101
|
Spaeth AD, Gagnon NL, Dhar D, Yee GM, Tolman WB. Determination of the Cu(III)-OH Bond Distance by Resonance Raman Spectroscopy Using a Normalized Version of Badger's Rule. J Am Chem Soc 2017; 139:4477-4485. [PMID: 28319386 PMCID: PMC5975256 DOI: 10.1021/jacs.7b00210] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The stretching frequency, ν(Cu-O), of the [CuOH]2+ core in the complexes LCuOH (L = N,N'-bis(2,6-diisopropyl-4-R-phenyl)pyridine-2,6-dicarboxamide, R = H or NO2, or N,N'-bis(2,6-diisopropylphenyl)-1-methylpiperidine-2,6-dicarboxamide) was determined to be ∼630 cm-1 by resonance Raman spectroscopy and verified by isotopic labeling. In efforts to use Badger's rule to estimate the bond distance corresponding to ν(Cu-O), a modified version of the rule was developed through use of stretching frequencies normalized by dividing by the appropriate reduced masses. The modified version was found to yield excellent fits of normalized frequencies to bond distances for >250 data points from theory and experiment for a variety of M-X and X-X bond distances in the range ∼1.1-2.2 Å (root mean squared errors for the predicted bond distances of 0.03 Å). Using the resulting general equation, the Cu-O bond distance was predicted to be ∼1.80 Å for the reactive [CuOH]2+ core. Limitations of the equation and its use in predictions of distances in a variety of moieties for which structural information is not available were explored.
Collapse
Affiliation(s)
- Andrew D. Spaeth
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Nicole L. Gagnon
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Debanjan Dhar
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Gereon M. Yee
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - William B. Tolman
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
102
|
Gao H, Groves JT. Fast Hydrogen Atom Abstraction by a Hydroxo Iron(III) Porphyrazine. J Am Chem Soc 2017; 139:3938-3941. [PMID: 28245648 DOI: 10.1021/jacs.6b13091] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A reactive hydroxoferric porphyrazine complex, [(PyPz)FeIII(OH) (OH2)]4+ (1, PyPz = tetramethyl-2,3-pyridino porphyrazine), has been prepared via one-electron oxidation of the corresponding ferrous species [(PyPz)FeII(OH2)2]4+ (2). Electrochemical analysis revealed a pH-dependent and remarkably high FeIII-OH/FeII-OH2 reduction potential of 680 mV vs Ag/AgCl at pH 5.2. Nernstian behavior from pH 2 to pH 8 indicates a one-proton, one-electron interconversion throughout that range. The O-H bond dissociation energy of the FeII-OH2 complex was estimated to be 84 kcal mol-1. Accordingly, 1 reacts rapidly with a panel of substrates via C-H hydrogen atom transfer (HAT), reducing 1 to [(PyPz)FeII(OH2)2]4+ (2). The second-order rate constant for the reaction of [(PyPz)FeIII(OH) (OH2)]4+ with xanthene was 2.22 × 103 M-1 s-1, 5-6 orders of magnitude faster than other reported FeIII-OH complexes and faster than many ferryl complexes.
Collapse
Affiliation(s)
- Hongxin Gao
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - John T Groves
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| |
Collapse
|
103
|
Kochem A, Gennarini F, Yemloul M, Orio M, Le Poul N, Rivière E, Giorgi M, Faure B, Le Mest Y, Réglier M, Simaan AJ. Characterization of a Dinuclear Copper(II) Complex and Its Fleeting Mixed-Valent Copper(II)/Copper(III) Counterpart. Chempluschem 2017; 82:615-624. [DOI: 10.1002/cplu.201600636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/14/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Amélie Kochem
- Aix Marseille Université, CNRS; Centrale Marseille, iSm2; 13397 Marseille France
| | | | - Mehdi Yemloul
- Aix Marseille Université, CNRS; Centrale Marseille, iSm2; 13397 Marseille France
| | - Maylis Orio
- Aix Marseille Université, CNRS; Centrale Marseille, iSm2; 13397 Marseille France
| | - Nicolas Le Poul
- Université de Bretagne occidentale; CEMCA, UMR CNRS; 6521 Brest France
| | - Eric Rivière
- Institut de Chimie Moléculaire et des Matériaux d'Orsay; Univ Paris Sud, Université Paris-Saclay, CNRS; 91400 Orsay France
| | - Michel Giorgi
- Aix Marseille Université, CNRS; Spectropole FR1739; 13397 Marseille France
| | - Bruno Faure
- Aix Marseille Université, CNRS; Centrale Marseille, iSm2; 13397 Marseille France
| | - Yves Le Mest
- Université de Bretagne occidentale; CEMCA, UMR CNRS; 6521 Brest France
| | - Marius Réglier
- Aix Marseille Université, CNRS; Centrale Marseille, iSm2; 13397 Marseille France
| | - A. Jalila Simaan
- Aix Marseille Université, CNRS; Centrale Marseille, iSm2; 13397 Marseille France
| |
Collapse
|
104
|
Martín-Yerga D, Carrasco-Rodríguez J, Fierro JLG, García Alonso FJ, Costa-García A. Copper-modified titanium phosphate nanoparticles as electrocatalyst for glucose detection. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.01.143] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
105
|
Elwell CE, Gagnon NL, Neisen BD, Dhar D, Spaeth AD, Yee GM, Tolman WB. Copper-Oxygen Complexes Revisited: Structures, Spectroscopy, and Reactivity. Chem Rev 2017; 117:2059-2107. [PMID: 28103018 PMCID: PMC5963733 DOI: 10.1021/acs.chemrev.6b00636] [Citation(s) in RCA: 459] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A longstanding research goal has been to understand the nature and role of copper-oxygen intermediates within copper-containing enzymes and abiological catalysts. Synthetic chemistry has played a pivotal role in highlighting the viability of proposed intermediates and expanding the library of known copper-oxygen cores. In addition to the number of new complexes that have been synthesized since the previous reviews on this topic in this journal (Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. Rev. 2004, 104, 1013-1046 and Lewis, E. A.; Tolman, W. B. Chem. Rev. 2004, 104, 1047-1076), the field has seen significant expansion in the (1) range of cores synthesized and characterized, (2) amount of mechanistic work performed, particularly in the area of organic substrate oxidation, and (3) use of computational methods for both the corroboration and prediction of proposed intermediates. The scope of this review has been limited to well-characterized examples of copper-oxygen species but seeks to provide a thorough picture of the spectroscopic characteristics and reactivity trends of the copper-oxygen cores discussed.
Collapse
Affiliation(s)
- Courtney E Elwell
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Nicole L Gagnon
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Benjamin D Neisen
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Debanjan Dhar
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Andrew D Spaeth
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Gereon M Yee
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - William B Tolman
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
106
|
Dhar D, Yee GM, Markle TF, Mayer JM, Tolman WB. Reactivity of the copper(iii)-hydroxide unit with phenols. Chem Sci 2017; 8:1075-1085. [PMID: 28572905 PMCID: PMC5452261 DOI: 10.1039/c6sc03039d] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/08/2016] [Indexed: 01/09/2023] Open
Abstract
Kinetic studies of the reactions of two previously characterized copper(iii)-hydroxide complexes (LCuOH and NO2 LCuOH, where L = N,N'-bis(2,6-diisopropylphenyl)-2,6-pyridine-dicarboxamide and NO2 L = N,N'-bis(2,6-diisopropyl-4-nitrophenyl)pyridine-2,6-dicarboxamide) with a series of para substituted phenols (XArOH where X = NMe2, OMe, Me, H, Cl, NO2, or CF3) were performed using low temperature stopped-flow UV-vis spectroscopy. Second-order rate constants (k) were determined from pseudo first-order and stoichiometric experiments, and follow the trends CF3 < NO2 < Cl < H < Me < OMe < NMe2 and LCuOH < NO2 LCuOH. The data support a concerted proton-electron transfer (CPET) mechanism for all but the most acidic phenols (X = NO2 and CF3), for which a more complicated mechanism is proposed. For the case of the reactions between NO2 ArOH and LCuOH in particular, competition between a CPET pathway and one involving initial proton transfer followed by electron transfer (PT/ET) is supported by multiwavelength global analysis of the kinetic data, formation of the phenoxide NO2 ArO- as a reaction product, observation of an intermediate [LCu(OH2)]+ species derived from proton transfer from NO2 ArOH to LCuOH, and thermodynamic arguments indicating that initial PT should be competitive with CPET.
Collapse
Affiliation(s)
- Debanjan Dhar
- Department of Chemistry , Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant St. SE , Minneapolis , MN 55455 , USA .
| | - Gereon M Yee
- Department of Chemistry , Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant St. SE , Minneapolis , MN 55455 , USA .
| | - Todd F Markle
- Department of Chemistry , Yale University , New Haven , Connecticut 06520-8107 , USA .
| | - James M Mayer
- Department of Chemistry , Yale University , New Haven , Connecticut 06520-8107 , USA .
| | - William B Tolman
- Department of Chemistry , Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant St. SE , Minneapolis , MN 55455 , USA .
| |
Collapse
|
107
|
Wang Y, Liu H, Zhang X, Zhang Z, Huang D. Experimental and mechanistic insights into copper(ii)–dioxygen catalyzed oxidative N-dealkylation of N-(2-pyridylmethyl)phenylamine and its derivatives. Org Biomol Chem 2017; 15:9164-9168. [DOI: 10.1039/c7ob02192e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An efficient Cu(ii)/O2 catalytic system was experimentally explored for the N-dealkylation of PyCH2NHPh and its derivatives via C–H bond activation.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Haixiong Liu
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Xiaofeng Zhang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Zilong Zhang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Deguang Huang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| |
Collapse
|
108
|
High-valent copper in biomimetic and biological oxidations. J Biol Inorg Chem 2016; 22:289-305. [PMID: 27909921 DOI: 10.1007/s00775-016-1420-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022]
Abstract
A long-standing debate in the Cu-O2 field has revolved around the relevance of the Cu(III) oxidation state in biological redox processes. The proposal of Cu(III) in biology is generally challenged as no spectroscopic or structural evidence exists currently for its presence. The reaction of synthetic Cu(I) complexes with O2 at low temperature in aprotic solvents provides the opportunity to investigate and define the chemical landscape of Cu-O2 species at a small-molecule level of detail; eight different types are characterized structurally, three of which contain at least one Cu(III) center. Simple imidazole or histamine ligands are competent in these oxygenation reactions to form Cu(III) complexes. The combination of synthetic structural and reactivity data suggests (1) that Cu(I) should be considered as either a one or two electron reductant reacting with O2, (2) that Cu(III) reduction potentials of these formed complexes are modest and well within the limits of a protein matrix and (3) that primary amine and imidazole ligands are surprisingly good at stabilizing Cu(III) centers. These Cu(III) complexes are efficient oxidants for hydroxylating phenolate substrates with reaction hallmarks similar to that performed in biological systems. The remarkable ligation similarity of the synthetic and biological systems makes it difficult to continue to exclude Cu(III) from biological discussions.
Collapse
|
109
|
Frandsen KEH, Lo Leggio L. Lytic polysaccharide monooxygenases: a crystallographer's view on a new class of biomass-degrading enzymes. IUCRJ 2016; 3:448-467. [PMID: 27840684 PMCID: PMC5094447 DOI: 10.1107/s2052252516014147] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/05/2016] [Indexed: 05/05/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are a new class of microbial copper enzymes involved in the degradation of recalcitrant polysaccharides. They have only been discovered and characterized in the last 5-10 years and have stimulated strong interest both in biotechnology and in bioinorganic chemistry. In biotechnology, the hope is that these enzymes will finally help to make enzymatic biomass conversion, especially of lignocellulosic plant waste, economically attractive. Here, the role of LPMOs is likely to be in attacking bonds that are not accessible to other enzymes. LPMOs have attracted enormous interest since their discovery. The emphasis in this review is on the past and present contribution of crystallographic studies as a guide to functional understanding, with a final look towards the future.
Collapse
Affiliation(s)
- Kristian E. H. Frandsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| |
Collapse
|
110
|
Pirovano P, Farquhar ER, Swart M, McDonald AR. Tuning the Reactivity of Terminal Nickel(III)-Oxygen Adducts for C-H Bond Activation. J Am Chem Soc 2016; 138:14362-14370. [PMID: 27739688 DOI: 10.1021/jacs.6b08406] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two metastable NiIII complexes, [NiIII(OAc)(L)] and [NiIII(ONO2)(L)] (L = N,N'-(2,6-dimethylphenyl)-2,6-pyridinedicarboxamidate, OAc = acetate), were prepared, adding to the previously prepared [NiIII(OCO2H)(L)], with the purpose of probing the properties of terminal late-transition metal oxidants. These high-valent oxidants were prepared by the one-electron oxidation of their NiII precursors ([NiII(OAc)(L)]- and [NiII(ONO2)(L)]-) with tris(4-bromophenyl)ammoniumyl hexachloroantimonate. Fascinatingly, the reaction between any [NiII(X)(L)]- and NaOCl/acetic acid (AcOH) or cerium ammonium nitrate ((NH4)2[CeIV(NO3)6], CAN), yielded [NiIII(OAc)(L)] and [NiIII(ONO2)(L)], respectively. An array of spectroscopic characterizations (electronic absorption, electron paramagnetic resonance, X-ray absorption spectroscopies), electrochemical methods, and computational predictions (density functional theory) have been used to determine the structural, electronic, and magnetic properties of these highly reactive metastable oxidants. The NiIII-oxidants proved competent in the oxidation of phenols (weak O-H bonds) and a series of hydrocarbon substrates (some with strong C-H bonds). Kinetic investigation of the reactions with di-tert-butylphenols showed a 15-fold enhanced reaction rate for [NiIII(ONO2)(L)] compared to [NiIII(OCO2H)(L)] and [NiIII(OAc)(L)], demonstrating the effect of electron-deficiency of the O-ligand on oxidizing power. The oxidation of a series of hydrocarbons by [NiIII(OAc)(L)] was further examined. A linear correlation between the rate constant and the bond dissociation energy of the C-H bonds in the substrates was indicative of a hydrogen atom transfer mechanism. The reaction rate with dihydroanthracene (k2 = 8.1 M-1 s-1) compared favorably with the most reactive high-valent metal-oxidants, and showcases the exceptional reactivity of late transition metal-oxygen adducts.
Collapse
Affiliation(s)
- Paolo Pirovano
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin , College Green, Dublin 2, Ireland
| | - Erik R Farquhar
- Case Western Reserve University Center for Synchrotron Biosciences, National Synchrotron Light Source II, Brookhaven National Laboratory , Upton, New York 11973, United States
| | - Marcel Swart
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.,Institut de Química Computacional i Catàlisi, Facultat de Ciències, Universitat de Girona , Campus Montilivi, 17003 Girona, Spain
| | - Aidan R McDonald
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin , College Green, Dublin 2, Ireland
| |
Collapse
|
111
|
Corona T, Draksharapu A, Padamati SK, Gamba I, Martin-Diaconescu V, Acuña-Parés F, Browne WR, Company A. Rapid Hydrogen and Oxygen Atom Transfer by a High-Valent Nickel-Oxygen Species. J Am Chem Soc 2016; 138:12987-12996. [PMID: 27598293 DOI: 10.1021/jacs.6b07544] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Terminal high-valent metal-oxygen species are key reaction intermediates in the catalytic cycle of both enzymes (e.g., oxygenases) and synthetic oxidation catalysts. While tremendous efforts have been directed toward the characterization of the biologically relevant terminal manganese-oxygen and iron-oxygen species, the corresponding analogues based on late-transition metals such as cobalt, nickel or copper are relatively scarce. This scarcity is in part related to the "Oxo Wall" concept, which predicts that late transition metals cannot support a terminal oxido ligand in a tetragonal environment. Here, the nickel(II) complex (1) of the tetradentate macrocyclic ligand bearing a 2,6-pyridinedicarboxamidate unit is shown to be an effective catalyst in the chlorination and oxidation of C-H bonds with sodium hypochlorite as terminal oxidant in the presence of acetic acid (AcOH). Insight into the active species responsible for the observed reactivity was gained through the study of the reaction of 1 with ClO- at low temperature by UV-vis absorption, resonance Raman, EPR, ESI-MS, and XAS analyses. DFT calculations aided the assignment of the trapped chromophoric species (3) as a nickel-hypochlorite species. Despite the fact that the formal oxidation state of the nickel in 3 is +4, experimental and computational analysis indicate that 3 is best formulated as a NiIII complex with one unpaired electron delocalized in the ligands surrounding the metal center. Most remarkably, 3 reacts rapidly with a range of substrates including those with strong aliphatic C-H bonds, indicating the direct involvement of 3 in the oxidation/chlorination reactions observed in the 1/ClO-/AcOH catalytic system.
Collapse
Affiliation(s)
- Teresa Corona
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Facultat de Ciències, Universitat de Girona, C/ Maria Aurèlia Capmany 69 , E17003 Girona, Catalonia, Spain
| | - Apparao Draksharapu
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Mathematics and Natural Sciences, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sandeep K Padamati
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Mathematics and Natural Sciences, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ilaria Gamba
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Facultat de Ciències, Universitat de Girona, C/ Maria Aurèlia Capmany 69 , E17003 Girona, Catalonia, Spain
| | - Vlad Martin-Diaconescu
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Facultat de Ciències, Universitat de Girona, C/ Maria Aurèlia Capmany 69 , E17003 Girona, Catalonia, Spain
| | - Ferran Acuña-Parés
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Facultat de Ciències, Universitat de Girona, C/ Maria Aurèlia Capmany 69 , E17003 Girona, Catalonia, Spain
| | - Wesley R Browne
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Mathematics and Natural Sciences, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Anna Company
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Facultat de Ciències, Universitat de Girona, C/ Maria Aurèlia Capmany 69 , E17003 Girona, Catalonia, Spain
| |
Collapse
|
112
|
Engelmann X, Monte-Pérez I, Ray K. Oxidationsreaktionen mit bioinspirierten einkernigen Nicht-Häm-Oxidometallkomplexen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600507] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xenia Engelmann
- Institut für Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Inés Monte-Pérez
- Institut für Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Kallol Ray
- Institut für Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| |
Collapse
|
113
|
Engelmann X, Monte-Pérez I, Ray K. Oxidation Reactions with Bioinspired Mononuclear Non-Heme Metal-Oxo Complexes. Angew Chem Int Ed Engl 2016; 55:7632-49. [DOI: 10.1002/anie.201600507] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/15/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Xenia Engelmann
- Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Inés Monte-Pérez
- Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Kallol Ray
- Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| |
Collapse
|
114
|
Huang Y, Li X, Yu Y, Zhu C, Wu W, Jiang H. Copper-Mediated [3 + 2] Oxidative Cyclization Reaction of N-Tosylhydrazones and β-Ketoesters: Synthesis of 2,3,5-Trisubstituted Furans. J Org Chem 2016; 81:5014-20. [DOI: 10.1021/acs.joc.6b00568] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yubing Huang
- Key Laboratory
of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xianwei Li
- Key Laboratory
of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yue Yu
- Key Laboratory
of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chuanle Zhu
- Key Laboratory
of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wanqing Wu
- Key Laboratory
of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huanfeng Jiang
- Key Laboratory
of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
115
|
Pap JS, Szyrwiel Ł. On the Cu(III)/Cu(II) Redox Chemistry of Cu-Peptide Complexes to Assist Catalyst Design. COMMENT INORG CHEM 2016. [DOI: 10.1080/02603594.2016.1192541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
116
|
Frandsen KEH, Simmons TJ, Dupree P, Poulsen JCN, Hemsworth GR, Ciano L, Johnston EM, Tovborg M, Johansen KS, von Freiesleben P, Marmuse L, Fort S, Cottaz S, Driguez H, Henrissat B, Lenfant N, Tuna F, Baldansuren A, Davies GJ, Lo Leggio L, Walton PH. The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases. Nat Chem Biol 2016; 12:298-303. [PMID: 26928935 DOI: 10.1038/nchembio.2029] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/12/2016] [Indexed: 12/27/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that oxidatively break down recalcitrant polysaccharides such as cellulose and chitin. Since their discovery, LPMOs have become integral factors in the industrial utilization of biomass, especially in the sustainable generation of cellulosic bioethanol. We report here a structural determination of an LPMO-oligosaccharide complex, yielding detailed insights into the mechanism of action of these enzymes. Using a combination of structure and electron paramagnetic resonance spectroscopy, we reveal the means by which LPMOs interact with saccharide substrates. We further uncover electronic and structural features of the enzyme active site, showing how LPMOs orchestrate the reaction of oxygen with polysaccharide chains.
Collapse
Affiliation(s)
| | - Thomas J Simmons
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Luisa Ciano
- Department of Chemistry, University of York, York, UK
| | | | | | | | | | - Laurence Marmuse
- Centre de Recherches sur les Macromolecules Végétales (CERMAV), Université de Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Sébastien Fort
- Centre de Recherches sur les Macromolecules Végétales (CERMAV), Université de Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Sylvain Cottaz
- Centre de Recherches sur les Macromolecules Végétales (CERMAV), Université de Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Hugues Driguez
- Centre de Recherches sur les Macromolecules Végétales (CERMAV), Université de Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, Marseille, France.,Institut National de la Recherche Agronomique (INRA), AFMB, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nicolas Lenfant
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, Marseille, France.,Institut National de la Recherche Agronomique (INRA), AFMB, Marseille, France
| | - Floriana Tuna
- Engineering and Physical Sciences Research Council (EPSRC) National EPR Facility, School of Chemistry and Photon Science Institute, University of Manchester, Manchester, UK
| | - Amgalanbaatar Baldansuren
- Engineering and Physical Sciences Research Council (EPSRC) National EPR Facility, School of Chemistry and Photon Science Institute, University of Manchester, Manchester, UK
| | | | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Paul H Walton
- Department of Chemistry, University of York, York, UK
| |
Collapse
|
117
|
Dhar D, Yee GM, Spaeth AD, Boyce DW, Zhang H, Dereli B, Cramer CJ, Tolman WB. Perturbing the Copper(III)-Hydroxide Unit through Ligand Structural Variation. J Am Chem Soc 2016; 138:356-68. [PMID: 26693733 PMCID: PMC4857600 DOI: 10.1021/jacs.5b10985] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two new ligand sets, (pipMe)LH2 and (NO2)LH2 ((pipMe)L = N,N'-bis(2,6-diisopropylphenyl)-1-methylpiperidine-2,6-dicarboxamide, (NO2)L = N,N'-bis(2,6-diisopropyl-4-nitrophenyl)pyridine-2,6-dicarboxamide), are reported which are designed to perturb the overall electronics of the copper(III)-hydroxide core and the resulting effects on the thermodynamics and kinetics of its hydrogen-atom abstraction (HAT) reactions. Bond dissociation energies (BDEs) for the O-H bonds of the corresponding Cu(II)-OH2 complexes were measured that reveal that changes in the redox potential for the Cu(III)/Cu(II) couple are only partially offset by opposite changes in the pKa, leading to modest differences in BDE among the three compounds. The effects of these changes were further probed by evaluating the rates of HAT by the corresponding Cu(III)-hydroxide complexes from substrates with C-H bonds of variable strength. These studies revealed an overarching linear trend in the relationship between the log k (where k is the second-order rate constant) and the ΔH of reaction. Additional subtleties in measured rates arise, however, that are associated with variations in hydrogen-atom abstraction barrier heights and tunneling efficiencies over the temperature range from -80 to -20 °C, as inferred from measured kinetic isotope effects and corresponding electronic-structure-based transition-state theory calculations.
Collapse
Affiliation(s)
| | | | - Andrew D. Spaeth
- Department of Chemistry, Center for Metals in Biocatalysis, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - David W. Boyce
- Department of Chemistry, Center for Metals in Biocatalysis, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Hongtu Zhang
- Department of Chemistry, Center for Metals in Biocatalysis, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Büsra Dereli
- Department of Chemistry, Center for Metals in Biocatalysis, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Christopher J. Cramer
- Department of Chemistry, Center for Metals in Biocatalysis, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - William B. Tolman
- Department of Chemistry, Center for Metals in Biocatalysis, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
118
|
Zhang J, Liu S, Li A, Ye H, Li Z. Nickel(ii) complexes chelated by 2,6-pyridinedicarboxamide: syntheses, characterization, and ethylene oligomerization. NEW J CHEM 2016. [DOI: 10.1039/c6nj00559d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ni(ii) complexes chelated by a neutral tridentate amide ligand are conveniently prepared and are highly active for ethylene oligomerization.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemistry and Engineering
- Central South University
- Changsha 410083
- P. R. China
| | - Shaofeng Liu
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Antai Li
- Department of Chemistry and Engineering
- Central South University
- Changsha 410083
- P. R. China
| | - Hongqi Ye
- Department of Chemistry and Engineering
- Central South University
- Changsha 410083
- P. R. China
| | - Zhibo Li
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| |
Collapse
|
119
|
Kumar P, Gupta R. The wonderful world of pyridine-2,6-dicarboxamide based scaffolds. Dalton Trans 2016; 45:18769-18783. [DOI: 10.1039/c6dt03578g] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This perspective focusses on a variety of scaffolds based on a pyridine-2,6-dicarboxamide fragment and their noteworthy roles in coordination chemistry, biomimetic studies, catalysis, and sensing.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Rajeev Gupta
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| |
Collapse
|
120
|
Sinha SB, Shopov DY, Sharninghausen LS, Vinyard DJ, Mercado BQ, Brudvig GW, Crabtree RH. A Stable Coordination Complex of Rh(IV) in an N,O-Donor Environment. J Am Chem Soc 2015; 137:15692-5. [PMID: 26641941 DOI: 10.1021/jacs.5b12148] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We describe facial and meridional isomers of [Rh(III)(pyalk)3], as well as meridional [Rh(IV)(pyalk)3](+) {pyalk =2-(2-pyridyl)-2-propanoate}, the first coordination complex in an N,O-donor environment to show a clean, reversible Rh(III/IV) redox couple and to have a stable Rh(IV) form, which we characterize by EPR and UV-visible spectroscopy as well as X-ray crystallography. The unprecedented stability of the Rh(IV) species is ascribed to the exceptional donor strength of the ligands, their oxidation resistance, and the meridional coordination geometry.
Collapse
Affiliation(s)
- Shashi B Sinha
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Dimitar Y Shopov
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Liam S Sharninghausen
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - David J Vinyard
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Gary W Brudvig
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Robert H Crabtree
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
121
|
Neisen BD, Solntsev P, Halvagar MR, Tolman WB. Secondary Sphere Hydrogen Bonding in Monocopper Complexes of Potentially Dinucleating Bis(carboxamide) Ligands. Eur J Inorg Chem 2015; 2015:5856-5863. [PMID: 27840589 PMCID: PMC5102625 DOI: 10.1002/ejic.201501060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Indexed: 01/08/2023]
Abstract
Reaction of a macrocyclic ligand precursor comprising two bis(carboxamido)pyridine units (H4L4) connected by ethylene linkers with NMe4OH and CuX2 (X = Cl, OAc, or OTf) yielded monocopper complexes [NMe4][(H2L4)Cu(X)] (X = Cl (3), OAc (4), or OH (5)), in contrast to previous work using a related ligand with ortho-phenylene linkers wherein dicopper compounds were isolated. X-ray structures of the complexes revealed hydrogen bonding from the free carboxamide N-H groups in the doubly protonated form of the ligand (H2L4- ) to the monodentate fourth ligand coordinated to the Cu(II) ion. Similar secondary sphere hydrogen bonding interactions were identified in multinuclear compounds [NMe4]2[((H2L4)Cu)n(CO3)] (n = 2 or 3) that were isolated from exposure of 5 to air. Cyclic voltammetry revealed oxidations of 3 and 5 at potentials ~300 mV higher than analogous monocopper complexes of bis(arylcarboxamido)pyridine ligands which lack the intramolecular hydrogen bonds, consistent with removal of electron density from the metal center by the hydrogen bonding array. Another ligand variant (H4L5) with ortho-phenylene linkers and only one bis(carboxamido)pyridine moiety yielded monocopper complexes [NMe4][(H2L5)Cu(OAc)] • DMF (8) and [NMe4][(H2L5)CuCl)] • CH3CN (9), but the X-ray structures revealed a different hydrogen bonding arrangement to the solvate molecules. Nonetheless, a high redox potential for 9 was observed, consistent with intramolecular hydrogen bonding interactions in solution.
Collapse
Affiliation(s)
- Benjamin D. Neisen
- Department of Chemistry and Center for Metals and Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455
| | - Pavlo Solntsev
- Department of Chemistry and Center for Metals and Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455
| | - Mohammad R. Halvagar
- Department of Chemistry and Center for Metals and Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455
| | - William B. Tolman
- Department of Chemistry and Center for Metals and Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455
| |
Collapse
|
122
|
Chen J, Huang B, Zhan S, Ye J. A trinuclear copper(I) complex modified Au electrode based on a nonelectrocatalytic mechanism as hydrogen peroxide sensor. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
123
|
Corona T, Pfaff FF, Acuña-Parés F, Draksharapu A, Whiteoak CJ, Martin-Diaconescu V, Lloret-Fillol J, Browne WR, Ray K, Company A. Reactivity of a Nickel(II) Bis(amidate) Complex with meta-Chloroperbenzoic Acid: Formation of a Potent Oxidizing Species. Chemistry 2015; 21:15029-38. [PMID: 26311073 DOI: 10.1002/chem.201501841] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Indexed: 12/14/2022]
Abstract
Herein, we report the formation of a highly reactive nickel-oxygen species that has been trapped following reaction of a Ni(II) precursor bearing a macrocyclic bis(amidate) ligand with meta-chloroperbenzoic acid (HmCPBA). This compound is only detectable at temperatures below 250 K and is much more reactive toward organic substrates (i.e., C-H bonds, C=C bonds, and sulfides) than previously reported well-defined nickel-oxygen species. Remarkably, this species is formed by heterolytic O-O bond cleavage of a Ni-HmCPBA precursor, which is concluded from experimental and computational data. On the basis of spectroscopy and DFT calculations, this reactive species is proposed to be a Ni(III) -oxyl compound.
Collapse
Affiliation(s)
- Teresa Corona
- Group de Química Bioinorgànica, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus Montilivi, 17071 Girona (Spain), Fax: (+34) 972-41-81-50
| | - Florian F Pfaff
- Humboldt Universität zu Berlin, Department of Chemistry, Brook-Taylor Strasse 2, 12489 Berlin (Germany)
| | - Ferran Acuña-Parés
- Group de Química Bioinorgànica, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus Montilivi, 17071 Girona (Spain), Fax: (+34) 972-41-81-50
| | - Apparao Draksharapu
- Stratingh Institute for Chemistry, Faculty of Mathematics and Natural Sciences, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands)
| | - Christopher J Whiteoak
- Group de Química Bioinorgànica, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus Montilivi, 17071 Girona (Spain), Fax: (+34) 972-41-81-50
| | - Vlad Martin-Diaconescu
- Group de Química Bioinorgànica, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus Montilivi, 17071 Girona (Spain), Fax: (+34) 972-41-81-50
| | - Julio Lloret-Fillol
- Group de Química Bioinorgànica, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus Montilivi, 17071 Girona (Spain), Fax: (+34) 972-41-81-50.,Current address: Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona (Spain)
| | - Wesley R Browne
- Stratingh Institute for Chemistry, Faculty of Mathematics and Natural Sciences, University of Groningen, Nijenborgh 4, 9747 AG Groningen (The Netherlands)
| | - Kallol Ray
- Humboldt Universität zu Berlin, Department of Chemistry, Brook-Taylor Strasse 2, 12489 Berlin (Germany)
| | - Anna Company
- Group de Química Bioinorgànica, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus Montilivi, 17071 Girona (Spain), Fax: (+34) 972-41-81-50.
| |
Collapse
|
124
|
Gagnon N, Tolman WB. [CuO](+) and [CuOH](2+) complexes: intermediates in oxidation catalysis? Acc Chem Res 2015; 48:2126-31. [PMID: 26075312 DOI: 10.1021/acs.accounts.5b00169] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Characterization of monocopper intermediates in enzymes and other catalysts that attack strong C-H bonds is important for unraveling oxidation catalysis mechanisms and, ultimately, designing new, more efficient catalytic systems. Because initially formed 1:1 Cu/O2 adducts resulting from reactions of Cu(I) sites with O2 react relatively sluggishly with substrates with strong C-H bonds, it has been suggested that reductive O-O bond scission might occur instead to yield more reactive [CuO](+) or protonated [CuOH](2+) cores. Experimental and theoretical studies of [CuO](+) species in the gas phase have provided key insights into the possible reactivity of these species, but detailed information is lacking for discrete complexes with the [CuO](+) or [CuOH](2+) core in solution or the solid state. We describe herein our recent efforts to address this issue through several disparate approaches. In one strategy based on precedent from studies of enzymes and synthetic compounds with iron-α-ketocarboxylate motifs, reactions of O2 with Cu(I)-α-ketocarboxylate complexes were explored, with the aim of identifying reaction pathways that would implicate the intermediacy of a [CuO](+) species. A second approach focused on the reaction of N-oxides with Cu(I) complexes, with the goal being to elicit O-N bond heterolysis to yield [CuO](+) complexes. For both strategies, the course of the reactions depended on the nature of the supporting bidentate N-donor ligand, and indirect evidence in support of the sought-after [CuO](+) intermediates was obtained in some instances. In the final approach discussed herein, strongly electron donating and sterically encumbered pyridine-dicarboxamide ligands (L) enabled the synthesis of [LCu(II)OH](-) complexes, which upon one-electron oxidation formed complexes with the [CuOH](2+) core that were characterized in solution. Rapid hydrogen atom abstraction (HAT) from dihydroanthracene (DHA) was observed, yielding LCu(II)OH2. The O-H bond dissociation enthalpy (BDE) of ∼90 kcal/mol for this complex was determined through evaluation of its pKa (∼19) and the [LCu(II)OH](-)/LCu(III)OH reduction potential (approximately -0.08 V vs Fc/Fc(+)). Thus, the poor oxidizing power of the complex is offset by the high basicity of the hydroxide moiety to yield a strong O-H bond. This high BDE provided a thermodynamic rationale for the rapid HAT rate from DHA and suggested that stronger C-H bonds could be attacked. Indeed, using an inert solvent (1,2-difluorobenzene), substrates with C-H bond strengths as high as 99 kcal/mol were shown to react with the [CuOH](2+) complex, and a linear log k vs C-H BDE plot supported similar HAT pathways across the series. Importantly, these results provided key evidence in favor of the possible intermediacy of this core in oxidation catalysis, and we suggest that because it is a more energetically accessible intermediate than the [CuO](+) moiety, it should be considered as an alternative in proposed mechanisms for oxidations by enzymes and other synthetic systems.
Collapse
Affiliation(s)
- Nicole Gagnon
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - William B. Tolman
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
125
|
Abram SL, Monte-Pérez I, Pfaff FF, Farquhar ER, Ray K. Evidence of two-state reactivity in alkane hydroxylation by Lewis-acid bound copper-nitrene complexes. Chem Commun (Camb) 2015; 50:9852-4. [PMID: 25025824 DOI: 10.1039/c4cc03754e] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The behavior of the Lewis-acid adducts of two copper-nitrene [Cu(NR)](+) complexes in nitrene-transfer and H-atom abstraction reactions have been demonstrated to depend on the nature of the nitrene substituents. Two-state reactivity, in which a singlet ground state and a nearby triplet excited-state both contribute, provides a useful model for interpreting reactivity trends of the two compounds.
Collapse
Affiliation(s)
- Sarah-Luise Abram
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, D-12489 Berlin, Germany.
| | | | | | | | | |
Collapse
|
126
|
Nakane T, Tanioka Y, Tsukada N. Synthesis of Multinuclear Copper Complexes Bridged by Diquinolylamidinates and Their Application to Copper-Catalyzed Coupling of Terminal Alkynes and Aryl, Allyl, and Benzyl Halides. Organometallics 2015. [DOI: 10.1021/om501139f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Takayuki Nakane
- Department
of Chemistry, Graduate School of Science,
and ‡Research Institute
of Green Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Yuta Tanioka
- Department
of Chemistry, Graduate School of Science,
and ‡Research Institute
of Green Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Naofumi Tsukada
- Department
of Chemistry, Graduate School of Science,
and ‡Research Institute
of Green Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
127
|
Beeson WT, Vu VV, Span EA, Phillips CM, Marletta MA. Cellulose degradation by polysaccharide monooxygenases. Annu Rev Biochem 2015; 84:923-46. [PMID: 25784051 DOI: 10.1146/annurev-biochem-060614-034439] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polysaccharide monooxygenases (PMOs), also known as lytic PMOs (LPMOs), enhance the depolymerization of recalcitrant polysaccharides by hydrolytic enzymes and are found in the majority of cellulolytic fungi and actinomycete bacteria. For more than a decade, PMOs were incorrectly annotated as family 61 glycoside hydrolases (GH61s) or family 33 carbohydrate-binding modules (CBM33s). PMOs have an unusual surface-exposed active site with a tightly bound Cu(II) ion that catalyzes the regioselective hydroxylation of crystalline cellulose, leading to glycosidic bond cleavage. The genomes of some cellulolytic fungi contain more than 20 genes encoding cellulose-active PMOs, suggesting a diversity of biological activities. PMOs show great promise in reducing the cost of conversion of lignocellulosic biomass to fermentable sugars; however, many questions remain about their reaction mechanism and biological function. This review addresses, in depth, the structural and mechanistic aspects of oxidative depolymerization of cellulose by PMOs and considers their biological function and phylogenetic diversity.
Collapse
Affiliation(s)
- William T Beeson
- Department of Chemistry, University of California, Berkeley, California 94720
| | | | | | | | | |
Collapse
|
128
|
Guillet GL, Gordon JB, Di Francesco GN, Calkins MW, Čižmár E, Abboud KA, Meisel MW, García-Serres R, Murray LJ. A Family of Tri- and Dimetallic Pyridine Dicarboxamide Cryptates: Unusual O,N,O-Coordination and Facile Access to Secondary Coordination Sphere Hydrogen Bonding Interactions. Inorg Chem 2015; 54:2691-704. [DOI: 10.1021/ic502873d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gary L. Guillet
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Jesse B. Gordon
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Gianna N. Di Francesco
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Matthew W. Calkins
- Department
of Physics and the National High Magnetic Field Laboratory, University of Florida, Gainesville, Florida 32611-8440, United States
| | - Erik Čižmár
- Institute
of Physics, Faculty of Science, P.J. Šafárik University, 04154 Košice, Slovakia
| | - Khalil A. Abboud
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Mark W. Meisel
- Department
of Physics and the National High Magnetic Field Laboratory, University of Florida, Gainesville, Florida 32611-8440, United States
| | - Ricardo García-Serres
- Laboratoire
de Chimie de Biologie des Métaux, UMR 5249, Université Joseph Fourier, Grenoble-1, CNRS-CEA, 17 Rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Leslie J. Murray
- Center for Catalysis, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
129
|
Dhar D, Tolman WB. Hydrogen atom abstraction from hydrocarbons by a copper(III)-hydroxide complex. J Am Chem Soc 2015; 137:1322-9. [PMID: 25581555 PMCID: PMC4311965 DOI: 10.1021/ja512014z] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Indexed: 12/17/2022]
Abstract
With the aim of understanding the basis for the high rate of hydrogen atom abstraction (HAT) from dihydroanthracene (DHA) by the complex LCuOH (1; L = N,N'-bis(2,6-diisopropylphenyl)-2,6-pyridinedicarboxamide), the bond dissociation enthalpy of the reaction product LCu(H2O) (2) was determined through measurement of its pK(a) and E(1/2) in THF solution. In so doing, an equilibrium between 2 and LCu(THF) was characterized by UV-vis and EPR spectroscopy and cyclic voltammetry (CV). A high pK(a) of 18.8 ± 1.8 and a low E(1/2) of -0.074 V vs Fc/Fc(+) in THF combined to yield an O-H BDE for 2 of 90 ± 3 kcal mol(-1) that is large relative to values for most transition metal oxo/hydroxo complexes. By taking advantage of the increased stability of 1 observed in 1,2-difluorobenzene (DFB) solvent, the kinetics of the reactions of 1 with a range of substrates with varying BDE values for their C-H bonds were measured. The oxidizing power of 1 was revealed through the accelerated decay of 1 in the presence of the substrates, including THF (BDE = 92 kcal mol(-1)) and cyclohexane (BDE = 99 kcal mol(-1)). CV experiments in THF solvent showed that 1 reacted with THF via rate-determining attack at the THF C-H(D) bonds with a kinetic isotope effect of 10.2. Analysis of the kinetic and thermodynamic data provides new insights into the basis for the high reactivity of 1 and the possible involvement of species like 1 in oxidation catalysis.
Collapse
Affiliation(s)
- Debanjan Dhar
- Department of Chemistry and
Center for Metals in Biocatalysis, University
of Minnesota, 207 Pleasant
Street SE, Minneapolis, Minnesota 55455, United States
| | - William B. Tolman
- Department of Chemistry and
Center for Metals in Biocatalysis, University
of Minnesota, 207 Pleasant
Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
130
|
Pirovano P, Farquhar ER, Swart M, Fitzpatrick AJ, Morgan GG, McDonald AR. Characterization and reactivity of a terminal nickel(III)-oxygen adduct. Chemistry 2015; 21:3785-90. [PMID: 25612563 DOI: 10.1002/chem.201406485] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Indexed: 11/06/2022]
Abstract
High-valent terminal metal-oxygen adducts are hypothesized to be the potent oxidizing reactants in late transition metal oxidation catalysis. In particular, examples of high-valent terminal nickel-oxygen adducts are scarce, meaning there is a dearth in the understanding of such oxidants. A monoanionic Ni(II)-bicarbonate complex has been found to react in a 1:1 ratio with the one-electron oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate, yielding a thermally unstable intermediate in high yield (ca. 95%). Electronic absorption, electronic paramagnetic resonance, and X-ray absorption spectroscopies and density functional theory calculations confirm its description as a low-spin (S = 1/2), square planar Ni(III)-oxygen adduct. This rare example of a high-valent terminal nickel-oxygen complex performs oxidations of organic substrates, including 2,6-di-tert-butylphenol and triphenylphosphine, which are indicative of hydrogen atom abstraction and oxygen atom transfer reactivity, respectively.
Collapse
Affiliation(s)
- Paolo Pirovano
- School of Chemistry and CRANN/AMBER Nanoscience Institute, The University of Dublin, Trinity College, College Green, Dublin 2 (Ireland)
| | | | | | | | | | | |
Collapse
|
131
|
Chen Z, Yin G. The reactivity of the active metal oxo and hydroxo intermediates and their implications in oxidations. Chem Soc Rev 2015; 44:1083-100. [DOI: 10.1039/c4cs00244j] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The relationships of active metal oxo and hydroxo moieties have been summarized with their implications for biological and chemical oxidations.
Collapse
Affiliation(s)
- Zhuqi Chen
- Key Laboratory for Large-Format Battery Materials and System
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Guochuan Yin
- Key Laboratory for Large-Format Battery Materials and System
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| |
Collapse
|
132
|
Abstract
In order to address how diverse metalloprotein active sites, in particular those containing iron and copper, guide O₂binding and activation processes to perform diverse functions, studies of synthetic models of the active sites have been performed. These studies have led to deep, fundamental chemical insights into how O₂coordinates to mono- and multinuclear Fe and Cu centers and is reduced to superoxo, peroxo, hydroperoxo, and, after O-O bond scission, oxo species relevant to proposed intermediates in catalysis. Recent advances in understanding the various factors that influence the course of O₂activation by Fe and Cu complexes are surveyed, with an emphasis on evaluating the structure, bonding, and reactivity of intermediates involved. The discussion is guided by an overarching mechanistic paradigm, with differences in detail due to the involvement of disparate metal ions, nuclearities, geometries, and supporting ligands providing a rich tapestry of reaction pathways by which O₂is activated at Fe and Cu sites.
Collapse
|
133
|
Kumar P, Kumar V, Gupta R. Arene-based fluorescent probes for the selective detection of iron. RSC Adv 2015. [DOI: 10.1039/c5ra20760f] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amide based probes containing phenyl (L1), naphthyl (L2) and anthracenyl (L3) groups were screened towards metal ions. Probes L2 and L3 display sensing for Fe2+ and Fe3+ ions. The L3–Fe3+ system is shown to have potential applications in logic gates and cell imaging.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Vijay Kumar
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Rajeev Gupta
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| |
Collapse
|
134
|
Vinogradov MM, Kozlov YN, Bilyachenko AN, Nesterov DS, Shul'pina LS, Zubavichus YV, Pombeiro AJL, Levitsky MM, Yalymov AI, Shul'pin GB. Alkane oxidation with peroxides catalyzed by cage-like copper(ii) silsesquioxanes. NEW J CHEM 2015. [DOI: 10.1039/c4nj01163e] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper(ii) silsesquioxanes [(PhSiO1.5)12(CuO)4(NaO0.5)4] or [(PhSiO1.5)10(CuO)2(NaO0.5)2] are catalysts for alkane oxidation with H2O2ort-BuOOH.
Collapse
Affiliation(s)
- Mikhail M. Vinogradov
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow 119991
- Russia
- Centro de Química Estrutural
| | - Yuriy N. Kozlov
- Semenov Institute of Chemical Physics
- Russian Academy of Sciences
- Moscow 119991
- Russia
| | - Alexey N. Bilyachenko
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow 119991
- Russia
| | - Dmytro S. Nesterov
- Centro de Química Estrutural
- Complexo I
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
| | - Lidia S. Shul'pina
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow 119991
- Russia
| | - Yan V. Zubavichus
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow 119991
- Russia
- National Research Center “Kurchatov Institute”
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural
- Complexo I
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
| | - Mikhail M. Levitsky
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow 119991
- Russia
| | - Alexey I. Yalymov
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow 119991
- Russia
| | - Georgiy B. Shul'pin
- Semenov Institute of Chemical Physics
- Russian Academy of Sciences
- Moscow 119991
- Russia
| |
Collapse
|
135
|
Maiti BK, Maia LB, Pal K, Pakhira B, Avilés T, Moura I, Pauleta SR, Nuñez JL, Rizzi AC, Brondino CD, Sarkar S, Moura JJG. One Electron Reduced Square Planar Bis(benzene-1,2-dithiolato) Copper Dianionic Complex and Redox Switch by O2/HO–. Inorg Chem 2014; 53:12799-808. [DOI: 10.1021/ic501742j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Biplab K. Maiti
- UCIBIO@REQUIMTE,
Departamento de Química, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Luisa B. Maia
- UCIBIO@REQUIMTE,
Departamento de Química, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Kuntal Pal
- School of Chemistry, The University of Manchester, Manchester, M13 9PL, U.K
| | - Bholanath Pakhira
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, West Bengal, India
| | - Teresa Avilés
- UCIBIO@REQUIMTE,
Departamento de Química, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Isabel Moura
- UCIBIO@REQUIMTE,
Departamento de Química, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Sofia R. Pauleta
- UCIBIO@REQUIMTE,
Departamento de Química, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José L. Nuñez
- Departamento de Física, Facultad de Bioquímica
y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - Alberto C. Rizzi
- Departamento de Física, Facultad de Bioquímica
y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - Carlos D. Brondino
- Departamento de Física, Facultad de Bioquímica
y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - Sabyasachi Sarkar
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, West Bengal, India
| | - José J. G. Moura
- UCIBIO@REQUIMTE,
Departamento de Química, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
136
|
Lee JY, Peterson RL, Ohkubo K, Garcia-Bosch I, Himes RA, Woertink J, Moore CD, Solomon EI, Fukuzumi S, Karlin KD. Mechanistic insights into the oxidation of substituted phenols via hydrogen atom abstraction by a cupric-superoxo complex. J Am Chem Soc 2014; 136:9925-37. [PMID: 24953129 PMCID: PMC4102632 DOI: 10.1021/ja503105b] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To obtain mechanistic insights into the inherent reactivity patterns for copper(I)-O2 adducts, a new cupric-superoxo complex [(DMM-tmpa)Cu(II)(O2(•-))](+) (2) [DMM-tmpa = tris((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)amine] has been synthesized and studied in phenol oxidation-oxygenation reactions. Compound 2 is characterized by UV-vis, resonance Raman, and EPR spectroscopies. Its reactions with a series of para-substituted 2,6-di-tert-butylphenols (p-X-DTBPs) afford 2,6-di-tert-butyl-1,4-benzoquinone (DTBQ) in up to 50% yields. Significant deuterium kinetic isotope effects and a positive correlation of second-order rate constants (k2) compared to rate constants for p-X-DTBPs plus cumylperoxyl radical reactions indicate a mechanism that involves rate-limiting hydrogen atom transfer (HAT). A weak correlation of (k(B)T/e) ln k2 versus E(ox) of p-X-DTBP indicates that the HAT reactions proceed via a partial transfer of charge rather than a complete transfer of charge in the electron transfer/proton transfer pathway. Product analyses, (18)O-labeling experiments, and separate reactivity employing the 2,4,6-tri-tert-butylphenoxyl radical provide further mechanistic insights. After initial HAT, a second molar equiv of 2 couples to the phenoxyl radical initially formed, giving a Cu(II)-OO-(ArO') intermediate, which proceeds in the case of p-OR-DTBP substrates via a two-electron oxidation reaction involving hydrolysis steps which liberate H2O2 and the corresponding alcohol. By contrast, four-electron oxygenation (O-O cleavage) mainly occurs for p-R-DTBP which gives (18)O-labeled DTBQ and elimination of the R group.
Collapse
Affiliation(s)
- Jung Yoon Lee
- Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Rijs NJ, Weiske T, Schlangen M, Schwarz H. On divorcing isomers, dissecting reactivity, and resolving mechanisms of propane CH and aryl CX (X=halogen) bond activations mediated by a ligated copper(III) oxo complex. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
138
|
Boyce DW, Salmon D, Tolman WB. Linkage isomerism in transition-metal complexes of mixed (arylcarboxamido)(arylimino)pyridine ligands. Inorg Chem 2014; 53:5788-96. [PMID: 24819403 PMCID: PMC4045151 DOI: 10.1021/ic500638z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Indexed: 01/18/2023]
Abstract
The synthesis of a series of asymmetric mixed 2,6-disubstituted (arylcarboxamido)(arylimino)pyridine ligands and their coordination chemistry toward a series of divalent first-row transition metals (Cu, Co, and Zn) have been explored. Complexes featuring both anionic N,N',N″-carboxamido and neutral O,N,N'-carboxamide coordination have been prepared and characterized by X-ray crystallography, cyclic voltammetry, and UV-visible and EPR spectroscopy. Specifically, (R)LM(X) (M = Cu; X = Cl(-), OAc(-)) and (R)L(H)MX2 (M = Cu, Co, Zn; X = Cl(-), SbF6(-)) complexes that feature N,N',N″- or O,N,N'-coordination are presented. Base-induced linkage isomerization from O,N,N'-carboxamide to N,N',N″-carboxamido coordination is also confirmed by multiple forms of spectroscopy.
Collapse
Affiliation(s)
- David W. Boyce
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Debra
J. Salmon
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - William B. Tolman
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
139
|
Halvagar M, Solntsev PV, Lim H, Hedman B, Hodgson KO, Solomon E, Cramer CJ, Tolman WB. Hydroxo-bridged dicopper(II,III) and -(III,III) complexes: models for putative intermediates in oxidation catalysis. J Am Chem Soc 2014; 136:7269-72. [PMID: 24821432 PMCID: PMC4046753 DOI: 10.1021/ja503629r] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Indexed: 12/21/2022]
Abstract
A macrocyclic ligand (L(4-)) comprising two pyridine(dicarboxamide) donors was used to target reactive copper species relevant to proposed intermediates in catalytic hydrocarbon oxidations by particulate methane monooxygenase and heterogeneous zeolite systems. Treatment of LH4 with base and Cu(OAc)2·H2O yielded (Me4N)2[L2Cu4(μ4-O)] (1) or (Me4N)[LCu2(μ-OH)] (2), depending on conditions. Complex 2 was found to undergo two reversible 1-electron oxidations via cyclic voltammetry and low-temperature chemical reactions. On the basis of spectroscopy and theory, the oxidation products were identified as novel hydroxo-bridged mixed-valent Cu(II)Cu(III) and symmetric Cu(III)2 species, respectively, that provide the first precedence for such moieties as oxidation catalysis intermediates.
Collapse
Affiliation(s)
- Mohammad
Reza Halvagar
- Department
of Chemistry, Center for Metals in Biocatalysis, Chemical Theory Center,
and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Pavlo V. Solntsev
- Department
of Chemistry, Center for Metals in Biocatalysis, Chemical Theory Center,
and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Hyeongtaek Lim
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Britt Hedman
- Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Keith O. Hodgson
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Edward
I. Solomon
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Christopher J. Cramer
- Department
of Chemistry, Center for Metals in Biocatalysis, Chemical Theory Center,
and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - William B. Tolman
- Department
of Chemistry, Center for Metals in Biocatalysis, Chemical Theory Center,
and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
140
|
Ohzu S, Ishizuka T, Kotani H, Kojima T. Reactivity of a Ru(iii)–hydroxo complex in substrate oxidation in water. Chem Commun (Camb) 2014; 50:15018-21. [DOI: 10.1039/c4cc07488b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A mononuclear RuIII–OH complex oxidizes substrates such as hydroquinones in water through a pre-equilibrium process based on adduct formation by hydrogen bonding between the RuIII–OH complex and the substrates. The reaction mechanism switches from hydrogen atom transfer to electron transfer depending on the oxidation potential of substrates.
Collapse
Affiliation(s)
- Shingo Ohzu
- Department of Chemistry
- Faculty of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba, Japan
| | - Tomoya Ishizuka
- Department of Chemistry
- Faculty of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba, Japan
| | - Hiroaki Kotani
- Department of Chemistry
- Faculty of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba, Japan
| | - Takahiko Kojima
- Department of Chemistry
- Faculty of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba, Japan
| |
Collapse
|
141
|
Bansal D, Kumar G, Hundal G, Gupta R. Mononuclear complexes of amide-based ligands containing appended functional groups: role of secondary coordination spheres on catalysis. Dalton Trans 2014; 43:14865-75. [DOI: 10.1039/c4dt02079k] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Coordination complexes of amide-based ligands with appended heterocyclic rings create a hydrogen bonding cavity that effectively binds the substrate(s). Such cavity-based complexes function as reusable and heterogeneous catalysts for various organic transformations.
Collapse
Affiliation(s)
- Deepak Bansal
- Department of Chemistry
- University of Delhi
- Delhi-110007, India
| | - Gulshan Kumar
- Department of Chemistry
- University of Delhi
- Delhi-110007, India
| | | | - Rajeev Gupta
- Department of Chemistry
- University of Delhi
- Delhi-110007, India
| |
Collapse
|
142
|
Saouma CT, Mayer JM. Do Spin State and Spin Density Affect Hydrogen Atom Transfer Reactivity? Chem Sci 2014; 5. [PMID: 24416504 DOI: 10.1039/c3sc52664j] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The prevalence of hydrogen atom transfer (HAT) reactions in chemical and biological systems has prompted much interest in establishing and understanding the underlying factors that enable this reactivity. Arguments have been advanced that the electronic spin state of the abstractor and/or the spin-density at the abstracting atom are critical for HAT reactivity. This is consistent with the intuition derived from introductory organic chemistry courses. Herein we present an alternative view on the role of spin state and spin-density in HAT reactions. After a brief introduction, the second section introduces a new and simple fundamental kinetic analysis, which shows that unpaired spin cannot be the dominant effect. The third section examines published computational studies of HAT reactions, which indicates that the spin state affects these reactions indirectly, primarily via changes in driving force. The essay concludes with a broader view of HAT reactivity, including indirect effects of spin and other properties on reactivity. It is suggested that some of the controversy in this area may arise from the diversity of HAT reactions and their overlap with proton-coupled electron transfer (PCET) reactions.
Collapse
Affiliation(s)
- Caroline T Saouma
- Department of Chemistry, University of Washington, Campus Box 351700, Seattle, WA, USA
| | - James M Mayer
- Department of Chemistry, University of Washington, Campus Box 351700, Seattle, WA, USA
| |
Collapse
|
143
|
Hossain MM, Tseng MC, Lee CR, Shyu SG. Synthesis, Structure, and Reactivity of [Cu(phen)2]ClO2: Aerobic Oxidation of Cl-to ClO2-at Room Temperature. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201301287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
144
|
Ding HY, Cheng HJ, Wang F, Liu DX, Li HX, Fang YY, Zhao W, Lang JP. [(bmppy)Cu(μ-I)]2 (bmppy = 2,6-bis(1-methyl-1H-pyrazol-3-yl)pyridine): Synthesis, crystal structure and its catalytic performance for MMA polymerization. J Organomet Chem 2013. [DOI: 10.1016/j.jorganchem.2013.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
145
|
Halvagar MR, Tolman WB. Isolation of a 2-hydroxytetrahydrofuran complex from copper-promoted hydroxylation of THF. Inorg Chem 2013; 52:8306-8. [PMID: 23886308 DOI: 10.1021/ic401446s] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A complex of a binucleating macrocyclic ligand comprising a [Cu(II)(μ-OH)Na](2+) core reacts with CuI in THF/CH3CN to yield a novel species with a deprotonated 2-hydroxytetrahydrofuran (THF-2-ol) bridging between Cu(II) and Na(I) ions. The complexes were characterized by X-ray crystallography, electron paramagnetic resonance spectroscopy, and electrospray ionization mass spectrometry. (18)O-labeling studies support incorporation of the O atom from μ-OH into the coordinated THF-2-ol ligand.
Collapse
Affiliation(s)
- Mohammad Reza Halvagar
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | | |
Collapse
|
146
|
Wang D, Lindeman SV, Fiedler AT. Intramolecular Hydrogen Bonding in CuIIComplexes with 2,6-Pyridinedicarboxamide Ligands: Synthesis, Structural Characterization, and Physical Properties. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201300579] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
147
|
Ray K, Heims F, Pfaff FF. Terminal Oxo and Imido Transition-Metal Complexes of Groups 9-11. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201300223] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
148
|
Hemsworth GR, Davies GJ, Walton PH. Recent insights into copper-containing lytic polysaccharide mono-oxygenases. Curr Opin Struct Biol 2013; 23:660-8. [PMID: 23769965 DOI: 10.1016/j.sbi.2013.05.006] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/18/2022]
Abstract
Recently the role of oxidative enzymes in the degradation of polysaccharides by saprophytic bacteria and fungi was uncovered, challenging the classical model of polysaccharide degradation of being solely via a hydrolytic pathway. 3D structural analyses of lytic polysaccharide mono-oxygenases of both bacterial AA10 (formerly CBM33) and fungal AA9 (formerly GH61) enzymes revealed structures with β-sandwich folds containing an active site with a metal coordinated by an N-terminal histidine. Following some initial confusion about the identity of the metal ion it has now been shown that these enzymes are copper-dependent oxygenases. Here we assess recent developments in the academic literature, focussing on the structures of the copper active sites. We provide critical comparisons with known small-molecules studies of copper-oxygen complexes and with copper methane monoxygenase, another of nature's powerful copper oxygenases.
Collapse
Affiliation(s)
- Glyn R Hemsworth
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | | | | |
Collapse
|
149
|
Tehranchi J, Donoghue PJ, Cramer CJ, Tolman WB. Reactivity of (Dicarboxamide)M(II)-OH (M = Cu, Ni) Complexes: Reaction with Acetonitrile to Yield M(II)-Cyanomethides. Eur J Inorg Chem 2013; 2013. [PMID: 24415908 DOI: 10.1002/ejic.201300328] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The complexes (Bu4N)(LMeM(II)-OH) (LMe = 2,6-dimethylphenyl-substituted pyridine(dicarboxamide); M = Cu or Ni) react with CH3CN to yield (Bu4N)(LMeM-CH2CN), novel cyanomethide complexes that were fully characterized, including by X-ray crystallography. These conversions contrast with the usual reactions of metal-hydroxide complexes with nitriles, which typically involve attack at the nitrile carbon and formation of amides or carboxylic acids. Kinetic studies (M = Cu) revealed a first-order dependence on the complex and a kinetic isotope effect (k(CH3CN)/k(CD3CN) of 4. Various mechanisms involving either intra- or intermolecular deprotonation steps are proposed. In addition, (Bu4N)(LMeCu-OH) was oxidized by Fc+PF6- to a proposed Cu(III) complex LMeCuOH at low temperature, and comparisons of its stability and reactivity with dihydroanthracene were drawn to its previously described congener having isopropyl substituents on the phenyl rings of the supporting ligand. The cyanomethide complex (Bu4N)(LMeCu(CH2CN)) also was reversibly oxidized both electrochemically (E1/2 = -0.345 V vs. Fc/Fc+) and chemically (Fc+PF6-, -25 °C). The product was formulated as LMeCu(III)(CH2CN), a novel Cu(III)-alkyl complex relevant to such species proposed during copper-catalyzed organic reactions.
Collapse
Affiliation(s)
- Jacqui Tehranchi
- Department of Chemistry, Center for Metals and Biocatalysis, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, , Homepage: www.chem.umn.edu/groups/tolman
| | - Patrick J Donoghue
- Department of Chemistry, Center for Metals and Biocatalysis, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, , Homepage: www.chem.umn.edu/groups/tolman
| | - Christopher J Cramer
- Department of Chemistry, Center for Metals and Biocatalysis, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, , Homepage: www.chem.umn.edu/groups/tolman
| | - William B Tolman
- Department of Chemistry, Center for Metals and Biocatalysis, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, , Homepage: www.chem.umn.edu/groups/tolman
| |
Collapse
|
150
|
Kumar P, Nagarajan R, Sarangi R. Quantitative X-ray Absorption and Emission Spectroscopies: Electronic Structure Elucidation of Cu 2S and CuS. JOURNAL OF MATERIALS CHEMISTRY. C 2013; 1:2448-2454. [PMID: 23781327 PMCID: PMC3683299 DOI: 10.1039/c3tc00639e] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The electronic structures of Cu2S and CuS have been under intense scrutiny, with the aim of understanding the relationship between their electronic structures and commercially important physical properties. Here, X-ray absorption and emission spectroscopic data have been analyzed using a quantitative, molecular orbital (MO) based approach to understand the electronic structure of these two complex systems. Cu2S is shown to have a significant amount of Cu2+ sites and therefore Cu0 centers. The presence of low-valent Cu is correlated with the electrical conductivity of Cu2S, especially at high temperatures. CuS is shown to have tetrahedral Cu2+ and trigonal Cu1+ sites, with crystal planes that have alternating high and low charge on the Cu centers. These alternating charges may contribute to internal energy transitions required for photoluminescence properties. The in-depth electronic structure solutions presented here not only solve a complicated much-debated problem, but also demonstrate the strength of quantitative MO based approach to X-ray spectroscopies.
Collapse
Affiliation(s)
- Prashant Kumar
- Materials Chemistry Group, Department of Chemistry, University of Delhi, Delhi, India, 110007 Fax: +91-11-27666606; Tel: +91-27662650
| | - Rajamani Nagarajan
- Materials Chemistry Group, Department of Chemistry, University of Delhi, Delhi, India, 110007 Fax: +91-11-27666606; Tel: +91-27662650
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Laboratory, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA. Fax: 650-926-4100; Tel: 650-926-4621
| |
Collapse
|