101
|
Idd13 is involved in determining immunoregulatory DN T-cell number in NOD mice. Genes Immun 2014; 15:82-7. [PMID: 24335706 DOI: 10.1038/gene.2013.65] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 11/08/2013] [Accepted: 11/12/2013] [Indexed: 12/20/2022]
Abstract
Immunoregulatory T cells have been identified as key modulators of peripheral tolerance and participate in preventing autoimmune diseases. CD4(-)CD8(-) (double negative, DN) T cells compose one of these immunoregulatory T-cell subsets, where the injection of DN T cells confers protection from autoimmune diabetes progression. Interestingly, genetic loci defining the function and number of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) coincide with at least some autoimmune disease susceptibility loci. Herein, we investigate the impact of major insulin-dependent diabetes (Idd) loci in defining the number of DN T cells. We demonstrate that although Idd3, Idd5 and Idd9 loci do not regulate DN T-cell number, NOD mice congenic for diabetes resistance alleles at the Idd13 locus show a partial restoration in DN T-cell number. Moreover, competitive and non-competitive bone marrow chimera experiments reveal that DN T-cell number is defined by a bone marrow-intrinsic, but DN T-cell-extrinsic, factor. This suggests that non-autonomous candidate genes define DN T-cell number in secondary lymphoid organs. Together, our results show that the regulation of DN T-cell number in NOD mice is at least partially conferred by alleles at the Idd13 locus.
Collapse
|
102
|
Salisbury EM, Game DS, Lechler RI. Transplantation tolerance. Pediatr Nephrol 2014; 29:2263-72. [PMID: 24213880 PMCID: PMC4212135 DOI: 10.1007/s00467-013-2659-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 01/26/2023]
Abstract
Although transplantation has been a standard medical practice for decades, marked morbidity from the use of immunosuppressive drugs and poor long-term graft survival remain important limitations in the field. Since the first solid organ transplant between the Herrick twins in 1954, transplantation immunology has sought to move away from harmful, broad-spectrum immunosuppressive regimens that carry with them the long-term risk of potentially life-threatening opportunistic infections, cardiovascular disease, and malignancy, as well as graft toxicity and loss, towards tolerogenic strategies that promote long-term graft survival. Reports of "transplant tolerance" in kidney and liver allograft recipients whose immunosuppressive drugs were discontinued for medical or non-compliant reasons, together with results from experimental models of transplantation, provide the proof-of-principle that achieving tolerance in organ transplantation is fundamentally possible. However, translating the reconstitution of immune tolerance into the clinical setting is a daunting challenge fraught with the complexities of multiple interacting mechanisms overlaid on a background of variation in disease. In this article, we explore the basic science underlying mechanisms of tolerance and review the latest clinical advances in the quest for transplantation tolerance.
Collapse
Affiliation(s)
- Emma M. Salisbury
- Section of Immunobiology, Division of Immunology and Inflammation, Department of Medicine, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, Exhibition Road, London, SW7 2AZ UK
| | - David S. Game
- Department of Renal Medicine, Guy’s and St. Thomas’ NHS Foundation Trust, Guy’s Hospital, Great Maze Pond, London, SE1 9RT UK
| | - Robert I. Lechler
- King’s Health Partners Academic Health Sciences Centre, King’s College London, London, WC2R 2LS UK
| |
Collapse
|
103
|
Selvaraj RK. Avian CD4(+)CD25(+) regulatory T cells: properties and therapeutic applications. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:397-402. [PMID: 23665004 DOI: 10.1016/j.dci.2013.04.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 04/19/2013] [Accepted: 04/23/2013] [Indexed: 06/02/2023]
Abstract
Regulatory T cells (Tregs) are a subset of T cells that specialize in immune suppression. CD4(+)CD25(+)FoxP3(+) T cells have been characterized as Tregs and extensively studied in mammals. In the absence of a putative FoxP3 ortholog in avians, CD4(+)CD25(+) cells is characterized as Tregs in avians. Avian CD4(+)CD25(+) cells produce high amounts of IL-10, TGF-β, CTLA-4, and LAG-3 mRNA; lack IL-2 mRNA; and suppress T cell proliferation in vitro through both contact-dependent and -independent pathways. Depleting avian CD4(+)CD25(+) cells increases the proliferation of, IL-2 amount, and IFNγ mRNA amount of CD4(+)CD25(-) cells. Avian CD4(+)CD25(+) cells lose their suppressive properties immediately after inflammation and acquire supersuppressive properties once inflammation subsides. Although Treg activity could be beneficial to the host, Tregs simultaneously inhibit host immunity and cause persistent infections of certain pathogens. Therapy targeted toward alleviating Treg mediated immune suppression can improve host immunity against those persistent pathogens and benefit poultry production.
Collapse
Affiliation(s)
- Ramesh K Selvaraj
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, 44691, United States.
| |
Collapse
|
104
|
Sun X, Shibata K, Yamada H, Guo Y, Muta H, Podack ER, Yoshikai Y. CD30L/CD30 is critical for maintenance of IL-17A-producing γδ T cells bearing Vγ6 in mucosa-associated tissues in mice. Mucosal Immunol 2013; 6:1191-201. [PMID: 23549449 DOI: 10.1038/mi.2013.18] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/27/2013] [Accepted: 02/27/2013] [Indexed: 02/04/2023]
Abstract
CD30 ligand (CD30L, CD153), a member of the tumor necrosis factor (TNF) superfamily, and its receptor CD30 are important for differentiation and activation of CD4(+) T helper type 17 (Th17) cells. In this report, we demonstrate that the interleukin 17A (IL-17A)-producing γδ T cells normally developed in the fetal thymus, whereas Vγ1(-)Vγ4(-) γδ T cells expressed Vγ6/Vδ1 gene transcript selectively decreased in mucosa-associated tissues in naive CD30KO or CD30LKO mice. Moreover, CD30 and CD30L were expressed preferentially by Vγ1(-)Vγ4(-) γδ T cells in naive mice. The bacteria clearance was attenuated by the impaired response of the IL-17A-producing γδ T cells and decreased infiltration of neutrophils in CD30KO or CD30LKO mice. In vivo administration of agonistic anti-CD30 monoclonal antibody restored the ability of protection against Listeria monocytogenes by enhancing Vγ1(-)Vγ4(-) γδ T cells producing IL-17A not only in wild-type but also CD30LKO mice. Taken together, it appears that CD30L/CD30 signaling plays an important role in the maintenance and activation of IL-17A-producing γδ T cells presumably bearing Vγ6 in the mucosa-associated tissues of mice.
Collapse
Affiliation(s)
- X Sun
- 1] Department of Immunology, China Medical University, Shenyang, China [2] Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan [3] Research Center for Advanced Immunology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
105
|
Gao J, McIntyre MSF, D'Souza CA, Zhang L. Pretransplant infusion of donor B cells enhances donor-specific skin allograft survival. PLoS One 2013; 8:e77761. [PMID: 24204953 PMCID: PMC3810130 DOI: 10.1371/journal.pone.0077761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/04/2013] [Indexed: 01/06/2023] Open
Abstract
Pretransplant donor lymphocyte infusion (DLI) has been shown to enhance donor-specific allograft survival in rodents, primates and humans. However, the cell subset that is critical for the DLI effect and the mechanisms involved remain elusive. In this study, we monitored donor cell subsets after DLI in a murine MHC class I Ld-mismatched skin transplantation model. We found that donor B cells, but not DCs, are the major surviving donor APCs in recipients following DLI. Infusing donor B, but not non-B, cells resulted in significantly enhanced donor-specific skin allograft survival. Furthermore, mice that had received donor B cells showed higher expression of Ly6A and CD62L on antigen-specific TCRαβ+CD3+CD4−CD8−NK1.1− double negative (DN) regulatory T cells (Tregs). B cells presented alloantigen to DN Tregs and primed their proliferation in an antigen-specific fashion. Importantly, DN Tregs, activated by donor B cells, showed increased cytotoxicity toward anti-donor CD8+ T cells. These data demonstrate that donor B cells can enhance skin allograft survival, at least partially, by increasing recipient DN Treg-mediated killing of anti-donor CD8+ T cells. These findings provide novel insights into the mechanisms underlying DLI-induced transplant tolerance and suggest that DN Tregs have great potential as an antigen-specific immune therapy to enhance allograft survival.
Collapse
Affiliation(s)
- Julia Gao
- University of Toronto Transplantation Institute, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Megan S. Ford. McIntyre
- University of Toronto Transplantation Institute, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Cheryl A. D'Souza
- University of Toronto Transplantation Institute, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Li Zhang
- University of Toronto Transplantation Institute, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
106
|
Dendritic cell-based approaches for therapeutic immune regulation in solid-organ transplantation. J Transplant 2013; 2013:761429. [PMID: 24307940 PMCID: PMC3824554 DOI: 10.1155/2013/761429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/16/2013] [Indexed: 12/18/2022] Open
Abstract
To avoid immune rejection, allograft recipients require drug-based immunosuppression, which has significant toxicity. An emerging approach is adoptive transfer of immunoregulatory cells. While mature dendritic cells (DCs) present donor antigen to the immune system, triggering rejection, regulatory DCs interact with regulatory T cells to promote immune tolerance. Intravenous injection of immature DCs of either donor or host origin at the time of transplantation have prolonged allograft survival in solid-organ transplant models. DCs can be treated with pharmacological agents before injection, which may attenuate their maturation in vivo. Recent data suggest that injected immunosuppressive DCs may inhibit allograft rejection, not by themselves, but through conventional DCs of the host. Genetically engineered DCs have also been tested. Two clinical trials in type-1 diabetes and rheumatoid arthritis have been carried out, and other trials, including one trial in kidney transplantation, are in progress or are imminent.
Collapse
|
107
|
Hedrich CM, Rauen T, Crispin JC, Koga T, Ioannidis C, Zajdel M, Kyttaris VC, Tsokos GC. cAMP-responsive element modulator α (CREMα) trans-represses the transmembrane glycoprotein CD8 and contributes to the generation of CD3+CD4-CD8- T cells in health and disease. J Biol Chem 2013; 288:31880-7. [PMID: 24047902 DOI: 10.1074/jbc.m113.508655] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
T cell receptor-αβ(+) CD3(+)CD4(-)CD8(-) "double-negative" T cells are expanded in the peripheral blood of patients with systemic lupus erythematosus and autoimmune lymphoproliferative syndrome. In both disorders, double-negative T cells infiltrate tissues, induce immunoglobulin production, and secrete proinflammatory cytokines. Double-negative T cells derive from CD8(+) T cells through down-regulation of CD8 surface co-receptors. However, the molecular mechanisms orchestrating this process remain unclear. Here, we demonstrate that the transcription factor cAMP-responsive element modulator α (CREMα), which is expressed at increased levels in T cells from systemic lupus erythematosus patients, contributes to transcriptional silencing of CD8A and CD8B. We provide the first evidence that CREMα trans-represses a regulatory element 5' of the CD8B gene. Therefore, CREMα represents a promising candidate in the search for biomarkers and treatment options in diseases in which double-negative T cells contribute to the pathogenesis.
Collapse
Affiliation(s)
- Christian M Hedrich
- From the Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Ikemoto T, Takita M, Levy MF, Shimada M, Naziruddin B. CD11b(+) cells in donor-specific transfusion prolonged allogenic skin graft survival through indoleamine 2,3-dioxygenase. Cell Immunol 2013; 283:81-90. [PMID: 23933136 DOI: 10.1016/j.cellimm.2013.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 06/12/2013] [Indexed: 11/17/2022]
Abstract
The aim of this study is to show the effect of donor-specific transfusion (DST) in inducing immunological tolerance mediated by regulatory T cells (Treg) and indoleamine 2,3-dioxygenase (IDO). Skin grafts from H2(d) Balb/c were transplanted into H2(k) C3H/He 7days after the infusion of donor splenocytes, isolated each immune cell populations. Graft survival prolonged in recipients who received splenocytes, MHC class II(+) CD90(-) cells and CD3(-)CD19(-) cells (p<0.001, p<0.05 and p<0.01, respectively). CD11b(+) cell infusion resulted in prolongation of graft survival when compared to CD11c(+) cell infusion (p<0.01). Foxp3(+)CD4(+)CD25(+) T cells were increased after the transplant in recipients infused with CD11b(+) cells (p<0.05). The mixed lymphocyte reaction showed donor-specificity (p<0.001). High IDO expression was observed in CD11b(+) cell infusion group. Graft survival with DST using IDO antagonist (1MT) were not prolonged. In conclusion, DST allows induction of donor-specific tolerance which involves Foxp3(+)CD4(+)CD25(+) T cells and IDO expression.
Collapse
Affiliation(s)
- Tetsuya Ikemoto
- Baylor Institute for Immunology Research, Baylor Research Institute, 3434 Live Oak, Dallas, TX 75204, USA.
| | | | | | | | | |
Collapse
|
109
|
Lin CH, Zhang W, Ng TW, Zhang D, Jiang J, Pulikkottil B, Lakkis F, Gorantla VS, Lee WPA, Brandacher G, Zheng XX. Vascularized osteomyocutaneous allografts are permissive to tolerance by induction-based immunomodulatory therapy. Am J Transplant 2013; 13:2161-8. [PMID: 23718897 DOI: 10.1111/ajt.12275] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 01/25/2023]
Abstract
Vascularized composite allografts (VCAs) are unique among transplanted organs in that they are composed of multiple tissues with disparate antigenic and immunologic properties. As the predominant indications for VCAs are non-life-threatening conditions, there is an immediate need to develop tolerance induction strategies and to elucidate the mechanisms of VCA rejection and tolerance using VCA-specific animal models. In this study, we explore the effects of in vitro induced donor antigen-specific CD4(-) CD8(-) double negative (DN) Treg-based therapy, in a fully MHC mismatched mouse VCA such as a vascularized osteomyocutaneous as compared to a non-VCA such as a full thickness skin (FTS) transplantation model to elucidate the unique features of VCA rejection and tolerance. We demonstrate that combined therapy with antigen-induced CD4 derived DN Tregs and a short course of anti-lymphocyte serum, rapamycin and IL-2/Fc fusion protein results in donor-specific tolerance to VCA, but not FTS allografts. Macrochimerism was detected in VCA but not FTS allograft recipients up to >60 days after transplantation. Moreover, a significant increase of CD4(+) Foxp3(+) Tregs was found in the peripheral blood of tolerant VCA recipients. These data suggest that VCA are permissive to tolerance induced by DN Treg-based induction therapy.
Collapse
Affiliation(s)
- C H Lin
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Helper T cells down-regulate CD4 expression upon chronic stimulation giving rise to double-negative T cells. Cell Immunol 2013; 284:68-74. [PMID: 23933188 DOI: 10.1016/j.cellimm.2013.06.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/13/2013] [Accepted: 06/24/2013] [Indexed: 11/23/2022]
Abstract
Double-negative T (DNT) cells are αβTCR(+)CD3(+)CD4(-)CD8(-)NK1.1(-) cells that constitute a small but significant proportion of the αβTCR(+) T cells. Their developmental pathway and pathological significance remain unclear. In the present study, we utilized chronic in vitro stimulation of CD4(+) T cells to mimic immune hyper-activation of autoimmune lymphoproliferative syndrome and systemic lupus erythematosus, conditions characterized by DNT cells accumulation. After approximately 4-5 rounds of stimulation, the CD3(+)CD4(-) population became apparent. These cells did not express CD8, NK1.1, γδTCR, or B220, exhibited a highly proliferative effector phenotype, and were dependent on T cell receptor (TCR) stimulation for survival. Moreover, CD3(+)CD4(-) cells expressed MHC class II-restricted αβTCR, indicative of their origin from a CD4(+) T cell population. The results presented herein illustrate a novel method of DNT cell generation in vitro and suggest that immune hyper-activation could also be implicated in the genesis of the disease-associated DNT cells in vivo.
Collapse
|
111
|
Safinia N, Leech J, Hernandez-Fuentes M, Lechler R, Lombardi G. Promoting transplantation tolerance; adoptive regulatory T cell therapy. Clin Exp Immunol 2013; 172:158-68. [PMID: 23574313 DOI: 10.1111/cei.12052] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2012] [Indexed: 01/09/2023] Open
Abstract
Transplantation is a successful treatment for end-stage organ failure. Despite improvements in short-term outcome, long-term survival remains suboptimal because of the morbidity and mortality associated with long-term use of immunosuppression. There is, therefore, a pressing need to devise protocols that induce tolerance in order to minimize or completely withdraw immunosuppression in transplant recipients. In this review we will discuss how regulatory T cells (T(regs)) came to be recognized as an attractive way to promote transplantation tolerance. We will summarize the preclinical data, supporting the importance of these cells in the induction and maintenance of immune tolerance and that provide the rationale for the isolation and expansion of these cells for cellular therapy. We will also describe the data from the first clinical trials, using T(regs) to inhibit graft-versus-host disease (GVHD) after haematopoietic stem cell transplantation and will address both the challenges and opportunities in human T(reg) cell therapy.
Collapse
Affiliation(s)
- N Safinia
- MRC Centre for Transplantation, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | | | | | | |
Collapse
|
112
|
Juvet SC, Thomson CW, Kim EY, Han M, Zhang L. FcRγ controls the fas-dependent regulatory function of lymphoproliferative double negative T cells. PLoS One 2013; 8:e65253. [PMID: 23762329 PMCID: PMC3675138 DOI: 10.1371/journal.pone.0065253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/24/2013] [Indexed: 12/21/2022] Open
Abstract
Patients with autoimmune lymphoproliferative syndrome (ALPS) and lymphoproliferation (LPR) mice are deficient in Fas, and accumulate large numbers of αβ-TCR+, CD4−, CD8− double negative (DN) T cells. The function of these DN T cells remains largely unknown. The common γ subunit of the activating Fc receptors, FcRγ, plays an important role in mediating innate immune responses. We have shown previously that a significant proportion of DN T cells express FcRγ, and that this molecule is required for TCR transgenic DN T cells to suppress allogeneic immune responses. Whether FcRγ plays a critical role in LPR DN T cell-mediated suppression of immune responses to auto and allo-antigens is not known. Here, we demonstrated that FcRγ+, but not FcRγ− LPR DN T cells could suppress Fas+ CD4+ and CD8+ T cell proliferation in vitro and attenuated CD4+ T cell-mediated graft-versus host disease. Although FcRγ expression did not allow LPR DN T cells to inhibit the expansion of Fas-deficient cells within the LPR context, adoptive transfer of FcRγ+, but not FcRγ−, DN T cells inhibited lymphoproliferation in generalized lymphoproliferative disease (GLD) mice. Furthermore, FcRγ acted in a cell-intrinsic fashion to limit DN T cell accumulation by increasing the rate of apoptosis in proliferated cells. These results indicate that FcRγ can confer Fas-dependent regulatory properties on LPR DN T cells, and suggest that FcRγ may be a novel marker for functional DN Tregs.
Collapse
Affiliation(s)
- Stephen C. Juvet
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Respirology and Toronto Lung Transplant Program, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Clinician-Scientist Training Program, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Christopher W. Thomson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Edward Y. Kim
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mei Han
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Li Zhang
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
113
|
Construction of self-recognizing regulatory T cells from conventional T cells by controlling CTLA-4 and IL-2 expression. Proc Natl Acad Sci U S A 2013; 110:E2116-25. [PMID: 23690575 DOI: 10.1073/pnas.1307185110] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Thymus-produced CD4(+) regulatory T (Treg) cells, which specifically express the transcription factor forkhead box p3, are potently immunosuppressive and characteristically possess a self-reactive T-cell receptor (TCR) repertoire. To determine the molecular basis of Treg suppressive activity and their self-skewed TCR repertoire formation, we attempted to reconstruct these Treg-specific properties in conventional T (Tconv) cells by genetic manipulation. We show that Tconv cells rendered IL-2 deficient and constitutively expressing transgenic cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) were potently suppressive in vitro when they were preactivated by antigenic stimulation. They also suppressed in vivo inflammatory bowel disease and systemic autoimmunity/inflammation produced by Treg deficiency. In addition, in the thymus, transgenic CTLA-4 expression in developing Tconv cells skewed their TCR repertoire toward higher self-reactivity, whereas CTLA-4 deficiency specifically in developing thymic Treg cells cancelled their physiological TCR self-skewing. The extracellular portion of CTLA-4 was sufficient for the suppression and repertoire shifting. It interfered with CD28 signaling to responder Tconv cells via outcompeting CD28 for binding to CD80 and CD86,or modulating CD80/CD86 expression on antigen-presenting cells. Thus, a triad of IL-2 repression, CTLA-4 expression, and antigenic stimulation is a minimalistic requirement for conferring Treg-like suppressive activity on Tconv cells, in accordance with the function of forkhead box p3 to strongly repress IL-2 and maintain CTLA-4 expression in natural Treg cells. Moreover, CTLA-4 expression is a key element for the formation of a self-reactive TCR repertoire in natural Treg cells. These findings can be exploited to control immune responses by targeting IL-2 and CTLA-4 in Treg and Tconv cells.
Collapse
|
114
|
Zhu J, Chen S, Wang J, Zhang C, Zhang W, Liu P, Ma R, Chen Y, Yao Z. Splenectomy increases the survival time of heart allograft via developing immune tolerance. J Cardiothorac Surg 2013; 8:129. [PMID: 23680475 PMCID: PMC3667018 DOI: 10.1186/1749-8090-8-129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 05/14/2013] [Indexed: 11/29/2022] Open
Abstract
Background The spleen is an active lymphoid organ. The effect of splenectomy on the immune response remains unclear. This study investigated whether splenectomy can induce immune tolerance and has a beneficial role in cardiac allograft. Methods Wistar rats were used for heart donors. The Sprague–Dawley (SD) rats designated as the recipients of heart transplantation (HT) were randomly assigned into four groups: sham, splenectomy, HT, splenectomy + HT. The survival of transplanted hearts was assessed by daily checking of abdominal palpation. At various time points after transplantation, the transplanted hearts were collected and histologically examined; the level of CD4+CD25+ T regulatory lymphocytes (Tregs) and rate of lymphocyte apoptosis (annexin-v+ PI+ cells) in the blood were analyzed by using flow cytometric method. Results 1) Splenectomy significantly prolonged the mean survival time of heart allografts (7 ± 1.1 days and 27 ± 1.5 days for HT and splenectomy + HT, respectively; n = 12-14/group, HT vs. splenectomy + HT, p < 0.001); 2) Splenectomy delayed pathological changes (inflammatory cell infiltration, myocardial damage) of the transplanted hearts in splenectomy + HT rats; 3) The level of CD4+CD25+ Tregs in the blood of splenectomized rats was significantly increased within 7 days (2.4 ± 0.5%, 4.9 ± 1.3% and 5.3 ± 1.0% for sham, splenectomy and splenectomy + HT, respectively; n = 15/group, sham vs. splenectomy or splenectomy + HT, p < 0.05) after splenectomy surgery and gradually decreased to baseline level; 4) Splenectomy increased the rate of lymphocyte apoptosis (day 7: 0.3 ± 0.05%, 3.9 ± 0.9% and 4.1 ± 0.9% for sham, splenectomy and splenectomy + HT, respectively; n = 15/group, sham vs. splenectomy or splenectomy + HT, p < 0.05) in a pattern similar to the change of the CD4+CD25+ Tregs in the blood. Conclusions Splenectomy inhibits the development of pathology and prolongs the survival time of cardiac allograft. The responsible mechanism is associated with induction of immune tolerance via elevating CD4+CD25+ Tregs and increasing lymphocyte apoptosis.
Collapse
|
115
|
Identification of CD3+CD4-CD8- T cells as potential regulatory cells in an experimental murine model of graft-versus-host skin disease (GVHD). J Invest Dermatol 2013; 133:2538-2545. [PMID: 23648548 PMCID: PMC3795811 DOI: 10.1038/jid.2013.212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 03/25/2013] [Accepted: 04/02/2013] [Indexed: 11/11/2022]
Abstract
We have developed K14-mOVA transgenic (Tg) mice that express membrane-associated ovalbumin (mOVA) under the control of a K14 promoter as well as double Tg mice by crossing them with OT-I mice that have a T cell receptor (TCR) recognizing OVA peptide. When injected with CD8+ OT-I cells, K14-mOVATg mice develop graft-vs-host disease (GvHD), whereas double Tg mice are protected. This suggests that, in double Tg mice, regulatory mechanisms may prevent infused OT-I cells from inducing GvHD. We demonstrated that, after adoptive transfer, TCRαβ+CD3+CD4-CD8-NK1.1- double negative (DN) T cells are increased in the peripheral lymphoid organs and skin of double Tg mice and exhibit a Vα2+Vβ5+TCR that is the same TCR specificity as OT-I cells. These DN T cells isolated from tolerant double Tg mice proliferated in response to OVA peptide and produced IFN-γ in the presence of IL-2. These cells could also suppress the proliferation of OT-I cells and were able to specifically kill activated OT-I cells through Fas/Fas ligand interaction. These findings suggest that DN T cells that accumulate in double Tg mice have regulatory functions and may play a role in the maintenance of peripheral tolerance in vivo.
Collapse
|
116
|
Yuan Q, Hong S, Shi B, Kers J, Li Z, Pei X, Xu L, Wei X, Cai M. CD4(+)CD25(-)Nrp1(+) T cells synergize with rapamycin to prevent murine cardiac allorejection in immunocompetent recipients. PLoS One 2013; 8:e61151. [PMID: 23577203 PMCID: PMC3618334 DOI: 10.1371/journal.pone.0061151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/06/2013] [Indexed: 12/18/2022] Open
Abstract
Besides CD4+CD25+Foxp3+ regulatory T cells (Tregs), other immunosuppressive T cells also participated in the regulation of immune tolerance. Reportedly, neuropilin-1 (Nrp1) might be one of the molecules by which regulatory cells exert their suppressive effects. Indeed, CD4+CD25−Nrp1+ T cells exhibit potent suppressive function in autoimmune inflammatory responses. Here we investigated the specific role of CD4+CD25−Nrp1+ T cells in the setting of the transplant immune response. Through MLR assays, we found that CD4+CD25−Nrp1+ T cells suppressed the proliferation of naive CD4+CD25− T cells activated by allogeneic antigen-stimulation. Adoptive transfer of CD4+CD25−Nrp1+ T cells synergized with rapamycin to induce long-term graft survival in fully MHC-mismatched murine heart transplantation, which was associated with decreased IFN-γ, IL-17 and increased IL-10, TGF-β, Foxp3 and Nrp1 expression in the grafts. Importantly, our data indicated that CD4+CD25−Nrp1+ T cell transfer augments the accumulation of Tregs in the recipient, and creates conditions that favored induction of hyporesponsiveness of the T effector cells. In conclusion, this translational study indicates the possible therapeutic potential of CD4+CD25−Nrp1+ T cells in preventing allorejection. CD4+Nrp1+ T cells might therefore be used in bulk as a population of immunosuppressive cells with more beneficial properties concerning ex vivo isolation as compared to Foxp3+ Tregs.
Collapse
Affiliation(s)
- Qing Yuan
- Organ Transplant Center, Organ Transplant Institution of PLA, The 309th Hospital of PLA, Beijing, China
| | - Shanjuan Hong
- National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai, China
| | - Bingyi Shi
- Organ Transplant Center, Organ Transplant Institution of PLA, The 309th Hospital of PLA, Beijing, China
| | - Jesper Kers
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Zhouli Li
- Organ Transplant Center, Organ Transplant Institution of PLA, The 309th Hospital of PLA, Beijing, China
| | - Xiangke Pei
- Organ Transplant Center, The 281th Hospital of PLA, Qinhuangdao, Hebei, China
| | - Liang Xu
- Organ Transplant Center, Organ Transplant Institution of PLA, The 309th Hospital of PLA, Beijing, China
| | - Xing Wei
- Organ Transplant Center, Organ Transplant Institution of PLA, The 309th Hospital of PLA, Beijing, China
| | - Ming Cai
- Organ Transplant Center, Organ Transplant Institution of PLA, The 309th Hospital of PLA, Beijing, China
- * E-mail:
| |
Collapse
|
117
|
A Differential Impact of Mycophenolic Acid, Prednisolone, and Tacrolimus Exposure on sCD30 Levels in Adult Kidney Transplant Recipients. Ther Drug Monit 2013; 35:240-5. [DOI: 10.1097/ftd.0b013e31828286dd] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
118
|
Chandrasekharan D, Issa F, Wood KJ. Achieving operational tolerance in transplantation: how can lessons from the clinic inform research directions? Transpl Int 2013; 26:576-89. [PMID: 23517251 DOI: 10.1111/tri.12081] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 11/23/2012] [Accepted: 02/04/2013] [Indexed: 01/03/2023]
Abstract
Since the first solid organ transplant between the Herrick twins in 1954, transplantation immunology has sought to move away from harmful immunosuppressive regimens towards tolerogenic strategies that promote long-term graft survival. This has required a concerted multinational effort with scientists and clinicians working towards a common goal. Reports of immunosuppression-free kidney and liver allograft recipients have provided the proof-of-principle, but intentional generation of tolerance in clinical transplantation is still only achieved infrequently. Recently, there have been an increasing number of encouraging developments in the field in both experimental and clinical studies. In this article, we review the latest advances in tolerance research and consider possible future barriers and solutions in achieving reliable graft acceptance in the long term.
Collapse
Affiliation(s)
- Deepak Chandrasekharan
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
119
|
Apoptosis of Peripheral T Cells in Rodent Cardiac Allograft Recipients Induced by Donor-Specific Transfusion With Impaired Inducible Costimulator/B7 Homologous Protein Allorecognition. Transplant Proc 2013; 45:564-8. [DOI: 10.1016/j.transproceed.2012.06.084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 06/13/2012] [Accepted: 06/26/2012] [Indexed: 11/24/2022]
|
120
|
Daniel V, Sadeghi M, Wang H, Opelz G. CD4+ CD25+ Foxp3+ IFNγ+ CD178+ human induced Treg (iTreg) contribute to suppression of alloresponses by apoptosis of responder cells. Hum Immunol 2013; 74:151-62. [PMID: 23017670 DOI: 10.1016/j.humimm.2012.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 08/17/2012] [Accepted: 09/10/2012] [Indexed: 12/18/2022]
Abstract
Induced Treg with the phenotype CD4(+)CD25(+)Foxp3(+)IFNγ(+) were shown to be associated with good long-term graft outcome in renal transplant recipients and inhibition of allogeneic T-cell responses in vitro. In the present study, we investigated whether apoptosis and Fas/FasL-dependent pathways contribute to the inhibition of T-cell activation. Early apoptosis and necrosis rates as well as co-expression of immunostimulatory and immunosuppressive proteins in/on CD4(+)CD25(+)Foxp3(+), CD4(+)IFNγ(+)Foxp3(+) and CD4(+)CD25(+)IFNγ(+) PBL were analyzed using cells from healthy controls and four-color flow cytometry, PMA/Ionomycin-stimulated PBL, and MLC. Sixteen hours PMA/Ionomycin stimulation induced iTreg subsets with the phenotype CD4(+)CD25(+)Foxp3(+), CD4(+)IFNγ(+)Foxp3(+) and CD4(+)CD25(+)IFNγ(+) co-expressing CD95, CD152, CD178, CD279, Granzyme A, Granzyme B, Perforin, IL-10, and TGFβ(1). CD178(+) iTreg increased within 3h after PMA/Ionomycin stimulation in parallel to early apoptotic Annexin(+)/PI(-) PBL, suggesting CD178-mediated apoptosis of responder cells by CD4(+)CD25(+)Foxp3(+)IFNγ(+)CD178(+) iTreg. CD4(+)CD25(+)IFNγ(+) and CD4(+)CD25(+)CD178(+) PBL separated from primary cell cultures and added to autologous PMA/Ionomycin stimulated secondary cell cultures induced apoptosis immediately. Early apoptosis was not antigen-specific as shown in secondary MLC with separated CD4(+)CD25(+)IFNγ(+) and CD4(+)CD25(+)CD178(+) PBL and third-party cells as stimulator. CD4(+)CD25(+)Foxp3(+)IFNγ(+)CD178(+) iTreg differentiate after cell stimulation and induce antigen-unspecific apoptosis of activated CD95(+) responder/effector cells in vitro that might contribute to iTreg-mediated inhibition of T-cell activation.
Collapse
Affiliation(s)
- Volker Daniel
- Department of Transplantation-Immunology, Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
121
|
Alunno A, Bistoni O, Bartoloni E, Caterbi S, Bigerna B, Tabarrini A, Mannucci R, Falini B, Gerli R. IL-17-producing CD4-CD8- T cells are expanded in the peripheral blood, infiltrate salivary glands and are resistant to corticosteroids in patients with primary Sjogren's syndrome. Ann Rheum Dis 2013; 72:286-92. [PMID: 22904262 DOI: 10.1136/annrheumdis-2012-201511] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES It has been recently observed that a T-cell subset, lacking of both CD4 and CD8 molecules and defined as double negative (DN), is expanded in the blood of patients with systemic lupus erythematosus, produces IL-17 and accumulates in the kidney during nephritis. Since IL-17 production is enhanced in salivary gland infiltrates of primary Sjögren's syndrome (SS) patients, we investigated whether DN T cells may be involved in the pathogenesis of salivary gland damage. METHODS Phenotypic characterisation of peripheral blood mononuclear cells from SS patients and controls was performed by flow cytometry in freshly isolated and anti-CD3-stimulated cells. SS minor salivary glands were processed for immunofluorescence staining. RESULTS CD3(+)CD4(-)CD8(-) DN T cells were major producers of IL-17 in SS and expressed ROR-γt. They were expanded in the peripheral blood, spontaneously produced IL-17 and infiltrated salivary glands. In addition, the expansion of αβ-TCR(+) DN T cells was associated with disease activity. Notably, IL-17-producing DN T cells from SS patients, but not from healthy controls, were strongly resistant to the in vitro effect of dexamethasone. CONCLUSIONS These findings appear to be of great interest since the identification of a peculiar T-cell subset with pro-inflammatory activity, but resistant to corticosteroids, in an autoimmune disorder such as SS may help to design new specific treatments for the disease.
Collapse
Affiliation(s)
- Alessia Alunno
- Rheumatology Unit, Department of Clinical & Experimental Medicine, University of Perugia, Via Enrico Dal Pozzo, Perugia I-06122, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Hillhouse EE, Delisle JS, Lesage S. Immunoregulatory CD4(-)CD8(-) T cells as a potential therapeutic tool for transplantation, autoimmunity, and cancer. Front Immunol 2013; 4:6. [PMID: 23355840 PMCID: PMC3553425 DOI: 10.3389/fimmu.2013.00006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/05/2013] [Indexed: 11/17/2022] Open
Abstract
A central objective in organ transplantation and the treatment or prevention of autoimmune disease is the achievement of antigen-specific immune tolerance. An additional challenge in bone marrow transplantation for the treatment of hematological malignancies is the prevention of graft-vs-host disease (GVHD) while maintaining graft-vs-tumor activity. Interestingly, CD4-CD8- (double negative, DN) T cells, which exhibit a unique antigen-specific immunoregulatory potential, appear to exhibit all of the properties to respond to these challenges. Herein, we review the therapeutic potential of immunoregulatory DN T cells in various immunopathological settings, including graft tolerance, GVHD, cancer, and autoimmunity.
Collapse
Affiliation(s)
- Erin E Hillhouse
- Department of Microbiology and Immunology, University of Montreal Montreal, QC, Canada ; Research Center, Maisonneuve-Rosemont Hospital Montreal, QC, Canada
| | | | | |
Collapse
|
123
|
Dugas V, Chabot-Roy G, Beauchamp C, Guimont-Desrochers F, Hillhouse EE, Liston A, Lesage S. Unusual selection and peripheral homeostasis for immunoregulatory CD4(-) CD8(-) T cells. Immunology 2013; 139:129-39. [PMID: 23293940 DOI: 10.1111/imm.12064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/21/2012] [Accepted: 01/03/2013] [Indexed: 11/27/2022] Open
Abstract
Immunoregulatory CD4(-) CD8(-) (double-negative; DN) T cells exhibit a unique antigen-specific mode of suppression, yet the ontogeny of DN T cells remains enigmatic. We have recently shown that 3A9 T-cell receptor (TCR) transgenic mice bear a high proportion of immunoregulatory 3A9 DN T cells, facilitating their study. The 3A9 TCR is positively selected on the H2(k) MHC haplotype, is negatively selected in mice bearing the cognate antigen, namely hen egg lysozyme, and there is absence of positive selection on the H2(b) MHC haplotype. Herein, we take advantage of this well-defined 3A9 TCR transgenic model to assess the thymic differentiation of DN T cells and its impact on determining the proportion of these cells in secondary lymphoid organs. We find that the proportion of DN T cells in the thymus is not dictated by the nature of the MHC-selecting haplotype. By defining DN T-cell differentiation in 3A9 TCR transgenic CD47-deficient mice as well as in mice bearing the NOD.H2(k) genetic background, we further demonstrate that the proportion of 3A9 DN T cells in the spleen is independent of the MHC selecting haplotype. Together, our findings suggest that immunoregulatory DN T cells are subject to rules distinct from those imposed upon CD4 T cells.
Collapse
Affiliation(s)
- Véronique Dugas
- Research Centre, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
124
|
Olson BM, Jankowska-Gan E, Becker JT, Vignali DAA, Burlingham WJ, McNeel DG. Human prostate tumor antigen-specific CD8+ regulatory T cells are inhibited by CTLA-4 or IL-35 blockade. THE JOURNAL OF IMMUNOLOGY 2012; 189:5590-601. [PMID: 23152566 DOI: 10.4049/jimmunol.1201744] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Regulatory T cells play important roles in cancer development and progression by limiting the generation of innate and adaptive anti-tumor immunity. We hypothesized that in addition to natural CD4(+)CD25(+) regulatory T cells (Tregs) and myeloid-derived suppressor cells, tumor Ag-specific Tregs interfere with the detection of anti-tumor immunity after immunotherapy. Using samples from prostate cancer patients immunized with a DNA vaccine encoding prostatic acid phosphatase (PAP) and a trans-vivo delayed-type hypersensitivity (tvDTH) assay, we found that the detection of PAP-specific effector responses after immunization was prevented by the activity of PAP-specific regulatory cells. These regulatory cells were CD8(+)CTLA-4(+), and their suppression was relieved by blockade of CTLA-4, but not IL-10 or TGF-β. Moreover, Ag-specific CD8(+) Tregs were detected prior to immunization in the absence of PAP-specific effector responses. These PAP-specific CD8(+)CTLA-4(+) suppressor T cells expressed IL-35, which was decreased after blockade of CTLA-4, and inhibition of either CTLA-4 or IL-35 reversed PAP-specific suppression of tvDTH response. PAP-specific CD8(+)CTLA-4(+) T cells also suppressed T cell proliferation in an IL-35-dependent, contact-independent fashion. Taken together, these findings suggest a novel population of CD8(+)CTLA-4(+) IL-35-secreting tumor Ag-specific Tregs arise spontaneously in some prostate cancer patients, persist during immunization, and can prevent the detection of Ag-specific effector responses by an IL-35-dependent mechanism.
Collapse
Affiliation(s)
- Brian M Olson
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
| | | | | | | | | | | |
Collapse
|
125
|
Wang X, Yan W, Lu Y, Chen T, Sun Y, Qin X, Zhang J, Han M, Guo W, Wang H, Wu D, Xi D, Luo X, Ning Q. CD4-CD8-T cells contribute to the persistence of viral hepatitis by striking a delicate balance in immune modulation. Cell Immunol 2012; 280:76-84. [PMID: 23261832 PMCID: PMC7094652 DOI: 10.1016/j.cellimm.2012.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 08/04/2012] [Accepted: 11/12/2012] [Indexed: 12/13/2022]
Abstract
Viral hepatitis remains the most common cause of liver disease and a major public health problem. Here, we focus on the role of CD4 CD8 double negative T (DN T) cells involved in the mechanisms of viral persistence in hepatitis. C3H/HeJ mice infected with murine hepatitis virus strain 3 (MHV-3) were used to display chronic viral hepatitis. DN T cells dramatically increased in MHV-3 infected mice. Adoptive transfer of DN T cells from MHV-3 infected mice led to a significant increase in mice survival. The DN T cells with production of IFN-γ and IL-2 are able to kill virus-specific CD8(+) T cells via the Fas/FasL dependent pathway. The delicate balance of multiple effects of DN T cells may lead to viral persistence in MHV-3 induced hepatitis. In short, our study identified DN T cells contributing to viral persistence in MHV-3 induced hepatitis in C3H/HeJ mice, which provides a rationale for modulating DN T cells for the management of viral hepatitis.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of Infectious Disease and Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Autocrine IFNγ controls the regulatory function of lymphoproliferative double negative T cells. PLoS One 2012; 7:e47732. [PMID: 23077665 PMCID: PMC3471870 DOI: 10.1371/journal.pone.0047732] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/14/2012] [Indexed: 11/19/2022] Open
Abstract
TCRαβ+ CD4−CD8−NK− double negative T cells (DN T cells) can act as regulatory T cells to inhibit allograft rejection and autoimmunity. Their role in graft-versus-host disease and mechanisms of suppression remain elusive. In this study, we demonstrate that DN T cells can inhibit CD4+ T cell-mediated GVHD in a semi-allogeneic model of bone marrow transplantation. Furthermore, we present evidence of a novel autocrine IFNγ signaling pathway in Fas-deficient C57BL/6.lpr (B6.lpr) DN T cells. B6.lpr DN T cells lacking IFNγ or its receptor were impaired in their ability to suppress syngeneic CD4+ T cells responding to alloantigen stimulation both in vitro and in vivo. Autocrine IFNγ signaling was required for sustained B6.lpr DN T cell IFNγ secretion in vivo and for upregulation of surface Fas ligand expression during TCR stimulation. Fas ligand (FasL) expression by B6.lpr DN T cells permitted lysis of activated CD4+ T cells and was required for suppression of GVHD. Collectively, our data indicate that DN T cells can inhibit GVHD and that IFNγ plays a critical autocrine role in controlling the regulatory function of B6.lpr DN T cells.
Collapse
|
127
|
Schlickeiser S, Sawitzki B. Peripheral biomarkers for individualizing immunosuppression in transplantation - Regulatory T cells. Clin Chim Acta 2012; 413:1406-13. [DOI: 10.1016/j.cca.2012.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 02/10/2012] [Accepted: 02/10/2012] [Indexed: 01/08/2023]
|
128
|
. JX, Zhang N, . SG, . HL, . JL, Xu X, . CW, . HZ, Liu F, . JZ, . BW. Effects of Sijunzi Decoction on Small Intestinal T Lymphocyte Subsets Differentiation in Reserpine Induced Spleen Deficiency Rats. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/javaa.2012.1290.1298] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
129
|
Hillhouse EE, Lesage S. A comprehensive review of the phenotype and function of antigen-specific immunoregulatory double negative T cells. J Autoimmun 2012; 40:58-65. [PMID: 22910322 DOI: 10.1016/j.jaut.2012.07.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/31/2012] [Accepted: 07/31/2012] [Indexed: 12/18/2022]
Abstract
Double negative T cells that lack the expression of both CD4 and CD8 T cell co-receptors exhibit a most unique antigen-specific immunoregulatory potential first described over a decade ago. Due to their immunoregulatory function, this rare T cell population has been studied in both mice and humans for their contribution to peripheral tolerance and disease prevention. Consequently, double negative cells are gaining interest as a potential cellular therapeutic. Herein, we review the phenotype and function of double negative T cells with emphasis on their capacity to induce antigen-specific immune tolerance. While the phenotypic and functional similarities between double negative T cells identified in mouse and humans are highlighted, we also call attention to the need for a specific marker of double negative T cells, which will facilitate future studies in humans. Altogether, due to their unique properties, double negative T cells present a promising therapeutic potential in the context of various disease settings.
Collapse
Affiliation(s)
- Erin E Hillhouse
- Department of Microbiology and Immunology, University of Montreal, Montreal, Quebec H3C 3J7, Canada; Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada.
| | | |
Collapse
|
130
|
Abstract
PURPOSE OF REVIEW Here, we review the pathways of allorecognition and their potential relevance to the balance between regulatory and effector responses following transplantation. RECENT FINDINGS Transplantation between nonidentical members of the same species elicits an immune response that manifests as graft rejection or persistence. Presentation of foreign antigen to recipient T cells can occur via three nonmutually exclusive routes, the direct, indirect and semi-direct pathways. Allospecific T cells can have effector or regulatory functions, and the relative proportions of the two populations activated following alloantigen presentation are two of the factors that determine the clinical outcome. Regulatory T cells have been the subject of significant research, and there is now greater understanding of their recruitment and function in the context of allorecognition. SUMMARY A greater understanding of the mechanisms underlying allorecognition may be fundamental to appreciating how these different populations are recruited and could in turn inform novel strategies for immunomodulation.
Collapse
|
131
|
Lu Y, Wang X, Yan W, Wang H, Wang M, Wu D, Zhu L, Luo X, Ning Q. Liver TCRγδ(+) CD3(+) CD4(-) CD8(-) T cells contribute to murine hepatitis virus strain 3-induced hepatic injury through a TNF-α-dependent pathway. Mol Immunol 2012; 52:229-36. [PMID: 22750070 DOI: 10.1016/j.molimm.2012.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/02/2012] [Accepted: 05/31/2012] [Indexed: 12/12/2022]
Abstract
The mechanisms of each subset of immune cells contributing to the pathogenesis of viral hepatitis remain incompletely understood. In this study, we examined the role of liver CD4(-) CD8(-) (double negative, DN) T cells during murine hepatitis virus strain 3 (MHV-3)-induced hepatitis in C3H/HeJ mice. We demonstrate that predominant population of DN T cells in the liver of healthy or MHV-3-infected mice express TCRγδ(+). The proportion of TCRγδ(+) DN T cells in liver CD3(+) T cells was markedly increased after MHV-3 infection. Adoptive transfer of TCRγδ(+) DN T cells led to dramatically decreased survival in MHV-3-infected mice, accompanied by deteriorated histopathology and elevated ALT and AST levels. It was found that these cells were hyperactivated after MHV-3 infection with a production of TNF-α, IFN-γ, IL-2 and IL-17A. Highly activated liver TCRγδ(+) DN T cells were cytotoxic to MHV-3-infected hepatocytes in vitro and this effect did not require cell-cell contact. Moreover, the cytotoxic effect of liver TCRγδ(+) DN T cells against hepatocytes involves TNF-α pathway, but not IL-17A or IFN-γ. These results indicate that liver TCRγδ(+) DN T cells play a critical role in the liver injury in MHV-3-induced hepatitis, via a TNF-α dependent pathway.
Collapse
MESH Headings
- Animals
- CD3 Complex/immunology
- CD4 Antigens/immunology
- CD8 Antigens/immunology
- Cells, Cultured
- Hepatitis, Viral, Animal/immunology
- Hepatitis, Viral, Animal/pathology
- Hepatitis, Viral, Animal/virology
- Hepatocytes/immunology
- Interferon-gamma/biosynthesis
- Interleukin-17/biosynthesis
- Interleukin-2/biosynthesis
- Liver/immunology
- Liver/virology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Murine hepatitis virus/immunology
- Murine hepatitis virus/pathogenicity
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Yulei Lu
- Department and Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Wood KJ, Bushell A, Hester J. Regulatory immune cells in transplantation. Nat Rev Immunol 2012; 12:417-30. [DOI: 10.1038/nri3227] [Citation(s) in RCA: 334] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
133
|
Juvet SC, Zhang L. Double negative regulatory T cells in transplantation and autoimmunity: recent progress and future directions. J Mol Cell Biol 2012; 4:48-58. [PMID: 22294241 DOI: 10.1093/jmcb/mjr043] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
T lymphocytes bearing the αβ T cell receptor (TCR) but lacking CD4, CD8, and markers of natural killer (NK) cell differentiation are known as 'double-negative' (DN) T cells and have been described in both humans and rodent models. We and others have shown that DN T cells can act as regulatory T cells (Tregs) that are able to prevent allograft rejection, graft-versus-host disease, and autoimmune diabetes. In the last few years, new data have revealed evidence of DN Treg function in vivo in rodents and humans. Moreover, significant advances have been made in the mechanisms by which DN Tregs target antigen-specific T cells. One major limitation of the field is the lack of a specific marker that can be used to distinguish truly regulatory DN T cells (DN Tregs) from non-regulatory ones, and this is the central challenge in the coming years. Here, we review recent progress on the role of DN Tregs in transplantation and autoimmunity, and their mechanisms of action. We also provide some perspectives on how DN Tregs compare with Foxp3(+) Tregs.
Collapse
Affiliation(s)
- Stephen C Juvet
- Division of Respirology and Clinician-Scientist Training Program, Department of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
134
|
Su Y, Huang X, Wang S, Min WP, Yin Z, Jevnikar AM, Zhang ZX. Double negative Treg cells promote nonmyeloablative bone marrow chimerism by inducing T-cell clonal deletion and suppressing NK cell function. Eur J Immunol 2012; 42:1216-1225. [PMID: 22539294 DOI: 10.1002/eji.201141808] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The establishment of immune tolerance and prevention of chronic rejection remain major goals in clinical transplantation. In bone marrow (BM) transplantation, T cells and NK cells play important roles for graft rejection. In addition, graft-versus-host-disease (GVHD) remains a major obstacle for BM transplantation. In this study, we aimed to establish mixed chimerism in an irradiation-free condition. Our data indicate that adoptive transfer of donor-derived T-cell receptor (TCR) αβ(+) CD3(+) CD4(-) CD8(-) NK1.1(-) (double negative, DN) Treg cells prior to C57BL/6 to BALB/c BM transplantation, in combination with cyclophosphamide, induced a stable-mixed chimerism and acceptance of C57BL/6 skin allografts but rejection of third-party C3H (H-2k) skin grafts. Adoptive transfer of CD4(+) and CD8(+) T cells, but not DN Treg cells, induced GVHD in this regimen. The recipient T-cell alloreactive responsiveness was reduced in the DN Treg cell-treated group and clonal deletions of TCRVβ2, 7, 8.1/2, and 8.3 were observed in both CD4(+) and CD8(+) T cells. Furthermore, DN Treg-cell treatment suppressed NK cell-mediated BM rejection in a perforin-dependent manner. Taken together, our results suggest that adoptive transfer of DN Treg cells can control both adoptive and innate immunities and promote stable-mixed chimerism and donor-specific tolerance in the irradiation-free regimen.
Collapse
Affiliation(s)
- Ye Su
- The Multi-Organ Transplant Program, London Health Sciences Centre, London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
135
|
Ahmed KA, Wang L, Munegowda MA, Mulligan SJ, Mulligan S, Gordon JR, Griebel P, Xiang J. Direct in vivo evidence of CD4+ T cell requirement for CTL response and memory via pMHC-I targeting and CD40L signaling. J Leukoc Biol 2012; 92:289-300. [PMID: 22544940 DOI: 10.1189/jlb.1211631] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
CD4(+) T cell help contributes critically to DC-induced CD8(+) CTL immunity. However, precisely how these three cell populations interact and how CD4(+) T cell signals are delivered to CD8(+) T cells in vivo have been unclear. In this study, we developed a novel, two-step approach, wherein CD4(+) T cells and antigen-presenting DCs productively engaged one another in vivo in the absence of cognate CD8(+) T cells, after which, we selectively depleted the previously engaged CD4(+) T cells or DCs before allowing interactions of either population alone with naïve CD8(+) T cells. This protocol thus allows us to clearly document the importance of CD4(+) T-licensed DCs and DC-primed CD4(+) T cells in CTL immunity. Here, we provide direct in vivo evidence that primed CD4(+) T cells or licensed DCs can stimulate CTL response and memory, independent of DC-CD4(+) T cell clusters. Our results suggest that primed CD4(+) T cells with acquired pMHC-I from DCs represent crucial "immune intermediates" for rapid induction of CTL responses and for functional memory via CD40L signaling. Importantly, intravital, two-photon microscopy elegantly provide unequivocal in vivo evidence for direct CD4-CD8(+) T cell interactions via pMHC-I engagement. This study corroborates the coexistence of direct and indirect mechanisms of T cell help for a CTL response in noninflammatory situations. These data suggest a new "dynamic model of three-cell interactions" for CTL immunity derived from stimulation by dissociated, licensed DCs, primed CD4(+) T cells, and DC-CD4(+) T cell clusters and may have significant implications for autoimmunity and vaccine design.
Collapse
Affiliation(s)
- Khawaja Ashfaque Ahmed
- Research Unit, Saskatchewan Cancer Agency, Department of Oncology, University of Saskatchewan, Saskatoon, Saskatchewan Canada
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Abstract
Trogocytosis is a process which involves the transfer of membrane fragments and cell surface proteins between cells. Various types of T cells have been shown to be able to acquire membrane-bound proteins from antigen-presenting cells and their functions can be modulated following trogocytosis. However, it is not known whether induced regulatory T cells (iTregs) can undergo trogocytosis, and if so, what the functional consequences of this process might entail. In this study, we show that iTregs can be generated from CD80(-/-)CD86(-/-) double knockout (DKO) mice. Using flow cytometry and confocal fluorescence microscopy, we demonstrate that iTregs generated from DKO mice are able to acquire both CD80 and CD86 from mature dendritic cells (mDCs) and that the acquisition of CD86 occurs to a higher extent than that of CD80. Furthermore, we found that after co-incubation with iTregs, dendritic cells (DCs) downregulate their surface expression of CD80 and CD86. The trogocytosis of both CD80 and CD86 occurs in a cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), CD28 and programmed death ligand-1 (PDL1)-independent manner. Importantly, we showed that iTregs that acquired CD86 from mDCs expressed higher activation markers and their ability to suppress naive CD4(+) T-cell proliferation was enhanced, compared to iTregs that did not acquire CD86. These data demonstrate, for the first time, that iTregs can acquire CD80 and CD86 from mDCs, and the acquisition of CD86 may enhance their suppressive function. These findings provide novel understanding of the interaction between iTregs and DCs, suggesting that trogocytosis may play a significant role in iTreg-mediated immune suppression.
Collapse
|
137
|
Level of double negative T cells, which produce TGF-β and IL-10, predicts CD8 T-cell activation in primary HIV-1 infection. AIDS 2012; 26:139-48. [PMID: 22045342 DOI: 10.1097/qad.0b013e32834e1484] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Persistent immune activation plays a central role in the pathogenesis of HIV disease. Besides natural regulatory T cells (nTregs), 'double negative' T cells shown to exhibit regulatory properties could be involved in the control of harmful immune activation. The aim of this study was to analyze, in patients with primary HIV infection (PHI), the relationship between CD4(+)CD25(+)CD127(low)FoxP3(+) nTregs or CD3(+)CD4(-)CD8(-) double negative T cells and systemic immune activation. DESIGN A prospective longitudinal study of patients with early PHI. METHODS Twenty-five patients were included. Relationships between frequency of Treg subsets and T-cell activation, assessed on fresh peripheral blood mononuclear cells, were analyzed using nonparametric tests. Cytokine production by double negative T cells was assessed following anti-CD3/anti-CD28 stimulation. RESULTS No relationship was found between T-cell activation and frequencies of nTregs. In contrast, a strong negative relationship was found at baseline between the proportion of double negative T cells and the proportion of activated CD8 T cells coexpressing CD38 and HLA-DR (P = 0.005) or expressing Ki-67 (P = 0.002). In addition, the frequency of double negative T cells at baseline negatively correlated with the frequency of HLA-DR(+)CD38(+)CD8(+) T cells at month 6, defining the immune activation set point (P = 0.031). High proportions of stimulated double negative T cells were found to produce the immunosuppressive cytokines transforming growth factor-β1 and/or IL-10. CONCLUSION The proportion of double negative T cells at baseline was found to be predictive of the immune activation set point. Our data strongly suggest that double negative T cells may control immune activation in PHI. This effect might be mediated through the production of TGF-β1/IL-10 known to downmodulate immune activation.
Collapse
|
138
|
Umeda K, Sun X, Guo Y, Yamada H, Shibata K, Yoshikai Y. Innate memory phenotype CD4+ T cells play a role in early protection against infection by Listeria monocytogenes in a CD30L-dependent manner. Microbiol Immunol 2012; 55:645-56. [PMID: 21699557 DOI: 10.1111/j.1348-0421.2011.00362.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CD30 ligand (CD30L, CD153) is a type II membrane-associated glycoprotein belonging to the tumor necrosis factor family. It is shown here that CD30L knock out (KO) mice are highly susceptible to primary infection with Listeria monocytogenes as assessed by the survival rate. There were significantly more bacteria on day 3 after infection in the peritoneal cavity, spleen and liver of CD30LKO mice than in wild type (WT) mice. The innate function of memory phenotype (MP) CD44+ CD4+ T cells for interferon-gamma production was significantly lower in CD30LKO mice than in WT mice in response to interleukin (IL)-12 and IL-15 in vitro. Depletion of CD4+ T cells by in vivo administration of anti-CD4 mAb at an early stage after infection hampered protection against Listeria. Furthermore, in vivo administration of agonistic anti-CD30 mAb restored protection against Listeria in CD30LKO mice, whereas treatment with soluble mCD30-Ig hampered protection in WT mice. Taken together, it appears that CD30L/CD30 signaling plays an important role in innate MPCD4+ T cell-mediated protection against infection with L. monocytogenes.
Collapse
Affiliation(s)
- Kenji Umeda
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
139
|
Long-term persistence of CD4(+) but rapid disappearance of CD8(+) T cells expressing an MHC class I-restricted TCR of nanomolar affinity. Mol Ther 2012; 20:652-60. [PMID: 22233579 DOI: 10.1038/mt.2011.286] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Most T cells have T cell receptors (TCR) of micromolar affinity for peptide-major histocompatibility complex (MHC) ligands, but genetic engineering can generate TCRs of nanomolar affinity. The affinity of the TCR used, m33, for its cognate non-self peptide-MHC-I complex (SIYRYYGL-K(b)) is 1,000-fold higher than of the wild-type TCR 2C. The affinity of m33 for the self-peptide dEV-8 on K(b) is only twofold higher. Mouse CD8(+) T cells transduced with an m33-encoding retrovirus showed binding of SIY-K(b) and potent function in vitro, but in vivo these T cells disappeared within hours after transfer into syngeneic hosts without causing graft-versus-host disease (GVHD). Accordingly, in cases where such CD8-dependent self-reactivity might occur in human adoptive T cell therapies, our results show that a peripheral T-cell deletion mechanism could operate to avoid reactions with the host. In contrast to CD8(+) T cells, we show that CD4(+) T cells expressing m33 survived for months in vivo. Furthermore, the m33-transduced CD4(+) T cells were able to mediate antigen-specific rejection of 6-day-old tumors. Together, we show that CD8(+) T cell expressing a MHC class I-restricted high-affinity TCR were rapidly deleted whereas CD4(+) T cells expressing the same TCR survived and provided function while being directed against a class I-restricted antigen.
Collapse
|
140
|
Lee BO, Jones JE, Peters CJ, Whitacre D, Frelin L, Hughes J, Kim WK, Milich DR. Identification of a unique double-negative regulatory T-cell population. Immunology 2012; 134:434-47. [PMID: 22044159 DOI: 10.1111/j.1365-2567.2011.03502.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Regulatory T (Treg) cells represent one of the main mechanisms of regulating self-reactive immune cells. Treg cells are thought to play a role in down-regulating immune responses to self or allogeneic antigens in the periphery. Although the function of Treg cells has been demonstrated in many experimental settings, the precise mechanisms and antigen specificity often remain unclear. In a hepatitis B e antigen-T-cell receptor (HBeAg-TCR) double transgenic mouse model, we observed a phenotypically unique (TCR+) CD4- /CD8- CD25(+/-) GITR(high) PD-1(high) FoxP3-) HBeAg-specific population that demonstrates immune regulatory function. This HBeAg-specific double-negative regulatory cell population proliferates vigorously in vitro, in contrast to any other known regulatory population, in an interleukin-2-independent manner.
Collapse
Affiliation(s)
- Byung O Lee
- Vaccine Research Institute of San Diego, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | |
Collapse
|
141
|
|
142
|
Newell KA, Phippard D, Turka LA. Regulatory cells and cell signatures in clinical transplantation tolerance. Curr Opin Immunol 2011; 23:655-9. [DOI: 10.1016/j.coi.2011.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 07/18/2011] [Indexed: 01/25/2023]
|
143
|
Hill M, Thebault P, Segovia M, Louvet C, Bériou G, Tilly G, Merieau E, Anegon I, Chiffoleau E, Cuturi MC. Cell therapy with autologous tolerogenic dendritic cells induces allograft tolerance through interferon-gamma and epstein-barr virus-induced gene 3. Am J Transplant 2011; 11:2036-45. [PMID: 21794083 DOI: 10.1111/j.1600-6143.2011.03651.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Innovative therapeutic strategies are needed to diminish the impact of harmful immunosuppression in transplantation. Dendritic cell (DC)-based therapy is a promising approach for induction of antigen-specific tolerance. Using a heart allograft model in rats, we analyzed the immunoregulatory mechanisms by which injection of autologous tolerogenic DCs (ATDCs) plus suboptimal immunosuppression promotes indefinite graft survival. Surprisingly, we determined that Interferon-gamma (IFNG), a cytokine expected to be propathogenic, was threefold increased in the spleen of tolerant rats. Importantly, its blockade led to allograft rejection [Mean Survival Time (MST) = 25.6 ± 4 days], showing that IFNG plays a critical role in immunoregulatory mechanisms triggered by ATDCs. IFNG was expressed by TCRαβ(+) CD3(+) CD4(-) CD8(-) NKRP1(-) cells (double negative T cells, DNT), which accumulated in the spleen of tolerant rats. Interestingly, ATDCs specifically induced IFNG production by DNT cells. ATDCs expressed the cytokinic chain Epstein-Barr virus-induced gene 3 (EBI3), an IL-12 family member. EBI3 blockade or knock-down through siRNA completely abolished IFNG expression in DNT cells. Finally, EBI3 blockade in vivo led to allograft rejection (MST = 36.8 ± 19.7 days), demonstrating for the first time a role for EBI3 in transplantation tolerance. Taken together our results have important implications in the rationalization of DC-based therapy in transplantation as well as in the patient immunomonitoring follow-up.
Collapse
Affiliation(s)
- M Hill
- INSERM, UMR 643, Nantes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Ye H, Chang Y, Zhao X, Huang X. Characterization of CD3+CD4-CD8- (double negative) T cells reconstitution in patients following hematopoietic stem-cell transplantation. Transpl Immunol 2011; 25:180-6. [PMID: 21911061 DOI: 10.1016/j.trim.2011.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 08/04/2011] [Accepted: 08/21/2011] [Indexed: 11/16/2022]
Abstract
BACKGROUND CD3+CD4-CD8-double negative (DN) T cells, as a distinct subset of regulatory T cells (Tregs), played a pivotal role in patients following hematopoietic stem-cell transplantation. METHODS This study examines the behavior of CD3+CD4-CD8- double negative (DN) T cells in 73 patients at days 30, 60, 90 and 180 after allo-HSCT. RESULTS There was no significant difference in neutrophil and platelet engraftment between the higher and lower absolute counts of 30days DN Tregs (p=0.674, 0.863, respectively). The reconstitution of DN Tregs was significantly slower than that of CD8+, CD4+, and CD3+CD8+CD28- T cells (p<0.001), but significantly faster than that of CD19+ and CD4+CD25+ T cells (p<0.001, p=0.032, respectively). Importantly, in the HLA mismatched group, DN Tregs reconstitution had significant effect on aGVHD (p=0.027) and there was significant correlation between aGVHD and DN Tregs reconstitution (p=0.035). DN Tregs reconstitution was significantly faster in the patients who were devoid of aGVHD than that of patients who developed aGVHD. Furthermore, we compared the absolute value of DN Tregs at 30days, 60days, 90days and 180days after allo-HSCT with grade aGVHD and found an inverse linear relationship in the HLA mismatched group (n=37, P<0.001, r=-0.573). CONCLUSIONS The successful expansion of DN Tregs at 60days after allo-HCST may help avoid severe manifestations of aGVHD in the HLA mismatched group, suggesting that DN Tregs have potential protection effect against aGVHD.
Collapse
Affiliation(s)
- Haige Ye
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | | | | | | |
Collapse
|
145
|
Merims S, Li X, Joe B, Dokouhaki P, Han M, Childs RW, Wang ZY, Gupta V, Minden MD, Zhang L. Anti-leukemia effect of ex vivo expanded DNT cells from AML patients: a potential novel autologous T-cell adoptive immunotherapy. Leukemia 2011; 25:1415-22. [PMID: 21566657 PMCID: PMC4214360 DOI: 10.1038/leu.2011.99] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/09/2011] [Accepted: 03/22/2011] [Indexed: 12/22/2022]
Abstract
CD3(+)CD56(-), CD4 and CD8 double negative T (DNT) cells comprise 1-3% of peripheral blood (PB) mononuclear cells. Their role in tumor immunity remains largely unknown due to their limited numbers and lack of effective methods to expand them. Here we developed a novel protocol by which DNT cells can be expanded ex vivo to therapeutic levels in 2 weeks from 13 of 16 acute myeloid leukemia (AML) patients during chemotherapy-induced complete remission. The expanded DNT cells expressed similar or higher levels of interferon-γ and tumor necrosis factor-α and Granzyme B as that seen in bulk activated CD8T cells from the same patient but significantly higher levels of perforin. The expanded DNT cells could effectively kill both allogeneic and autologous primary CD34(+) leukemic blasts isolated from PB of AML patients in a perforin-dependant manner. These results demonstrate, for the first time, that DNT cells from AML patients can be expanded ex vivo even after intensive chemotherapy, and are effective at killing both allogeneic and autologous primary leukemic blasts. These findings warrant studies further exploring the potential of DNT cells as a novel adjuvant immunotherapy to decrease the risk of relapse in patients with AML and, perhaps, other cancers.
Collapse
Affiliation(s)
- Sharon Merims
- Toronto General Research Institute, Toronto, ON, Canada
| | - Xujian Li
- Toronto General Research Institute, Toronto, ON, Canada
| | - Betty Joe
- Toronto General Research Institute, Toronto, ON, Canada
| | | | - Mei Han
- Toronto General Research Institute, Toronto, ON, Canada
| | - Richard W. Childs
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhen-yi Wang
- Shanghai Institute of Hematology, Rui-jin Hospital, Shanghai, China
| | - Vikas Gupta
- Department of Medical Oncology and Hematology, Princess Margaret Hospital, Toronto, ON, Canada
| | - Mark D. Minden
- Department of Medical Oncology and Hematology, Princess Margaret Hospital, Toronto, ON, Canada
| | - Li Zhang
- Toronto General Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada and Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
146
|
D'Acquisto F, Crompton T. CD3+CD4-CD8- (double negative) T cells: saviours or villains of the immune response? Biochem Pharmacol 2011; 82:333-40. [PMID: 21640713 DOI: 10.1016/j.bcp.2011.05.019] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/12/2011] [Accepted: 05/17/2011] [Indexed: 01/13/2023]
Abstract
Recent studies have shown that T cells are not just the latecomers in inflammation but might also play a key role in the early phase of this response. In this context, a number of T cell subsets including NKT cells, mucosal-associated invariant T cells and γ/δ T cells have been shown, together with classical innate immune cells, to contribute significantly to the development and establishment of acute and chronic inflammatory diseases. In this commentary we will focus our attention on a somewhat neglected class of T cells called CD3(+)CD4(-)CD8(-) double negative T cells and on their role in inflammation and autoimmunity. We will summarize the most recent views on their origin at the thymic and peripheral levels as well as their tissue localization in immune and non-lymphoid organs. We will then outline their potential pathogenic role in autoimmunity as well as their homeostatic role in suppressing excessive immune responses deleterious to the host. Finally, we will discuss the potential therapeutic benefits or disadvantages of targeting CD3(+)CD4(-)CD8(-) double negative T cells for the treatment of autoimmune disease. We hope that this overview will shed some light on the function of these immune cells and attract the interest of investigators aiming at the design of novel therapeutic approaches for the treatment of autoimmune and inflammatory conditions.
Collapse
Affiliation(s)
- Fulvio D'Acquisto
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| | | |
Collapse
|
147
|
Gao JF, McIntyre MSF, Juvet SC, Diao J, Li X, Vanama RB, Mak TW, Cattral MS, Zhang L. Regulation of antigen-expressing dendritic cells by double negative regulatory T cells. Eur J Immunol 2011; 41:2699-708. [PMID: 21660936 DOI: 10.1002/eji.201141428] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/05/2011] [Accepted: 06/01/2011] [Indexed: 12/25/2022]
Abstract
TCRαβ(+) CD3(+) CD4(-) CD8(-) NK1.1(-) double negative (DN) Tregs comprise 1-3% of peripheral T lymphocytes in mice and humans. It has been demonstrated that DN Tregs can suppress allo-, xeno- and auto-immune responses in an Ag-specific fashion. However, the mechanisms by which DN Tregs regulate immune responses remain elusive. Whether DN Tregs can regulate DCs has not been investigated previously. In this study, we demonstrate that DN Tregs express a high level of CTLA4 and are able to down-regulate costimulatory molecules CD80 and CD86 expressed on Ag-expressing mature DCs (mDCs). DN Tregs from CTLA4 KO mice were not able to downregulate CD80 and CD86 expression, indicating that CTLA4 is critical for DN Treg-mediated downregulation of costimulatory molecule expression on Ag-expressing mature DCs. Furthermore, DN Tregs could kill both immature and mature allogeneic DCs, as well as Ag-loaded syngeneic DCs, in an Ag-specific manner in vitro and in vivo, mainly through the Fas-FasL pathway. These data demonstrate, for the first time, that DN Tregs are potent regulators of DCs and may have the potential to be developed as a novel immune suppression treatment.
Collapse
Affiliation(s)
- Julia Fang Gao
- University of Toronto Transplant Institute, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Zhang D, Zhang W, Ng TW, Wang Y, Liu Q, Gorantla V, Lakkis F, Zheng XX. Adoptive cell therapy using antigen-specific CD4⁻CD8⁻T regulatory cells to prevent autoimmune diabetes and promote islet allograft survival in NOD mice. Diabetologia 2011; 54:2082-92. [PMID: 21594554 DOI: 10.1007/s00125-011-2179-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 04/04/2011] [Indexed: 12/20/2022]
Abstract
AIMS/HYPOTHESIS A new differentiation pathway for CD4(-)CD8(-) (DN) T cells has recently been identified that exhibits the potent function of peripheral converted DN T cells in suppressing immune responses and provides the potential to treat autoimmune diseases. The aim of this study was to determine if the DN T cells converted from CD4(+) T cells of NOD mice retain the antigen-specific regulatory capacity and prevent autoimmune diabetes in vivo. We also sought to determine if the combination of DN T cells with rapamycin promotes islet allograft survival in autoimmune diabetic NOD recipients. METHODS NOD CD4(+) T cells were converted to DN T cells in an in vitro mixed-lymphocyte reaction, with or without GAD65 peptide, as previously reported. The antigen-specific DN T cells were adoptively transferred to NOD/SCID mice, new-onset diabetic NOD mice or islet-allograft-recipient NOD mice as the part of cell-based therapy. The development of diabetes and allograft survival was assessed by monitoring blood glucose levels. RESULTS NOD CD4(+) T cells were converted in vitro to DN T cells at a rate of 50% and expressed unique cell features. The DN T cells from NOD donors blocked autoimmunity and prevented diabetes in NOD models, and these effects were even greater for GAD65-peptide-primed DN T cells. DN T cells acted in conjunction with rapamycin to suppress alloantigen-triggered T cell proliferation, promoted apoptosis and prolonged islet allograft survival in NOD recipients. CONCLUSIONS/INTERPRETATION Administration of the islet beta cell antigen-specific DN T cells can prevent the development of autoimmune diabetes and promote islet allograft survival in NOD mice.
Collapse
Affiliation(s)
- D Zhang
- Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Shalev I, Schmelzle M, Robson SC, Levy G. Making sense of regulatory T cell suppressive function. Semin Immunol 2011; 23:282-92. [PMID: 21592823 PMCID: PMC3158951 DOI: 10.1016/j.smim.2011.04.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 04/18/2011] [Indexed: 12/22/2022]
Abstract
Several types of regulatory T cells maintain self-tolerance and control excessive immune responses to foreign antigens. The major regulatory T subsets described over the past decade and novel function in transplantation will be covered in this review with a focus on CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells. Multiple mechanisms have been proposed to explain how Treg cells inhibit effector cells but none can completely explain the observed effects in toto. Proposed mechanisms to explain suppressive activity of Treg cells include the generation of inhibitory cytokines, induced death of effector cells by cytokine deprivation or cytolysis, local metabolic perturbation of target cells mediated by changes in extracellular nucleotide/nucleoside fluxes with alterations in intracellular signaling molecules such as cyclic AMP, and finally inhibition of dendritic cell functions. A better understanding of how Treg cells operate at the molecular level could result in novel and safer therapeutic approaches in transplantation and immune-mediated diseases.
Collapse
Affiliation(s)
- Itay Shalev
- Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 2N2
| | - Moritz Schmelzle
- Gastroenterology and Transplant Institute, Beth Israel Deaconess Medical Centre/Harvard Medical School, Boston, MA, 02215, USA
| | - Simon C. Robson
- Gastroenterology and Transplant Institute, Beth Israel Deaconess Medical Centre/Harvard Medical School, Boston, MA, 02215, USA
| | - Gary Levy
- Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 2N2
| |
Collapse
|
150
|
McMurchy AN, Bushell A, Levings MK, Wood KJ. Moving to tolerance: clinical application of T regulatory cells. Semin Immunol 2011; 23:304-13. [PMID: 21620722 PMCID: PMC3836227 DOI: 10.1016/j.smim.2011.04.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 04/18/2011] [Indexed: 12/13/2022]
Abstract
Decreasing the incidence of chronic rejection and reducing the need for life-long immunosuppression remain important goals in clinical transplantation. In this article, we will review how regulatory T cells (Treg) came to be recognized as an attractive way to prevent or treat allograft rejection, the ways in which Treg can be manipulated or expanded in vivo, and the potential of in vitro expanded/generated Treg for cellular therapy. We will describe the first regulatory T cell therapies that have been or are in the process of being conducted in the clinic as well as the safety concerns of such therapies and how outcomes may be measured.
Collapse
|