101
|
Mamber C, Kozareva DA, Kamphuis W, Hol EM. Shades of gray: The delineation of marker expression within the adult rodent subventricular zone. Prog Neurobiol 2013; 111:1-16. [DOI: 10.1016/j.pneurobio.2013.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/31/2013] [Accepted: 07/31/2013] [Indexed: 12/21/2022]
|
102
|
Falenta K, Gajendra S, Sonego M, Doherty P, Lalli G. Nucleofection of rodent neuroblasts to study neuroblast migration in vitro. J Vis Exp 2013:e50989. [PMID: 24300093 PMCID: PMC3990830 DOI: 10.3791/50989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The subventricular zone (SVZ) located in the lateral wall of the lateral ventricles plays a fundamental role in adult neurogenesis. In this restricted area of the brain, neural stem cells proliferate and constantly generate neuroblasts that migrate tangentially in chains along the rostral migratory stream (RMS) to reach the olfactory bulb (OB). Once in the OB, neuroblasts switch to radial migration and then differentiate into mature neurons able to incorporate into the preexisting neuronal network. Proper neuroblast migration is a fundamental step in neurogenesis, ensuring the correct functional maturation of newborn neurons. Given the ability of SVZ-derived neuroblasts to target injured areas in the brain, investigating the intracellular mechanisms underlying their motility will not only enhance the understanding of neurogenesis but may also promote the development of neuroregenerative strategies. This manuscript describes a detailed protocol for the transfection of primary rodent RMS postnatal neuroblasts and the analysis of their motility using a 3D in vitro migration assay recapitulating their mode of migration observed in vivo. Both rat and mouse neuroblasts can be quickly and efficiently transfected via nucleofection with either plasmid DNA, small hairpin (sh)RNA or short interfering (si)RNA oligos targeting genes of interest. To analyze migration, nucleofected cells are reaggregated in 'hanging drops' and subsequently embedded in a three-dimensional matrix. Nucleofection per se does not significantly impair the migration of neuroblasts. Pharmacological treatment of nucleofected and reaggregated neuroblasts can also be performed to study the role of signaling pathways involved in neuroblast migration.
Collapse
|
103
|
Xiaodong H, Zhen H, Min S, Zhiming C, Hongyan J, Chong Z, Xuefeng T, Guohua J. Direct inhibition of cell surface ephrin-B2 by recombinant ephrin-B2/FC. Biochem Biophys Res Commun 2013; 440:300-5. [PMID: 24076390 DOI: 10.1016/j.bbrc.2013.09.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
Abstract
First messengers and viral transfection are the two most common ways to stimulate cells for signal output, although their applications are limited. We investigated mechanisms of inducing neural stem cell differentiation using recombinant ephrin-B2/Fc and found that it acted as a ligand and inhibited endogenous ephrin-B2, which maintenance of the neural progenitor cell state, by direct interference. Our results showed the movement of ephrin-B2/Fc within the cell and indicated that it recycled to the plasma membrane surface, revealing a possible pattern of ephrin trafficking. Our results also serve as proof of concept for the reconstruction of the intracellular domain of ephrin using an artificial receptor to direct input signals in future studies.
Collapse
Affiliation(s)
- Hu Xiaodong
- Department of Anatomy and Neurobiology, The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Persson A, Lindberg OR, Kuhn HG. Radixin inhibition decreases adult neural progenitor cell migration and proliferation in vitro and in vivo. Front Cell Neurosci 2013; 7:161. [PMID: 24065889 PMCID: PMC3781578 DOI: 10.3389/fncel.2013.00161] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/03/2013] [Indexed: 11/13/2022] Open
Abstract
Neuronal progenitors capable of long distance migration are produced throughout life in the subventricular zone (SVZ). Migration from the SVZ is carried out along a well-defined pathway called the rostral migratory stream (RMS). Our recent finding of the specific expression of the cytoskeleton linker protein radixin in neuroblasts suggests a functional role for radixin in RMS migration. The ezrin-radixin-moesin (ERM) family of proteins is capable of regulating migration through interaction with the actin cytoskeleton and transmembrane proteins. The ERM proteins are differentially expressed in the RMS with radixin and moesin localized to neuroblasts, and ezrin expression confined to astrocytes of the glial tubes. Here, we inhibited radixin function using the quinocarmycin analog DX52-1 which resulted in reduced neuroblast migration in vitro, while glial migration remained unaltered. Furthermore, the morphology of neuroblasts was distorted resulting in a rounded shape with no or short polysialylated neural cell adhesion molecule positive processes. Intracerebroventricular infusion of the radixin inhibitor resulted in accumulation of neuroblasts in the anterior SVZ. Neuroblast chains were short and intermittently interrupted in the SVZ and considerably disorganized in the RMS. Moreover, we studied the proliferation activity in the RMS after radixin inhibition, since concentrated radixin expression has been demonstrated in the cleavage furrow of dividing cells, which indicates a role of radixin in cell division. Radixin inhibition decreased neuroblast proliferation, whereas the proliferation of other cells in the RMS was not affected. Our results demonstrate a significant role for radixin in neuroblast proliferation and migration.
Collapse
Affiliation(s)
- Asa Persson
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | | | | |
Collapse
|
105
|
Stroke-prone renovascular hypertensive rat as an animal model for stroke studies: from artery to brain. J Neurol Sci 2013; 334:1-5. [PMID: 23953678 DOI: 10.1016/j.jns.2013.07.2517] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/21/2013] [Accepted: 07/29/2013] [Indexed: 11/22/2022]
Abstract
High blood pressure is a main risk factor for both initial and recurrent stroke. Compared to the post stroke situation in normotension, the brain lesion is larger in hypertension, and the treatments may not be as effective. Thus, the results from healthy individuals may not be directly applied to the hypertensive. In fact, the high prevalence of hypertension in stroke patients and its devastating effect urge the necessity to integrate arterial hypertension in the study of stroke in order to better mimic the clinical situations. The first step to do so is to have an appropriate hypertensive animal model for stroke studies. Stroke-prone renovascular hypertensive rat (RHRSP) introduced in 1998, is an animal model with acquired hypertension independent of genetic deficiency. The blood pressure begins to increase during the first week after constriction of bilateral renal arteries, and becomes sustained since around the 3rd month. Because the morphological and physiological changes of cerebral arteries are similar to those in hypertensive patients, the rats represent a higher than 60% incidence of spontaneous stroke. The animal model has several advantages: one hundred percent development of hypertension without gene modification, high similarity to human hypertension in cerebrovascular pathology and physiology, and easy establishment with low cost. Thus, the model has been extensively used in the investigation of ischemic stroke, and has been shown as a reliable animal model. This paper reviewed the features of RHRSP and its applications in the treatment and prevention of stroke, as well as the investigations of secondary lesions postischemic stroke.
Collapse
|
106
|
Díaz D, Gómez C, Muñoz-Castañeda R, Baltanás F, Alonso JR, Weruaga E. The Olfactory System as a Puzzle: Playing With Its Pieces. Anat Rec (Hoboken) 2013; 296:1383-400. [DOI: 10.1002/ar.22748] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- D. Díaz
- Laboratory of Neuronal Plasticity and Neurorepair; Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca; Salamanca Spain
- Area of Gene and Cell Therapy; Institute of Biomedical Research of Salamanca, IBSAL; Salamanca Spain
| | - C. Gómez
- Laboratory of Neuronal Plasticity and Neurorepair; Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca; Salamanca Spain
- Institute for Molecular and Cell Biology of the Cancer, IBMCC, CSIC-Universidad de Salamanca; Salamanca Spain
| | - R. Muñoz-Castañeda
- Laboratory of Neuronal Plasticity and Neurorepair; Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca; Salamanca Spain
- Area of Gene and Cell Therapy; Institute of Biomedical Research of Salamanca, IBSAL; Salamanca Spain
| | - F. Baltanás
- Laboratory of Neuronal Plasticity and Neurorepair; Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca; Salamanca Spain
- Institute for Molecular and Cell Biology of the Cancer, IBMCC, CSIC-Universidad de Salamanca; Salamanca Spain
| | - J. R. Alonso
- Laboratory of Neuronal Plasticity and Neurorepair; Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca; Salamanca Spain
- Area of Gene and Cell Therapy; Institute of Biomedical Research of Salamanca, IBSAL; Salamanca Spain
- Institute for High Research, Universidad de Tarapacá; Arica Chile
| | - E. Weruaga
- Laboratory of Neuronal Plasticity and Neurorepair; Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca; Salamanca Spain
- Area of Gene and Cell Therapy; Institute of Biomedical Research of Salamanca, IBSAL; Salamanca Spain
| |
Collapse
|
107
|
Sonego M, Gajendra S, Parsons M, Ma Y, Hobbs C, Zentar MP, Williams G, Machesky LM, Doherty P, Lalli G. Fascin regulates the migration of subventricular zone-derived neuroblasts in the postnatal brain. J Neurosci 2013; 33:12171-85. [PMID: 23884926 PMCID: PMC3721833 DOI: 10.1523/jneurosci.0653-13.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/17/2013] [Accepted: 06/08/2013] [Indexed: 01/01/2023] Open
Abstract
After birth, stem cells in the subventricular zone (SVZ) generate neuroblasts that migrate along the rostral migratory stream (RMS) to become interneurons in the olfactory bulb (OB). This migration is a fundamental event controlling the proper integration of new neurons in a pre-existing synaptic network. Many regulators of neuroblast migration have been identified; however, still very little is known about the intracellular molecular mechanisms controlling this process. Here, we show that the actin-bundling protein fascin is highly upregulated in mouse SVZ-derived migratory neuroblasts. Fascin-1ko mice display an abnormal RMS and a smaller OB. Bromodeoxyuridine labeling experiments show that lack of fascin significantly impairs neuroblast migration, but does not appear to affect cell proliferation. Moreover, fascin depletion substantially alters the polarized morphology of rat neuroblasts. Protein kinase C (PKC)-dependent phosphorylation of fascin on Ser39 regulates its actin-bundling activity. In vivo postnatal electroporation of phosphomimetic (S39D) or nonphosphorylatable (S39A) fascin variants followed by time-lapse imaging of brain slices demonstrates that the phospho-dependent modulation of fascin activity ensures efficient neuroblast migration. Finally, fluorescence lifetime imaging microscopy studies in rat neuroblasts reveal that the interaction between fascin and PKC can be modulated by cannabinoid signaling, which controls neuroblast migration in vivo. We conclude that fascin, whose upregulation appears to mark the transition to the migratory neuroblast stage, is a crucial regulator of neuroblast motility. We propose that a tightly regulated phospho/dephospho-fascin cycle modulated by extracellular signals is required for the polarized morphology and migration in neuroblasts, thus contributing to efficient neurogenesis.
Collapse
Affiliation(s)
| | | | - Maddy Parsons
- Randall Division, King's College London, Guy's Campus, London SE1 1UL, United Kingdom, and
| | - Yafeng Ma
- Beatson Institute for Cancer Research, Glasgow University College of Medical, Veterinary and Life Sciences, Garscube Estate, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Carl Hobbs
- Wolfson Centre for Age-Related Diseases, and
| | | | | | - Laura M. Machesky
- Beatson Institute for Cancer Research, Glasgow University College of Medical, Veterinary and Life Sciences, Garscube Estate, Bearsden, Glasgow G61 1BD, United Kingdom
| | | | | |
Collapse
|
108
|
Baumann G, Travieso L, Liebl DJ, Theus MH. Pronounced hypoxia in the subventricular zone following traumatic brain injury and the neural stem/progenitor cell response. Exp Biol Med (Maywood) 2013; 238:830-41. [PMID: 23828590 PMCID: PMC9948687 DOI: 10.1177/1535370213494558] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Traumatic brain injury (TBI) elicits identifiable changes within the adult subventricular zone (SVZ). Previously, we demonstrated that EphB3/ephrinB3 interaction inhibits neural stem/progenitor cell (NSPC) proliferation and downregulating this pathway following TBI plays a pivotal role in the expansion of the SVZ neurogenic compartment. It remains unclear, however, what early initiating factors may precede these changes. Using hypoxyprobe-1 (HPb) to identify regions of low oxygen tension or hypoxia (<1%), we found HPb uptake throughout the cortex (CTX), corpus callosum (CC) and SVZ within the first 24 h following controlled cortical impact (CCI) injury. At this early time point, HPb co-localized with EphB3 in the SVZ. NSPC specific markers also co-localized with HPb staining throughout the lateral wall of the ventricle. To determine the cell autonomous effects of hypoxia on EphB3/ephrinB3 signaling in NSPCs, we used an in vitro model of hypoxia to mimic 1% oxygen in the presence and absence of soluble aggregated ephrinB3 (eB3). As expected, hypoxia stimulated the uptake of 5-bromo-2'-deoxyuridine (BrdU) and reduced cell death. Coincident with these proliferative changes, both Hif1-α and phospho (p)-AKT were increased while EphB3 expression was decreased. Stimulation of EphB3 attenuated hypoxia-induced proliferation and prevented phosphorylation of AKT. Hif1-α accumulation, on the other hand, was not affected by EphB3/ephrinB3 signaling. These findings indicate that this pathway limits the NSPC response to hypoxic stimuli. These studies also suggest that early transient changes in oxygen tension following localized cortical injury may initiate a growth-promoting response in the SVZ.
Collapse
Affiliation(s)
- Gisela Baumann
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami, Miami, FL 33136, USA
| | - Lissette Travieso
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami, Miami, FL 33136, USA
| | - Daniel J Liebl
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami, Miami, FL 33136, USA
| | - Michelle H Theus
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA 24061, USA
| |
Collapse
|
109
|
Hamilton LK, Joppé SE, M. Cochard L, Fernandes KJL. Aging and neurogenesis in the adult forebrain: what we have learned and where we should go from here. Eur J Neurosci 2013; 37:1978-86. [DOI: 10.1111/ejn.12207] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/20/2013] [Accepted: 02/28/2013] [Indexed: 12/24/2022]
Affiliation(s)
- Laura K. Hamilton
- Department of Pathology and Cell Biology; Groupe de recherche sur le système nerveux central (GRSNC); Centre of Excellence in Neuroscience of the Université de Montréal (CENUM); Université de Montréal; Montréal; Canada
| | - Sandra E. Joppé
- Department of Pathology and Cell Biology; Groupe de recherche sur le système nerveux central (GRSNC); Centre of Excellence in Neuroscience of the Université de Montréal (CENUM); Université de Montréal; Montréal; Canada
| | - Loїc M. Cochard
- Department of Pathology and Cell Biology; Groupe de recherche sur le système nerveux central (GRSNC); Centre of Excellence in Neuroscience of the Université de Montréal (CENUM); Université de Montréal; Montréal; Canada
| | - Karl J. L. Fernandes
- Department of Pathology and Cell Biology; Groupe de recherche sur le système nerveux central (GRSNC); Centre of Excellence in Neuroscience of the Université de Montréal (CENUM); Université de Montréal; Montréal; Canada
| |
Collapse
|
110
|
Distinct roles of Nogo-a and Nogo receptor 1 in the homeostatic regulation of adult neural stem cell function and neuroblast migration. J Neurosci 2013; 32:17788-99. [PMID: 23223298 DOI: 10.1523/jneurosci.3142-12.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the adult mammalian subventricular zone (SVZ), GFAP-positive neural stem cells (NSCs) generate neuroblasts that migrate tangentially along the rostral migratory stream (RMS) toward the olfactory bulb (OB). In the mouse brain, we found that the plasticity inhibitors Nogo-A and Nogo receptor 1 (NgR1) are differentially expressed in the SVZ-OB system, in which Nogo-A identifies immature neuroblasts and NgR1 germinal astrocytes. We therefore examined the role of Nogo-A and NgR1 in the regulation of neurogenesis. Pharmacological experiments show that Nogo-66/NgR1 interaction reduces the proliferation of NSCs. This is consistent with a negative-feedback loop, in which newly generated neurons modulate cell division of SVZ stem cells. Moreover, the Nogo-A-Δ20 domain promotes neuroblast migration toward the OB through activation of the Rho/ROCK (Rho-associated, coiled-coil containing protein kinase) pathway, without the participation of NgR1. Our findings reveal a new unprecedented function for Nogo-A and NgR1 in the homeostatic regulation of the pace of neurogenesis in the adult mouse SVZ and in the migration of neuroblasts along the RMS.
Collapse
|
111
|
Ramasamy S, Narayanan G, Sankaran S, Yu YH, Ahmed S. Neural stem cell survival factors. Arch Biochem Biophys 2013; 534:71-87. [PMID: 23470250 DOI: 10.1016/j.abb.2013.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 02/06/2013] [Accepted: 02/11/2013] [Indexed: 12/21/2022]
Abstract
Neural stem and progenitor cells (NSCs and NPs) give rise to the central nervous system (CNS) during embryonic development. NSCs and NPs differentiate into three main cell-types of the CNS; astrocytes, oligodendrocytes, and neurons. NSCs are present in the adult CNS and are important in maintenance and repair. Adult NSCs hold great promise for endogenous or self-repair of the CNS. Intriguingly, NSCs have been implicated as the cells that give rise to brain tumors. Thus, the balance between survival, growth and differentiation is a critical aspect of NSC biology, during development, in the adult, and in disease processes. In this review, we survey what is known about survival factors that control both embryonic and adult NSCs. We discuss the neurosphere culture system as this is widely used to measure NSC activity and behavior in vitro and emphasize the importance of clonality. We define here NSC survival factors in their broadest sense to include any factor that influences survival and proliferation of NSCs and NPs. NSC survival factors identified to date include growth factors, morphogens, proteoglycans, cytokines, hormones, and neurotransmitters. Understanding NSC and NP interaction in response to these survival factors will provide insight to CNS development, disease and repair.
Collapse
Affiliation(s)
- Srinivas Ramasamy
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore
| | | | | | | | | |
Collapse
|
112
|
Quadrato G, Di Giovanni S. Waking up the sleepers: shared transcriptional pathways in axonal regeneration and neurogenesis. Cell Mol Life Sci 2013; 70:993-1007. [PMID: 22899311 PMCID: PMC11113138 DOI: 10.1007/s00018-012-1099-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/13/2012] [Accepted: 07/17/2012] [Indexed: 12/26/2022]
Abstract
In the last several years, relevant progress has been made in our understanding of the transcriptional machinery regulating CNS repair after acute injury, such as following trauma or stroke. In order to survive and functionally reconnect to the synaptic network, injured neurons activate an intrinsic rescue program aimed to increase their plasticity. Perhaps, in the attempt to switch back to a plastic and growth-competent state, post-mitotic neurons wake up and re-express a set of transcription factors that are also critical for the regulation of their younger brothers, the neural stem cells. Here, we review and discuss the transcriptional pathways regulating both axonal regeneration and neurogenesis highlighting the connection between the two. Clarification of their common molecular substrate may help simultaneous targeting of both neurogenesis and axonal regeneration with the hope to enhance functional recovery following CNS injury.
Collapse
Affiliation(s)
- Giorgia Quadrato
- Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Otfried-Mueller Strasse 27, 72076 Tuebingen, Germany
| | - Simone Di Giovanni
- Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Otfried-Mueller Strasse 27, 72076 Tuebingen, Germany
| |
Collapse
|
113
|
Day BW, Stringer BW, Al-Ejeh F, Ting MJ, Wilson J, Ensbey KS, Jamieson PR, Bruce ZC, Lim YC, Offenhäuser C, Charmsaz S, Cooper LT, Ellacott JK, Harding A, Leveque L, Inglis P, Allan S, Walker DG, Lackmann M, Osborne G, Khanna KK, Reynolds BA, Lickliter JD, Boyd AW. EphA3 maintains tumorigenicity and is a therapeutic target in glioblastoma multiforme. Cancer Cell 2013; 23:238-48. [PMID: 23410976 DOI: 10.1016/j.ccr.2013.01.007] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 03/21/2012] [Accepted: 01/14/2013] [Indexed: 11/19/2022]
Abstract
Significant endeavor has been applied to identify functional therapeutic targets in glioblastoma (GBM) to halt the growth of this aggressive cancer. We show that the receptor tyrosine kinase EphA3 is frequently overexpressed in GBM and, in particular, in the most aggressive mesenchymal subtype. Importantly, EphA3 is highly expressed on the tumor-initiating cell population in glioma and appears critically involved in maintaining tumor cells in a less differentiated state by modulating mitogen-activated protein kinase signaling. EphA3 knockdown or depletion of EphA3-positive tumor cells reduced tumorigenic potential to a degree comparable to treatment with a therapeutic radiolabelled EphA3-specific monoclonal antibody. These results identify EphA3 as a functional, targetable receptor in GBM.
Collapse
Affiliation(s)
- Bryan W Day
- Brain Cancer Research Unit and Leukaemia Foundation Research Unit, Queensland Institute of Medical Research, Brisbane 4006, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Plexin-B2 regulates the proliferation and migration of neuroblasts in the postnatal and adult subventricular zone. J Neurosci 2013; 32:16892-905. [PMID: 23175841 DOI: 10.1523/jneurosci.0344-12.2012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the postnatal forebrain, the subventricular zone (SVZ) contains a pool of undifferentiated cells, which proliferate and migrate along the rostral migratory stream (RMS) to the olfactory bulb and differentiate into granule cells and periglomerular cells. Plexin-B2 is a semaphorin receptor previously known to act on neuronal proliferation in the embryonic brain and neuronal migration in the cerebellum. We show here that, in the postnatal and adult CNS, Plexin-B2 is expressed in the subventricular zone lining the telencephalic ventricles and in the rostral migratory stream. We analyzed Plxnb2(-/-) mice and found that there is a marked reduction in the proliferation of SVZ cells in the mutant. Plexin-B2 expression is downregulated in the olfactory bulb as interneurons initiate radial migration. BrdU labeling and GFP electroporation into postnatal SVZ, in addition to time-lapse videomicroscopy, revealed that neuroblasts deficient for Plexin-B2 migrate faster than control ones and leave the RMS more rapidly. Overall, these results show that Plexin-B2 plays a role in postnatal neurogenesis and in the migration of SVZ-derived neuroblasts.
Collapse
|
115
|
Christie KJ, Turnley AM. Regulation of endogenous neural stem/progenitor cells for neural repair-factors that promote neurogenesis and gliogenesis in the normal and damaged brain. Front Cell Neurosci 2013; 6:70. [PMID: 23346046 PMCID: PMC3548228 DOI: 10.3389/fncel.2012.00070] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/30/2012] [Indexed: 01/17/2023] Open
Abstract
Neural stem/precursor cells in the adult brain reside in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. These cells primarily generate neuroblasts that normally migrate to the olfactory bulb (OB) and the dentate granule cell layer respectively. Following brain damage, such as traumatic brain injury, ischemic stroke or in degenerative disease models, neural precursor cells from the SVZ in particular, can migrate from their normal route along the rostral migratory stream (RMS) to the site of neural damage. This neural precursor cell response to neural damage is mediated by release of endogenous factors, including cytokines and chemokines produced by the inflammatory response at the injury site, and by the production of growth and neurotrophic factors. Endogenous hippocampal neurogenesis is frequently also directly or indirectly affected by neural damage. Administration of a variety of factors that regulate different aspects of neural stem/precursor biology often leads to improved functional motor and/or behavioral outcomes. Such factors can target neural stem/precursor proliferation, survival, migration and differentiation into appropriate neuronal or glial lineages. Newborn cells also need to subsequently survive and functionally integrate into extant neural circuitry, which may be the major bottleneck to the current therapeutic potential of neural stem/precursor cells. This review will cover the effects of a range of intrinsic and extrinsic factors that regulate neural stem/precursor cell functions. In particular it focuses on factors that may be harnessed to enhance the endogenous neural stem/precursor cell response to neural damage, highlighting those that have already shown evidence of preclinical effectiveness and discussing others that warrant further preclinical investigation.
Collapse
Affiliation(s)
- Kimberly J Christie
- Neural Regeneration Laboratory, Department of Anatomy and Neuroscience, Centre for Neuroscience Research, The University of Melbourne Parkville, VIC, Australia
| | | |
Collapse
|
116
|
Mammalian target of rapamycin signaling is a key regulator of the transit-amplifying progenitor pool in the adult and aging forebrain. J Neurosci 2013; 32:15012-26. [PMID: 23100423 DOI: 10.1523/jneurosci.2248-12.2012] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Adult forebrain neurogenesis is dynamically regulated. Multiple families of niche-derived cues have been implicated in this regulation, but the precise roles of key intracellular signaling pathways remain vaguely defined. Here, we show that mammalian target of rapamycin (mTOR) signaling is pivotal in determining proliferation versus quiescence in the adult forebrain neural stem cell (NSC) niche. Within this niche, mTOR complex-1 (mTORC1) activation displays stage specificity, occurring in transiently amplifying (TA) progenitor cells but not in GFAP+ stem cells. Inhibiting mTORC1 depletes the TA progenitor pool in vivo and suppresses epidermal growth factor (EGF)-induced proliferation within neurosphere cultures. Interestingly, mTORC1 inhibition induces a quiescence-like phenotype that is reversible. Likewise, mTORC1 activity and progenitor proliferation decline within the quiescent NSC niche of the aging brain, while EGF administration reactivates the quiescent niche in an mTORC1-dependent manner. These findings establish fundamental links between mTOR signaling, proliferation, and aging-associated quiescence in the adult forebrain NSC niche.
Collapse
|
117
|
Lessons from the embryonic neural stem cell niche for neural lineage differentiation of pluripotent stem cells. Stem Cell Rev Rep 2012; 8:813-29. [PMID: 22628111 PMCID: PMC3412081 DOI: 10.1007/s12015-012-9381-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pluripotent stem cells offer an abundant and malleable source for the generation of differentiated cells for transplantation as well as for in vitro screens. Patterning and differentiation protocols have been developed to generate neural progeny from human embryonic or induced pluripotent stem cells. However, continued refinement is required to enhance efficiency and to prevent the generation of unwanted cell types. We summarize and interpret insights gained from studies of embryonic neuroepithelium. A multitude of factors including soluble molecules, interactions with the extracellular matrix and neighboring cells cooperate to control neural stem cell self-renewal versus differentiation. Applying these findings and concepts to human stem cell systems in vitro may yield more appropriately patterned cell types for biomedical applications.
Collapse
|
118
|
Ying Z, Li Y, Wu J, Zhu X, Yang Y, Tian H, Li W, Hu B, Cheng SY, Li M. Loss of miR-204 expression enhances glioma migration and stem cell-like phenotype. Cancer Res 2012. [PMID: 23204229 DOI: 10.1158/0008-5472.can-12-2895] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phenotypic similarities have long been recognized between subpopulations of glioma and neural stem cells. Many of these similar properties, including the robust abilities to self-renew, migrate, and invade, are hallmarks of glioma cells that render them extremely aggressive. However, the molecular mechanisms underlying this character, particularly in glioma stem-like cells that drive this disease, remain poorly understood. Here, we report the results of a differential miRNA expression screen that compared glioma and neural stem cells, where we found that miR-204 was markedly downregulated in both types of cells. Mechanistic investigations revealed that miR-204 simultaneously suppressed self-renewal, stem cell-associated phenotype, and migration of glioma cells by targeting the stemness-governing transcriptional factor SOX4 and the migration-promoting receptor EphB2. Restoring miR-204 expression in glioma cells suppressed tumorigenesis and invasiveness in vivo and increased overall host survival. Further evaluation revealed that the miR-204 promoter was hypermethylated and that attenuating promoter methylation was sufficient to upregulate miR-204 in glioma cells. Together, our findings reveal miR-204 as a pivotal regulator of the development of stem cell-like phenotypes and cell motility in malignant glioma cells.
Collapse
Affiliation(s)
- Zhe Ying
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Hånell A, Clausen F, Djupsjö A, Vallstedt A, Patra K, Israelsson C, Larhammar M, Björk M, Paixão S, Kullander K, Marklund N. Functional and Histological Outcome after Focal Traumatic Brain Injury Is Not Improved in Conditional EphA4 Knockout Mice. J Neurotrauma 2012; 29:2660-71. [DOI: 10.1089/neu.2012.2376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Anders Hånell
- Section for Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Fredrik Clausen
- Section for Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Anders Djupsjö
- Section for Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Anna Vallstedt
- Section for Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Kalicharan Patra
- Section for Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Charlotte Israelsson
- Section for Developmental Neuroscience, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Martin Larhammar
- Section for Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Maria Björk
- Section for Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Sónia Paixão
- Department of Molecular Neurobiology, Max-Planck Institute of Neurobiology, Martinsried, Germany
| | - Klas Kullander
- Section for Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Niklas Marklund
- Section for Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
120
|
Borrell V, Cárdenas A, Ciceri G, Galcerán J, Flames N, Pla R, Nóbrega-Pereira S, García-Frigola C, Peregrín S, Zhao Z, Ma L, Tessier-Lavigne M, Marín O. Slit/Robo signaling modulates the proliferation of central nervous system progenitors. Neuron 2012; 76:338-52. [PMID: 23083737 PMCID: PMC4443924 DOI: 10.1016/j.neuron.2012.08.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2012] [Indexed: 11/23/2022]
Abstract
Neurogenesis relies on a delicate balance between progenitor maintenance and neuronal production. Progenitors divide symmetrically to increase the pool of dividing cells. Subsequently, they divide asymmetrically to self-renew and produce new neurons or, in some brain regions, intermediate progenitor cells (IPCs). Here we report that central nervous system progenitors express Robo1 and Robo2, receptors for Slit proteins that regulate axon guidance, and that absence of these receptors or their ligands leads to loss of ventricular mitoses. Conversely, production of IPCs is enhanced in Robo1/2 and Slit1/2 mutants, suggesting that Slit/Robo signaling modulates the transition between primary and intermediate progenitors. Unexpectedly, these defects do not lead to transient overproduction of neurons, probably because supernumerary IPCs fail to detach from the ventricular lining and cycle very slowly. At the molecular level, the role of Slit/Robo in progenitor cells involves transcriptional activation of the Notch effector Hes1. These findings demonstrate that Robo signaling modulates progenitor cell dynamics in the developing brain.
Collapse
Affiliation(s)
- Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Adrián Cárdenas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Gabriele Ciceri
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Joan Galcerán
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Nuria Flames
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Ramón Pla
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Sandrina Nóbrega-Pereira
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Cristina García-Frigola
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Sandra Peregrín
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Zhen Zhao
- Department of Cell and Neurobiology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Le Ma
- Department of Cell and Neurobiology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Marc Tessier-Lavigne
- Laboratory of Brain Development and Repair, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Oscar Marín
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| |
Collapse
|
121
|
Porlan E, Perez-Villalba A, Delgado AC, Ferrón SR. Paracrine regulation of neural stem cells in the subependymal zone. Arch Biochem Biophys 2012; 534:11-9. [PMID: 23073070 DOI: 10.1016/j.abb.2012.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/27/2012] [Accepted: 10/05/2012] [Indexed: 12/31/2022]
Abstract
Stem cells maintain their self-renewal and multipotency capacities through a self-organizing network of transcription factors and intracellular pathways activated by extracellular signaling from the microenvironment or "niche" in which they reside in vivo. In the adult mammalian brain new neurons continue to be generated throughout life of the organisms and this lifelong process of neurogenesis is supported by a reservoir of neural stem cells in the germinal regions. The discovery of adult neurogenesis in the mammalian brain has sparked great interest in defining the conditions that guide neural stem cell (NSC) maintenance and differentiation into the great variety of neuronal and glial subtypes. Here we review current knowledge regarding the paracrine regulation provided by the components of the niche and its function, focusing on the main germinal region of the adult central nervous system (CNS), the subependymal zone (SEZ).
Collapse
Affiliation(s)
- Eva Porlan
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Spain
| | | | | | | |
Collapse
|
122
|
Fan XYS, Mothe AJ, Tator CH. Ephrin-B3 decreases the survival of adult rat spinal cord-derived neural stem/progenitor cells in vitro and after transplantation into the injured rat spinal cord. Stem Cells Dev 2012; 22:359-73. [PMID: 22900481 DOI: 10.1089/scd.2012.0131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although transplantation of neural stem/progenitor cells (NSPC) encourages regeneration and repair after spinal cord injury (SCI), the survival of transplanted NSPC is limited. Ephrin-B3 has been shown to reduce the death of endogenous NSPC in the subventricular zone of the mouse brain without inducing uncontrolled proliferation. Due to similarities in the environment of the brain and spinal cord, we hypothesized that ephrin-B3 might reduce the death of both transplanted and endogenous spinal cord-derived NSPC. Both normal and injured (26 g clip compression) spinal cords were examined. Ephrin-B3-Fc was tested, and Fc fragments and phosphate-buffered saline (PBS) were used as controls. We found that EphA4 receptors were expressed by spinal cord-derived NSPC and expressed in the normal and injured rat spinal cord (higher expression in the latter). In vitro, ephrin-B3-Fc did not significantly reduce the survival of NSPC except at 1 μg/mL (P<0.05), but Fc fragments alone reduced NSPC survival at all doses in a dose-dependent fashion. In vivo, intrathecal infusion of ephrin-B3-Fc increased the proliferation of endogenous ependymal cells and the proportion of proliferating cells that expressed the glial fibrillary acidic protein astrocytic marker in the injured spinal cord compared with the infusion of PBS (P<0.05). However, in the injured spinal cord, the infusion of either ephrin-B3-Fc or Fc fragments alone caused a 20-fold reduction in the survival of transplanted NSPC (P<0.001). Thus, after SCI, ephrin-B3-Fc and Fc fragments are toxic to transplanted NSPC.
Collapse
Affiliation(s)
- Xin Yan Susan Fan
- Toronto Western Research Institute, Toronto Western Hospital, Toronto, Canada
| | | | | |
Collapse
|
123
|
Astrocytes regulate adult hippocampal neurogenesis through ephrin-B signaling. Nat Neurosci 2012; 15:1399-406. [PMID: 22983209 PMCID: PMC3458152 DOI: 10.1038/nn.3212] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/09/2012] [Indexed: 12/18/2022]
Abstract
Neurogenesis in the adult hippocampus involves activation of quiescent neural stem cells (NSCs) to yield transiently amplifying NSCs and progenitors, and ultimately neurons that affect learning and memory. This process is tightly controlled by microenvironmental cues, though few endogenous factors are known to regulate neuronal differentiation. While astrocytes have been implicated, their role in juxtacrine (i.e. cell-cell contact-dependent) signaling within NSC niches has not been investigated. We show that ephrin-B2 presented from rodent hippocampal astrocytes regulates neurogenesis in vivo. Furthermore, clonal analysis in NSC fate-mapping studies reveals a novel role for ephrin-B2 in instructing neuronal differentiation. Additionally, ephrin-B2 signaling, transduced by EphB4 receptors on NSCs, activates β-catenin in vitro and in vivo independent of Wnt signaling and upregulates proneural transcription factors. Ephrin-B2+ astrocytes thus promote neuronal differentiation of adult NSCs through juxtacrine signaling, findings that advance our understanding of adult neurogenesis and may have future regenerative medicine implications.
Collapse
|
124
|
EphA/ephrin-A signaling is critically involved in region-specific apoptosis during early brain development. Cell Death Differ 2012; 20:169-80. [PMID: 22976838 DOI: 10.1038/cdd.2012.121] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
EphAs and ephrin-As have been implicated in the morphogenesis of the developing brain. We found that EphA7 and ephrin-A5 are coexpressed in the dorsal midline (DM) of the diencephalon and anterior mesencephalon. Interestingly, programmed cell death (PCD) of the neural epithelial cells normally found in this region was reduced in ephrin-A5/ephrin-A2 dual-deficient embryos. In contrast, in vivo expression of ephrin-A5-Fc or full-length ephrin-A5 strongly induced apoptosis in neural epithelial cells and was accompanied by severe brain malformation during embryonic development. Expression of ephrinA5-Fc correlated with apoptosis of EphA7-expressing cells, whereas null mutation of ephrin-A5 resulted in the converse phenotype. Importantly, null mutation of caspase-3 or endogenous ephrin-A5 attenuated the PCD induced by ectopically overexpressed ephrin-A5. Together, our results suggest that brain region-specific PCD may occur in a region where EphAs cluster with neighboring ephrin-As through cell-cell contact.
Collapse
|
125
|
Chen J. Regulation of tumor initiation and metastatic progression by Eph receptor tyrosine kinases. Adv Cancer Res 2012; 114:1-20. [PMID: 22588054 DOI: 10.1016/b978-0-12-386503-8.00001-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In recent years, a growing body of evidence has indicated that signaling molecules previously implicated in axon guidance are important regulators of multistep tumorigenesis and progression. Eph receptors and ephrins belong to this special class of molecules that play important roles in both axon guidance and cancer. Tremendous progress has been made in the past few years in both understanding the role of Eph receptors and ephrins in cancer and designing therapeutic strategies for cancer therapy. This review will focus on new advances in elucidating the contribution of Eph/ephrin molecules to key processes in tumor initiation and metastatic progression, including cancer cell proliferation, invasion and metastasis, and tumor angiogenesis.
Collapse
Affiliation(s)
- Jin Chen
- VA Medical Center, Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
126
|
Plachez C, Cato K, McLeay RC, Heng YHE, Bailey TL, Gronostasjki RM, Richards LJ, Puche AC, Piper M. Expression of nuclear factor one A and -B in the olfactory bulb. J Comp Neurol 2012; 520:3135-49. [DOI: 10.1002/cne.23081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
127
|
Falcão AM, Marques F, Novais A, Sousa N, Palha JA, Sousa JC. The path from the choroid plexus to the subventricular zone: go with the flow! Front Cell Neurosci 2012; 6:34. [PMID: 22907990 PMCID: PMC3414909 DOI: 10.3389/fncel.2012.00034] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/24/2012] [Indexed: 11/13/2022] Open
Abstract
In adult mammals, under physiological conditions, neurogenesis, the process of generating new functional neurons from precursor cells, occurs mainly in two brain areas: the subgranular zone in the dentate gyrus of the hippocampus, and the subventricular zone (SVZ) lining the walls of the brain lateral ventricles. Taking into account the location of the SVZ and the cytoarchitecture of this periventricular neural progenitor cell niche, namely the fact that the slow dividing primary progenitor cells (type B cells) of the SVZ extend an apical primary cilium toward the brain ventricular space which is filled with cerebrospinal fluid (CSF), it becomes likely that the composition of the CSF can modulate both self-renewal, proliferation and differentiation of SVZ neural stem cells. The major site of CSF synthesis is the choroid plexus (CP); quite surprisingly, however, it is still largely unknown the contribution of molecules specifically secreted by the adult CP as modulators of the SVZ adult neurogenesis. This is even more relevant in light of recent evidence showing the ability of the CP to adapt its transcriptome and secretome to various physiologic and pathologic stimuli. By giving particular emphasizes to growth factors and axonal guidance molecules we will illustrate how CP-born molecules might play an important role in the SVZ niche cell population dynamics.
Collapse
Affiliation(s)
- Ana Mendanha Falcão
- School of Health Sciences, Life and Health Sciences Research Institute (ICVS), University of Minho Braga, Portugal
| | | | | | | | | | | |
Collapse
|
128
|
Abstract
Through adulthood, the rodent subventricular zone (SVZ) stem cell niche generates new olfactory bulb interneurons. We had previously reported that the number of new neurons produced in the SVZ declines through aging; however, age-related changes attributable specifically to the SVZ neural stem cell (NSC) population have not been fully characterized. Here, we conducted a spatiotemporal evaluation of adult SVZ NSCs. We assessed ventricle-contacting NSCs, which together with ependymal cells form regenerative units (pinwheels) along the lateral wall of the lateral ventricle. Based on their apical GFAP-expressing process, individual NSCs were identified across the ventricle surface using serial reconstruction of the SVZ. We observed an 86% decline in total NSCs/mm² of intact ependyma in 2-year old versus 3-month-old mice, with fewer NSC processes within each aged pinwheel. This resulted in an associated 78% decline in total pinwheel units/mm². Regional analysis along the lateral ventricle surface revealed that the age-dependent decline of NSCs and pinwheels is spatially uniform and ultimately maintains the conserved ratio of olfactory bulb interneuron subtypes generated in young mice. However, the overall neurogenic output of the aged SVZ is reduced. Surprisingly, we found no significant change in the number of actively proliferating NSCs per mm² of ventricle surface. Instead, our data reveal that, although the total NSC number, pinwheel units and NSCs per pinwheel decline with age, the percentage of actively, mitotic NSCs increases, indicating that age-related declines in SVZ-mediated olfactory bulb neurogenesis occur downstream of NSC proliferation.
Collapse
|
129
|
Wicki-Stordeur LE, Dzugalo AD, Swansburg RM, Suits JM, Swayne LA. Pannexin 1 regulates postnatal neural stem and progenitor cell proliferation. Neural Dev 2012; 7:11. [PMID: 22458943 PMCID: PMC3390283 DOI: 10.1186/1749-8104-7-11] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/29/2012] [Indexed: 11/27/2022] Open
Abstract
Background Pannexin 1 forms ion and metabolite permeable hexameric channels and is abundantly expressed in the brain. After discovering pannexin 1 expression in postnatal neural stem and progenitor cells we sought to elucidate its functional role in neuronal development. Results We detected pannexin 1 in neural stem and progenitor cells in vitro and in vivo. We manipulated pannexin 1 expression and activity in Neuro2a neuroblastoma cells and primary postnatal neurosphere cultures to demonstrate that pannexin 1 regulates neural stem and progenitor cell proliferation likely through the release of adenosine triphosphate (ATP). Conclusions Permeable to ATP, a potent autocrine/paracine signaling metabolite, pannexin 1 channels are ideally suited to influence the behavior of neural stem and progenitor cells. Here we demonstrate they play a robust role in the regulation of neural stem and progenitor cell proliferation. Endogenous postnatal neural stem and progenitor cells are crucial for normal brain health, and their numbers decline with age. Furthermore, these special cells are highly responsive to neurological injury and disease, and are gaining attention as putative targets for brain repair. Therefore, understanding the fundamental role of pannexin 1 channels in neural stem and progenitor cells is of critical importance for brain health and disease.
Collapse
Affiliation(s)
- Leigh E Wicki-Stordeur
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | | | | | | | | |
Collapse
|
130
|
North HA, Clifford MA, Donoghue MJ. 'Til Eph do us part': intercellular signaling via Eph receptors and ephrin ligands guides cerebral cortical development from birth through maturation. Cereb Cortex 2012; 23:1765-73. [PMID: 22744705 DOI: 10.1093/cercor/bhs183] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Eph receptors, the largest family of surface-bound receptor tyrosine kinases and their ligands, the ephrins, mediate a wide variety of cellular interactions in most organ systems throughout both development and maturity. In the forming cerebral cortex, Eph family members are broadly and dynamically expressed in particular sets of cortical cells at discrete times. Here, we review the known functions of Eph-mediated intercellular signaling in the generation of progenitors, the migration of maturing cells, the differentiation of neurons, the formation of functional connections, and the choice between life and death during corticogenesis. In synthesizing these results, we posit a signaling paradigm in which cortical cells maintain a life history of Eph-mediated intercellular interactions that guides subsequent cellular decision-making.
Collapse
Affiliation(s)
- Hilary A North
- Department of Biology and The Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20057, USA
| | | | | |
Collapse
|
131
|
Stephen JH, Sievert AJ, Madsen PJ, Judkins AR, Resnick AC, Storm PB, Rushing EJ, Santi M. Spinal cord ependymomas and myxopapillary ependymomas in the first 2 decades of life: a clinicopathological and immunohistochemical characterization of 19 cases. J Neurosurg Pediatr 2012; 9:646-53. [PMID: 22656257 DOI: 10.3171/2012.2.peds11285] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Primary spinal cord ependymomas (EPNs) are rare in children, comprising classical WHO Grade II and III tumors and Grade I myxopapillary ependymomas (MEPNs). Despite their benign histology, recurrences and neural-axis dissemination have been reported in up to 33% MEPNs in the pediatric population. Treatment options beyond resection are limited, and little is known about their tumorigenesis. The purpose of this study was to explore the tumor biology and outcomes in a consecutive series of pediatric patients treated at a single institution. METHODS The authors performed a retrospective clinicopathological review of 19 patients at a tertiary referral children's hospital for resection of a spinal cord ependymoma. The population included 8 patients with a pathological diagnosis of MEPN and 11 patients with a pathological diagnosis of spinal EPN (10 cases were Grade II and 1 case was Grade III). The upregulation of the following genes HOXB13, NEFL, PDGFRα, EGFR, EPHB3, AQP1, and JAGGED 1 was studied by immunohistochemistry from archived paraffin-embedded tumor samples of the entire cohort to compare the expression in MEPN versus EPN. RESULTS Gross-total resection was achieved in 75% of patients presenting with MEPNs and in 100% of those with EPNs. The average follow-up period was 79 months for the MEPN subset and 53 months for Grade II/III EPNs. Overall survival for both subsets was 100%. However, event-free survival was only 50% for patients with MEPNs. Of note, in all cases involving MEPNs that recurred, the patients had undergone gross-total resection on initial surgery. In contrast, there were no tumor recurrences in patients with EPNs. Immunohistochemistry revealed no significant differences in protein expression between the two tumor types with the exception of EPHB3, which demonstrates a tendency to be positive in MEPNs (6 reactive tumors of 9) rather than in EPN (2 reactive tumors of 10). CONCLUSIONS The authors' experience shows that, following a gross-total resection, MEPNs are more likely to recur than their higher-grade counterpart, EPNs. This supports the recommendation for close long-term radiological follow-up of pediatric patients with MEPNs to monitor for recurrence, despite the tumor's low-grade histological feature. No significant difference in the protein expression of HOXB13, NEFL, PDGFRα, EGFR, EPHB3, AQP1, and JAGGED 1 was present in this selected cohort of pediatric patients.
Collapse
Affiliation(s)
- James H Stephen
- Divisions of Neurosurgery, Children’s Hospital of Philadelphia, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Emsley JG, Menezes JRL, Madeiro Da Costa RF, Martinez AMB, Macklis JD. Identification of radial glia-like cells in the adult mouse olfactory bulb. Exp Neurol 2012; 236:283-97. [PMID: 22634209 DOI: 10.1016/j.expneurol.2012.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 04/18/2012] [Accepted: 05/12/2012] [Indexed: 01/08/2023]
Abstract
Immature neurons migrate tangentially within the rostral migratory stream (RMS) to the adult olfactory bulb (OB), then radially to their final positions as granule and periglomerular neurons; the controls over this transition are not well understood. Using adult transgenic mice with the human GFAP promoter driving expression of enhanced GFP, we identified a population of radial glia-like cells that we term adult olfactory radial glia-like cells (AORGs). AORGs have large, round somas and simple, radially oriented processes. Confocal reconstructions indicate that AORGs variably express typical radial glial markers, only rarely express mouse GFAP, and do not express astroglial, oligodendroglial, neuronal, or tanycyte markers. Electron microscopy provides further supporting evidence that AORGs are not immature neurons. Developmental analyses indicate that AORGs are present as early as P1, and are generated through adulthood. Tracing studies show that AORGs are not born in the SVZa, suggesting that they are born either in the RMS or the OB. Migrating immature neurons from the adult SVZa are closely apposed to AORGs during radial migration in vivo and in vitro. Taken together, these data indicate a newly-identified population of radial glia-like cells in the adult OB that might function uniquely in neuronal radial migration during adult OB neurogenesis.
Collapse
Affiliation(s)
- Jason G Emsley
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
133
|
Dearborn RE, Dai Y, Reed B, Karian T, Gray J, Kunes S. Reph, a regulator of Eph receptor expression in the Drosophila melanogaster optic lobe. PLoS One 2012; 7:e37303. [PMID: 22615969 PMCID: PMC3353934 DOI: 10.1371/journal.pone.0037303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/19/2012] [Indexed: 11/19/2022] Open
Abstract
Receptors of the Eph family of tyrosine kinases and their Ephrin ligands are involved in developmental processes as diverse as angiogenesis, axon guidance and cell migration. However, our understanding of the Eph signaling pathway is incomplete, and could benefit from an analysis by genetic methods. To this end, we performed a genetic modifier screen for mutations that affect Eph signaling in Drosophila melanogaster. Several dozen loci were identified on the basis of their suppression or enhancement of an eye defect induced by the ectopic expression of Ephrin during development; many of these mutant loci were found to disrupt visual system development. One modifier locus, reph (regulator of eph expression), was characterized in molecular detail and found to encode a putative nuclear protein that interacts genetically with Eph signaling pathway mutations. Reph is an autonomous regulator of Eph receptor expression, required for the graded expression of Eph protein and the establishment of an optic lobe axonal topographic map. These results reveal a novel component of the regulatory pathway controlling expression of eph and identify reph as a novel factor in the developing visual system.
Collapse
Affiliation(s)
- Richard E Dearborn
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America.
| | | | | | | | | | | |
Collapse
|
134
|
Sheffler-Collins SI, Dalva MB. EphBs: an integral link between synaptic function and synaptopathies. Trends Neurosci 2012; 35:293-304. [PMID: 22516618 DOI: 10.1016/j.tins.2012.03.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/08/2012] [Accepted: 03/08/2012] [Indexed: 11/19/2022]
Abstract
The assembly and function of neuronal circuits rely on selective cell-cell interactions to control axon targeting, generate pre- and postsynaptic specialization and recruit neurotransmitter receptors. In neurons, EphB receptor tyrosine kinases mediate excitatory synaptogenesis early during development, and then later coordinate synaptic function by controlling synaptic glutamate receptor localization and function. EphBs direct synapse formation and function to regulate cellular morphology through downstream signaling mechanisms and by interacting with glutamate receptors. In humans, defective EphB-dependent regulation of NMDA receptor (NMDAR) localization and function is associated with neurological disorders, including neuropathic pain, anxiety disorders and Alzheimer's disease (AD). Here, we propose that EphBs act as a central organizer of excitatory synapse formation and function, and as a key regulator of diseases linked to NMDAR dysfunction.
Collapse
Affiliation(s)
- Sean I Sheffler-Collins
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, 900 Walnut Street, Suite 462, Philadelphia, PA 19107, USA
| | | |
Collapse
|
135
|
Rodger J, Salvatore L, Migani P. Should I stay or should I go? Ephs and ephrins in neuronal migration. Neurosignals 2012; 20:190-201. [PMID: 22456188 DOI: 10.1159/000333784] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In neuroscience, Ephs and ephrins are perhaps best known for their role in axon guidance. It was first shown in the visual system that graded expression of these proteins is instrumental in providing molecular coordinates that define topographic maps, particularly in the visual system, but also in the auditory, vomeronasal and somatosensory systems as well as in the hippocampus, cerebellum and other structures. Perhaps unsurprisingly, the role of these proteins in regulating cell-cell interactions also has an impact on cell mobility, with evidence that Eph-ephrin interactions segregate cell populations based on contact-mediated attraction or repulsion. Consistent with these studies, evidence has accumulated that Ephs and ephrins play important roles in the migration of specific cell populations in the developing and adult brain. This review focusses on two examples of neuronal migration that require Eph/ephrin signalling - radial and tangential migration of neurons in cortical development and the migration of newly generated neurons along the rostral migratory stream to the olfactory bulb in the adult brain. We discuss the challenge involved in understanding how cells determine whether they respond to signals by migration or axon guidance.
Collapse
Affiliation(s)
- Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Animal Biology M317, University of Western Australia, Crawley, WA, Australia
| | | | | |
Collapse
|
136
|
Astrocytes control the development of the migration-promoting vasculature scaffold in the postnatal brain via VEGF signaling. J Neurosci 2012; 32:1687-704. [PMID: 22302810 DOI: 10.1523/jneurosci.5531-11.2012] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
New neurons are constantly being generated in the postnatal subventricular zone. They have to migrate long distances via the rostral migratory stream (RMS) to reach their final destination in the olfactory bulb (OB). In adults, these neuronal precursors migrate in chains, ensheathed by astrocytic processes, and travel toward the OB along blood vessels (BVs) that topographically outline the RMS. The molecular and cellular mechanisms leading to the development of the RMS and the formation of the migration-promoting vasculature scaffold in the adult mice remain unclear. We now reveal that astrocytes orchestrate the formation and structural reorganization of the vasculature scaffold in the RMS and, during early developmental stages, the RMS contains only a few BVs oriented randomly with respect to the migrating neuroblasts. The first parallel BVs appeared at the outer border of the RMS, where vascular endothelial growth factor (VEGF)-expressing astrocytes are located. Gain-of-function and loss-of-function experiments revealed that astrocyte-derived VEGF plays a crucial role in the formation and growth of new BVs. Real-time videoimaging also showed that the migration of neuronal precursors in the developing RMS differs substantially from neuronal displacement in the adult migratory stream partially because of not yet fully developed vasculature scaffold. The downregulation of VEGF in vivo, specifically in the astrocytes of the developing RMS, affected the development of the vasculature scaffold and led to alterations in neuroblast migration. Altogether, our results demonstrate that astrocytes orchestrate the formation and growth of parallel BVs, crucial migration-promoting scaffolds in the adult migratory stream, via VEGF signaling.
Collapse
|
137
|
Reduced proliferation in the adult mouse subventricular zone increases survival of olfactory bulb interneurons. PLoS One 2012; 7:e31549. [PMID: 22363671 PMCID: PMC3283653 DOI: 10.1371/journal.pone.0031549] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 01/13/2012] [Indexed: 11/25/2022] Open
Abstract
Neurogenesis in the adult brain is largely restricted to the subependymal zone (SVZ) of the lateral ventricle, olfactory bulb (OB) and the dentate subgranular zone, and survival of adult-born cells in the OB is influenced by factors including sensory experience. We examined, in mice, whether survival of adult-born cells is also regulated by the rate of precursor proliferation in the SVZ. Precursor proliferation was decreased by depleting the SVZ of dopamine after lesioning dopamine neurons in the substantia nigra compacta with 6-hydroxydopamine. Subsequently, we examined the effect of reduced SVZ proliferation on the generation, migration and survival of neuroblasts and mature adult-born cells in the SVZ, rostral migratory stream (RMS) and OB. Proliferating cells in the SVZ, measured by 5-bromo-2-deoxyuridine (BrdU) injected 2 hours prior to death or by immunoreactivity against Ki67, were reduced by 47% or 36%, respectively, 7 days after dopamine depletion, and by 29% or 31% 42 days after dopamine depletion, compared to sham-treated animals. Neuroblast generation in the SVZ and their migration along the RMS were not affected, neither 7 nor 42 days after the 6-hydroxydopamine injection, since the number of doublecortin-immunoreactive neuroblasts in the SVZ and RMS, as well as the number of neuronal nuclei-immunoreactive cells in the OB, were stable compared to control. However, survival analysis 15 days after 6-hydroxydopamine and 6 days after BrdU injections showed that the number of BrdU+ cells in the SVZ was 70% higher. Also, 42 days after 6-hydroxydopamine and 30 days after BrdU injections, we found an 82% increase in co-labeled BrdU+/γ-aminobutyric acid-immunoreactive cell bodies in the granular cell layer, while double-labeled BrdU+/tyrosine hydroxylase-immunoreactive cell bodies in the glomerular layer increased by 148%. We conclude that the number of OB interneurons following reduced SVZ proliferation is maintained through an increased survival of adult-born precursor cells, neuroblasts and interneurons.
Collapse
|
138
|
Jing X, Miwa H, Sawada T, Nakanishi I, Kondo T, Miyajima M, Sakaguchi K. Ephrin-A1-mediated dopaminergic neurogenesis and angiogenesis in a rat model of Parkinson's disease. PLoS One 2012; 7:e32019. [PMID: 22363788 PMCID: PMC3282790 DOI: 10.1371/journal.pone.0032019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 01/17/2012] [Indexed: 11/19/2022] Open
Abstract
Cells of the neural stem cell lineage in the adult subventricular zone (SVZ) respond to brain insult by increasing their numbers and migrating through the rostral migratory stream. However, in most areas of the brain other than the SVZ and the subgranular zone of the dentate gyrus, such a regenerative response is extremely weak. Even these two neurogenic regions do not show extensive regenerative responses to repair tissue damage, suggesting the presence of an intrinsic inhibitory microenvironment (niche) for stem cells. In the present study, we assessed the effects of injection of clustered ephrin-A1-Fc into the lateral ventricle of rats with unilateral nigrostriatal dopamine depletion. Ephrin-A1-Fc clustered by anti-IgG(Fc) antibody was injected stereotaxically into the ipsilateral lateral ventricle of rats with unilateral nigrostriatal lesions induced by 6-hydroxydopamine, and histologic analysis and behavioral tests were performed. Clustered ephrin-A1-Fc transformed the subventricular niche, increasing bromodeoxyuridine-positive cells in the subventricular area, and the cells then migrated to the striatum and differentiated to dopaminergic neurons and astrocytes. In addition, clustered ephrin-A1-Fc enhanced angiogenesis in the striatum on the injected side. Along with histologic improvements, behavioral derangement improved dramatically. These findings indicate that the subventricular niche possesses a mechanism for regulating both stem cell and angiogenic responses via an EphA–mediated signal. We conclude that activation of EphA receptor–mediated signaling by clustered ephrin-A1-Fc from within the lateral ventricle could potentially be utilized in the treatment of neurodegenerative diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- Xuefeng Jing
- Department of Molecular Cell Biology and Molecular Medicine, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hideto Miwa
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Takahiro Sawada
- Department of Molecular Cell Biology and Molecular Medicine, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Ichiro Nakanishi
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Tomoyoshi Kondo
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Masayasu Miyajima
- Laboratory Animal Center, Wakayama Medical University, Wakayama, Japan
| | - Kazushige Sakaguchi
- Department of Molecular Cell Biology and Molecular Medicine, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
- * E-mail:
| |
Collapse
|
139
|
EphB2 receptor controls proliferation/migration dichotomy of glioblastoma by interacting with focal adhesion kinase. Oncogene 2012; 31:5132-43. [PMID: 22310282 PMCID: PMC3349801 DOI: 10.1038/onc.2012.16] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Glioblastoma multiforme (GBM) are the most frequent and aggressive primary brain tumors in adults. Uncontrolled proliferation and abnormal cell migration are two prominent spatially and temporally disassociated characteristics of GBMs. In this study, we investigated the role of the receptor tyrosine kinase EphB2 in controlling the proliferation/migration dichotomy of GBM. We studied EphB2 gain-of-function and loss-of function in glioblastoma-derived stem-like neurospheres (GBM-SCs), whose in vivo growth pattern closely replicates human GBM. EphB2 expression stimulated GBM neurosphere cell migration and invasion, and inhibited neurosphere cell proliferation in vitro. In parallel, EphB2 silencing increased tumor cell proliferation and decreased tumor cell migration. EphB2 was found to increase tumor cell invasion in vivo using an internally controlled dual-fluorescent xenograft model. Xenografts derived from EphB2 overexpressing GBM neurospheres also showed decreased cellular proliferation. The non-receptor tyrosine kinase focal adhesion kinase (FAK) was found to be co-associated with and highly activated by EphB2 expression and FAK activation facilitated focal adhesion formation, cytoskeleton structure change and cell migration in EphB2-expression GBM neurosphere cells. Taken together, our findings indicate that EphB2 has pro-invasive and anti-proliferative actions in GBM stem-like neurospheres mediated, in part, by interactions between EphB2 receptors and FAK. These novel findings suggest that tumor cell invasion can be therapeutically targeted by inhibiting EphB2 signaling and that optimal anti-tumor responses to EphB2 targeting may require the concurrent use of anti-proliferative agents.
Collapse
|
140
|
Miyakoshi L, Todeschini A, Mendez-Otero R, Hedin-Pereira C. Role of the 9-O-acetyl GD3 in subventricular zone neuroblast migration. Mol Cell Neurosci 2012; 49:240-9. [DOI: 10.1016/j.mcn.2011.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 08/22/2011] [Accepted: 08/25/2011] [Indexed: 10/17/2022] Open
|
141
|
McMullen AB, Baidwan GS, McCarthy KD. Morphological and behavioral changes in the pathogenesis of a novel mouse model of communicating hydrocephalus. PLoS One 2012; 7:e30159. [PMID: 22291910 PMCID: PMC3265463 DOI: 10.1371/journal.pone.0030159] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 12/14/2011] [Indexed: 11/18/2022] Open
Abstract
The Ro1 model of hydrocephalus represents an excellent model for studying the pathogenesis of hydrocephalus due to its complete penetrance and inducibility, enabling the investigation of the earliest cellular and histological changes in hydrocephalus prior to overt pathology. Hematoxylin and eosin staining, immunofluorescence and electron microscopy were used to characterize the histopathological events of hydrocephalus in this model. Additionally, a broad battery of behavioral tests was used to investigate behavioral changes in the Ro1 model of hydrocephalus. The earliest histological changes observed in this model were ventriculomegaly and disorganization of the ependymal lining of the aqueduct of Sylvius, which occurred concomitantly. Ventriculomegaly led to thinning of the ependyma, which was associated with periventricular edema and areas of the ventricular wall void of cilia and microvilli. Ependymal denudation was subsequent to severe ventriculomegaly, suggesting that it is an effect, rather than a cause, of hydrocephalus in the Ro1 model. Additionally, there was no closure of the aqueduct of Sylvius or any blockages within the ventricular system, even with severe ventriculomegaly, suggesting that the Ro1 model represents a model of communicating hydrocephalus. Interestingly, even with severe ventriculomegaly, there were no behavioral changes, suggesting that the brain is able to compensate for the structural changes that occur in the pathogenesis of hydrocephalus if the disorder progresses at a sufficiently slow rate.
Collapse
MESH Headings
- Animals
- Behavior, Animal/physiology
- Brain/pathology
- Brain/physiopathology
- Brain/ultrastructure
- Cardiomegaly/pathology
- Cerebral Aqueduct/pathology
- Cerebral Aqueduct/ultrastructure
- Cerebral Ventricles/pathology
- Cerebral Ventricles/ultrastructure
- Disease Models, Animal
- Hydrocephalus/complications
- Hydrocephalus/genetics
- Hydrocephalus/pathology
- Hydrocephalus/physiopathology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Electron
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, kappa/physiology
Collapse
Affiliation(s)
- Allison B. McMullen
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Gurlal S. Baidwan
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ken D. McCarthy
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
142
|
Abstract
Investigations of adult neurogenesis in recent years have revealed numerous differences among mammalian species, reflecting the remarkable diversity in brain anatomy and function of mammals. As a mechanism of brain plasticity, adult neurogenesis might also differ due to behavioural specialization or adaptation to specific ecological niches. Because most research has focused on rodents and only limited data are available on other mammalian orders, it is hotly debated whether, in some species, adult neurogenesis also takes place outside of the well-characterized subventricular zone of the lateral ventricle and subgranular zone of the dentate gyrus. In particular, evidence for the functional integration of new neurons born in 'non-neurogenic' zones is controversial. Considering the promise of adult neurogenesis for regenerative medicine, we posit that differences in the extent, regional occurrence and completion of adult neurogenesis need to be considered from a species-specific perspective. In this review, we provide examples underscoring that the mechanisms of adult neurogenesis cannot simply be generalized to all mammalian species. Despite numerous similarities, there are distinct differences, notably in neuronal maturation, survival and functional integration in existing synaptic circuits, as well as in the nature and localization of neural precursor cells. We also propose a more appropriate use of terminology to better describe these differences and their relevance for brain plasticity under physiological and pathophysiological conditions. In conclusion, we emphasize the need for further analysis of adult neurogenesis in diverse mammalian species to fully grasp the spectrum of variation of this adaptative mechanism in the adult CNS.
Collapse
Affiliation(s)
- Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10 - 10043 Orbassano (TO), Italy.
| | | |
Collapse
|
143
|
Corbin JG, Butt SJB. Developmental mechanisms for the generation of telencephalic interneurons. Dev Neurobiol 2011; 71:710-32. [PMID: 21485015 DOI: 10.1002/dneu.20890] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Interneurons, which release the neurotransmitter γ-aminobutyric acid (GABA), are the major inhibitory cells of the central nervous system (CNS). Despite comprising only 20-30% of the cerebral cortical neuronal population, these cells play an essential and powerful role in modulating the electrical activity of the excitatory pyramidal cells onto which they synapse. Although interneurons are present in all regions of the mature telencephalon, during embryogenesis these cells are generated in specific compartments of the ventral (subpallial) telencephalon known as ganglionic eminences. To reach their final destinations in the mature brain, immature interneurons migrate from the ganglionic eminences to developing telencephalic structures that are both near and far from their site of origin. The specification and migration of these cells is a complex but precisely orchestrated process that is regulated by a combination of intrinsic and extrinsic signals. The final outcome of which is the wiring together of excitatory and inhibitory neurons that were born in separate regions of the developing telencephalon. Disruption of any aspect of this sequence of events during development, either from an environmental insult or due to genetic mutations, can have devastating consequences on normal brain function.
Collapse
Affiliation(s)
- Joshua G Corbin
- Center for Neuroscience Research, Children's National Medical Center, Washington, District of Columbia 20010, USA.
| | | |
Collapse
|
144
|
Morrens J, Van Den Broeck W, Kempermann G. Glial cells in adult neurogenesis. Glia 2011; 60:159-74. [PMID: 22076934 DOI: 10.1002/glia.21247] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 08/30/2011] [Indexed: 01/17/2023]
Abstract
Adult neurogenesis is an exceptional feature of the adult brain and in an intriguing way bridges between neuronal and glial neurobiology. Essentially, all classes of glial cells are directly or indirectly linked to this process. Cells with astrocytic features, for example, serve as radial glia-like stem cells in the two neurogenic regions of the adult brain, the hippocampal dentate gyrus and the subventricular zone of the lateral ventricles, producing new neurons, create a microenvironment permissive for neurogenesis, and are themselves generated alongside the new neurons in an associated but independently regulated process. Oligodendrocytes are generated from precursor cells intermingled with those generating neurons in an independent lineage. NG2 cells have certain precursor cell properties and are found throughout the brain parenchyma. They respond to extrinsic stimuli and injury but do not generate neurons even though they can express some preneuronal markers. Microglia have positive and negative regulatory effects as constituents of the "neurogenic niche". Ependymal cells play incompletely understood roles in adult neurogenesis, but under certain conditions might exert (back-up) precursor cell functions. Glial contributions to adult neurogenesis can be direct or indirect and are mediated by mechanisms ranging from gap-junctional to paracrine and endocrine. As the two neurogenic regions differ between each other and both from the non-neurogenic rest of the brain, the question arises in how far regionalization of both the glia-like precursor cells as well as of the glial cells determines site-specific "neurogenic permissiveness." In any case, however, "neurogenesis" appears to be an essentially glial achievement.
Collapse
Affiliation(s)
- Joachim Morrens
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | |
Collapse
|
145
|
Doeppner TR, Bretschneider E, Doehring M, Segura I, Sentürk A, Acker-Palmer A, Hasan MR, ElAli A, Hermann DM, Bähr M. Enhancement of endogenous neurogenesis in ephrin-B3 deficient mice after transient focal cerebral ischemia. Acta Neuropathol 2011; 122:429-42. [PMID: 21779764 PMCID: PMC3291816 DOI: 10.1007/s00401-011-0856-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 07/01/2011] [Accepted: 07/02/2011] [Indexed: 01/26/2023]
Abstract
Cerebral ischemia stimulates endogenous neurogenesis. However, the functional relevance of this phenomenon remains unclear because of poor survival and low neuronal differentiation rates of newborn cells. Therefore, further studies on mechanisms regulating neurogenesis under ischemic conditions are required, among which ephrin-ligands and ephrin-receptors (Eph) are an interesting target. Although Eph/ephrin proteins like ephrin-B3 are known to negatively regulate neurogenesis under physiological conditions, their role in cerebral ischemia is largely unknown. We therefore studied neurogenesis, brain injury and functional outcome in ephrin-B3−/− (knockout) and ephrin-B3+/+ (wild-type) mice submitted to cerebral ischemia. Induction of stroke resulted in enhanced cell proliferation and neuronal differentiation around the lesion site of ephrin-B3−/− compared to ephrin-B3+/+ mice. However, prominent post-ischemic neurogenesis in ephrin-B3−/− mice was accompanied by significantly increased ischemic injury and motor coordination deficits that persisted up to 4 weeks. Ischemic injury in ephrin-B3−/− mice was associated with a caspase-3-dependent activation of the signal transducer and activator of transcription 1 (STAT1). Whereas inhibition of caspase-3 had no effect on brain injury in ephrin-B3+/+ animals, infarct size in ephrin-B3−/− mice was strongly reduced, suggesting that aggravated brain injury in these animals might involve a caspase-3-dependent activation of STAT1. In conclusion, post-ischemic neurogenesis in ephrin-B3−/− mice is strongly enhanced, but fails to contribute to functional recovery because of caspase-3-mediated aggravation of ischemic injury in these animals. Our results suggest that ephrin-B3 might be an interesting target for overcoming some of the limitations of further cell-based therapies in stroke.
Collapse
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, University of Duisburg-Essen Medical School, Hufelandstr. 55, 45122, Essen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Abstract
The spontaneous recovery observed in the early stages of multiple sclerosis (MS) is substituted with a later progressive course and failure of endogenous processes of repair and remyelination. Although this is the basic rationale for cell therapy, it is not clear yet to what degree the MS brain is amenable for repair and whether cell therapy has an advantage in comparison to other strategies to enhance endogenous remyelination. Central to the promise of stem cell therapy is the therapeutic plasticity, by which neural precursors can replace damaged oligodendrocytes and myelin, and also effectively attenuate the autoimmune process in a local, nonsystemic manner to protect brain cells from further injury, as well as facilitate the intrinsic capacity of the brain for recovery. These fundamental immunomodulatory and neurotrophic properties are shared by stem cells of different sources. By using different routes of delivery, cells may target both affected white matter tracts and the perivascular niche where the trafficking of immune cells occur. It is unclear yet whether the therapeutic properties of transplanted cells are maintained with the duration of time. The application of neural stem cell therapy (derived from fetal brain or from human embryonic stem cells) will be realized once their purification, mass generation, and safety are guaranteed. However, previous clinical experience with bone marrow stromal (mesenchymal) stem cells and the relative easy expansion of autologous cells have opened the way to their experimental application in MS. An initial clinical trial has established the probable safety of their intravenous and intrathecal delivery. Short-term follow-up observed immunomodulatory effects and clinical benefit justifying further clinical trials.
Collapse
Affiliation(s)
- Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Hospital, Jerusalem 91120, Israel.
| |
Collapse
|
147
|
Wang YZ, Plane JM, Jiang P, Zhou CJ, Deng W. Concise review: Quiescent and active states of endogenous adult neural stem cells: identification and characterization. Stem Cells 2011; 29:907-12. [PMID: 21557389 DOI: 10.1002/stem.644] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The adult mammalian central nervous system (CNS) lacks the capacity for regeneration, making it a highly sought-after topic for researchers. The identification of neural stem cells (NSCs) in the adult CNS wiped out a long-held dogma that the adult brain contains a set number of neurons and is incapable of replacing them. The discovery of adult NSCs (aNSCs) stoked the fire for researchers who dream of brain self-repair. Unfortunately, the quiescent nature and limited plasticity of aNSCs diminish their regenerative potential. Recent studies evaluating aNSC plasticity under pathological conditions indicate that a switch from quiescent to active aNSCs in neurogenic regions plays an important role in both repairing the damaged tissue and preserving progenitor pools. Here, we summarize the most recent findings and present questions about characterizing the active and quiescent aNSCs in major neurogenic regions, and factors for maintaining their active and quiescent states, hoping to outline an emerging view for promoting the endogenous aNSC-based regeneration.
Collapse
Affiliation(s)
- Ya-Zhou Wang
- Cellular and Molecular Biology Laboratory, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | | | | | | | | |
Collapse
|
148
|
Regulation of adult neural precursor cell migration. Neurochem Int 2011; 59:382-93. [DOI: 10.1016/j.neuint.2010.12.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 12/02/2010] [Accepted: 12/22/2010] [Indexed: 01/18/2023]
|
149
|
Alvarez-Palazuelos LE, Robles-Cervantes MS, Castillo-Velazquez G, Rivas-Souza M, Guzman-Muniz J, Moy-Lopez N, Gonzalez-Castaneda RE, Luquin S, Gonzalez-Perez O. Regulation of neural stem cell in the human SVZ by trophic and morphogenic factors. CURRENT SIGNAL TRANSDUCTION THERAPY 2011; 6:320-326. [PMID: 22053150 PMCID: PMC3204663 DOI: 10.2174/157436211797483958] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The subventricular zone (SVZ), lining the lateral ventricular system, is the largest germinal region in mammals. In there, neural stem cells express markers related to astoglial lineage that give rise to new neurons and oligodendrocytes in vivo. In the adult human brain, in vitro evidence has also shown that astrocytic cells isolated from the SVZ can generate new neurons and oligodendrocytes. These proliferative cells are strongly controlled by a number of signals and molecules that modulate, activate or repress the cell division, renewal, proliferation and fate of neural stem cells. In this review, we summarize the cellular composition of the adult human SVZ (hSVZ) and discuss the increasing evidence showing that some trophic modulators strongly control the function of neural stem cells in the SVZ.
Collapse
Affiliation(s)
| | | | - Gabriel Castillo-Velazquez
- Department of Neurosurgery. Instituto Nacional de Neurología y Neurocirugia "Manuel Velasco Suárez" México, DF
| | - Mario Rivas-Souza
- Forensic medicine. Instituto Jalisciense de Ciencias Forenses, Guadalajara, Jalisco
| | - Jorge Guzman-Muniz
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara
| | - Norma Moy-Lopez
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara
| | | | - Sonia Luquin
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara
| | - Oscar Gonzalez-Perez
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara ; Laboratory of Neuroscience, Facultad de Psicología, Universidad de Colima, Colima, Col, México
| |
Collapse
|
150
|
Nakada M, Hayashi Y, Hamada JI. Role of Eph/ephrin tyrosine kinase in malignant glioma. Neuro Oncol 2011; 13:1163-70. [PMID: 21856686 DOI: 10.1093/neuonc/nor102] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence has revealed that the tyrosine kinases play a major role in glioma proliferation and invasion. The largest family of tyrosine kinases, the Eph family, and its ligands, the ephrins, are frequently overexpressed in glioma, suggesting important roles for their bidirectional signals in glioma pathobiology. Ephs bind to cell surface-associated ephrin ligands on neighboring cells and have many biological functions during embryonic development of the central nervous system, including axon mapping, cell migration, and angiogenesis. Recent findings suggest that Eph/ephrin signaling affects glioma cell growth, migration, and invasion in vitro and in vivo. However, their roles in glioma seem complex, because both tumor growth promoter and suppressor potentials have been ascribed to Ephs and ephrins. Here, we review recent advances in research on the role of Eph/ephrin signaling in glioma and suggest that the Eph/ephrin system could be a potential target of glioma therapy.
Collapse
Affiliation(s)
- Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan.
| | | | | |
Collapse
|