101
|
High-resolution combinatorial patterning of functional nanoparticles. Nat Commun 2020; 11:6002. [PMID: 33244006 PMCID: PMC7691364 DOI: 10.1038/s41467-020-19771-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 10/22/2020] [Indexed: 12/03/2022] Open
Abstract
Fast, low-cost, reliable, and multi-component nanopatterning techniques for functional colloidal nanoparticles have been dreamed about by scientists and engineers for decades. Although countless efforts have been made, it is still a daunting challenge to organize different nanocomponents into a predefined structure with nanometer precision over the millimeter and even larger scale. To meet the challenge, we report a nanoprinting technique that can print various functional colloidal nanoparticles into arbitrarily defined patterns with a 200 nm (or smaller) pitch (>125,000 DPI), 30 nm (or larger) pixel size/linewidth, 10 nm position accuracy and 50 nm overlay precision. The nanopatterning technique combines dielectrophoretic enrichment and deep surface-energy modulation and therefore features high efficiency and robustness. It can form nanostructures over the millimeter-scale by simply spinning, brushing or dip coating colloidal nanoink onto a substrate with minimum error (error ratio < 2 × 10−6). This technique provides a powerful yet simple construction tool for large-scale positioning and integration of multiple functional nanoparticles toward next-generation optoelectronic and biomedical devices. Precise patterning of functional nanoparticles can provide a powerful tool for next-generation macroscale devices. Here, the authors report a reliable nanoprinting technique that can pattern various functional nanoparticles on the substrate with a 200 nm pitch and 10 nm position accuracy, and above the millimeter scale.
Collapse
|
102
|
Zhang Q, Peng W, Li Y, Zhang F, Fan X. Topochemical synthesis of low-dimensional nanomaterials. NANOSCALE 2020; 12:21971-21987. [PMID: 33118593 DOI: 10.1039/d0nr04763e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Over the past several decades, nanomaterials have been extensively studied owing to having a series of unique physical and chemical properties that exceed those of conventional bulk materials. Researchers have developed a lot of strategies for the synthesis of low-dimensional nanomaterials. Among them, topochemical synthesis has attracted increasing attention because it can provide more new nanomaterials by improving and upgrading inexpensive and accessible nanomaterials. In this review, we summarize and analyze many existing topochemical synthesis methods, including selective etching, liquid phase reactions, high-temperature atmosphere reactions, electrochemically assisted methods, etc. The future direction of topochemical synthesis is also proposed.
Collapse
Affiliation(s)
- Qicheng Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China.
| | - Wenchao Peng
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China.
| | - Yang Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China.
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China.
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China.
| |
Collapse
|
103
|
Srivastava V, Zare EN, Makvandi P, Zheng XQ, Iftekhar S, Wu A, Padil VVT, Mokhtari B, Varma RS, Tay FR, Sillanpaa M. Cytotoxic aquatic pollutants and their removal by nanocomposite-based sorbents. CHEMOSPHERE 2020; 258:127324. [PMID: 32544812 DOI: 10.1016/j.chemosphere.2020.127324] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Water is an extremely essential compound for human life and, hence, accessing drinking water is very important all over the world. Nowadays, due to the urbanization and industrialization, several noxious pollutants are discharged into water. Water pollution by various cytotoxic contaminants, e.g. heavy metal ions, drugs, pesticides, dyes, residues a drastic public health issue for human beings; hence, this topic has been receiving much attention for the specific approaches and technologies to remove hazardous contaminants from water and wastewater. In the current review, the cytotoxicity of different sorts of aquatic pollutants for mammalian is presented. In addition, we will overview the recent advances in various nanocomposite-based adsorbents and different approaches of pollutants removal from water/wastewater with several examples to provide a backdrop for future research.
Collapse
Affiliation(s)
- Varsha Srivastava
- Department of Chemistry, Indian Institute of Technology, Banaras Hindu University (B.H.U), Varasani 221005, India
| | | | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy; Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843, Iran; Department of Medical Nanotechnology, Faculty of Advanced, Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Xuan-Qi Zheng
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Sidra Iftekhar
- Department of Environmental Engineering, University of Engineering and Technology Taxila, Taxila 47050, Pakistan
| | - Aimin Wu
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Vinod V T Padil
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 46117 Liberec 1, Czech Republic
| | - Babak Mokhtari
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Franklin R Tay
- College of Graduate Studies, Augusta University, Augusta, GA, USA
| | - Mika Sillanpaa
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam; School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350 QLD, Australia; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa.
| |
Collapse
|
104
|
Patil PM, Bohara RA. Nanoparticles impact in biomedical waste management. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2020; 38:1189-1203. [PMID: 32667845 DOI: 10.1177/0734242x20936761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Effectual management of biomedical waste is obligatory for healthy human beings and for a safe environment. Mismanagement of biomedical waste is a community health problem. Safe and persistent methods for the management of biomedical waste are of vital importance. This article reviews the classification of biomedical waste, sources, colour-coding system of biomedical waste and salient features of biomedical waste rules in 2016, and the future prospective of nanoparticles. The untreated disposal of biomedical waste is associated with a huge amount of risk, so the efficient treatment for biomedical waste is most imperative. The review also highlights the current methods for disposal of biomedical waste, biological treatments given to biomedical waste water in the effluent treatment plant, and impacts due to the current method. Management of biomedical waste is a great challenge in developed and developing countries. To manage the biomedical waste there is a need for cost-effective, ecofriendly and less contaminating approaches for a greener and safe environment. The awareness regarding waste management is of great interest not only for the community but also for associated employees.
Collapse
Affiliation(s)
- Pooja M Patil
- Centre for Interdisciplinary Research, D. Y. Patil University, India
| | - Raghvendra A Bohara
- Centre for Interdisciplinary Research, D. Y. Patil University, India
- CÚRAM, SFI., Center for Research in Medical Devices, National University of Ireland Galway, Ireland
| |
Collapse
|
105
|
Schroffenegger M, Leitner NS, Morgese G, Ramakrishna SN, Willinger M, Benetti EM, Reimhult E. Polymer Topology Determines the Formation of Protein Corona on Core-Shell Nanoparticles. ACS NANO 2020; 14:12708-12718. [PMID: 32865993 PMCID: PMC7596783 DOI: 10.1021/acsnano.0c02358] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/31/2020] [Indexed: 05/08/2023]
Abstract
Linear and cyclic poly(2-ethyl-2-oxazoline) (PEOXA) adsorbates provide excellent colloidal stability to superparamagnetic iron oxide nanoparticles (FexOy NPs) within protein-rich media. However, dense shells of linear PEOXA brushes cannot prevent weak but significant attractive interactions with human serum albumin. In contrast, their cyclic PEOXA counterparts quantitatively hinder protein adsorption, as demonstrated by a combination of dynamic light scattering and isothermal titration calorimetry. The cyclic PEOXA brushes generate NP shells that are denser and more compact than their linear counterparts, entirely preventing the formation of a protein corona as well as aggregation, even when the lower critical solution temperature of PEOXA in a physiological buffer is reached.
Collapse
Affiliation(s)
- Martina Schroffenegger
- Institute
for Biologically Inspired Materials, Department of Nanobiotechnology, University of Resources and Life Sciences, Muthgasse 11, A-1190 Vienna, Austria
| | - Nikolaus S. Leitner
- Institute
for Biologically Inspired Materials, Department of Nanobiotechnology, University of Resources and Life Sciences, Muthgasse 11, A-1190 Vienna, Austria
| | - Giulia Morgese
- Polymer
Surfaces Group, Laboratory for Surface Science and Technology, Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zürich, Switzerland
| | - Shivaprakash N. Ramakrishna
- Polymer
Surfaces Group, Laboratory for Surface Science and Technology, Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zürich, Switzerland
| | - Max Willinger
- Institute
for Biologically Inspired Materials, Department of Nanobiotechnology, University of Resources and Life Sciences, Muthgasse 11, A-1190 Vienna, Austria
| | - Edmondo M. Benetti
- Polymer
Surfaces Group, Laboratory for Surface Science and Technology, Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zürich, Switzerland
| | - Erik Reimhult
- Institute
for Biologically Inspired Materials, Department of Nanobiotechnology, University of Resources and Life Sciences, Muthgasse 11, A-1190 Vienna, Austria
| |
Collapse
|
106
|
Mathur R, Chauhan RP, Singh G, Singh S, Varshney R, Kaul A, Jain S, Mishra AK. Tryptophan conjugated magnetic nanoparticles for targeting tumors overexpressing indoleamine 2,3 dioxygenase (IDO) and L-type amino acid transporter. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:87. [PMID: 33037467 DOI: 10.1007/s10856-020-06438-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Tryptophan is an amino acid required by all life forms for protein synthesis and other important metabolic functions. It is metabolized in the body using the kynurenine pathway which involves the enzyme indoleamine 2,3 dioxygenase (IDO) and its transport is regulated through the L-type amino acid transporters (LAT 1). IDO and LAT 1 are found to be overexpressed in many cancers i.e., ovarian, lung colorectal etc. In this study we have used this specific interaction as the basis for designing diagnostic agent based on iron oxide nanoparticles which can specifically target the IDO/LAT 1 over expressing tumors. We have conjugated tryptophan to the surface of super-paramagnetic nanoparticles chemically using 3-aminopropyltrimethoxysilane as a linker. The synthesized tryptophan conjugated magnetic nano-conjugate has been characterized using FTIR, UV-Vis, TEM for its shape size, charge and NMR and Mass for conjugation. The magnetization studies show decrease in the magnetic behavior after conjugation however the desired super-paramagnetic property is still retained as shown by the signature sigmoidal B-H curve. The nano-conjugate shows minimal cytotoxicity over 24 h as shown by the SRB assay in two cell lines A-549, MCF-7. Using 99mTc labeling the biodistribution and the blood kinetics of the magnetic nano-conjugate was evaluated. The study highlights the suitability of the designed magnetic Nano bioconjugate as a potential bimodal diagnostic agent.
Collapse
Affiliation(s)
- Rashi Mathur
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Marg, Delhi, 110054, India.
| | - Ram Prakash Chauhan
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Marg, Delhi, 110054, India
- Department of Chemistry, Govt Post Graduate College, Bilas pur, Himacham Pradesh, 174001, India
| | | | - Sweta Singh
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Marg, Delhi, 110054, India
| | - Raunak Varshney
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Marg, Delhi, 110054, India
| | - Ankur Kaul
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Marg, Delhi, 110054, India
| | - Sanyog Jain
- Department of Pharmaceutics, NIPER, Mohali, India
| | - Anil Kumar Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S.K. Mazumdar Marg, Delhi, 110054, India
| |
Collapse
|
107
|
Sundar S, Ganesh V. Bio-assisted preparation of efficiently architectured nanostructures of γ-Fe 2O 3 as a molecular recognition platform for simultaneous detection of biomarkers. Sci Rep 2020; 10:15071. [PMID: 32934306 PMCID: PMC7493908 DOI: 10.1038/s41598-020-71934-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/24/2020] [Indexed: 11/08/2022] Open
Abstract
Magnetic nanoparticles of iron oxide (γ-Fe2O3) have been prepared using bio-assisted method and their application in the field of biosensors is demonstrated. Particularly in this work, different nanostructures of γ-Fe2O3 namely nanospheres (NS), nanograsses (NG) and nanowires (NW) are prepared using a bio-surfactant namely Furostanol Saponin (FS) present in Fenugreek seeds extract through co-precipitation method by following "green" route. Three distinct morphologies of iron oxide nanostructures possessing the same crystal structure, magnetic properties, and varied size distribution are prepared and characterized. The resultant materials are analyzed using field emission scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, vibrating sample magnetometer and Fourier transform infrared spectroscopy. Moreover, the effect of reaction time and concentration of FS on the resultant morphologies of γ-Fe2O3 nanostructures are systematically investigated. Among different shapes, NWs and NSs of γ-Fe2O3 are found to exhibit better sensing behaviour for both the individual and simultaneous electrochemical detection of most popular biomarkers namely dopamine (DA) and uric acid (UA). Electrochemical studies reveal that γ-Fe2O3 NWs showed better sensing characteristics than γ-Fe2O3 NSs and NGs in terms of distinguishable voltammetric signals for DA and UA with enhanced oxidation current values. Differential pulse voltammetric studies exhibit linear dependence on DA and UA concentrations in the range of 0.15-75 µM and 5 μM - 0.15 mM respectively. The detection limit values for DA and UA are determined to be 150 nM and 5 µM. In addition γ-Fe2O3 NWs modified electrode showed higher sensitivity, reduced overpotential along with good selectivity towards the determination of DA and UA even in the presence of other common interferents. Thus the proposed biosensor electrode is very easy to fabricate, eco-friendly, cheaper and possesses higher surface area suggesting the unique structural patterns of γ-Fe2O3 nanostructures to be a promising candidate for electrochemical bio-sensing and biomedical applications.
Collapse
Affiliation(s)
- Sasikala Sundar
- Electrodics and Electrocatalysis (EEC) Division, CSIR - Central Electrochemical Research Institute (CSIR - CECRI), Karaikudi, Tamilnadu, 630003, India
| | - V Ganesh
- Electrodics and Electrocatalysis (EEC) Division, CSIR - Central Electrochemical Research Institute (CSIR - CECRI), Karaikudi, Tamilnadu, 630003, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
108
|
Baki A, Löwa N, Remmo A, Wiekhorst F, Bleul R. Micromixer Synthesis Platform for a Tuneable Production of Magnetic Single-Core Iron Oxide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1845. [PMID: 32942715 PMCID: PMC7560047 DOI: 10.3390/nano10091845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 01/11/2023]
Abstract
Micromixer technology is a novel approach to manufacture magnetic single-core iron oxide nanoparticles that offer huge potential for biomedical applications. This platform allows a continuous, scalable, and highly controllable synthesis of magnetic nanoparticles with biocompatible educts via aqueous synthesis route. Since each biomedical application requires specific physical and chemical properties, a comprehensive understanding of the synthesis mechanisms is not only mandatory to control the size and shape of desired nanoparticle systems but, above all, to obtain the envisaged magnetic particle characteristics. The accurate process control of the micromixer technology can be maintained by adjusting two parameters: the synthesis temperature and the residence time. To this end, we performed a systematic variation of these two control parameters synthesizing magnetic nanoparticle systems, which were analyzed afterward by structural (transmission electron microscopy and differential sedimentation centrifugation) and, especially, magnetic characterization methods (magnetic particle spectroscopy and AC susceptibility). Furthermore, we investigated the reproducibility of the microtechnological nanoparticle manufacturing process compared to batch preparation. Our characterization demonstrated the high magnetic quality of single-core iron oxide nanoparticles with core diameters in the range of 20 nm to 40 nm synthesized by micromixer technology. Moreover, we demonstrated the high capability of a newly developed benchtop magnetic particle spectroscopy device that directly monitored the magnetic properties of the magnetic nanoparticles with the highest sensitivity and millisecond temporal resolution during continuous micromixer synthesis.
Collapse
Affiliation(s)
- Abdulkader Baki
- Devision Energy and Chemical Technology, Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Straße 18-20, 55129 Mainz, Germany
| | - Norbert Löwa
- Physikalisch-Technische Bundesanstalt, 8.2 Biosignals, Abbestraße 2-12, 10587 Berlin, Germany
| | - Amani Remmo
- Physikalisch-Technische Bundesanstalt, 8.2 Biosignals, Abbestraße 2-12, 10587 Berlin, Germany
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt, 8.2 Biosignals, Abbestraße 2-12, 10587 Berlin, Germany
| | - Regina Bleul
- Devision Energy and Chemical Technology, Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Straße 18-20, 55129 Mainz, Germany
| |
Collapse
|
109
|
Zhang T, Xu Q, Huang T, Ling D, Gao J. New Insights into Biocompatible Iron Oxide Nanoparticles: A Potential Booster of Gene Delivery to Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001588. [PMID: 32725792 DOI: 10.1002/smll.202001588] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Gene delivery to stem cells is a critical issue of stem cells-based therapies, still facing ongoing challenges regarding efficiency and safety. Recent advances in the controlled synthesis of biocompatible magnetic iron oxide nanoparticles (IONPs) have provided a powerful nanotool for assisting gene delivery to stem cells. However, this field is still at an early stage, with well-designed and scalable IONPs synthesis highly desired. Furthermore, the potential risks or bioeffects of IONPs on stem cells are not completely figured out. Therefore, in this review, the updated researches focused on the gene delivery to stem cells using various designed IONPs are highlighted. Additionally, the impacts of the physicochemical properties of IONPs, as well as the magnetofection systems on the gene delivery performance and biocompatibility are summarized. Finally, challenges attributed to the potential impacts of IONPs on the biologic behaviors of stem cells and the large-scale productions of uniform IONPs are emphasized. The principles and challenges summarized in this review provide a general guidance for the rational design of IONPs-assisted gene delivery to stem cells.
Collapse
Affiliation(s)
- Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Qianhao Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ting Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Daishun Ling
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
110
|
Sharma P, Holliger N, Pfromm PH, Liu B, Chikan V. Size-Controlled Synthesis of Iron and Iron Oxide Nanoparticles by the Rapid Inductive Heating Method. ACS OMEGA 2020; 5:19853-19860. [PMID: 32803081 PMCID: PMC7424720 DOI: 10.1021/acsomega.0c02793] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/16/2020] [Indexed: 05/08/2023]
Abstract
Inductive heating synthesis is an emerging technique with the potential to displace the hot-injection synthesis method to prepare colloidal particles very rapidly with a narrow size distribution, controlled size, and high crystallinity. In this work, the inductive heating synthesis is applied to produce a short-temperature jump to mimic conditions like the hot-injection method to prepare traditional iron and iron oxide nanoparticles (IONPs) in the 3-11 nm size range within various solvents, precursors, and reaction time conditions. Moreover, this inductive heating technique can be used under unique experimental conditions not available for hot-injection reactions. These conditions include the use of very high initial monomer concentrations. Considering benefits over conventional methods, the inductive heating technique has the potential to provide an industrial level scale-up synthesis. The magnetization of these particles is consistent with the magnetization of the particles from the literature.
Collapse
Affiliation(s)
- Pratikshya Sharma
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Noah Holliger
- Department
of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Peter Heinz Pfromm
- Department
of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
- Department
of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164-6515, United States
| | - Bin Liu
- Department
of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Viktor Chikan
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
- , Phone: 785-532-6807
| |
Collapse
|
111
|
Zacheo A, Bizzarro L, Blasi L, Piccirillo C, Cardone A, Gigli G, Ragusa A, Quarta A. Lipid-Based Nanovesicles for Simultaneous Intracellular Delivery of Hydrophobic, Hydrophilic, and Amphiphilic Species. Front Bioeng Biotechnol 2020; 8:690. [PMID: 32719782 PMCID: PMC7350901 DOI: 10.3389/fbioe.2020.00690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
Lipid nanovesicles (NVs) are the first nanoformulation that entered the clinical use in oncology for the treatment of solid tumors. They are indeed versatile systems which can be loaded with either hydrophobic or hydrophilic molecules, for both imaging and drug delivery, and with high biocompatibility, and limited immunogenicity. In the present work, NVs with a lipid composition resembling that of natural vesicles were prepared using the ultrasonication method. The NVs were successfully loaded with fluorophores molecules (DOP-F-DS and a fluorescent protein), inorganic nanoparticles (quantum dots and magnetic nanoparticles), and anti-cancer drugs (SN-38 and doxorubicin). The encapsulation of such different molecules showed the versatility of the developed systems. The size of the vesicles varied from 100 up to 300 nm depending on the type of loaded species, which were accommodated either into the lipid bilayer or into the aqueous core according to their hydrophobic or hydrophilic nature. Viability assays were performed on cellular models of breast cancer (MCF-7 and MDA-MB-231). Results showed that NVs with encapsulated both drugs simultaneously led to a significant reduction of the cellular activity (up to 22%) compared to the free drugs or to the NVs encapsulated with only one drug. Lipidomic analysis suggested that the mechanism of action of the drugs is the same, whether they are free or encapsulated, but administration of the drugs by means of nanovesicles is more efficient in inducing cellular damage, likely because of a quicker internalization and a sustained release. This study confirms the versatility and the potential of lipid NVs for cancer treatment, as well as the validity of the ultrasound preparation method for their preparation.
Collapse
Affiliation(s)
- Antonella Zacheo
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| | - Luca Bizzarro
- Dipartimento di Scienze Biomolecolari (DISB), University of Urbino Carlo Bo, Urbino, Italy
| | - Laura Blasi
- CNR, Institute for Microelectronics and Microsystems, Lecce, Italy
| | - Clara Piccirillo
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| | - Antonio Cardone
- Institute of Chemistry of OrganoMetallic Compounds-ICCOM, Italian National Council of Research-CNR, Bari, Italy
| | - Giuseppe Gigli
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy.,Department of Mathematics and Physics E. de Giorgi, University of Salento, Campus Ecotekne, Lecce, Italy
| | - Andrea Ragusa
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy.,Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Alessandra Quarta
- CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| |
Collapse
|
112
|
Loizou K, Mourdikoudis S, Sergides A, Besenhard MO, Sarafidis C, Higashimine K, Kalogirou O, Maenosono S, Thanh NTK, Gavriilidis A. Rapid Millifluidic Synthesis of Stable High Magnetic Moment Fe xC y Nanoparticles for Hyperthermia. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28520-28531. [PMID: 32379412 PMCID: PMC7467546 DOI: 10.1021/acsami.0c06192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/07/2020] [Indexed: 05/02/2023]
Abstract
A millifluidic reactor with a 0.76 mm internal diameter was utilized for the synthesis of monodisperse, high magnetic moment, iron carbide (FexCy) nanoparticles by thermal decomposition of iron pentacarbonyl (Fe(CO)5) in 1-octadecene in the presence of oleylamine at 22 min nominal residence time. The effect of reaction conditions (temperature and pressure) on the size, morphology, crystal structure, and magnetic properties of the nanoparticles was investigated. The system developed facilitated the thermal decomposition of precursor at reaction conditions (up to 265 °C and 4 bar) that cannot be easily achieved in conventional batch reactors. The degree of carbidization was enhanced by operating at elevated temperature and pressure. The nanoparticles synthesized in the flow reactor had size 9-18 nm and demonstrated high saturation magnetization (up to 164 emu/gFe). They further showed good stability against oxidation after 2 months of exposure in air, retaining good saturation magnetization values with a change of no more than 10% of the initial value. The heating ability of the nanoparticles in an alternating magnetic field was comparable with other ferrites reported in the literature, having intrinsic loss power values up to 1.52 nHm2 kg-1.
Collapse
Affiliation(s)
- Katerina Loizou
- Department of Chemical
Engineering, University College London, Torrington Place, London WC1E 7JE, U.K.
| | - Stefanos Mourdikoudis
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, U.K.
- UCL
Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, U.K.
| | - Andreas Sergides
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, U.K.
- UCL
Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, U.K.
| | - Maximilian Otto Besenhard
- Department of Chemical
Engineering, University College London, Torrington Place, London WC1E 7JE, U.K.
| | - Charalampos Sarafidis
- Department of Physics, Aristotle
University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Koichi Higashimine
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Orestis Kalogirou
- Department of Physics, Aristotle
University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Shinya Maenosono
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, U.K.
- UCL
Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, U.K.
| | - Asterios Gavriilidis
- Department of Chemical
Engineering, University College London, Torrington Place, London WC1E 7JE, U.K.
| |
Collapse
|
113
|
King AM, Bray C, Hall SCL, Bear JC, Bogart LK, Perrier S, Davies GL. Exploring precision polymers to fine-tune magnetic resonance imaging properties of iron oxide nanoparticles. J Colloid Interface Sci 2020; 579:401-411. [PMID: 32615483 DOI: 10.1016/j.jcis.2020.06.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/14/2020] [Accepted: 06/07/2020] [Indexed: 11/27/2022]
Abstract
The use of bio-polymers as stabilising agents for iron oxide-based negative magnetic resonance imaging (MRI) contrast agents has become popular in recent years, however the wide polydispersity of biologically-derived and commercially available polymers limits the ability to produce truly tuneable and reproducible behaviour, a major challenge in this area. In this work, stable colloids of iron oxide nanoparticles were prepared utilising precision-engineered bio-polymer mimics, poly(2-acrylamido-2-methylpropane sodium sulfonate) (P(AMPS)) polymers, with controlled narrow polydispersity molecular weights, as templating stabilisers. In addition to producing magnetic colloids with excellent MRI contrast capabilities (r2 values reaching 434.2 mM-1 s-1 at 25 °C and 23 MHz, several times higher than similar commercial analogues), variable field relaxometry provided unexpected important insights into the dynamic environment of the hydrated materials, and hence their exceptional MRI behaviour. Thanks to the polymer's templating backbone and flexible conformation in aqueous suspension, nanocomposites appear to behave as "multi-core" clustered species, enhancing interparticle interactions whilst retaining water diffusion, boosting relaxation properties at low frequency. This clustering behaviour, evidenced by small-angle X-ray scattering, and strong relaxometric response, was fine-tuned using the well-defined molecular weight polymer species with precise iron to polymer ratios. By also showing negligible haemolytic activity, these nanocomposites exhibit considerable potential for MRI diagnostics.
Collapse
Affiliation(s)
- Aaron M King
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Caroline Bray
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Stephen C L Hall
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Joseph C Bear
- School of Life Science, Pharmacy and Chemistry, Kingston University, Penryhn Road, Kingston-upon-Thames, KT1 2EE, UK
| | - Lara K Bogart
- UCL Healthcare Biomagnetics Laboratory, 21 Albemarle Street, London W1S 4BS, UK
| | - Sebastien Perrier
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Gemma-Louise Davies
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| |
Collapse
|
114
|
Liu CH, Janke EM, Li R, Juhás P, Gang O, Talapin DV, Billinge SJL. sasPDF: pair distribution function analysis of nanoparticle assemblies from small-angle scattering data. J Appl Crystallogr 2020; 53:699-709. [PMID: 32684885 PMCID: PMC7312144 DOI: 10.1107/s1600576720004628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/02/2020] [Indexed: 11/10/2022] Open
Abstract
sasPDF, a method for characterizing the structure of nanoparticle assemblies (NPAs), is presented. The method is an extension of the atomic pair distribution function (PDF) analysis to the small-angle scattering (SAS) regime. The PDFgetS3 software package for computing the PDF from SAS data is also presented. An application of the sasPDF method to characterize structures of representative NPA samples with different levels of structural order is then demonstrated. The sasPDF method quantitatively yields information such as structure, disorder and crystallite sizes of ordered NPA samples. The method was also used to successfully model the data from a disordered NPA sample. The sasPDF method offers the possibility of more quantitative characterizations of NPA structures for a wide class of samples.
Collapse
Affiliation(s)
- Chia-Hao Liu
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
| | - Eric M. Janke
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Ruipen Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Pavol Juhás
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Oleg Gang
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
- Center for Functional Nanomaterials, Energy and Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Dmitri V. Talapin
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Simon J. L. Billinge
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
115
|
Mahmudunnabi RG, Farhana FZ, Kashaninejad N, Firoz SH, Shim YB, Shiddiky MJA. Nanozyme-based electrochemical biosensors for disease biomarker detection. Analyst 2020; 145:4398-4420. [PMID: 32436931 DOI: 10.1039/d0an00558d] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, a new group of nanomaterials named nanozymes that exhibit enzyme-mimicking catalytic activity has emerged as a promising alternative to natural enzymes. Nanozymes can address some of the intrinsic limitations of natural enzymes such as high cost, low stability, difficulty in storage, and specific working conditions (i.e., narrow substrate, temperature and pH ranges). Thus, synthesis and applications of hybrid and stimuli-responsive advanced nanozymes could revolutionize the current practice in life sciences and biosensor applications. On the other hand, electrochemical biosensors have long been used as an efficient way for quantitative detection of analytes (biomarkers) of interest. As such, the use of nanozymes in electrochemical biosensors is particularly important to achieve low cost and stable biosensors for prognostics, diagnostics, and therapeutic monitoring of diseases. Herein, we summarize the recent advances in the synthesis and classification of common nanozymes and their application in electrochemical biosensor development. After briefly overviewing the applications of nanozymes in non-electrochemical-based biomolecular sensing systems, we thoroughly discuss the state-of-the-art advances in nanozyme-based electrochemical biosensors, including genosensors, immunosensors, cytosensors and aptasensors. The applications of nanozymes in microfluidic-based assays are also discussed separately. We also highlight the challenges of nanozyme-based electrochemical biosensors and provide some possible strategies to address these limitations. Finally, future perspectives on the development of nanozyme-based electrochemical biosensors for disease biomarker detection are presented. We envisage that standardization of nanozymes and their fabrication process may bring a paradigm shift in biomolecular sensing by fabricating highly specific, multi-enzyme mimicking nanozymes for highly sensitive, selective, and low-biofouling electrochemical biosensors.
Collapse
Affiliation(s)
- Rabbee G Mahmudunnabi
- Institute of BioPhysio-Sensor Technology, Pusan National University, Busan 46241, South Korea
| | | | | | | | | | | |
Collapse
|
116
|
Targeted Dendrimer-Coated Magnetic Nanoparticles for Selective Delivery of Therapeutics in Living Cells. Molecules 2020; 25:molecules25092252. [PMID: 32397665 PMCID: PMC7249066 DOI: 10.3390/molecules25092252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/03/2020] [Accepted: 05/09/2020] [Indexed: 02/07/2023] Open
Abstract
Nanoparticles are widely used as theranostic agents for the treatment of various pathologies, including cancer. Among all, dendrimers-based nanoparticles represent a valid approach for drugs delivery, thanks to their controllable size and surface properties. Indeed, dendrimers can be easily loaded with different payloads and functionalized with targeting agents. Moreover, they can be used in combination with other materials such as metal nanoparticles for combinatorial therapies. Here, we present the formulation of an innovative nanostructured hybrid system composed by a metallic core and a dendrimers-based coating that is able to deliver doxorubicin specifically to cancer cells through a targeting agent. Its dual nature allows us to transport nanoparticles to our site of interest through the magnetic field and specifically increase internalization by exploiting the T7 targeting peptide. Our system can release the drug in a controlled pH-dependent way, causing more than 50% of cell death in a pancreatic cancer cell line. Finally, we show how the system was internalized inside cancer cells, highlighting a peculiar disassembly of the nanostructure at the cell surface. Indeed, only the dendrimeric portion is internalized, while the metal core remains outside. Thanks to these features, our nanosystem can be exploited for a multistage magnetic vector.
Collapse
|
117
|
Avasthi A, Caro C, Pozo-Torres E, Leal MP, García-Martín ML. Magnetic Nanoparticles as MRI Contrast Agents. Top Curr Chem (Cham) 2020; 378:40. [PMID: 32382832 PMCID: PMC8203530 DOI: 10.1007/s41061-020-00302-w] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
Abstract
Iron oxide nanoparticles (IONPs) have emerged as a promising alternative to conventional contrast agents (CAs) for magnetic resonance imaging (MRI). They have been extensively investigated as CAs due to their high biocompatibility and excellent magnetic properties. Furthermore, the ease of functionalization of their surfaces with different types of ligands (antibodies, peptides, sugars, etc.) opens up the possibility of carrying out molecular MRI. Thus, IONPs functionalized with epithelial growth factor receptor antibodies, short peptides, like RGD, or aptamers, among others, have been proposed for the diagnosis of various types of cancer, including breast, stomach, colon, kidney, liver or brain cancer. In addition to cancer diagnosis, different types of IONPs have been developed for other applications, such as the detection of brain inflammation or the early diagnosis of thrombosis. This review addresses key aspects in the development of IONPs for MRI applications, namely, synthesis of the inorganic core, functionalization processes to make IONPs biocompatible and also to target them to specific tissues or cells, and finally in vivo studies in animal models, with special emphasis on tumor models.
Collapse
Affiliation(s)
- Ashish Avasthi
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía-Universidad de Málaga, C/Severo Ochoa, 35, 29590, Málaga, Spain
| | - Carlos Caro
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía-Universidad de Málaga, C/Severo Ochoa, 35, 29590, Málaga, Spain
| | - Esther Pozo-Torres
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012, Seville, Spain
| | - Manuel Pernia Leal
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012, Seville, Spain.
| | - María Luisa García-Martín
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía-Universidad de Málaga, C/Severo Ochoa, 35, 29590, Málaga, Spain. .,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Málaga, Spain.
| |
Collapse
|
118
|
Study on the Magnetic and In Vitro Simulation Targeting Properties of Co2+ and Dy3+ Doped Square γ-Fe2O3 Nanoparticles. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01559-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
119
|
Coduri M, Masala P, Del Bianco L, Spizzo F, Ceresoli D, Castellano C, Cappelli S, Oliva C, Checchia S, Allieta M, Szabo DV, Schlabach S, Hagelstein M, Ferrero C, Scavini M. Local Structure and Magnetism of Fe 2O 3 Maghemite Nanocrystals: The Role of Crystal Dimension. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E867. [PMID: 32365930 PMCID: PMC7279456 DOI: 10.3390/nano10050867] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 01/08/2023]
Abstract
Here we report on the impact of reducing the crystalline size on the structural and magnetic properties of γ-Fe2O3 maghemite nanoparticles. A set of polycrystalline specimens with crystallite size ranging from ~2 to ~50 nm was obtained combining microwave plasma synthesis and commercial samples. Crystallite size was derived by electron microscopy and synchrotron powder diffraction, which was used also to investigate the crystallographic structure. The local atomic structure was inquired combining pair distribution function (PDF) and X-ray absorption spectroscopy (XAS). PDF revealed that reducing the crystal dimension induces the depletion of the amount of Fe tetrahedral sites. XAS confirmed significant bond distance expansion and a loose Fe-Fe connectivity between octahedral and tetrahedral sites. Molecular dynamics revealed important surface effects, whose implementation in PDF reproduces the first shells of experimental curves. The structural disorder affects the magnetic properties more and more with decreasing the nanoparticle size. In particular, the saturation magnetization reduces, revealing a spin canting effect. Moreover, a large effective magnetic anisotropy is measured at low temperature together with an exchange bias effect, a behavior that we related to the existence of a highly disordered glassy magnetic phase.
Collapse
Affiliation(s)
- Mauro Coduri
- Department of Chemistry, University of Pavia, viale Taramelli 16, 27100 Pavia, Italy
| | - Paolo Masala
- Department of Chemistry, University of Milan, via Golgi 19, 20131 Milano, Italy; (P.M.); (C.C.); (S.C.); (C.O.); (M.A.)
| | - Lucia Del Bianco
- Department of Physics and Earth Sciences, University of Ferrara, via Saragat 1, 44122 Ferrara, Italy; (L.D.B.); (F.S.)
| | - Federico Spizzo
- Department of Physics and Earth Sciences, University of Ferrara, via Saragat 1, 44122 Ferrara, Italy; (L.D.B.); (F.S.)
| | - Davide Ceresoli
- National Research Council of Italy, Institute of Chemical Science and Technology (CNR-SCITEC), 20133 Milano, Italy;
| | - Carlo Castellano
- Department of Chemistry, University of Milan, via Golgi 19, 20131 Milano, Italy; (P.M.); (C.C.); (S.C.); (C.O.); (M.A.)
| | - Serena Cappelli
- Department of Chemistry, University of Milan, via Golgi 19, 20131 Milano, Italy; (P.M.); (C.C.); (S.C.); (C.O.); (M.A.)
| | - Cesare Oliva
- Department of Chemistry, University of Milan, via Golgi 19, 20131 Milano, Italy; (P.M.); (C.C.); (S.C.); (C.O.); (M.A.)
| | | | - Mattia Allieta
- Department of Chemistry, University of Milan, via Golgi 19, 20131 Milano, Italy; (P.M.); (C.C.); (S.C.); (C.O.); (M.A.)
| | - Dorothee-Vinga Szabo
- Karlsruhe Institute of Technology, Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMF), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (D.-V.S.); (S.S.)
| | - Sabine Schlabach
- Karlsruhe Institute of Technology, Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMF), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (D.-V.S.); (S.S.)
| | - Michael Hagelstein
- Karlsruhe Institute of Technology, Institute for Beam Physics and Technology (IBPT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany;
| | - Claudio Ferrero
- European Synchrotron Radiation Facility, 38000 Grenoble, France;
| | - Marco Scavini
- Department of Chemistry, University of Milan, via Golgi 19, 20131 Milano, Italy; (P.M.); (C.C.); (S.C.); (C.O.); (M.A.)
| |
Collapse
|
120
|
Yang Q, Dong Y, Qiu Y, Yang X, Cao H, Wu Y. Design of Functional Magnetic Nanocomposites for Bioseparation. Colloids Surf B Biointerfaces 2020; 191:111014. [PMID: 32325362 DOI: 10.1016/j.colsurfb.2020.111014] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/03/2020] [Indexed: 12/31/2022]
Abstract
Magnetic materials have been widely used in bioseparation in recent years due to their good biocompatibility, magnetic properties, and high binding capacity. In this review, we provide a brief introduction on the preparation and bioseparation applications of magnetic materials including the synthesis and surface modification of magnetic nanoparticles as well as the preparation and applications of magnetic nanocomposites in the separation of proteins, peptides, cells, exosomes and blood. The current limitations and remaining challenges in the fabrication process of magnetic materials for bioseparation will be also detailed.
Collapse
Affiliation(s)
- Qi Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, PR China; Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Yi Dong
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Yong Qiu
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Xinzhou Yang
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Han Cao
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, PR China.
| |
Collapse
|
121
|
Gopalan Sibi M, Verma D, Kim J. Magnetic core–shell nanocatalysts: promising versatile catalysts for organic and photocatalytic reactions. CATALYSIS REVIEWS 2020. [DOI: 10.1080/01614940.2019.1659555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Malayil Gopalan Sibi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
| | - Deepak Verma
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
| | - Jaehoon Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
| |
Collapse
|
122
|
Vasić K, Knez Ž, Konstantinova EA, Kokorin AI, Gyergyek S, Leitgeb M. Structural and magnetic characteristics of carboxymethyl dextran coated magnetic nanoparticles: From characterization to immobilization application. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104481] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
123
|
Biswas A, Patra AK, Sarkar S, Das D, Chattopadhyay D, De S. Synthesis of highly magnetic iron oxide nanomaterials from waste iron by one-step approach. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
124
|
Hybrid Nanostructured Magnetite Nanoparticles: From Bio-Detection and Theragnostics to Regenerative Medicine. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6010004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanotechnology offers the possibility of operating on the same scale length at which biological processes occur, allowing to interfere, manipulate or study cellular events in disease or healthy conditions. The development of hybrid nanostructured materials with a high degree of chemical control and complex engineered surface including biological targeting moieties, allows to specifically bind to a single type of molecule for specific detection, signaling or inactivation processes. Magnetite nanostructures with designed composition and properties are the ones that gather most of the designs as theragnostic agents for their versatility, biocompatibility, facile production and good magnetic performance for remote in vitro and in vivo for biomedical applications. Their superparamagnetic behavior below a critical size of 30 nm has allowed the development of magnetic resonance imaging contrast agents or magnetic hyperthermia nanoprobes approved for clinical uses, establishing an inflection point in the field of magnetite based theragnostic agents.
Collapse
|
125
|
Lak A, Kahmann T, Schaper SJ, Obel J, Ludwig F, Müller-Buschbaum P, Lipfert J. The Dissociation Rate of Acetylacetonate Ligands Governs the Size of Ferrimagnetic Zinc Ferrite Nanocubes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:217-226. [PMID: 31804796 DOI: 10.1021/acsami.9b17714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Magnetic nanoparticles are critical to a broad range of applications from medical diagnostics and therapeutics to biotechnological processes and single-molecule manipulation. To advance these applications, facile and robust routes to synthesize highly magnetic nanoparticles over a wide size range are needed. Here, we demonstrate that changing the degassing temperature of thermal decomposition of metal acetylacetonate precursors from 90 to 25 °C tunes the size of ferrimagnetic ZnxFe3-xO4 nanocubes from 25 to 100 nm, respectively. We show that degassing at 90 °C nearly entirely removes acetylacetone ligands from the reaction, which results in an early formation of monomers and a reaction-controlled growth following LaMer's model toward small nanocubes. In contrast, degassing at 25 °C only partially dissociates acetylacetone ligands from the metal center and triggers a delayed formation of monomers, which leads to intermediate assembled structures made of tiny irregular crystallites and an eventual formation of large nanocubes via a diffusion-controlled growth mechanism. Using complementary techniques, we determine the substitution fraction x of Zn2+ to be in the range of 0.35-0.37. Our method reduces the complexity of the thermal decomposition method by narrowing the synthesis parameter space to a single physical parameter and enables fabrication of highly magnetic and uniform zinc ferrite nanocubes over a broad size range. The resulting particles are promising for a range of applications from magnetic fluid hyperthermia to actuation of macromolecules.
Collapse
Affiliation(s)
- Aidin Lak
- Department of Physics and Center for NanoScience , LMU Munich , Amalienstr. 54 , 80799 Munich , Germany
| | - Tamara Kahmann
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering , Technische Universität Braunschweig , Hans-Sommer-Str. 66 , 38106 Braunschweig , Germany
| | - Simon Jakob Schaper
- Lehrstuhl für Funktionelle Materialien, Physik-Department , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
| | - Jaroslava Obel
- Department of Chemistry and Pharmacy, Analytical Division , LMU Munich , Butenandtstr. 5-13 , 81377 Munich , Germany
| | - Frank Ludwig
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering , Technische Universität Braunschweig , Hans-Sommer-Str. 66 , 38106 Braunschweig , Germany
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien, Physik-Department , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
| | - Jan Lipfert
- Department of Physics and Center for NanoScience , LMU Munich , Amalienstr. 54 , 80799 Munich , Germany
| |
Collapse
|
126
|
Marcelo GA, Lodeiro C, Capelo JL, Lorenzo J, Oliveira E. Magnetic, fluorescent and hybrid nanoparticles: From synthesis to application in biosystems. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110104. [DOI: 10.1016/j.msec.2019.110104] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022]
|
127
|
Besenhard MO, LaGrow AP, Famiani S, Pucciarelli M, Lettieri P, Thanh NTK, Gavriilidis A. Continuous production of iron oxide nanoparticles via fast and economical high temperature synthesis. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00078g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A continuous, fast and economical high temperature synthesis of iron oxide nanoparticles was developed and compared to a conventional batch synthesis in terms of production costs.
Collapse
Affiliation(s)
| | - Alec P. LaGrow
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories
- University College London
- London W1S 4BS
- UK
| | - Simone Famiani
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories
- University College London
- London W1S 4BS
- UK
| | | | - Paola Lettieri
- Department of Chemical Engineering
- University College London
- London
- UK
| | - Nguyen Thi Kim Thanh
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories
- University College London
- London W1S 4BS
- UK
- Biophysics Group
| | | |
Collapse
|
128
|
Kang T, Kim YG, Kim D, Hyeon T. Inorganic nanoparticles with enzyme-mimetic activities for biomedical applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213092] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
129
|
Hwang J, Ejsmont A, Freund R, Goscianska J, Schmidt BVKJ, Wuttke S. Controlling the morphology of metal–organic frameworks and porous carbon materials: metal oxides as primary architecture-directing agents. Chem Soc Rev 2020; 49:3348-3422. [DOI: 10.1039/c9cs00871c] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We give a comprehensive overview of how the morphology control is an effective and versatile way to control the physicochemical properties of metal oxides that can be transferred to metal–organic frameworks and porous carbon materials.
Collapse
Affiliation(s)
- Jongkook Hwang
- Inorganic Chemistry and Catalysis
- Utrecht University
- Utrecht
- The Netherlands
| | - Aleksander Ejsmont
- Adam Mickiewicz University in Poznań
- Faculty of Chemistry
- 61-614 Poznań
- Poland
| | - Ralph Freund
- Chair of Solid State and Materials Chemistry
- Institute of Physics
- University of Augsburg
- 86159 Augsburg
- Germany
| | - Joanna Goscianska
- Adam Mickiewicz University in Poznań
- Faculty of Chemistry
- 61-614 Poznań
- Poland
| | | | - Stefan Wuttke
- BCMaterials
- Basque Center for Materials
- UPV/EHU Science Park
- 48940 Leioa
- Spain
| |
Collapse
|
130
|
Quarta A, Amorín M, Aldegunde MJ, Blasi L, Ragusa A, Nitti S, Pugliese G, Gigli G, Granja JR, Pellegrino T. Novel synthesis of platinum complexes and their intracellular delivery to tumor cells by means of magnetic nanoparticles. NANOSCALE 2019; 11:23482-23497. [PMID: 31808496 DOI: 10.1039/c9nr07015j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Platinum-based drugs are popular in clinics as chemotherapeutic agents to treat solid tumors. However, severe side effects such as nephro- and neurotoxicity impose strict dosage limitations that can lead to the development of drug resistance and tumor relapse. To overcome these issues Pt(iv) prodrugs and platinum delivery systems might represent the next generation of platinum-based drugs. In this study four novel Pt(ii) complexes (namely, PEG-Glu-Pt-EDA, PEG-Glu-Pt-DACH, PEG-Mal-Pt-EDA and PEG-Mal-Pt-DACH) were synthesized and a general strategy to covalently bind them to iron oxide nanoparticles was developed. The intracellular uptake and cell distribution studies of Pt-tethered magnetic nanoparticles on breast and ovarian cancer cell line models indicate that binding of the Pt complexes to the nanoparticles facilitates, for all the complexes, cellular internalization. Moreover, the magnetic nanoparticles (MNPs), as shown in a magnetofection experiment, enhance the uptake of MNP-Pt conjugates if a magnet is placed beneath the culture dish of tumor cells. As shown by a Pt release experiment, intranuclear platinum quantification and TEM analysis on cell sections, the presence of a pH-sensitive dicarboxylic group coordinating the Pt complex, triggers platinum dissociation from the NP surface. In addition, the triazole moiety facilitates endosomal swelling and the leakage of platinum from the endosomes with intranuclear localization of platinum release by the NPs. Finally, as assessed by MTT, caspase, calcein/ethidium bromide live/dead assays, among the four NP-Pt conjugates, the NP-Glu-Pt-EDA complex having a glutamate ring and ethylenediamine as a chelating amine group of the platinum showed higher cytotoxicity than the other three MNP-platinum conjugates.
Collapse
Affiliation(s)
- Alessandra Quarta
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy.
| | - Manuel Amorín
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - María José Aldegunde
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Laura Blasi
- CNR, Institute for Microelectronics and Microsystems, Via Monteroni, Lecce, 73100, Italy
| | - Andrea Ragusa
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy. and Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Simone Nitti
- Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy.
| | | | - Giuseppe Gigli
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy. and Dipartimento di Matematica e Fisica E. De Giorgi, Università del Salento, Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Juan R Granja
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Teresa Pellegrino
- Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy.
| |
Collapse
|
131
|
Lartigue L, Coupeau M, Lesault M. Luminophore and Magnetic Multicore Nanoassemblies for Dual-Mode MRI and Fluorescence Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 10:E28. [PMID: 31861876 PMCID: PMC7023187 DOI: 10.3390/nano10010028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
Nanoassemblies encompass a large variety of systems (organic, crystalline, amorphous and porous). The nanometric size enables these systems to interact with biological entities and cellular organelles of similar dimensions (proteins, cells, …). Over the past 20 years, the exploitation of their singular properties as contrast agents has led to the improvement of medical imaging. The use of nanoprobes also allows the combination of several active units within the same nanostructure, paving the way to multi-imaging. Thus, the nano-object provides various additional information which helps simplify the number of clinical procedures required. In this review, we are interested in the combination between fluorescent units and magnetic nanoparticles to perform dual-mode magnetic resonance imaging (MRI) and fluorescent imaging. The effect of magnetic interaction in multicore iron oxide nanoparticles on the MRI contrast agent properties is highlighted.
Collapse
Affiliation(s)
- Lénaïc Lartigue
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France; (M.C.); (M.L.)
| | | | | |
Collapse
|
132
|
Ullrich A, Rahman MM, Longo P, Horn S. Synthesis and high-resolution structural and chemical analysis of iron-manganese-oxide core-shell nanocubes. Sci Rep 2019; 9:19264. [PMID: 31848357 PMCID: PMC6917765 DOI: 10.1038/s41598-019-55397-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/21/2019] [Indexed: 12/31/2022] Open
Abstract
We have investigated the structure and chemical composition of nanoparticles synthesized by thermal decomposition of a mixture of iron oleate and manganese oleate in a high-boiling solvent in the presence of Na-oleate and oleic acid as surfactants by analytical transmission electron microscopy (TEM). The particles appear core-shell like in bright field TEM images. Higher spatial resolution TEM (HRTEM) analysis reveals a FeO/MnO like structure in the core and a spinel like structure in the shell. With high-resolution analytical methods like energy dispersive x-ray spectroscopy (EDS) and electron energy loss spectroscopy (EELS), the distribution of the metals Mn and Fe was investigated. Differences in the oxidation state of these metals were found between the core and the shell region. The presence of sodium from the used surfactant (Na-oleate) on the surface of the particles has been proved.
Collapse
Affiliation(s)
- Aladin Ullrich
- University of Augsburg, Institute of Physics, Universitätsstr. 1, 86159, Augsburg, Germany.
| | | | - Paolo Longo
- Gatan, Inc. 5794, W Las Positas BLVD, Pleasanton, CA, 94588, USA
| | - Siegfried Horn
- University of Augsburg, Institute of Physics, Universitätsstr. 1, 86159, Augsburg, Germany
| |
Collapse
|
133
|
Wu K, Su D, Liu J, Saha R, Wang JP. Magnetic nanoparticles in nanomedicine: a review of recent advances. NANOTECHNOLOGY 2019; 30:502003. [PMID: 31491782 DOI: 10.1088/1361-6528/ab4241] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nanomaterials, in addition to their small size, possess unique physicochemical properties that differ from bulk materials, making them ideal for a host of novel applications. Magnetic nanoparticles (MNPs) are one important class of nanomaterials that have been widely studied for their potential applications in nanomedicine. Due to the fact that MNPs can be detected and manipulated by remote magnetic fields, it opens a wide opportunity for them to be used in vivo. Nowadays, MNPs have been used for diverse applications including magnetic biosensing (diagnostics), magnetic imaging, magnetic separation, drug and gene delivery, and hyperthermia therapy, etc. Specifically, we reviewed some emerging techniques in magnetic diagnostics such as magnetoresistive (MR) and micro-Hall (μHall) biosensors, as well as the magnetic particle spectroscopy, magnetic relaxation switching and surface enhanced Raman spectroscopy (SERS)-based bioassays. Recent advances in applying MNPs as contrast agents in magnetic resonance imaging and as tracer materials in magnetic particle imaging are reviewed. In addition, the development of high magnetic moment MNPs with proper surface functionalization has progressed exponentially over the past decade. To this end, different MNP synthesis approaches and surface coating strategies are reviewed and the biocompatibility and toxicity of surface functionalized MNP nanocomposites are also discussed. Herein, we are aiming to provide a comprehensive assessment of the state-of-the-art biological and biomedical applications of MNPs. This review is not only to provide in-depth insights into the different synthesis, biofunctionalization, biosensing, imaging, and therapy methods but also to give an overview of limitations and possibilities of each technology.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | | | | | | | | |
Collapse
|
134
|
Yu J, Nap RJ, Szleifer I, Wong JY. Effect of Polymer Surface Modification of Superparamagnetic Iron Oxide Nanoparticle Dispersions in High Salinity Environments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15864-15871. [PMID: 31353909 DOI: 10.1021/acs.langmuir.9b01944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Superparamagnetic nanoparticles (SPIONs) can be used as nuclear magnetic resonance (NMR) signal enhancement agents for petroleum exploration. This enhancement effect is uniform if SPIONs are monodisperse in size and in composition; yet it is challenging to synthesize monodisperse particles that do not aggregate in high salinity petroleum brine. Here, we report a method to synthesize individual SPIONs coated with tunable surface coating densities of poly(2-acrylamido-2-methyl-1-propanesulfonic acid (pAMPS) with a catechol end-group (pAMPS*). To establish parameters under which pAMPS*-coated SPIONS do not aggregate, we compared computational predictions with experimental results for variations in pAMPS* chain length and surface coverage. Using this combined theoretical and experimental approach, we show that singly dispersed SPIONs remained stabilized in petroleum brine for up to 75 h with high surface density pAMPS*.
Collapse
Affiliation(s)
- Jin Yu
- Division of Materials Science and Engineering , Boston University , Boston Massachusetts 02215 United States
| | - Rikkert J Nap
- Department of Biomedical Engineering and Chemistry of Life Processes Institute , Northwestern University , Evanston , Illinois 60208 United States
| | - Igal Szleifer
- Department of Biomedical Engineering and Chemistry of Life Processes Institute , Northwestern University , Evanston , Illinois 60208 United States
| | - Joyce Y Wong
- Division of Materials Science and Engineering , Boston University , Boston Massachusetts 02215 United States
- Department of Biomedical Engineering , Boston University , Boston Massachusetts 02215 United States
| |
Collapse
|
135
|
Osman AI, Blewitt J, Abu-Dahrieh JK, Farrell C, Al-Muhtaseb AH, Harrison J, Rooney DW. Production and characterisation of activated carbon and carbon nanotubes from potato peel waste and their application in heavy metal removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:37228-37241. [PMID: 31745803 PMCID: PMC6937222 DOI: 10.1007/s11356-019-06594-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/24/2019] [Indexed: 06/04/2023]
Abstract
Herein, activated carbon (AC) and carbon nanotubes (CNTs) were synthesised from potato peel waste (PPW). Different ACs were synthesised via two activation steps: firstly, with phosphoric acid (designated PP) and then using potassium hydroxide (designated PK). The AC produced after the two activation steps showed a surface area as high as 833 m2 g-1 with a pore volume of 0.44 cm3 g-1, where the raw material of PPW showed a surface area < 4 m2 g-1. This can help aid and facilitate the concept of the circular economy by effectively up-cycling and valorising waste lignocellulosic biomass such as potato peel waste to high surface area AC and subsequently, multi-walled carbon nanotubes (MWCNTs). Consequently, MWCNTs were prepared from the produced AC by mixing it with the nitrogen-based material melamine and iron precursor, iron (III) oxalate hexahydrate. This produced hydrophilic multi-wall carbon nanotubes (MWCNTs) with a water contact angle of θ = 14.97 °. Both AC and CNT materials were used in heavy metal removal (HMR) where the maximum lead absorption was observed for sample PK with a 84% removal capacity after the first hour of testing. This result signifies that the synthesis of these up-cycled materials can have applications in areas such as wastewater treatment or other conventional AC/CNT end uses with a rapid cycle time in a two-fold approach to improve the eco-friendly synthesis of such value-added products and the circular economy from a significant waste stream, i.e., PPW. Graphical abstract .
Collapse
Affiliation(s)
- Ahmed I Osman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland.
- Chemistry Department, Faculty of Science-Qena, South Valley University, Qena, 83523, Egypt.
| | - Jacob Blewitt
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland
| | - Jehad K Abu-Dahrieh
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland
| | - Charlie Farrell
- South West College, Cookstown, Co., Tyrone, BT80 8DN, Northern Ireland, UK
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast, BT9 5AH, Northern Ireland, UK
| | - Ala'a H Al-Muhtaseb
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman
| | - John Harrison
- South West College, Cookstown, Co., Tyrone, BT80 8DN, Northern Ireland, UK
| | - David W Rooney
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland.
| |
Collapse
|
136
|
Nuzhina JV, Shtil AA, Prilepskii AY, Vinogradov VV. Preclinical Evaluation and Clinical Translation of Magnetite-Based Nanomedicines. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
137
|
Wallyn J, Anton N, Vandamme TF. Synthesis, Principles, and Properties of Magnetite Nanoparticles for In Vivo Imaging Applications-A Review. Pharmaceutics 2019; 11:E601. [PMID: 31726769 PMCID: PMC6920893 DOI: 10.3390/pharmaceutics11110601] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/04/2019] [Accepted: 11/09/2019] [Indexed: 12/16/2022] Open
Abstract
The current nanotechnology era is marked by the emergence of various magnetic inorganic nanometer-sized colloidal particles. These have been extensively applied and hold an immense potential in biomedical applications including, for example, cancer therapy, drug nanocarriers (NCs), or in targeted delivery systems and diagnosis involving two guided-nanoparticles (NPs) as nanoprobes and contrast agents. Considerable efforts have been devoted to designing iron oxide NPs (IONPs) due to their superparamagnetic (SPM) behavior (SPM IONPs or SPIONs) and their large surface-to-volume area allowing more biocompatibility, stealth, and easy bonding to natural biomolecules thanks to grafted ligands, selective-site moieties, and/or organic and inorganic corona shells. Such nanomagnets with adjustable architecture have been the topic of significant progresses since modular designs enable SPIONs to carry out several functions simultaneously such as local drug delivery with real-time monitoring and imaging of the targeted area. Syntheses of SPIONs and adjustments of their physical and chemical properties have been achieved and paved novel routes for a safe use of those tailored magnetic ferrous nanomaterials. Herein we will emphasis a basic notion about NPs magnetism in order to have a better understanding of SPION assets for biomedical applications, then we mainly focus on magnetite iron oxide owing to its outstanding magnetic properties. The general methods of preparation and typical characteristics of magnetite are reviewed, as well as the major biomedical applications of magnetite.
Collapse
Affiliation(s)
| | - Nicolas Anton
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France;
| | | |
Collapse
|
138
|
Demirbas A, Büyükbezirci K, Celik C, Kislakci E, Karaagac Z, Gokturk E, Kati A, Cimen B, Yilmaz V, Ocsoy I. Synthesis of Long-Term Stable Gold Nanoparticles Benefiting from Red Raspberry ( Rubus idaeus), Strawberry ( Fragaria ananassa), and Blackberry ( Rubus fruticosus) Extracts-Gold Ion Complexation and Investigation of Reaction Conditions. ACS OMEGA 2019; 4:18637-18644. [PMID: 31737823 PMCID: PMC6854581 DOI: 10.1021/acsomega.9b02469] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 10/14/2019] [Indexed: 05/25/2023]
Abstract
We report synthesis of monodispersed, stable, and colloidal gold nanoparticles (Au NPs) using anthocyanin-riched red raspberry (Rubus idaeus), strawberry (Fragaria ananassa), and blackberry (Rubus fruticosus) extracts as functions of concentration of HAuCl4·3H2O and berries extract, reaction time, and reaction pH values (pHs) and demonstrate their unique stability in highly concentrated salt (sodium chloride, NaCl) solutions. The catecholamine group of anthocyanin molecules give preferential coordination reaction with gold ions (Au3+) for creating anthocyanin-Au3+ complexes, which may lead to initiation of nucleation for seed formation, and then, oxidation of catecholamine results in a flow of electrons from anthocyanins to Au seeds for anisotropic growth. Finally, the surface of the Au NPs is saturated with anthocyanins, and formation of monodispersed and stable Au NPs with narrow size distribution is completed. We also report the effects of some experimental parameters including concentrations of Au3+ ions and barrier extracts, reaction time, and pHs on formation of the Au NPs with rational explanations. The long-term colloidal stability of the Au NPs in the 400 mM NaCl solution was comparatively studied with commercial Au NPs (citrate capped). As results show that anthocyanin-riched berry extracts directed Au NPs we proposed here can be considered as promising and safe tools for biomedical applications owing to their highly much colloidal dispersibility and salt tolerance properties.
Collapse
Affiliation(s)
- Ayse Demirbas
- Recep
Tayyip Erdogan University, Faculty of Fisheries
and Aquatic Sciences, 53100 Rize, Turkey
| | - Kasım Büyükbezirci
- Department
of Analytical Chemistry, Faculty of Pharmacy, and Department of
Biochemistry, Faculty of Pharmacy, Erciyes
University, 38039 Kayseri, Turkey
| | - Cagla Celik
- Department
of Analytical Chemistry, Faculty of Pharmacy, and Department of
Biochemistry, Faculty of Pharmacy, Erciyes
University, 38039 Kayseri, Turkey
| | - Emine Kislakci
- Department
of Analytical Chemistry, Faculty of Pharmacy, and Department of
Biochemistry, Faculty of Pharmacy, Erciyes
University, 38039 Kayseri, Turkey
| | - Zehra Karaagac
- Department
of Analytical Chemistry, Faculty of Pharmacy, and Department of
Biochemistry, Faculty of Pharmacy, Erciyes
University, 38039 Kayseri, Turkey
| | - Ersen Gokturk
- Department
of Chemistry, Hatay Mustafa Kemal University, Tayfur Sokmen Campus, Alahan, Antakya City, 31001 Hatay, Turkey
| | - Ahmet Kati
- Biotechnology
Department, Institution of Health Science, University of Health Science, 34001 Istanbul, Turkey
| | - Behzat Cimen
- Department
of Analytical Chemistry, Faculty of Pharmacy, and Department of
Biochemistry, Faculty of Pharmacy, Erciyes
University, 38039 Kayseri, Turkey
| | - Vedat Yilmaz
- Department
of Analytical Chemistry, Faculty of Pharmacy, and Department of
Biochemistry, Faculty of Pharmacy, Erciyes
University, 38039 Kayseri, Turkey
| | - Ismail Ocsoy
- Department
of Analytical Chemistry, Faculty of Pharmacy, and Department of
Biochemistry, Faculty of Pharmacy, Erciyes
University, 38039 Kayseri, Turkey
| |
Collapse
|
139
|
Shahbazi-Alavi H, Khojasteh-Khosro S, Safaei-Ghomi J, Tavazo M. Crosslinked sulfonated polyacrylamide (Cross-PAA-SO 3H) tethered to nano-Fe 3O 4 as a superior catalyst for the synthesis of 1,3-thiazoles. BMC Chem 2019; 13:120. [PMID: 31633116 PMCID: PMC6790011 DOI: 10.1186/s13065-019-0637-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/28/2019] [Indexed: 11/18/2022] Open
Abstract
Crosslinked sulfonated polyacrylamide (Cross-PAA-SO3H) attached to nano-Fe3O4 as a superior catalyst has been used for the synthesis of 3-alkyl-4-phenyl-1,3-thiazole-2(3H)-thione derivatives through a three-component reactions of phenacyl bromide or 4-methoxyphenacyl bromide, carbon disulfide and primary amine under reflux condition in ethanol. A proper, atom-economical, straightforward one-pot multicomponent synthetic route for the synthesis of 1,3-thiazoles in good yields has been devised using crosslinked sulfonated polyacrylamide (Cross-PAA-SO3H) tethered to nano-Fe3O4. The catalyst has been characterized by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), dynamic light scattering (DLS), X-ray powder diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA) and vibrating-sample magnetometer (VSM).
Collapse
Affiliation(s)
| | | | - Javad Safaei-Ghomi
- 2Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Maryam Tavazo
- 2Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| |
Collapse
|
140
|
Kratz H, Mohtashamdolatshahi A, Eberbeck D, Kosch O, Hauptmann R, Wiekhorst F, Taupitz M, Hamm B, Schnorr J. MPI Phantom Study with A High-Performing Multicore Tracer Made by Coprecipitation. NANOMATERIALS 2019; 9:nano9101466. [PMID: 31623127 PMCID: PMC6835925 DOI: 10.3390/nano9101466] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 12/23/2022]
Abstract
Magnetic particle imaging (MPI) is a new imaging technique that detects the spatial distribution of magnetic nanoparticles (MNP) with the option of high temporal resolution. MPI relies on particular MNP as tracers with tailored characteristics for improvement of sensitivity and image resolution. For this reason, we developed optimized multicore particles (MCP 3) made by coprecipitation via synthesis of green rust and subsequent oxidation to iron oxide cores consisting of a magnetite/maghemite mixed phase. MCP 3 shows high saturation magnetization close to that of bulk maghemite and provides excellent magnetic particle spectroscopy properties which are superior to Resovist® and any other up to now published MPI tracers made by coprecipitation. To evaluate the MPI characteristics of MCP 3 two kinds of tube phantoms were prepared and investigated to assess sensitivity, spatial resolution, artifact severity, and selectivity. Resovist® was used as standard of comparison. For image reconstruction, the regularization factor was optimized, and the resulting images were investigated in terms of quantifying of volumes and iron content. Our results demonstrate the superiority of MCP 3 over Resovist® for all investigated MPI characteristics and suggest that MCP 3 is promising for future experimental in vivo studies.
Collapse
Affiliation(s)
- Harald Kratz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiology, D-10117 Berlin, Germany.
| | - Azadeh Mohtashamdolatshahi
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiology, D-10117 Berlin, Germany.
| | | | - Olaf Kosch
- Physikalisch-Technische Bundesanstalt, D-10587 Berlin, Germany.
| | - Ralf Hauptmann
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiology, D-10117 Berlin, Germany.
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt, D-10587 Berlin, Germany.
| | - Matthias Taupitz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiology, D-10117 Berlin, Germany.
| | - Bernd Hamm
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiology, D-10117 Berlin, Germany.
| | - Jörg Schnorr
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiology, D-10117 Berlin, Germany.
| |
Collapse
|
141
|
Gal N, Charwat V, Städler B, Reimhult E. Poly(ethylene glycol) Grafting of Nanoparticles Prevents Uptake by Cells and Transport Through Cell Barrier Layers Regardless of Shear Flow and Particle Size. ACS Biomater Sci Eng 2019; 5:4355-4365. [PMID: 33438401 DOI: 10.1021/acsbiomaterials.9b00611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
It has long been a central tenet of biomedical research that coating of nanoparticles with hydrated polymers can improve their performance in biomedical applications. However, the efficacy of the approach in vivo is still debated. In vitro model systems to test the performance of engineered nanoparticles for in vivo applications often use nonrepresentative cell lines and conditions for uptake and toxicity tests. We use our platform of monodisperse iron oxide nanoparticles densely grafted with nitrodopamide-poly(ethylene glycol) (PEG) to probe cell interactions with a set of cell types and culture conditions that are relevant for applications in which nanoparticles are injected into the bloodstream. In the past, these particles have proved to have excellent stability and negligible interaction with proteins and membranes under physiological conditions. We test the influence of flow on the uptake of nanoparticles. We also investigate the transport through endothelial barrier cell layers, as well as the effect that PEG-grafted iron oxide nanoparticles have on cell layers relevant for nanoparticles injected into the bloodstream. Our results show that the dense PEG brush and resulting lack of nonspecific protein and membrane interaction lead to negligible cell uptake, toxicity, and transport across barrier layers. These results contrast with far less well-defined polymer-coated nanoparticles that tend to aggregate and consequently strongly interact with cells, for example, by endocytosis.
Collapse
Affiliation(s)
- Noga Gal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | | | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | | |
Collapse
|
142
|
Jarzębski M, Peplińska B, Florczak P, Gapiński J, Flak D, Mała P, Ramanavicius A, Baryła-Pankiewicz E, Kobus- Cisowska J, Szwajca A. Fluorescein ether-ester dyes for labeling of fluorinated methacrylate nanoparticles. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
143
|
Jain S, Panigrahi A, Sarma TK. Counter Anion-Directed Growth of Iron Oxide Nanorods in a Polyol Medium with Efficient Peroxidase-Mimicking Activity for Degradation of Dyes in Contaminated Water. ACS OMEGA 2019; 4:13153-13164. [PMID: 31460442 PMCID: PMC6705086 DOI: 10.1021/acsomega.9b01201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/22/2019] [Indexed: 05/31/2023]
Abstract
Development of nanozymes, which are nanomaterials with intrinsic enzymatic properties, has emerged as an appealing alternative to the natural enzymes with tremendous application potential from the chemical industry to biomedicine. The self-assembled growth of micrometer-sized oxide materials with controlled nonspherical shapes can be an important tool for enhancing activity as artificial enzymes, as the formation of these superstructures often results in high surface area with favorable impact on catalytic activity. Herein, the growth of rod-shaped Fe3O4 microstructures via a one-pot microwave-based method and using a water-poly(ethylene glycol) mixture as a solvent is reported, without the involvement of external shape-directing agents. The precursor metal salt played a key role in the size, shape, and phase selective evolution of iron oxide micro/nanomaterials. Whereas self-assembled microrod superstructures were obtained using Fe(NO3)3 as the metal salt precursor, use of FeCl3 or Fe-acetate as precursors afforded hollow Fe2O3 microparticles and Fe3O4 nanoparticles, respectively. A graphitic layer was deposited on the Fe3O4 surface, imparting a negative surface charge as a result of a high-temperature treatment of poly(ethylene glycol). The rod-shaped Fe3O4 microcrystals show efficient peroxidase-mimicking activity toward 3,3,5,5'-tetramethylbenzidine and pyrogallol as peroxidase substrates with a Michaelis-Menten rate constant (K m) value of 0.05 and 0.52 mM, respectively. The proficient enzyme mimicking behavior of these magnetic superstructures was further explored for the degradation of organic dyes that includes rhodamine B, methylene blue, and methyl orange with a rate constant (k) of 0.038, 0.011, and 0.007 min-1 respectively, using H2O2. This fast and simple method could help to develop a new pathway for differently shaped oxide nanoparticles in a sustainable and economical manner that can be harnessed as nanozymes for industrial as well as biological applications.
Collapse
Affiliation(s)
- Siddarth Jain
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Abhiram Panigrahi
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Tridib K. Sarma
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| |
Collapse
|
144
|
Muro-Cruces J, Roca AG, López-Ortega A, Fantechi E, Del-Pozo-Bueno D, Estradé S, Peiró F, Sepúlveda B, Pineider F, Sangregorio C, Nogues J. Precise Size Control of the Growth of Fe 3O 4 Nanocubes over a Wide Size Range Using a Rationally Designed One-Pot Synthesis. ACS NANO 2019; 13:7716-7728. [PMID: 31173684 DOI: 10.1021/acsnano.9b01281] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The physicochemical properties of spinel oxide magnetic nanoparticles depend critically on both their size and shape. In particular, spinel oxide nanocrystals with cubic morphology have shown superior properties in comparison to their spherical counterparts in a variety of fields, like, for example, biomedicine. Therefore, having an accurate control over the nanoparticle shape and size, while preserving the crystallinity, becomes crucial for many applications. However, despite the increasing interest in spinel oxide nanocubes there are relatively few studies on this morphology due to the difficulty to synthesize perfectly defined cubic nanostructures, especially below 20 nm. Here we present a rationally designed synthesis pathway based on the thermal decomposition of iron(III) acetylacetonate to obtain high quality nanocubes over a wide range of sizes. This pathway enables the synthesis of monodisperse Fe3O4 nanocubes with edge length in the 9-80 nm range, with excellent cubic morphology and high crystallinity by only minor adjustments in the synthesis parameters. The accurate size control provides evidence that even 1-2 nm size variations can be critical in determining the functional properties, for example, for improved nuclear magnetic resonance T2 contrast or enhanced magnetic hyperthermia. The rationale behind the changes introduced in the synthesis procedure (e.g., the use of three solvents or adding Na-oleate) is carefully discussed. The versatility of this synthesis route is demonstrated by expanding its capability to grow other spinel oxides such as Co-ferrites, Mn-ferrites, and Mn3O4 of different sizes. The simplicity and adaptability of this synthesis scheme may ease the development of complex oxide nanocubes for a wide variety of applications.
Collapse
Affiliation(s)
- Javier Muro-Cruces
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST , Campus UAB , Bellaterra , 08193 Barcelona , Spain
- Universitat Autònoma de Barcelona , 08193 Bellaterra , Spain
| | - Alejandro G Roca
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST , Campus UAB , Bellaterra , 08193 Barcelona , Spain
| | - Alberto López-Ortega
- Instituto de Nanociencia, Nanotecnología y Materiales Moleculares and Depto. de Física Aplicada , Universidad de Castilla-La Mancha , Campus de la Fábrica de Armas , 45071 Toledo , Spain
| | - Elvira Fantechi
- Dipartimento di Chimica e Chimica Industriale and INSTM , University of Pisa , Via G. Moruzzi 13 , 56124 Pisa , Italy
| | - Daniel Del-Pozo-Bueno
- LENS-MIND-IN2UB, Dept. Enginyeries Electrònica i Biomèdica , Universitat de Barcelona , Martí i Franquès 1 , E-08028 Barcelona , Spain
| | - Sònia Estradé
- LENS-MIND-IN2UB, Dept. Enginyeries Electrònica i Biomèdica , Universitat de Barcelona , Martí i Franquès 1 , E-08028 Barcelona , Spain
| | - Francesca Peiró
- LENS-MIND-IN2UB, Dept. Enginyeries Electrònica i Biomèdica , Universitat de Barcelona , Martí i Franquès 1 , E-08028 Barcelona , Spain
| | - Borja Sepúlveda
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST , Campus UAB , Bellaterra , 08193 Barcelona , Spain
| | - Francesco Pineider
- Dipartimento di Chimica e Chimica Industriale and INSTM , University of Pisa , Via G. Moruzzi 13 , 56124 Pisa , Italy
| | - Claudio Sangregorio
- Dipartimento di Chimica and INSTM , Università degli studi di Firenze , Via della Lastruccia 3 , Sesto Fiorentino (FI) I-50019 , Italy
- ICCOM-CNR , Via Madonna del Piano, 10 , Sesto Fiorentino (FI) I-50019 , Italy
| | - Josep Nogues
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST , Campus UAB , Bellaterra , 08193 Barcelona , Spain
- ICREA , Pg. Lluís Companys 23 , 08010 Barcelona , Spain
| |
Collapse
|
145
|
Ali N, Zaman H, Bilal M, Shah AUHA, Nazir MS, Iqbal HMN. Environmental perspectives of interfacially active and magnetically recoverable composite materials - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:523-538. [PMID: 30909030 DOI: 10.1016/j.scitotenv.2019.03.209] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 02/05/2023]
Abstract
Aquatic ecosystem contaminated with toxic pollutants and heavy metals due to the rapid growth of industrialization has become a top-priority global concern exhibiting highly adverse effects on human health and the environment. Many treatment techniques have been envisioned for the removal of these toxic contaminants from the aqueous environment. Among these techniques, magnetic separation has attracted burgeoning research attention owing to its simplicity, eco-friendly nature, large surface area, electron mobility, and excellent performance for removing water contaminants. In particular, interfacial active nanoparticles and nanocomposites with unique structures and magnetic properties are considered as ideal provides candidates in material science for next-generation water treatment. This review gives an insight into current research activities associated with the synthesis strategies and applications of interfacially active and magnetically responsive nanomaterials and nanocomposites for sustainable purification processes. In the first half, various synthesis routes for magnetic iron oxide nanoparticles development and the corresponding formation mechanism are summarized. In the second half, we reviewed the magnetic and wettability properties of interfacially active and magnetically responsive nanocomposites and their environmental applications including oil-water separation, removal of hazardous dye-based pollutants and potentially toxic heavy metals. Finally, the review is wrapped up with major concluding remarks and future perspectives of these magnetic nanoscale composite materials for sustainable wastewater remediation.
Collapse
Affiliation(s)
- Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hira Zaman
- Institute of Chemical Sciences, University of Peshawar, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | | | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL CP 64849, Mexico.
| |
Collapse
|
146
|
Lassenberger A, Scheberl A, Batchu KC, Cristiglio V, Grillo I, Hermida-Merino D, Reimhult E, Baccile N. Biocompatible Glyconanoparticles by Grafting Sophorolipid Monolayers on Monodispersed Iron Oxide Nanoparticles. ACS APPLIED BIO MATERIALS 2019; 2:3095-3107. [DOI: 10.1021/acsabm.9b00427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrea Lassenberger
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Institute for Biologically Inspired Materials, Muthgasse 11/II, 1190 Vienna, Austria
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38042 CEDEX 9, France
| | - Andrea Scheberl
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Institute for Biologically Inspired Materials, Muthgasse 11/II, 1190 Vienna, Austria
| | | | - Viviana Cristiglio
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38042 CEDEX 9, France
| | - Isabelle Grillo
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38042 CEDEX 9, France
| | - Daniel Hermida-Merino
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, Grenoble 38042 CEDEX 9, France
| | - Erik Reimhult
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Institute for Biologically Inspired Materials, Muthgasse 11/II, 1190 Vienna, Austria
| | - Niki Baccile
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Paris F-75005, France
| |
Collapse
|
147
|
Electromagnetic wave absorption and scattering analysis for Fe3O4 with different scales particles. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.03.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
148
|
Versatile Sulfathiazole-Functionalized Magnetic Nanoparticles as Catalyst in Oxidation and Alkylation Reactions. Catalysts 2019. [DOI: 10.3390/catal9040348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Catalyst design and surface modifications of magnetic nanoparticles have become attractive strategies in order to optimize catalyzed organic reactions for industrial applications. In this work, silica-coated magnetic nanoparticles with a core-shell type structure were prepared. The obtained material was successfully functionalized with sulfathiazole groups, which can enhance its catalytic features. The material was fully characterized, using a multi-technique approach. The catalytic performance of the as-synthesized material was evaluated in 1) the oxidation of benzyl alcohol to benzaldehyde and 2) the microwave-assisted alkylation of toluene with benzyl chloride. Remarkable conversion and selectivity were obtained for both reactions and a clear improvement of the catalytic properties was observed in comparison with unmodified γ-Fe2O3/SiO2 and γ-Fe2O3. Noticeably, the catalyst displayed outstanding magnetic characteristics which facilitated its recovery and reusability.
Collapse
|
149
|
Qiao K, Tian W, Bai J, Wang L, Zhao J, Du Z, Gong X. Application of magnetic adsorbents based on iron oxide nanoparticles for oil spill remediation: A review. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.01.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
150
|
Kim SH, Lee JY, Ahn JP, Choi PP. Fabrication of Atom Probe Tomography Specimens from Nanoparticles Using a Fusible Bi-In-Sn Alloy as an Embedding Medium. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:438-446. [PMID: 30714553 DOI: 10.1017/s1431927618015556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We propose a new method for preparing atom probe tomography specimens from nanoparticles using a fusible bismuth-indium-tin alloy as an embedding medium. Iron nanoparticles synthesized by the sodium borohydride reduction method were chosen as a model system. The as-synthesized iron nanoparticles were embedded within the fusible alloy using focused ion beam milling and ion-milled to needle-shaped atom probe specimens under cryogenic conditions. An atom probe analysis revealed boron atoms in a detected iron nanoparticle, indicating that boron from the sodium borohydride reductant was incorporated into the nanoparticle during its synthesis.
Collapse
Affiliation(s)
- Se-Ho Kim
- Department of Materials Science and Engineering,Korea Advanced Institute of Science and Technology (KAIST),291 Daehak-ro,Yuseong-gu,Daejeon 34141,Republic of Korea
| | - Ji Yeong Lee
- Advanced Analysis Center,Korea Institute of Science and Technology (KIST),Seoul 136-791,Republic of Korea
| | - Jae-Pyoung Ahn
- Advanced Analysis Center,Korea Institute of Science and Technology (KIST),Seoul 136-791,Republic of Korea
| | - Pyuck-Pa Choi
- Department of Materials Science and Engineering,Korea Advanced Institute of Science and Technology (KAIST),291 Daehak-ro,Yuseong-gu,Daejeon 34141,Republic of Korea
| |
Collapse
|