101
|
Zhao XZ, Semenova EA, Liao C, Nicklaus M, Pommier Y, Burke TR. Biotinylated biphenyl ketone-containing 2,4-dioxobutanoic acids designed as HIV-1 integrase photoaffinity ligands. Bioorg Med Chem 2006; 14:7816-25. [PMID: 16908168 DOI: 10.1016/j.bmc.2006.07.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 07/28/2006] [Accepted: 07/29/2006] [Indexed: 10/24/2022]
Abstract
The diketo acid (DKA) class of HIV-1 integrase inhibitors are thought to function by chelating divalent metal ions within the enzyme catalytic center. However, differences in mutations conferring resistance among sub-families of DKA inhibitors suggest that multiple binding orientations may exist. In order to facilitate identification of DKA-binding sites, biotin-tagged biphenyl ketone-containing 2,4-dioxobutanoic acids were prepared as DKA photoaffinity probes. Introduction of biotin was obtained by means of Huisgen [3+2] cycloaddition 'click chemistry.' Two photoprobes, 5a and 5b, were prepared bearing short and long linker segments, respectively, between the biotin and DKA nucleus. The greatest inhibitory potency was shown by 5b, which inhibited 3'-processing and strand transfer reactions with IC50 values of > 333 microM and 12.4 microM, respectively. In cross-linking assays designed to measure disruption of substrate DNA binding, the photoprobes behaved similarly to a reference DKA inhibitor. Analogues 5a and 5b represent novel photoaffinity ligands, which may be useful in clarifying the HIV-1 binding interactions of DKA inhibitors.
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Laboratory of Medicinal Chemistry, CCR, NCI, NIH, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
102
|
Abstract
HIV infection is the leading cause of death worldwide and despite major advances in treatment, more new cases were diagnosed in 2004 than any previous year. Current treatment regimens are based on the use of two or more drugs from two or more classes of inhibitors termed highly active antiretroviral therapy (HAART). Although HAART is capable of suppressing viral loads to undetectable levels, problems of toxicity, patient adherence, and particularly the emergence of drug-resistant viruses continues to spur the development of new chemotherapeutics to combat HIV. Clinical candidates from the four existing classes of inhibitors are presented in this review along with lead compounds against new viral targets, with special emphasis on HIV integrase.
Collapse
Affiliation(s)
- D Christopher Meadows
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
103
|
Walker MA, Johnson T, Ma Z, Zhang Y, Banville J, Remillard R, Plamondon S, Pendri A, Wong H, Smith D, Torri A, Samanta H, Lin Z, Deminie C, Terry B, Krystal M, Meanwell N. Exploration of the diketoacid integrase inhibitor chemotype leading to the discovery of the anilide-ketoacids chemotype. Bioorg Med Chem Lett 2006; 16:5818-21. [PMID: 16971121 DOI: 10.1016/j.bmcl.2006.08.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 08/11/2006] [Accepted: 08/15/2006] [Indexed: 11/24/2022]
Abstract
Integrase is one of three enzymes expressed by HIV and represents a validated target for therapy. A previous study of the diketoacid-based chemotype suggested that there are two aryl-binding domains on integrase. In this study, modifications to the indole-based diketoacid chemotype are explored. It is demonstrated that the indole group can be replaced with secondary but not tertiary (e.g., N-methyl) aniline-based amides without sacrificing in vitro inhibitory activity. The difference in activity between the secondary and tertiary amides is most likely due to the opposite conformational preferences of the amide bonds, s-trans for the secondary-amide and s-cis for the tertiary-amide. However, it was found that the conformational preference of the tertiary amide can be reversed by incorporating the amide nitrogen atom into an indoline heterocycle, resulting in very potent integrase inhibitors.
Collapse
Affiliation(s)
- Michael A Walker
- Department of Medicinal Chemistry, Pharmaceutical Research Institute, Bristol-Myers Squibb, The Richard L Gelb Center for Pharmaceutical Research and Development, 5 Research Parkway Wallingford, CT 06492, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Kawasuji T, Yoshinaga T, Sato A, Yodo M, Fujiwara T, Kiyama R. A platform for designing HIV integrase inhibitors. Part 1: 2-hydroxy-3-heteroaryl acrylic acid derivatives as novel HIV integrase inhibitor and modeling of hydrophilic and hydrophobic pharmacophores. Bioorg Med Chem 2006; 14:8430-45. [PMID: 17010623 DOI: 10.1016/j.bmc.2006.08.044] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 08/28/2006] [Accepted: 08/29/2006] [Indexed: 11/17/2022]
Abstract
We present a novel series of HIV integrase inhibitors, showing IC(50)s ranging from 0.01 to over 370microM in an enzymatic assay. Furthermore, pharmacophore modeling study for the inhibitors was carried out to elucidate the structure-activity relationships. Finally, we found a 3D-pharmacophore model, which is composed of a hydrophilic and a hydrophobic domain, providing valuable information for designing other novel types of integrase inhibitors.
Collapse
Affiliation(s)
- Takashi Kawasuji
- Shionogi Research Laboratories, Shionogi & Company, Ltd, Sagisu, Fukushima-ku, Osaka 553-0002, Japan.
| | | | | | | | | | | |
Collapse
|
105
|
Kehlenbeck S, Betz U, Birkmann A, Fast B, Göller AH, Henninger K, Lowinger T, Marrero D, Paessens A, Paulsen D, Pevzner V, Schohe-Loop R, Tsujishita H, Welker R, Kreuter J, Rübsamen-Waigmann H, Dittmer F. Dihydroxythiophenes are novel potent inhibitors of human immunodeficiency virus integrase with a diketo acid-like pharmacophore. J Virol 2006; 80:6883-94. [PMID: 16809294 PMCID: PMC1489040 DOI: 10.1128/jvi.00306-06] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified dihydroxythiophenes (DHT) as a novel series of human immunodeficiency virus type 1 (HIV-1) integrase inhibitors with broad antiviral activities against different HIV isolates in vitro. DHT were discovered in a biochemical integrase high-throughput screen searching for inhibitors of the strand transfer reaction of HIV-1 integrase. DHT are selective inhibitors of integrase that do not interfere with virus entry, as shown by the inhibition of a vesicular stomatitis virus G-pseudotyped retroviral system. Moreover, in quantitative real-time PCR experiments, no effect on the synthesis of viral cDNA could be detected but rather an increase in the accumulation of 2-long-terminal-repeat cycles was detected. This suggests that the integration of viral cDNA is blocked. Molecular modeling and the structure activity relationship of DHT demonstrate that our compound fits into a two-metal-binding motif that has been suggested as the essential pharmacophore for diketo acid (DKA)-like strand transfer inhibitors (Grobler et al., Proc. Natl. Acad. Sci. USA 99:6661-6666, 2002.). This notion is supported by the profiling of DHT on retroviral vectors carrying published resistance mutations for DKA-like inhibitors where DHT showed partial cross-resistance. This suggests that DHT bind to a common site in the catalytic center of integrase, albeit with an altered binding mode. Taken together, our findings indicate that DHT are novel selective strand transfer inhibitors of integrase with a pharmacophore homologous to DKA-like inhibitors.
Collapse
Affiliation(s)
- S Kehlenbeck
- Antiinfective Research, Virology, Pharma Research Center, Bayer HealthCare AG, D-42096 Wuppertal, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Li X, Vince R. Synthesis and biological evaluation of purine derivatives incorporating metal chelating ligands as HIV integrase inhibitors. Bioorg Med Chem 2006; 14:5742-55. [PMID: 16753300 DOI: 10.1016/j.bmc.2006.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 04/03/2006] [Accepted: 04/06/2006] [Indexed: 10/24/2022]
Abstract
Because of its essential role in HIV replication and lack of human counterpart, HIV integrase is an attractive target for the development of novel anti-AIDS agents. Among the recently developed integrase inhibitors, only the alpha,gamma-diketo acid (DKA) compounds were biologically validated as potent and selective integrase inhibitors. The general structure of DKAs contains a diketo acid moiety as the Mg(2+) chelating pharmacophore, and an adjacent aryl group to provide selectivity. Numerous structure-activity relationship (SAR) studies on DKAs have been conducted, which generally involved substituting the carboxylate group or the aryl group. Our objective was to investigate the SARs of the DKA molecule by incorporating a purine ring in the aryl moiety and replacing the labile diketo acid moiety with other divalent metal (Me(2+)) chelating ligands. A series of amide substituted purine derivatives were synthesized via palladium-catalyzed amidation reactions, and their biological activities against HIV integrase were evaluated. These purine derivatives showed anti-integrase activity at low micromolar range. The biological results indicated that the type of Me(2+) ligands, two-point ligand picolinamide or three-point ligand 8-hydroxy-quinoline-7-carboxamide, affected inhibitory potency depending on the substitution position of the para-fluorobenzyl group. The C(6)-,C(8)-dipicolinamide substituted purine (32) exhibited the best potency among this series.
Collapse
Affiliation(s)
- Xingnan Li
- Center for Drug Design, Academic Health Center, and Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, 55455, USA
| | | |
Collapse
|
107
|
Xu YS, Zeng CC, Li XM, Zhong RG, Zeng Y. Design, Synthesis and Cu2+ Recognition ofβ-Diketoacid and Quinoxalone Derivatives Bearing Caffeoyl or Galloyl Moieties Linked by Arylamide as Potential HIV Integrase Inhibitors. CHINESE J CHEM 2006. [DOI: 10.1002/cjoc.200690203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
108
|
Walker MA, Johnson T, Ma Z, Banville J, Remillard R, Kim O, Zhang Y, Staab A, Wong H, Torri A, Samanta H, Lin Z, Deminie C, Terry B, Krystal M, Meanwell N. Triketoacid inhibitors of HIV-integrase: A new chemotype useful for probing the integrase pharmacophore. Bioorg Med Chem Lett 2006; 16:2920-4. [PMID: 16546383 DOI: 10.1016/j.bmcl.2006.03.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 02/28/2006] [Accepted: 03/01/2006] [Indexed: 11/17/2022]
Abstract
Integrase is one of three enzymes expressed by HIV and represents a validated target for therapy. This study reports on the discovery of a new triketoacid-based chemotype that selectively inhibits the strand transfer reaction of HIV-integrase. SAR studies showed that the template binds to integrase in a manner similar to the diketoacid-based inhibitors. Moreover, comparison of the new chemotype to two different diketoacid templates led us to propose two aryl-binding domains in the inhibitor binding site. This information was used to design a new diketoacid template with improved activity against the enzyme.
Collapse
Affiliation(s)
- Michael A Walker
- Department of Medicinal Chemistry, Pharmaceutical Research Institute, Bristol-Myers Squibb, The Richard L Gelb Center for Pharmaceutical Research and Development, 5 Research Parkway Wallingford, CT 06492, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Maurin C, Bailly F, Mbemba G, Mouscadet JF, Cotelle P. Design, synthesis, and anti-integrase activity of catechol–DKA hybrids. Bioorg Med Chem 2006; 14:2978-84. [PMID: 16412645 DOI: 10.1016/j.bmc.2005.12.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 11/24/2005] [Accepted: 12/09/2005] [Indexed: 11/25/2022]
Abstract
Following the discovery of diketoacid-containing compounds as HIV-1 integrase (IN) inhibitors, a plethora of new molecules have been published leading to four drugs under clinical trial. In an attempt to rationally design new dimeric diketoacids (DKAs) targeting two divalent metal ions on the active site of IN, potent inhibitors against purified IN were found with varied selectivity for strand transfer. In this context, we designed and synthesized a new series of catechol-DKA hybrids. These compounds presented micromolar anti-integrase activities with moderate antiviral properties.
Collapse
Affiliation(s)
- Cédric Maurin
- Laboratoire de Chimie Organique et Macromoléculaire, UMR CNRS 8009, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq, France
| | | | | | | | | |
Collapse
|
110
|
Li X, Vince R. Conformationally restrained carbazolone-containing α,γ-diketo acids as inhibitors of HIV integrase. Bioorg Med Chem 2006; 14:2942-55. [PMID: 16386908 DOI: 10.1016/j.bmc.2005.12.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 12/04/2005] [Accepted: 12/05/2005] [Indexed: 10/25/2022]
Abstract
Since alpha,gamma-diketo acid (DKA) compounds were identified as potent and selective inhibitors for HIV integrase, numerous structural modification studies have been carried out to search for a clinical candidate as a supplement for the highly active antiretroviral therapy regimen. Due to the lack of structural information on inhibitor-integrase interactions, a comprehensive structure-activity relationship study is necessary. Most of the reported modification studies on the key alpha,gamma-diketo acid pharmacophore focused on substituting the carboxylate moiety with its bioisosteres or other electron-pair bearing heterocycles. We were interested in studying the conformation and geometry of the central diketo moiety. A series of carbazolone-containing alpha,gamma-diketo acids were designed and synthesized by applying conformational restraint onto the open-chain form of the diketo acid. These compounds showed anti-integrase activity in the low micromolar range, and integrase assay results indicated that the geometry of the diketo acid moiety is crucial to potency. Carbazol-1-one containing DKA analogs (7-8) showed a 2- to 3-fold increase in activity compared with those of carbazol-4-one containing DKA analogs (5 and 6). Alkylation of carbazol-4-one DKA nitrogen (6a-c) led to a loss of activity, suggesting this nitrogen atom may directly interact with the active site of integrase. The halogens (7b-d) and para-fluorobenzyl substituents (8a-d) on carbazol-1-one ring had little effect on potency.
Collapse
Affiliation(s)
- Xingnan Li
- Department of Medicinal Chemistry, College of Pharmacy, and Center for Drug Design, Academic Health Center, University of Minnesota, 8-123A WDH, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| | | |
Collapse
|
111
|
Dismuke DJ, Aiken C. Evidence for a functional link between uncoating of the human immunodeficiency virus type 1 core and nuclear import of the viral preintegration complex. J Virol 2006; 80:3712-20. [PMID: 16571788 PMCID: PMC1440469 DOI: 10.1128/jvi.80.8.3712-3720.2006] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) particles begin their replication upon fusion with the plasma membrane of target cells and release of the viral core into the host cell cytoplasm. Soon thereafter, the viral capsid, which is composed of a polymer of the CA protein, disassociates from the internal ribonucleoprotein complex. While this disassembly process remains poorly understood, the available evidence indicates that proper uncoating of the core is a key step in infection. Defects in uncoating most often lead to a failure of the virus to undergo reverse transcription, resulting in an inability to form a functional viral preintegration complex (PIC). In a previous study, we reported that an HIV-1 mutant containing two substitutions in CA (Q63A/67A) was unusual in that it was poorly infectious yet synthesized normal levels of viral DNA. Here we report that this mutant is impaired for nuclear entry. Quantitative analysis of viral DNA synthesis from infected cells by Southern blotting and real-time PCR revealed that the Q63A/Q67A mutant is impaired in the synthesis of one-long terminal repeat (1-LTR) and 2-LTR circles. Isolation of PICs from acutely infected cells revealed that the Q63A/Q67A mutant produces protein-DNA complexes similar to wild-type in yield and overall composition, but these PICs contained elevated levels of CA and were impaired for integration in vitro. These results demonstrate that mutations in CA can have deleterious effects on both nuclear targeting and integration, suggesting that these steps in the HIV-1 life cycle are dependent on proper uncoating of the viral core.
Collapse
Affiliation(s)
- David J Dismuke
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, A-5301 Medical Center North, Nashville, Tennessee 37232-2363, USA
| | | |
Collapse
|
112
|
Nair V, Uchil V, Neamati N. β-Diketo acids with purine nucleobase scaffolds: Novel, selective inhibitors of the strand transfer step of HIV integrase. Bioorg Med Chem Lett 2006; 16:1920-3. [PMID: 16439124 DOI: 10.1016/j.bmcl.2005.12.093] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 12/22/2005] [Accepted: 12/22/2005] [Indexed: 11/26/2022]
Abstract
The HIV pol gene encodes three viral enzymes that are required for its replication. While drug discovery involving the viral targets, reverse transcriptase and protease, has resulted in useful therapeutic agents, such efforts on HIV integrase have not produced a single FDA-approved drug. In the work focused on the discovery of inhibitors of HIV integrase, we have synthesized new beta-diketo acids with purine nucleobase scaffolds that are potent inhibitors of the strand transfer steps of wild-type HIV-1 integrase.
Collapse
Affiliation(s)
- Vasu Nair
- The Center for Drug Discovery and the Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA.
| | | | | |
Collapse
|
113
|
Chi G, Nair V. Synthetic approaches to nuclease-resistant, nonnatural dinucleotides of anti-HIV integrase interest. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 24:1449-68. [PMID: 16438028 DOI: 10.1080/15257770500265703] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
New, nonnatural dinucleotide 5'-monophosphates with a surrogate isonucleoside component of L-related stereochemistry, have been synthesized. Structures of the target compounds were confirmed by multinuclear NMR spectra (1H, 13C, 31P, COSY), UV hypochromicity, FAB HRMS data and X-ray crystallography. These compounds are totally resistant to cleavage by 3'- and 5'-exonucleases. Dinucleotides of this study with a terminal L-isonucleoside component showed remarkable selectivity for inhibition of the strand transfer step of HIV-1 integrase. To the best of our knowledge, these compounds represent only the second example of this type of selectivity of inhibition of the strand transfer step.
Collapse
Affiliation(s)
- Guochen Chi
- Department of Pharmaceutical and Biomedical Sciences and The Center for Drug Discovery, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
114
|
Di Santo R, Costi R, Roux A, Artico M, Lavecchia A, Marinelli L, Novellino E, Palmisano L, Andreotti M, Amici R, Galluzzo CM, Nencioni L, Palamara AT, Pommier Y, Marchand C. Novel bifunctional quinolonyl diketo acid derivatives as HIV-1 integrase inhibitors: design, synthesis, biological activities, and mechanism of action. J Med Chem 2006; 49:1939-45. [PMID: 16539381 PMCID: PMC2602756 DOI: 10.1021/jm0511583] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The virally encoded integrase protein is an essential enzyme in the life cycle of the HIV-1 virus and represents an attractive and validated target in the development of therapeutics against HIV infection. Drugs that selectively inhibit this enzyme, when used in combination with inhibitors of reverse transcriptase and protease, are believed to be highly effective in suppressing the viral replication. Among the HIV-1 integrase inhibitors, the beta-diketo acids (DKAs) represent a major lead for anti-HIV-1 drug development. In this study, novel bifunctional quinolonyl diketo acid derivatives were designed, synthesized, and tested for their inhibitory ability against HIV-1 integrase. The compounds are potent inhibitors of integrase activity. Particularly, derivative 8 is a potent IN inhibitor for both steps of the reaction (3'-processing and strand transfer) and exhibits both high antiviral activity against HIV-1 infected cells and low cytotoxicity. Molecular modeling studies provide a plausible mechanism of action, which is consistent with ligand SARs and enzyme photo-cross-linking experiments.
Collapse
Affiliation(s)
- Roberto Di Santo
- To whom correspondence should be addressed. R. Di Santo: Phone&Fax: +39-6-49913150. E-mail: . A. Lavecchia: Phone&Fax: +39-81-678613. E-mail, , ,
| | | | | | | | - Antonio Lavecchia
- To whom correspondence should be addressed. R. Di Santo: Phone&Fax: +39-6-49913150. E-mail: . A. Lavecchia: Phone&Fax: +39-81-678613. E-mail, , ,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Guare JP, Wai JS, Gomez RP, Anthony NJ, Jolly SM, Cortes AR, Vacca JP, Felock PJ, Stillmock KA, Schleif WA, Moyer G, Gabryelski LJ, Jin L, Chen IW, Hazuda DJ, Young SD. A series of 5-aminosubstituted 4-fluorobenzyl-8-hydroxy-[1,6]naphthyridine-7-carboxamide HIV-1 integrase inhibitors. Bioorg Med Chem Lett 2006; 16:2900-4. [PMID: 16554152 DOI: 10.1016/j.bmcl.2006.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 02/28/2006] [Accepted: 03/01/2006] [Indexed: 10/24/2022]
Abstract
A series of 5-amino derivatives of 8-hydroxy[1,6]-naphthyridine-7-carboxamide exhibiting sub-micromolar potency against replication of HIV-1 in cell culture was identified. One of these analogs, compound 12, displayed excellent pharmacokinetic properties when dosed orally in rats and in monkeys. This compound was demonstrated to be efficacious against replication of simian-human immunodeficiency virus (SHIV) 89.6P in infected rhesus macaques.
Collapse
Affiliation(s)
- James P Guare
- Department of Medicinal Chemistry, Merck Research Laboratories, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Nair V, Chi G, Ptak R, Neamati N. HIV integrase inhibitors with nucleobase scaffolds: discovery of a highly potent anti-HIV agent. J Med Chem 2006; 49:445-7. [PMID: 16420027 PMCID: PMC2518396 DOI: 10.1021/jm0508890] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
HIV integrase is essential for HIV replication. However, there are currently no integrase inhibitors in clinical use for AIDS. We have discovered a conceptually new beta-diketo acid that is a powerful inhibitor of both the 3'-processing and strand transfer steps of HIV-1 integrase. The in vitro anti-HIV data of this inhibitor were remarkable as exemplified by its highly potent antiviral therapeutic efficacy against HIV(TEKI) and HIV-1(NL4)(-)(3) replication in PBMC (TI >4,000 and >10,000, respectively).
Collapse
Affiliation(s)
- Vasu Nair
- The Center for Drug Discovery, Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602, USA.
| | | | | | | |
Collapse
|
117
|
Kuwano R, Yokogi M. Cross-coupling of benzylic acetates with arylboronic acids: one-pot transformation of benzylic alcohols to diarylmethanes. Chem Commun (Camb) 2005:5899-901. [PMID: 16317468 DOI: 10.1039/b513372f] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Benzylic acetates reacted with arylboronic acids in the presence of a DPEphos-[Pd(eta3-C3H5)Cl]2 catalyst when tert-amyl alcohol was used as a solvent, and the catalytic cross-couplings produced diarylmethanes in high yields (up to 94% isolated yield).
Collapse
Affiliation(s)
- Ryoichi Kuwano
- Department of Chemistry, Graduate School of Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan.
| | | |
Collapse
|
118
|
Embrey MW, Wai JS, Funk TW, Homnick CF, Perlow DS, Young SD, Vacca JP, Hazuda DJ, Felock PJ, Stillmock KA, Witmer MV, Moyer G, Schleif WA, Gabryelski LJ, Jin L, Chen IW, Ellis JD, Wong BK, Lin JH, Leonard YM, Tsou NN, Zhuang L. A series of 5-(5,6)-dihydrouracil substituted 8-hydroxy-[1,6]naphthyridine-7-carboxylic acid 4-fluorobenzylamide inhibitors of HIV-1 integrase and viral replication in cells. Bioorg Med Chem Lett 2005; 15:4550-4. [PMID: 16102965 DOI: 10.1016/j.bmcl.2005.06.105] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 06/30/2005] [Accepted: 06/30/2005] [Indexed: 10/25/2022]
Abstract
Introduction of a 5,6-dihydrouracil functionality in the 5-position of N-(4-fluorobenzyl)-8-hydroxy-[1,6]naphthyridine-7-carboxamide 1 led to a series of highly active HIV-1 integrase inhibitors. These compounds displayed low nanomolar activity in inhibiting both the strand transfer process of HIV-1 integrase and viral replication in cells. Compound 11 is a 150-fold more potent antiviral agent than 1, with a CIC(95) of 40 nM in the presence of human serum. It displays good pharmacokinetics when dosed in rats and dogs.
Collapse
Affiliation(s)
- Mark W Embrey
- Department of Medicinal Chemistry, Merck Research Laboratories, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Polymethylene Derivatives of Nucleic Bases with ω-Functional Groups: IV. [7-(2-Oxocyclohexyl)-7-oxoheptyl]purines. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2005. [DOI: 10.1007/s11171-005-0035-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
120
|
Sechi M, Sannia L, Carta F, Palomba M, Dallocchio R, Dessì A, Derudas M, Zawahir Z, Neamati N. Design of novel bioisosteres of beta-diketo acid inhibitors of HIV-1 integrase. Antivir Chem Chemother 2005; 16:41-61. [PMID: 15739621 DOI: 10.1177/095632020501600105] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
HIV-1 integrase (IN) is an attractive and validated target for the development of novel therapeutics against AIDS. Significant efforts have been devoted to the identification of IN inhibitors using various methods. In this context, through virtual screening of the NCI database and structure-based drug design strategies, we identified several pharmacophoric fragments and incorporated them on various aromatic or heteroaromatic rings. In addition, we designed and synthesized a series of 5-aryl(heteroaryl)-isoxazole-3-carboxylic acids as biological isosteric analogues of beta-diketo acid containing inhibitors of HIV-1 IN and their derivatives. Further computational docking studies were performed to investigate the mode of interactions of the most active ligands with the IN active site. Results suggested that some of the tested compounds could be considered as lead compounds and suitable for further optimization.
Collapse
Affiliation(s)
- Mario Sechi
- Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Sassari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Costi R, Di Santo R, Artico M, Roux A, Ragno R, Massa S, Tramontano E, La Colla M, Loddo R, Marongiu ME, Pani A, La Colla P. 6-aryl-2,4-dioxo-5-hexenoic acids, novel integrase inhibitors active against HIV-1 multiplication in cell-based assays. Bioorg Med Chem Lett 2004; 14:1745-9. [PMID: 15026063 DOI: 10.1016/j.bmcl.2004.01.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Revised: 12/03/2003] [Accepted: 01/16/2004] [Indexed: 11/22/2022]
Abstract
A series of 6-aryl-2,4-dioxo-5-hexenoic acids, were synthesized and tested against HIV-1 in cell-based assays and against recombinant HIV-1 integrase (rIN) in enzyme assays. Compound 8a showed potent antiretroviral activity (EC(50)=1.5 microM) and significant inhibition against rIN (strand transfer: IC(50)=7.9 microM; 3'-processing: IC(50)=7.0 microM). A preliminary molecular modeling study was carried out to compare the spatial conformation of 8a with those of L-731988 (4) and 5CITEP (7) in the IN core.
Collapse
Affiliation(s)
- Roberta Costi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Studi Farmaceutici, Università degli Studi di Roma 'La Sapienza', P. le A. Moro 5, I-00185 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Zhang X, Marchand C, Pommier Y, Burke TR. Design and synthesis of photoactivatable aryl diketo acid-containing HIV-1 integrase inhibitors as potential affinity probes. Bioorg Med Chem Lett 2004; 14:1205-7. [PMID: 14980666 DOI: 10.1016/j.bmcl.2003.12.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 12/05/2003] [Accepted: 12/12/2003] [Indexed: 11/15/2022]
Abstract
Aryl diketo acids (ADKs) represent an important new class of HIV-1 integrase (IN) inhibitors. In order to facilitate examination of the structural basis underlying IN?ADK interaction, biphenyl ketone and phenyl azide photophores were incorporated into ADK structures. Of particular note is the novel dual utilization of azide and phenyketone moieties for both enzyme recognition and for crosslinking. The resulting analogues maintained low micromolar inhibitory potency against IN in recombinant in vitro assays. These potential HIV-1 integrase photoaffinity labels may provide useful tools for studying enzyme interactions of the ADK inhibitor class.
Collapse
Affiliation(s)
- Xuechun Zhang
- Laboratory of Medicinal Chemistry, Center for Cancer Research, NCI-Frederick, PO Box B, Bldg. 376 Boyles Street, Frederick, MD 21702-1201, USA
| | | | | | | |
Collapse
|
123
|
Hazuda DJ, Anthony NJ, Gomez RP, Jolly SM, Wai JS, Zhuang L, Fisher TE, Embrey M, Guare JP, Egbertson MS, Vacca JP, Huff JR, Felock PJ, Witmer MV, Stillmock KA, Danovich R, Grobler J, Miller MD, Espeseth AS, Jin L, Chen IW, Lin JH, Kassahun K, Ellis JD, Wong BK, Xu W, Pearson PG, Schleif WA, Cortese R, Emini E, Summa V, Holloway MK, Young SD. A naphthyridine carboxamide provides evidence for discordant resistance between mechanistically identical inhibitors of HIV-1 integrase. Proc Natl Acad Sci U S A 2004; 101:11233-8. [PMID: 15277684 PMCID: PMC509174 DOI: 10.1073/pnas.0402357101] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The increasing incidence of resistance to current HIV-1 therapy underscores the need to develop antiretroviral agents with new mechanisms of action. Integrase, one of three viral enzymes essential for HIV-1 replication, presents an important yet unexploited opportunity for drug development. We describe here the identification and characterization of L-870,810, a small-molecule inhibitor of HIV-1 integrase with potent antiviral activity in cell culture and good pharmacokinetic properties. L-870,810 is an inhibitor with an 8-hydroxy-(1,6)-naphthyridine-7-carboxamide pharmacophore. The compound inhibits HIV-1 integrase-mediated strand transfer, and its antiviral activity in vitro is a direct consequence of this ascribed effect on integration. L-870,810 is mechanistically identical to previously described inhibitors from the diketo acid series; however, viruses selected for resistance to L-870,810 contain mutations (integrase residues 72, 121, and 125) that uniquely confer resistance to the naphthyridine. Conversely, mutations associated with resistance to the diketo acid do not engender naphthyridine resistance. Importantly, the mutations associated with resistance to each of these inhibitors map to distinct regions within the integrase active site. Therefore, we propose a model of the two inhibitors that is consistent with this observation and suggests specific interactions with discrete binding sites for each ligand. These studies provide a structural basis and rationale for developing integrase inhibitors with the potential for unique and nonoverlapping resistance profiles.
Collapse
Affiliation(s)
- Daria J Hazuda
- Department of Biological Chemistry, Merck Research Laboratories, P.O. Box 4, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Maurin C, Bailly F, Cotelle P. Improved preparation and structural investigation of 4-aryl-4-oxo-2-hydroxy-2-butenoic acids and methyl esters. Tetrahedron 2004. [DOI: 10.1016/j.tet.2004.06.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
125
|
Lee DJ, Robinson WE. Human immunodeficiency virus type 1 (HIV-1) integrase: resistance to diketo acid integrase inhibitors impairs HIV-1 replication and integration and confers cross-resistance to L-chicoric acid. J Virol 2004; 78:5835-47. [PMID: 15140981 PMCID: PMC415810 DOI: 10.1128/jvi.78.11.5835-5847.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The diketo acids are potent inhibitors of human immunodeficiency virus (HIV) integrase (IN). Mutations in IN, T66I, S153Y, and M154I, as well as T66I-S153Y and T66I-M154I double mutations, confer resistance to diketo acids (D. J. Hazuda et al., Science 287:646-650, 2000). The effects of these IN mutations on viral replication, enzymatic activity, and susceptibility to other HIV inhibitors are reported herein. By immunofluorescence assay and real-time PCR, all mutant viruses demonstrated a modest delay in viral spread compared to that of reference HIV. These viruses also showed a statistically significant defect in integration without defects in reverse transcription. Recombinant IN containing S153Y, T66I, and M154I-T66I mutations had an approximately twofold decrease in both disintegration and 3'-end-processing-strand transfer activities in vitro. In contrast, IN containing M154I demonstrated a greater than twofold increase in specific activity in both reactions. All mutant HIVs were resistant to l-chicoric acid, a dicaffeoyltartaric acid IN inhibitor, both in tissue culture and in biochemical assays, yet remained susceptible to the reverse transcriptase inhibitors zidovudine and nevirapine. Thus, IN mutations conferring resistance to the diketo acids can yield integration defects, attenuated catalysis in vitro, and cross-resistance to l-chicoric acid.
Collapse
Affiliation(s)
- Deborah J Lee
- Department of Pathology, D440 Med. Sci. I, University of California, Irvine, CA 92697-4800, USA
| | | |
Collapse
|
126
|
Sechi M, Sannia L, Orecchioni M, Carta F, Paglietti G, Neamati N. Structural investigation of 3,5-disubstituted isoxazoles by1H-nuclear magnetic resonance. J Heterocycl Chem 2003. [DOI: 10.1002/jhet.5570400621] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
127
|
Efficient synthesis of novel dipyridoimidazoles and pyrido[1′,2′;1,2]imidazo[4,5-d]pyridazine derivatives. Tetrahedron 2003. [DOI: 10.1016/s0040-4020(03)00938-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
128
|
Singh SB, Zink DL, Dombrowski AW, Polishook JD, Ondeyka JG, Hirshfield J, Felock P, Hazuda DJ. Integracides: tetracyclic triterpenoid inhibitors of HIV-1 integrase produced by Fusarium sp. Bioorg Med Chem 2003; 11:1577-82. [PMID: 12628681 DOI: 10.1016/s0968-0896(02)00529-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HIV-1 integrase is a critical enzyme in the replication of HIV-1. It is absent in the host cells and therefore is a good target for treatment of HIV-1 infections. Integracides are members of the tetracyclic triterpenoids family that were isolated from the fermentation broth of a Fusarium sp. Integracide A, a sulfated ester, exhibited significant inhibitory activity against strand transfer reaction of HIV-1 integrase. The discovery, structure elucidation including single crystal X-ray structure and HIV-1 inhibitory activity of these compounds are described.
Collapse
Affiliation(s)
- Sheo B Singh
- Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Zhang X, Pais GCG, Svarovskaia ES, Marchand C, Johnson AA, Karki RG, Nicklaus MC, Pathak VK, Pommier Y, Burke TR. Azido-containing aryl beta-diketo acid HIV-1 integrase inhibitors. Bioorg Med Chem Lett 2003; 13:1215-9. [PMID: 12643946 DOI: 10.1016/s0960-894x(03)00059-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Aryl beta-diketo acids (ADK) comprise a general class of potent HIV-1 integrase (IN) inhibitors, which can exhibit selective inhibition of strand transfer reactions in extracellular recombinant IN assays and provide potent antiviral effects in HIV-infected cells. Recent studies have shown that polycyclic aryl or aryl rings bearing aryl-containing substituents are components of potent members of this class. Reported herein is the first use of azido functionality as an aryl replacement in beta-diketo acid IN inhibitors. The ability of azido-containing inhibitors to exhibit potent inhibition of IN and antiviral protection in HIV-infected cells, renders the azide group of potential value in the further development of ADK-based IN inhibitors.
Collapse
Affiliation(s)
- Xuechun Zhang
- Laboratory of Medicinal Chemistry, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Singh SB, Zink DL, Bills GF, Teran A, Silverman KC, Lingham RB, Felock P, Hazuda DJ. Four novel bis-(naphtho-gamma-pyrones) isolated from Fusarium species as inhibitors of HIV-1 integrase. Bioorg Med Chem Lett 2003; 13:713-7. [PMID: 12639565 DOI: 10.1016/s0960-894x(02)01057-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Integration of viral DNA into host cell DNA is an essential step in retroviral (HIV-1) replication and is catalyzed by HIV-1 integrase. HIV-1 integrase is a novel therapeutic target and is the focus of efforts to identify effective inhibitors that will prevent/or cure HIV infections. Four novel naphtho-gamma-pyrones, belonging to the chaetochromin and ustilaginoidin family, were discovered as inhibitors of HIV-1 integrase from the screening of fungal extracts using a recombinant in vitro assay. These compounds inhibit both the coupled and strand transfer activity of HIV-1 integrase with IC(50) values of 1-3 and 4-12 microM, respectively. The discovery, structure elucidation, chemical modification and the structure-activity relationship of these compounds are described.
Collapse
Affiliation(s)
- Sheo B Singh
- Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Hazuda DJ, Young SD. Inhibitors of human immunodeficiency virus integration. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1075-8593(03)04002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
132
|
Chen X, Wang W. Chapter 32. The use of bioisosteric groups in lead optimization. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2003. [DOI: 10.1016/s0065-7743(03)38033-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
133
|
Chapter 18. Recent advances in the chemotherapy of HIV. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2003. [DOI: 10.1016/s0065-7743(03)38019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
134
|
Abstract
Virtually all the compounds that are currently used or are subject of advanced clinical trials for the treatment of HIV infections, belong to one of the following classes: (i) nucleoside reverse transcriptase inhibitors (NRTIs): i.e., zidovudine, didanosine, zalcitabine, stavudine, lamivudine, abacavir, emtricitabine and nucleotide reverse transcriptase inhibitors (NtRTIs) (i.e., tenofovir disoproxil fumarate); (ii) non-nucleoside reverse transcriptase inhibitors (NNRTIs): i.e., nevirapine, delavirdine, efavirenz, emivirine; and (iii) protease inhibitors (PIs): i.e., saquinavir, ritonavir, indinavir, nelfinavir, amprenavir, and lopinavir. In addition to the reverse transcriptase and protease reaction, various other events in the HIV replicative cycle can be considered as potential targets for chemotherapeutic intervention: (i) viral adsorption, through binding to the viral envelope glycoprotein gp120 (polysulfates, polysulfonates, polycarboxylates, polyoxometalates, polynucleotides, and negatively charged albumins); (ii) viral entry, through blockade of the viral coreceptors CXCR4 (i.e., bicyclam (AMD3100) derivatives) and CCR5 (i.e., TAK-779 derivatives); (iii) virus-cell fusion, through binding to the viral envelope glycoprotein gp41 (T-20, T-1249); (iv) viral assembly and disassembly, through NCp7 zinc finger-targeted agents [2,2'-dithiobisbenzamides (DIBAs), azadicarbonamide (ADA)]; (v) proviral DNA integration, through integrase inhibitors such as 4-aryl-2,4-dioxobutanoic acid derivatives; (vi) viral mRNA transcription, through inhibitors of the transcription (transactivation) process (flavopiridol, fluoroquinolones). Also, various new NRTIs, NNRTIs, and PIs have been developed that possess, respectively: (i) improved metabolic characteristics (i.e., phosphoramidate and cyclosaligenyl pronucleotides by-passing the first phosphorylation step of the NRTIs), (ii) increased activity ["second" or "third" generation NNRTIs ( i.e., TMC-125, DPC-083)] against those HIV strains that are resistant to the "first" generation NNRTIs, or (iii), as in the case of PIs, a different, modified peptidic (i.e., azapeptidic (atazanavir)) or non-peptidic scaffold (i.e., cyclic urea (mozenavir), 4-hydroxy-2-pyrone (tipranavir)). Non-peptidic PIs may be expected to inhibit HIV mutant strains that have become resistant to peptidomimetic PIs.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
135
|
Rowley DC, Hansen MST, Rhodes D, Sotriffer CA, Ni H, McCammon JA, Bushman FD, Fenical W. Thalassiolins A-C: new marine-derived inhibitors of HIV cDNA integrase. Bioorg Med Chem 2002; 10:3619-25. [PMID: 12213478 DOI: 10.1016/s0968-0896(02)00241-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human immunodeficiency virus (HIV) replication requires integration of viral cDNA into the host genome, a process mediated by the viral enzyme integrase. We describe a new series of HIV integrase inhibitors, thalassiolins A-C (1-3), isolated from the Caribbean sea grass Thalassia testudinum. The thalassiolins are distinguished from other flavones previously studied by the substitution of a sulfated beta-D-glucose at the 7-position, a substituent that imparts increased potency against integrase in biochemical assays. The most active of these molecules, thalassiolin A (1), displays in vitro inhibition of the integrase catalyzed strand transfer reaction (IC50=0.4 microM) and an antiviral IC50 of 30 microM. Molecular modeling studies indicate a favorable binding mode is probable at the catalytic core domain of HIV-1 integrase.
Collapse
Affiliation(s)
- David C Rowley
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Pluymers W, Pais G, Van Maele B, Pannecouque C, Fikkert V, Burke, Jr. TR, De Clercq E, Witvrouw M, Neamati N, Debyser Z. Inhibition of human immunodeficiency virus type 1 integration by diketo derivatives. Antimicrob Agents Chemother 2002; 46:3292-7. [PMID: 12234864 PMCID: PMC128766 DOI: 10.1128/aac.46.10.3292-3297.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A series of diketo derivatives was found to inhibit human immunodeficiency virus type 1 (HIV-1) integrase activity. Only L-708,906 inhibited the replication of HIV-1(III(B)) (50% effective concentration, 12 micro M), HIV-1 clinical strains, HIV-1 strains resistant to reverse transcriptase or fusion inhibitors, HIV-2 (ROD strain) and simian immunodeficiency virus (MAC(251)). The combinations of L-708,906 with zidovudine, nevirapine, or nelfinavir proved to be subsynergistic. In cell culture, addition of L-708,906 could be postponed for 7 h after infection, a moment coinciding with HIV integration. Inhibition of integration in cell culture was confirmed by quantitative Alu-PCR.
Collapse
Affiliation(s)
- Wim Pluymers
- Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium, Laboratory of Medicinal Chemistry, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, School of Pharmacy, University of Southern California, Los Angeles, California 90089
| | - Godwin Pais
- Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium, Laboratory of Medicinal Chemistry, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, School of Pharmacy, University of Southern California, Los Angeles, California 90089
| | - Bénédicte Van Maele
- Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium, Laboratory of Medicinal Chemistry, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, School of Pharmacy, University of Southern California, Los Angeles, California 90089
| | - Christophe Pannecouque
- Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium, Laboratory of Medicinal Chemistry, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, School of Pharmacy, University of Southern California, Los Angeles, California 90089
| | - Valery Fikkert
- Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium, Laboratory of Medicinal Chemistry, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, School of Pharmacy, University of Southern California, Los Angeles, California 90089
| | - Terrence R. Burke, Jr.
- Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium, Laboratory of Medicinal Chemistry, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, School of Pharmacy, University of Southern California, Los Angeles, California 90089
| | - Erik De Clercq
- Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium, Laboratory of Medicinal Chemistry, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, School of Pharmacy, University of Southern California, Los Angeles, California 90089
| | - Myriam Witvrouw
- Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium, Laboratory of Medicinal Chemistry, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, School of Pharmacy, University of Southern California, Los Angeles, California 90089
| | - Nouri Neamati
- Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium, Laboratory of Medicinal Chemistry, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, School of Pharmacy, University of Southern California, Los Angeles, California 90089
| | - Zeger Debyser
- Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium, Laboratory of Medicinal Chemistry, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, School of Pharmacy, University of Southern California, Los Angeles, California 90089
- Corresponding author. Mailing address: Rega Institute for Medical Research, K.U. Leuven, Minderbroederstraat 10, B-3000 Leuven, Belgium. Phone: 32 16 33 21 83. Fax: 32 16 33 21 31. E-mail:
| |
Collapse
|
137
|
Pannecouque C, Pluymers W, Van Maele B, Tetz V, Cherepanov P, De Clercq E, Witvrouw M, Debyser Z. New class of HIV integrase inhibitors that block viral replication in cell culture. Curr Biol 2002; 12:1169-77. [PMID: 12176326 DOI: 10.1016/s0960-9822(02)00952-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND To improve the existing combination therapies of infection with the human immunodeficiency virus (HIV) and to cope with virus strains that are resistant to multiple drugs, we initiated a search for effective inhibitors of HIV integrase, the enzyme responsible for inserting the viral cDNA into the host cell chromosome. RESULTS We have now identified a series of 5H-pyrano[2,3-d:-6,5-d']dipyrimidines that block the replication of various strains of HIV-1 and HIV-2. The most potent congener, 5-(4-nitrophenyl)-2,8-dithiol-4,6-dihydroxy-5H-pyrano[2,3-d:-6,5-d']dipyrimidine (V-165), inhibited the replication of HIV-1(III(B)) in MT-4 cells at a 50% effective concentration (EC(50)) of 8.9 microM, which is 14-fold below its cytotoxic concentration. V-165 was equally active against virus strains that were resistant toward inhibitors of viral entry or reverse transcriptase. In combination regimens in cell culture, V-165 acted subsynergistically with zidovudine or nelfinavir and synergistically with nevirapine. V-165 inhibited both reverse transcriptase and integrase activities in enzymatic assays at micromolar concentrations, but only a close correlation was found between the anti-HIV activity observed in cell culture and the inhibitory activity in the integrase strand transfer assays. Time-of-addition experiments indicated that V-165 interfered with the viral replication cycle at a time point coinciding with integration. Quantitative Alu-PCR corroborated that the anti-HIV activity of V-165 is based upon the inhibition of proviral DNA integration. CONCLUSIONS Based on their mode of action, which is different from that of clinically approved anti-HIV drugs, PDPs are good candidates for further development into new drugs and to be included in future combination regimens.
Collapse
|
138
|
Abstract
Virtually all the compounds that are currently used, or are subject of advanced clinical trials, for the treatment of human immunodeficiency virus (HIV) infections, belong to one of the following classes: (i) nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs): i.e. zidovudine (AZT), didanosine (ddI), zalcitabine (ddC), stavudine (d4T), lamivudine (3TC), abacavir (ABC), emtricitabine [(-)FTC], tenofovir disoproxil fumarate; (ii) non-nucleoside reverse transcriptase inhibitors (NNRTIs): i.e. nevirapine, delavirdine, efavirenz, emivirine; and (iii) protease inhibitors (PIs): i.e. saquinavir, ritonavir, indinavir, nelfinavir, amprenavir and lopinavir. In addition to the reverse transcriptase (RT) and protease reaction, various other events in the HIV replicative cycle can be considered as potential targets for chemotherapeutic intervention: (i) viral adsorption, through binding to the viral envelope glycoprotein gp120 (polysulfates, polysulfonates, polycarboxylates, polyoxometalates, polynucleotides, and negatively charged albumins); (ii) viral entry, through blockade of the viral coreceptors CXCR4 [bicyclam (AMD3100) derivatives] and CCR5 (TAK-779 derivatives); (iii) virus-cell fusion, through binding to the viral envelope glycoprotein gp41 (T-20, T-1249); (iv) viral assembly and disassembly, through NCp7 zinc finger-targeted agents [2,2'-dithiobisbenzamides (DIBAs), azadicarbonamide (ADA)]; (v) proviral DNA integration, through integrase inhibitors such as 4-aryl-2,4-dioxobutanoic acid derivatives; (vi) viral mRNA transcription, through inhibitors of the transcription (transactivation) process (flavopiridol, fluoroquinolones). Also, various new NRTIs, NNRTIs and PIs have been developed that possess, respectively: (i) improved metabolic characteristics (i.e. phosphoramidate and cyclosaligenyl pronucleotides by-passing the first phosphorylation step of the NRTIs), (ii) increased activity ["second" or "third" generation NNRTIs (i.e. TMC-125, DPC-083)] against those HIV strains that are resistant to the "first" generation NNRTIs, or (iii) as in the case of PIs, a different, nonpeptidic scaffold [i.e. cyclic urea (mozenavir), 4-hydroxy-2-pyrone (tipranavir)]. Nonpeptidic PIs may be expected to inhibit HIV mutant strains that have become resistant to peptidomimetic PIs. Given the multitude of molecular targets with which anti-HIV agents can interact, one should be cautious in extrapolating the mode of action of these agents from cell-free enzymatic assays to intact cells. Two examples in point are L-chicoric acid and the nonapeptoid CGP64222, which were initially described as an integrase inhibitor or Tat antagonist, respectively, but later shown to primarily act as virus adsorption/entry inhibitors, the latter through blockade of CXCR4.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, Leuven, Belgium.
| |
Collapse
|
139
|
Grobler JA, Stillmock K, Hu B, Witmer M, Felock P, Espeseth AS, Wolfe A, Egbertson M, Bourgeois M, Melamed J, Wai JS, Young S, Vacca J, Hazuda DJ. Diketo acid inhibitor mechanism and HIV-1 integrase: implications for metal binding in the active site of phosphotransferase enzymes. Proc Natl Acad Sci U S A 2002; 99:6661-6. [PMID: 11997448 PMCID: PMC124459 DOI: 10.1073/pnas.092056199] [Citation(s) in RCA: 309] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The process of integrating the reverse-transcribed HIV-1 DNA into the host chromosomal DNA is catalyzed by the virally encoded enzyme integrase (IN). Integration requires two metal-dependent reactions, 3' end processing and strand transfer. Compounds that contain a diketo acid moiety have been shown to selectively inhibit the strand transfer reaction of IN in vitro and in infected cells and are effective as inhibitors of HIV-1 replication. To characterize the molecular basis of inhibition, we used functional assays and binding assays to evaluate a series of structurally related analogs. These studies focused on investigating the role of the conserved carboxylate and metal binding. We demonstrate that an acidic moiety such as a carboxylate or isosteric heterocycle is not required for binding to the enzyme complex but is essential for inhibition and confers distinct metal-dependent properties on the inhibitor. Binding requires divalent metal and resistance is metal dependent with active site mutants displaying resistance only when the enzymes are evaluated in the context of Mg(2+). The mechanism of action of these inhibitors is therefore likely a consequence of the interaction between the acid moiety and metal ion(s) in the IN active site, resulting in a functional sequestration of the critical metal cofactor(s). These studies thus have implications for modeling active site inhibitors of IN, designing and evaluating analogs with improved efficacy, and identifying inhibitors of other metal-dependent phosphotransferases.
Collapse
Affiliation(s)
- Jay A Grobler
- Department of Biological Chemistry, Merck Research Laboratories, P.O. Box 4, West Point, PA 19486, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Singh SB, Herath K, Guan Z, Zink DL, Dombrowski AW, Polishook JD, Silverman KC, Lingham RB, Felock PJ, Hazuda DJ. Integramides A and B, two novel non-ribosomal linear peptides containing nine C(alpha)-methyl amino acids produced by fungal fermentations that are inhibitors of HIV-1 integrase. Org Lett 2002; 4:1431-4. [PMID: 11975596 DOI: 10.1021/ol025540a] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[structure: see text]. Integramides A and B are two novel 16-mer linear peptides rich in C(alpha)-methyl amino acids that were isolated from fungal extracts of Dendrodochium sp. by employing a bioassay-guided isolation procedure using recombinant HIV-1 integrase. The structure and stereochemistry were elucidated by a combination of 2D NMR and ESI- and FAB-MS including MS/MS studies and by Marfey's method. Integramides A and B inhibited the coupled reaction of HIV-1 integrase with IC50 values of 17 and 10 microM, respectively.
Collapse
Affiliation(s)
- Sheo B Singh
- Merck Research Laboratories, Rahway, New Jersey 07065, and West Point, Pennsylvania 19486, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Abstract
The development and clinical use of chemotherapeutic agents for the treatment of persistent HIV-1 infection over the past decade has profoundly and favorably affected the course of HIV-1 disease for many infected individuals. Unfortunately, the long-term use of these therapies is complicated by unwanted metabolic side effects, by issues of adherence, and by the selection of viral variants with reduced susceptibility. These complications have spurred the search for new anti-HIV-1 agents having improved pharmacological properties and expressing activity against viral variants resistant to the currently available agents. This brief review describes the current state of this search as well as potentially novel viral targets for chemotherapeutic intervention.
Collapse
Affiliation(s)
- Jon H Condra
- Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| | | | | | | |
Collapse
|
142
|
Abstract
One of the three key enzymes encoded by the pol gene of HIV is a M(r) 32 000 protein called HIV integrase. This viral enzyme is involved in the integration of HIV DNA into host chromosomal DNA. There appears to be no functional equivalent of the enzyme in human cells. The biochemical mechanism of integration of HIV DNA into the host cell genome involves a carefully defined sequence of DNA tailoring (3'-processing) and coupling (joining or integration) reactions. In spite of some effort in this area targeted at the discovery of therapeutically useful inhibitors of this viral enzyme, there are no drugs for HIV/AIDS in clinical use where the mechanism of action is inhibition of HIV integrase. Thus, new knowledge on inhibitors of this enzyme is of critical importance in the anti-HIV drug discovery area. The focus of this review will be on several classes of compounds, including nucleotides, dinucleotides, oligonucleotides and miscellaneous small molecules such as heterocyclic systems, natural products, diketo acids and sulfones, that have been discovered as inhibitors of HIV integrase. Special emphasis in the review will be placed on discoveries from my laboratory on HIV integrase inhibitors that are non-natural, nuclease-resistant dinucleotides. Comments on future directions and the prospects for developing integrase inhibitors as therapeutic antiviral agents are discussed.
Collapse
Affiliation(s)
- Vasu Nair
- Department of Chemistry, The University of Iowa, Iowa City 52242, USA.
| |
Collapse
|
143
|
Singh SB, Zink DL, Heimbach B, Genilloud O, Teran A, Silverman KC, Lingham RB, Felock P, Hazuda DJ. Structure, stereochemistry, and biological activity of integramycin, a novel hexacyclic natural product produced by Actinoplanes sp. that inhibits HIV-1 integrase. Org Lett 2002; 4:1123-6. [PMID: 11922798 DOI: 10.1021/ol025539b] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[structure: see text] HIV-1 integrase is a critical enzyme for viral replication, and its inhibition is an emerging target for potential antiviral chemotherapy. We have discovered a novel inhibitor, integramycin, from screening of fermentation extracts using an in vitro assay. Integramycin possesses a hexacyclic ring system and exhibited an IC50 value of 4 microM against HIV-1 integrase (strand transfer). The isolation, structure elucidation, stereochemistry, conformation, and biological activity has been described.
Collapse
Affiliation(s)
- Sheo B Singh
- Merck Research Laboratories, Rahway, New Jersey 07065, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Singh SB, Zink DL, Quamina DS, Pelaez F, Teran A, Felock P, Hazuda DJ. Integrastatins: structure and HIV-1 integrase inhibitory activities of two novel racemic tetracyclic aromatic heterocycles produced by two fungal species. Tetrahedron Lett 2002. [DOI: 10.1016/s0040-4039(02)00265-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
145
|
Singh SB, Zink DL, Bills GF, Pelaez F, Teran A, Collado J, Silverman KC, Lingham RB, Felock P, Hazuda DJ. Discovery, structure and HIV-1 integrase inhibitory activities of integracins, novel dimeric alkyl aromatics from Cytonaema sp. Tetrahedron Lett 2002. [DOI: 10.1016/s0040-4039(02)00083-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
146
|
Debyser Z, Cherepanov P, Van Maele B, De Clercq E, Witvrouw M. In search of authentic inhibitors of HIV-1 integration. Antivir Chem Chemother 2002; 13:1-15. [PMID: 12180645 DOI: 10.1177/095632020201300101] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Current strategies for the treatment of HIV infection are based on cocktails of drugs that target the viral reverse transcriptase or protease enzymes. At present, the clinical benefit of this combination therapy for HIV-infected patients is considerable, although it is not clear how long this effect will last taking into account the emergence of multiple drug-resistant viral strains. Addition of new anti-HIV drugs targeting additional steps of the viral replication cycle may increase the potency of inhibition and prevent resistance development. During HIV replication, integration of the viral genome into the cellular chromosome is an essential step catalysed by the viral integrase. Although HIV integrase is an attractive target for antiviral therapy, so far all research efforts have led to the identification of only one series of compounds that selectively inhibit the integration step during HIV replication, namely the diketo acids. In this review we try to address the question why it has proven so difficult to find potent and selective integrase inhibitors. We point to potential pitfalls in defining an inhibitor as an authentic integrase inhibitor, and propose new strategies and technologies for the discovery of authentic HIV integration inhibitors.
Collapse
Affiliation(s)
- Zeger Debyser
- Rega Institute for Medical Research, KU Leuven, Flanders, Belgium.
| | | | | | | | | |
Collapse
|
147
|
Abstract
A decade ago, just five drugs were licensed for the treatment of viral infections. Since then, greater understanding of viral life cycles, prompted in particular by the need to combat human immunodeficiency virus, has resulted in the discovery and validation of several targets for therapeutic intervention. Consequently, the current antiviral repertoire now includes more than 30 drugs. But we still lack effective therapies for several viral infections, and established treatments are not always effective or well tolerated, highlighting the need for further refinement of antiviral drug design and development. Here, I describe the rationale behind current and future drug-based strategies for combating viral infections.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
148
|
Abstract
Lead compounds with the potential to progress to viable drug candidates have been identified from libraries using several strategies. These include rapid screening of large diverse collections, thematic libraries, project-directed libraries, and three-dimensional molecular models of corporate databases. There have been numerous success stories, including the identification of several clinical candidates.
Collapse
Affiliation(s)
- A Golebiowski
- Procter & Gamble Pharmaceuticals, Health Care Research Center 45040-8006, Mason, OH, USA.
| | | | | |
Collapse
|