83 mg mL-1; (2) antisolvent-solvent ratio: 11; (3) deposition temperature: 27 °C. Under optimal processing conditions, the purity and recovery rate of TFs were 88.32% ± 2.54% and 88.08% ± 2.13%, respectively. In vitro experiments showed that the radical scavenging IC50 values for DPPH, ABTS, hydroxyl radicals and superoxide anions were 16.72 ± 1.07, 10.76 ± 0.13, 227.68 ± 18.23 and 335.86 ± 15.98 μg mL-1, respectively. In vivo studies showed that the obtained purified flavonoid (PF) (100, 200, 400 mg kg-1) treatment is able to improve CCl4-induced liver and kidney damage through adjusting, superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) levels. These results demonstrated that the LAP method is capable of extracting TFs from Eucommia ulmoides leaves with high bioaccessibility.
Collapse
Affiliation(s)
- Mingfang Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology 318 Liuhe Road Hangzhou 310023 Zhejiang China +86 571 8507 0340
- Key Laboratory of Agricultural Products Chemical and Biological Processing Technology of Zhejiang Province Hangzhou 310023 Zhejiang China
| | - Qianli Zhuang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology 318 Liuhe Road Hangzhou 310023 Zhejiang China +86 571 8507 0340
- Key Laboratory of Agricultural Products Chemical and Biological Processing Technology of Zhejiang Province Hangzhou 310023 Zhejiang China
| | - Junkai Lin
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology 318 Liuhe Road Hangzhou 310023 Zhejiang China +86 571 8507 0340
- Key Laboratory of Agricultural Products Chemical and Biological Processing Technology of Zhejiang Province Hangzhou 310023 Zhejiang China
| | - Yaya Peng
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology 318 Liuhe Road Hangzhou 310023 Zhejiang China +86 571 8507 0340
| | - Fei Luo
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology 318 Liuhe Road Hangzhou 310023 Zhejiang China +86 571 8507 0340
- Key Laboratory of Agricultural Products Chemical and Biological Processing Technology of Zhejiang Province Hangzhou 310023 Zhejiang China
| | - Zixuan Liu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology 318 Liuhe Road Hangzhou 310023 Zhejiang China +86 571 8507 0340
- Key Laboratory of Agricultural Products Chemical and Biological Processing Technology of Zhejiang Province Hangzhou 310023 Zhejiang China
| | | | - Qian Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University Harbin 150040 Heilongjiang China
| |
Collapse
|