101
|
Moffat BA, Hall DE, Stojanovska J, McConville PJ, Moody JB, Chenevert TL, Rehemtulla A, Ross BD. Diffusion imaging for evaluation of tumor therapies in preclinical animal models. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2004; 17:249-59. [PMID: 15580371 DOI: 10.1007/s10334-004-0079-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Revised: 09/22/2004] [Accepted: 10/07/2004] [Indexed: 12/14/2022]
Abstract
The increasing development of novel targeted therapies for treating solid tumors has necessitated the development of technology to determine their efficacy in preclinical animal models. One such technology that can non-invasively quantify early changes in tumor cellularity as a result of an efficacious therapy is diffusion MRI. In this overview we present some theories as to the origin of diffusion changes as a result of tumor therapy, a robust methodology for acquisition of apparent diffusion coefficient maps and some applications of determining therapeutic efficacy in a variety therapeutic regimens and animal models.
Collapse
Affiliation(s)
- B A Moffat
- Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, 1150 W. Medical Center Drive, MSRB III Rm 9303, Ann Arbor, MI, 48109-0503, USA.
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Mardor Y, Roth Y, Ochershvilli A, Spiegelmann R, Tichler T, Daniels D, Maier SE, Nissim O, Ram Z, Baram J, Orenstein A, Pfeffer R. Pretreatment prediction of brain tumors' response to radiation therapy using high b-value diffusion-weighted MRI. Neoplasia 2004; 6:136-42. [PMID: 15140402 PMCID: PMC1502089 DOI: 10.1593/neo.03349] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Diffusion-weighted magnetic resonance imaging (DWMRI) is sensitive to tissues' biophysical characteristics, including apparent diffusion coefficients (ADCs) and volume fractions of water in different populations. In this work, we evaluate the clinical efficacy of DWMRI and high diffusion-weighted magnetic resonance imaging (HDWMRI), acquired up to b = 4000 sec/mm(2) to amplify sensitivity to water diffusion properties, in pretreatment prediction of brain tumors' response to radiotherapy. Twelve patients with 20 brain lesions were studied. Six ring-enhancing lesions were excluded due to their distinct diffusion characteristics. Conventional and DWMRI were acquired on a 0.5-T MRI. Response to therapy was determined from relative changes in tumor volumes calculated from contrast-enhanced T1-weighted MRI, acquired before and a mean of 46 days after beginning therapy. ADCs and a diffusion index, R(D), reflecting tissue viability based on water diffusion were calculated from DWMRIs. Pretreatment values of ADC and R(D) were found to correlate significantly with later tumor response/nonresponse (r = 0.76, P <.002 and r = 0.77, P <.001). This correlation implies that tumors with low pretreatment diffusion values, indicating high viability, will respond better to radiotherapy than tumors with high diffusion values, indicating necrosis. These results demonstrate the feasibility of using DWMRI for pretreatment prediction of response to therapy in patients with brain tumors undergoing radiotherapy.
Collapse
Affiliation(s)
- Yael Mardor
- Advanced Technology Center, Sheba Medical Center, Tel-Hashomer, Ramat-Gan 52621, Israel.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Theilmann RJ, Borders R, Trouard TP, Xia G, Outwater E, Ranger-Moore J, Gillies RJ, Stopeck A. Changes in water mobility measured by diffusion MRI predict response of metastatic breast cancer to chemotherapy. Neoplasia 2004; 6:831-7. [PMID: 15720810 PMCID: PMC1531687 DOI: 10.1593/neo.03343] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2003] [Revised: 03/30/2004] [Accepted: 06/30/2004] [Indexed: 11/18/2022]
Abstract
The goal of oncology is the individualization of patient care to optimize therapeutic responses and minimize toxicities. Achieving this will require noninvasive, quantifiable, and early markers of tumor response. Preclinical data from xenografted tumors using a variety of antitumor therapies have shown that magnetic resonance imaging (MRI)-measured mobility of tissue water (apparent diffusion coefficient of water, or ADCw) is a biomarker presaging cell death in the tumor. This communication tests the hypothesis that changes in water mobility will quantitatively presage tumor responses in patients with metastatic liver lesions from breast cancer. A total of 13 patients with metastatic breast cancer and 60 measurable liver lesions were monitored by diffusion MRI after initiation of new courses of chemotherapy. MR images were obtained prior to, and at 4, 11, and 39 days following the initiation of therapy for determination of volumes and ADCw values. The data indicate that diffusion MRI can predict response by 4 or 11 days after commencement of therapy, depending on the analytic method. The highest concordance was observed in tumor lesions that were less than 8 cm3 in volume at presentation. These results suggest that diffusion MRI can be useful to predict the response of liver metastases to effective chemotherapy.
Collapse
Affiliation(s)
- Rebecca J Theilmann
- Department of Radiology, 1515 North Campbell Avenue, Tucson, AZ 85724-5024, USA
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Bulakbasi N, Guvenc I, Onguru O, Erdogan E, Tayfun C, Ucoz T. The Added Value of the Apparent Diffusion Coefficient Calculation to Magnetic Resonance Imaging in the Differentiation and Grading of Malignant Brain Tumors. J Comput Assist Tomogr 2004; 28:735-46. [PMID: 15538145 DOI: 10.1097/00004728-200411000-00003] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE ADC calculation can improve the diagnostic efficacy of MR imaging in brain tumor grading and differentiation. METHODS Apparent diffusion coefficient (ADC) values and ratios of 33 low-grade (23 astrocytomas, 10 oligodendrogliomas) and 40 high-grade (25 metastases and 15 high-grade astrocytomas) malignant tumors were prospectively evaluated. RESULTS Tumoral ADC values (r=-0.738, P <0.000) and ratios (r=-0.746, P < 0.000) were well correlated with higher degree of malignancy and quite effective in grading of malignant brain tumors (P < 0.000). By using cutoff values of 0.99 for tumoral ADC value and 1.22 for normalized ADC ratio, the sensitivity of MR imaging could be increased from 72.22% to 93.75% and 90.63%, the specificity from 81.08% to 92.68% and 90.24%, PPV from 78.79% to 90.91% and 87.88%, and NPV from 75.00% to 95.00% and 92.50%, respectively. CONCLUSION ADC calculation was quite effective in grading of malignant brain tumors but not in differentiation of them and added more information to conventional contrast-enhanced MR imaging.
Collapse
Affiliation(s)
- Nail Bulakbasi
- Department of Radiology, Gulhane Military Medical Academy, Etlik, 06018 Ankara, Turkey.
| | | | | | | | | | | |
Collapse
|
105
|
Abstract
Cancer is a genetic disease that manifests in loss of normal cellular homeostatic mechanisms. The biology and therapeutic modulation of neoplasia occurs at the molecular level. An understanding of these molecular processes is therefore required to develop novel prognostic and early biomarkers of response. In addition to clinical applications, increased impetus for the development of such technologies has been catalysed by pharmaceutical companies investing in the development of molecular therapies. The discipline of molecular imaging therefore aims to image these important molecular processes in vivo. Molecular processes, however, operate at short length scales and concentrations typically beyond the resolution of clinical imaging. Solving these issues will be a challenge to imaging research. The successful implementations of molecular imaging in man will only be realised by the close co-operation amongst molecular biologists, chemists and the imaging scientists.
Collapse
|
106
|
Vonarbourg A, Sapin A, Lemaire L, Franconi F, Menei P, Jallet P, Le Jeune JJ. Characterization and detection of experimental rat gliomas using magnetic resonance imaging. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2004; 17:133-9. [PMID: 15503254 DOI: 10.1007/s10334-004-0049-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Accepted: 07/02/2004] [Indexed: 11/26/2022]
Abstract
Two different experimental rat brain tumours (F98 glioma and 9L glioma) were characterized using T1 and T2, apparent diffusion coefficient (ADC) and magnetization transfer ratio (MTR). Even though both tumours appeared homogenous at the early stage of growth, significant differences were measured for all parametric images between tumours and normal brain tissue. Irrespective of the sequence used, tumour lesion/normal parenchyma contrast for the non-infiltrative 9L was twice that of the infiltrative F98 glioma. The use of spin preparation via an inversion pulse in a fast spin echo sequence increases contrast by a factor of 20-30.
Collapse
Affiliation(s)
- A Vonarbourg
- Inserm U646, "Ingénierie de la Vectorisation Particulaire" bâtiment IBT, 10, rue André Boquel, 49100, Angers, France
| | | | | | | | | | | | | |
Collapse
|
107
|
Roth Y, Tichler T, Kostenich G, Ruiz-Cabello J, Maier SE, Cohen JS, Orenstein A, Mardor Y. High-b-value diffusion-weighted MR imaging for pretreatment prediction and early monitoring of tumor response to therapy in mice. Radiology 2004; 232:685-92. [PMID: 15215551 DOI: 10.1148/radiol.2322030778] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To evaluate the use of diffusion-weighted magnetic resonance (MR) imaging with standard and high b values for pretreatment prediction and early detection of tumor response to various antineoplastic therapies in an animal model. MATERIALS AND METHODS Mice bearing C26 colon carcinoma tumors were treated with doxorubicin (n = 25) and with aminolevulinic acid-based photodynamic therapy (n = 23). Fourteen mice served as controls. Conventional T2-weighted fast spin-echo and diffusion-weighted MR images were acquired once before therapy and at 6, 24, and 48 hours after treatment. Pretreatment and early (1-2 days) posttreatment water diffusion parameters were calculated and compared with later changes in tumor volumes measured on conventional MR images by using the Pearson correlation test. RESULTS In chemotherapy-treated tumors, a significant correlation (P <.002, r = 0.6) was observed between diffusion parameters that reflected tumor viability, measured prior to treatment, and changes in tumor volumes after therapy. This correlation implies that tumors with high pretreatment viability will respond better to chemotherapy than more necrotic tumors. In tumors treated with photodynamic therapy, no such correlation was found. Changes observed in water diffusion 1-2 days after treatment significantly correlated with later tumor growth rate for both therapies (P <.002, r = 0.54 for photodynamic therapy; P <.0003, r = 0.61 for chemotherapy). CONCLUSION High-b-value diffusion-weighted MR imaging has potential use for the early detection of response to therapy and for predicting treatment outcome prior to initiation of chemotherapy.
Collapse
Affiliation(s)
- Yiftach Roth
- Advanced Technology Ctr and Oncology Inst, Chaim Sheba Medical Ctr, Tel-Hashomer 52621, Israel
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Santana-Blank LA, Reyes H, Rodríguez-Santana E, Santana-Rodríguez KE. Microdensitometry of T2-weighted magnetic resonance (MR) images from patients with advanced neoplasias in a phase I clinical trial of an infrared pulsed laser device (IPLD). Lasers Surg Med 2004; 34:398-406. [PMID: 15216533 DOI: 10.1002/lsm.20068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND OBJECTIVE The aim of this study was to determine whether an infrared pulsed laser device (IPLD)-induced pathophysiologic changes could be identified before measurable modifications in tumor volume. STUDY DESIGN/PATIENTS AND METHODS Pre-and post-IPLD treatment magnetic resonance (MR) images of tumor heterogeneities and peritumoral tissues were digitized and a linear transformation was performed to convert images to 256 intensity levels. Data were analyzed by using the Student's t-test and the Kolmogorov-Sminov test (alpha = 0.05). RESULTS The post-treatment mean intensity values of tumor heterogeneities increased significantly (P < 0.001) for all of the seven patients (n = 7) evaluated. For peritumoral tissues, a significant increase (P < 0.001) was measured in four patients (n = 4). The Kolmogorov-Sminov test showed significant values for the tumor tissue of six (n = 6) patients. CONCLUSION This is the first study of early evidence of anti-cancer activity of a novel IPLD showing a significant increase in the water content of tumor heterogeneities before measurable changes in tumor volume.
Collapse
Affiliation(s)
- Luis A Santana-Blank
- Fundalas, Foundation for Interdisciplinary Research and Development, Caracas Venezuela.
| | | | | | | |
Collapse
|
109
|
Einarsdóttir H, Karlsson M, Wejde J, Bauer HCF. Diffusion-weighted MRI of soft tissue tumours. Eur Radiol 2004; 14:959-63. [PMID: 14767604 DOI: 10.1007/s00330-004-2237-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Revised: 12/01/2003] [Accepted: 01/02/2004] [Indexed: 01/03/2023]
Abstract
The purpose of this study was to evaluate the clinical utility of a multi-shot spin-echo echo-planar (SE-EPI) diffusion-weighted sequence in the diagnostic work-up of soft tissue tumours. There were 29 patients, 16 with a benign lesion and 13 with a sarcoma. Four of the sarcomas were examined both before and after radiation therapy. Diffusion-weighted imaging was performed with a multi-shot SE-EPI sequence. The b values were 0 and 600 s/mm(2). Phase navigation and pulse trigging were applied. The apparent diffusion constant (ADC) value of a large region of interest (ROI) representing the lesion was measured and compared to diagnosis and treatment. The ADC values of the benign lesions (mean 1.8 x 10(-3) mm(2)/s) overlapped with non-treated sarcomas (mean 1.7 x 10(-3) mm(2)/s). The ADC value increased in all radiated sarcomas. A multi-shot SE-EPI diffusion imaging sequence of less than 2-min duration is technically feasible in soft tissue tumours of the extremities and the trunk. The ADC values of benign soft tissue tumours and sarcomas overlapped and could not be used to differentiate between the bulk of benign and malignant tumours. However, the increase in ADC values of soft tissue sarcomas after radiotherapy warrants further studies of diffusion imaging for evaluating therapy response.
Collapse
Affiliation(s)
- Hildur Einarsdóttir
- Department of General Radiology-ADR, Karolinska Hospital, 171 76 Stockholm, Sweden.
| | | | | | | |
Collapse
|
110
|
Lahorte CMM, Vanderheyden JL, Steinmetz N, Van de Wiele C, Dierckx RA, Slegers G. Apoptosis-detecting radioligands: current state of the art and future perspectives. Eur J Nucl Med Mol Imaging 2004; 31:887-919. [PMID: 15138718 DOI: 10.1007/s00259-004-1555-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review provides a critical and thorough overview of the radiopharmaceutical development and in vivo evaluation of all apoptosis-detecting radioligands that have emerged so far, along with their possible applications in nuclear medicine. The following SPECT and PET radioligands are discussed: all forms of halogenated Annexin V (i.e. (123)I-labelled, (124)I-labelled, (125)I-labelled, (18)F-labelled), (99m)Tc/(94m)Tc-labelled Annexin V derivatives using different chelators and co-ligands (i.e. BTAP, Hynic, iminothiolane, MAG(3), EDDA, EC, tricarbonyl, SDH) or direct (99m)Tc-labelling, (99m)Tc-labelled Annexin V mutants and (99m)Tc/(18)F-radiopeptide constructs (i.e. AFIM molecules), (111)In-DTPA-PEG-Annexin V, (11)C-Annexin V and (64)Cu-, (67)Ga- and (68)Ga-DOTA-Annexin V. In addition, the potential role and clinical relevance of anti-PS monoclonal antibodies and other alternative apoptosis markers are reviewed, including: anti-Annexin V monoclonal antibodies, radiolabelled caspase inhibitors and substrates and mitochondrial membrane permeability targeting radioligands. Nevertheless, major emphasis is placed on the group of Annexin V-based radioligands, in particular (99m)Tc-Hynic-Annexin V, since this molecule is by far the most extensively investigated and best-characterised apoptosis marker at present. Furthermore, the newly emerging imaging modalities for in vivo detection of programmed cell death, such as MRI, MRS, optical, bioluminescent and ultrasound imaging, are briefly described. Finally, some future perspectives are presented with the aim of promoting the development of potential new strategies in pursuit of the ideal cell death-detecting radioligand.
Collapse
Affiliation(s)
- Christophe M M Lahorte
- Department of Radiopharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
111
|
Siler U, Barella L, Spitzer V, Schnorr J, Lein M, Goralczyk R, Wertz K. Lycopene and Vitamin E interfere with autocrine/paracrine loops in the Dunning prostate cancer model. FASEB J 2004; 18:1019-21. [PMID: 15084515 DOI: 10.1096/fj.03-1116fje] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Epidemiological studies have consistently associated high intakes of lycopene or vitamin E with a reduced prostate cancer risk. Both compounds were tested in the MatLyLu Dunning prostate cancer model to gain insight into the in vivo action of lycopene and vitamin E. Supplementation for 4 weeks with 200 ppm lycopene, 540 ppm vitamin E, or both led to plasma levels comparable with those in humans. Both compounds also accumulated in tumor tissue. Macroscopic evaluation of the tumors by magnetic resonance imaging showed a significant increase in necrotic area in the vitamin E and the lycopene treatment groups. Microarray analysis of tumor tissues revealed that both compounds regulated local gene expression. Vitamin E reduced androgen signaling without affecting androgen metabolism. Lycopene interfered with local testosterone activation by down-regulating 5-alpha-reductase and consequently reduced steroid target genes expression (cystatin-related protein 1 and 2, prostatic spermine binding protein, prostatic steroid binding protein C1, C2 and C3 chain, probasin). In addition, lycopene down-regulated prostatic IGF-I and IL-6 expression. Based on these findings, we suggest that lycopene and vitamin E contribute to the reduction of prostate cancer by interfering with internal autocrine or paracrine loops of sex steroid hormone and growth factor activation/synthesis and signaling in the prostate.
Collapse
Affiliation(s)
- Ulrich Siler
- DSM Nutritional Products, Human Nutrition and Health, Carotenoid Section, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
112
|
Dzik-Jurasz A. The development and application of functional nuclear magnetic resonance toin vivotherapeutic anticancer research. Br J Radiol 2004; 77:296-307. [PMID: 15107319 DOI: 10.1259/bjr/95415645] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A little over 30 years ago, Sir Godfrey Hounsfield and his colleagues revolutionized medical imaging by developing CT scanning. In recent years a combination of improved technology and a deeper understanding of tumour biology have led to the development of imaging based strategies aimed at interrogating tissue structure and function. The prospects of this new technology include the prediction of tumour response and the non-invasive study of conventionally inaccessible yet important pharmacological compartments. This article explores how functional nuclear MRI and spectroscopy have been used in predicting response to anticancer therapy in rectal cancers and to assess the biliary excretion of chemotherapeutics.
Collapse
Affiliation(s)
- A Dzik-Jurasz
- The Cancer Research UK Clinical Magnetic Resonance Research Group, Institute of Cancer Research and the Royal Marsden NHS Trust, Sutton, Surrey SM2 5PT, UK
| |
Collapse
|
113
|
Valonen PK, Lehtimäki KK, Väisänen TH, Kettunen MI, Gröhn OHJ, Ylä-Herttuala S, Kauppinen RA. Water diffusion in a rat glioma during ganciclovir-thymidine kinase gene therapy-induced programmed cell death in vivo: Correlation with cell density. J Magn Reson Imaging 2004; 19:389-96. [PMID: 15065161 DOI: 10.1002/jmri.20026] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To study the characteristics of diffusion magnetic resonance imaging (MRI) contrast in a rat brain BT4C glioma during progression of ganciclovir (GCV)-thymidine kinase gene therapy-induced programmed cell death (PCD) in vivo. MATERIALS AND METHODS The trace of the diffusion tensor (Dav = 1/3TraceD), T2, and spin density were determined by MRI and the apparent diffusion coefficient (ADC) of water by diffusion nuclear MR (NMR) spectroscopy using largely varying b values and diffusion times (tD) at 4.7 T. Cell count and apoptotic cells were quantified by histological means. RESULTS Decline in cell count was strongly associated with increase in both Dav and T2. Spin density ratio between tumor and contralateral parietal cortex increased with a very similar time course as Dav and T2, indicating net water gain into the eradicating tumor. Diffusion spectroscopy showed a nonmonoexponential signal decay at all tD values ranging from 14-192 msec. During PCD, the ADC of the component yielding fast diffusion coefficient (D1), as acquired with tD > or = 47 msec, increased with kinetics similar to those of Dav (tD = 4.8 msec). The fractional size of D1 increased by 10% to 15% throughout the entire tD range. Apparent water residence time of the slow diffusion component, D2, shortened from a value of 38.3 +/- 1.7 msec on day 0 to 33.4 +/- 0.5 msec by day 8. CONCLUSION The present results show that reduced cell density and increased water content, leading to altered water microenvironment, are associated with increased water diffusion coefficient in eradicating gliomas as a result of PCD.
Collapse
Affiliation(s)
- Piia K Valonen
- Department of Biomedical NMR and National Bio-NMR Facility, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
114
|
Minard KR, Holtom GR, Kathmann LE, Majors PD, Thrall BD, Wind RA. Simultaneous1H PFG-NMR and confocal microscopy of monolayer cell cultures: Effects of apoptosis and necrosis on water diffusion and compartmentalization. Magn Reson Med 2004; 52:495-505. [PMID: 15334567 DOI: 10.1002/mrm.20179] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We induced apoptosis and necrosis in monolayer cultures of Chinese hamster ovary cells using okadaic acid and hydrogen peroxide (H2O2), respectively, and examined the effect on water diffusion and compartmentalization using pulsed-field-gradient (PFG) 1H-NMR and simultaneous confocal microscopy. In PFG experiments characterized by a fixed diffusion time (<4.7 ms) and variable b-values (0-27000 s/mm2), 1H-NMR data collected with untreated cells exhibited multiexponential behavior. Analysis with a slow-exchange model revealed two distinct cellular water compartments with different apparent diffusion coefficients (ADCs; 0.56, 0.06 x 10(-3) mm2/s) and volume fractions (0.96 and 0.04). During the first 12 hr of necrosis or apoptosis, the amount of water in the smallest compartment increased twofold before significant changes in cell density or plasma membrane integrity occurred. Over the same period, water content in the largest compartment decreased by a factor of >2 in apoptotic cells, in accordance with observed cell shrinkage, and changed little in necrotic counterparts, where only slight swelling was evident. These results indicate that PFG 1H-NMR serves as a sensitive indicator of early cell death in monolayer cultures, and can be used to distinguish apoptosis from necrosis. Measurements of restricted diffusion and water exchange are presented to elucidate the compartment origins and justify the model assumptions.
Collapse
Affiliation(s)
- Kevin R Minard
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | | | |
Collapse
|
115
|
|
116
|
Chan I, Wells W, Mulkern RV, Haker S, Zhang J, Zou KH, Maier SE, Tempany CMC. Detection of prostate cancer by integration of line-scan diffusion, T2-mapping and T2-weighted magnetic resonance imaging; a multichannel statistical classifier. Med Phys 2003; 30:2390-8. [PMID: 14528961 DOI: 10.1118/1.1593633] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A multichannel statistical classifier for detecting prostate cancer was developed and validated by combining information from three different magnetic resonance (MR) methodologies: T2-weighted, T2-mapping, and line scan diffusion imaging (LSDI). From these MR sequences, four different sets of image intensities were obtained: T2-weighted (T2W) from T2-weighted imaging, Apparent Diffusion Coefficient (ADC) from LSDI, and proton density (PD) and T2 (T2 Map) from T2-mapping imaging. Manually segmented tumor labels from a radiologist, which were validated by biopsy results, served as tumor "ground truth." Textural features were extracted from the images using co-occurrence matrix (CM) and discrete cosine transform (DCT). Anatomical location of voxels was described by a cylindrical coordinate system. A statistical jack-knife approach was used to evaluate our classifiers. Single-channel maximum likelihood (ML) classifiers were based on 1 of the 4 basic image intensities. Our multichannel classifiers: support vector machine (SVM) and Fisher linear discriminant (FLD), utilized five different sets of derived features. Each classifier generated a summary statistical map that indicated tumor likelihood in the peripheral zone (PZ) of the prostate gland. To assess classifier accuracy, the average areas under the receiver operator characteristic (ROC) curves over all subjects were compared. Our best FLD classifier achieved an average ROC area of 0.839(+/-0.064), and our best SVM classifier achieved an average ROC area of 0.761(+/-0.043). The T2W ML classifier, our best single-channel classifier, only achieved an average ROC area of 0.599(+/-0.146). Compared to the best single-channel ML classifier, our best multichannel FLD and SVM classifiers have statistically superior ROC performance (P=0.0003 and 0.0017, respectively) from pairwise two-sided t-test. By integrating the information from multiple images and capturing the textural and anatomical features in tumor areas, summary statistical maps can potentially aid in image-guided prostate biopsy and assist in guiding and controlling delivery of localized therapy under image guidance.
Collapse
Affiliation(s)
- Ian Chan
- Surgical Planning Laboratory, Department of Radiology, Division of MRI, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Poptani H, Bansal N, Graham RA, Mancuso A, Nelson DS, Glickson JD. Detecting early response to cyclophosphamide treatment of RIF-1 tumors using selective multiple quantum spectroscopy (SelMQC) and dynamic contrast enhanced imaging. NMR IN BIOMEDICINE 2003; 16:102-111. [PMID: 12730951 DOI: 10.1002/nbm.816] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The purpose of this study was to develop a reliable, noninvasive method for early detection of tumor response to therapy that would facilitate optimization of treatment regimens to the needs of the individual patient. In the present study, the effects of cyclophosphamide (Cp, a widely used alkylating agent) were monitored in a murine radiation induced fibrosarcoma (RIF-1) using in vivo (1)H NMR spectroscopy and imaging to evaluate the potential of these techniques towards early detection of treatment response. Steady-state lactate levels and Gd-DTPA uptake kinetics were measured using selective multiple quantum coherence (Sel-MQC) transfer spectroscopy and dynamic contrast enhanced imaging, respectively in RIF-1 tumors before, 24 and 72 h after 300 mg/kg of Cp administration. High-resolution (1)H NMR spectra of perchloric acid extracts of the tumor were correlated with lactate and glucose concentrations determined enzymatically. In vivo NMR experiments showed a decrease in steady-state lactate to water ratios (5.4 +/- 1.6 to 0.6 +/- 0.5, p < 0.05) and an increase in Gd-DTPA uptake kinetics following treatment response. The data indicate that decreases in lactate result from decreased glycolytic metabolism and an increase in tumor perfusion/permeability. Perchloric acid extracts confirmed the lower lactate levels seen in vivo in treated tumors and also indicated a higher glycerophosphocholine/phosphocholine (GPC/PC) integrated intensity ratio (1.39 +/- 0.09 vs 0.97 +/- 0.04, p < 0.01), indicative of increased membrane degradation following Cp treatment. Steady-state lactate levels provide metabolic information that correlates with changes in tumor physiology measured by Gd-DTPA uptake kinetics with high spatial and temporal resolution. Both of these parameters may be useful for monitoring early tumor response to therapy.
Collapse
Affiliation(s)
- Harish Poptani
- Department of Radiology, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
118
|
Abstract
The biochemical and physiological processes involved in apoptosis were described from the perspective of detection by standard, clinical, noninvasive imaging modalities. The difficulties of monitoring apoptosis in vivo were discussed. Magnetic resonance imaging (MRI) approaches used to study apoptosis were surveyed. The cell shrinkage associated with apoptosis can be detected due to changes in tissue water T(2) and T(1)rho relaxation times and apparent diffusion coefficient (ADC). Magnetic resonance spectroscopy (MRS) approaches used to study apoptosis in vivo have largely centered on the formation of cytoplasmic lipid bodies, detected by 1H MRS, and metabolic/bioenergetic changes detected by 31P and 13C MRS. The most successful approach to in vivo mapping of apoptosis uses the high specific binding of annexin V or synaptotagmin I to phosphatidylserine (PS) that appears on the extracellular plasma membrane of cells during apoptosis. Technetium-99m (99mTc)-radiolabeling of the annexin V and superparamagnetic iron oxide (SPIO) labeling of the C2 domain of synaptotagmin I allow good in vivo apoptosis detection by gamma camera imaging and MRI, respectively.
Collapse
Affiliation(s)
- Manfred Brauer
- Department of Chemistry and Biochemistry, University of Guelph, N1G 2W1, Guelph, Ontario, Canada.
| |
Collapse
|
119
|
Hein PA, Kremser C, Judmaier W, Griebel J, Pfeiffer KP, Kreczy A, Hug EB, Lukas P, DeVries AF. Diffusion-weighted magnetic resonance imaging for monitoring diffusion changes in rectal carcinoma during combined, preoperative chemoradiation: preliminary results of a prospective study. Eur J Radiol 2003; 45:214-22. [PMID: 12595106 DOI: 10.1016/s0720-048x(02)00231-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To evaluate the clinical value of diffusion-weighted magnetic resonance imaging (DW-MRI) to monitor response of primary carcinoma of the rectum to preoperative chemoradiation by measuring tumor apparent diffusion coefficient (ADC). MATERIALS AND METHODS Diffusion data of nine patients undergoing preoperative combined chemoradiation for clinical staged T3, N(0-2), M(0) carcinoma of the rectum were analyzed. Diffusion-weighted echo-planar MR images were obtained prior to and at specified intervals during chemoradiation and ADCs calculated from acquired tumor images. RESULTS Comparison of mean ADC and cumulative radiation dose showed a significant decrease of mean ADC at the 2nd (P = 0.028), 3rd (P = 0.012), and 4th (P = 0.008) weeks of treatment. Cytotoxic edema and fibrosis were considered as reasons for ADC decrease. CONCLUSION This study demonstrated tumor ADC changes via detection of therapy-induced alterations in tumor water mobility. Our results indicate that diffusion-weighted imaging may be a valuable clinical tool to diagnose the early stage of radiation-induced fibrosis.
Collapse
Affiliation(s)
- Patrick A Hein
- Department of Radiotherapy and Radiooncology, University of Innsbruck, Innsbruck, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Helmer KG, Meiler MR, Sotak CH, Petruccelli JD. Comparison of the return-to-the-origin probability and the apparent diffusion coefficient of water as indicators of necrosis in RIF-1 tumors. Magn Reson Med 2003; 49:468-78. [PMID: 12594749 DOI: 10.1002/mrm.10400] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Two model-independent measures of diffusion, the apparent diffusion coefficient (ADC) and return-to-the-origin probability enhancement (R) were compared for their ability to detect tissue necrosis in RIF-1 murine tumors. Both reflect the degree of restriction experienced by the endogenous water molecules; however, the ADC is calculated from the initial linear slope of the diffusion attenuation curve, while R is calculated from data that includes the non-monoexponential part of the curve. In spectroscopic studies (n = 9), neither the ADC nor R showed a strong correlation with tumor volume. In imaging studies (n = 14), ADC, R, and T(2) were calculated on a pixel-by-pixel basis. There, the mean ADC and mean R for the entire imaging slice showed reasonable correlation with necrotic tumor fraction (r(2) = 0.679 and -0.665, respectively). The mean T(2) value yielded a poor correlation (r(2) = 0.436). Regions-of-interest were chosen from areas identified as either necrotic or viable and the resulting sets of ADC and R-values were subjected to discriminant analysis to determine the identification error rate. The error was greater for R than for the ADC (P < 0.001). Therefore, in this application, the use of the non-monoexponential part of the diffusion attenuation curve does not provide additional identification power.
Collapse
Affiliation(s)
- Karl G Helmer
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Massachusetts 01609, USA.
| | | | | | | |
Collapse
|
121
|
Abstract
Non-invasive assessment of antineoplastic response and correlation of the location, magnitude and duration of transgene expression in vivo would be particularly useful for evaluating cancer gene therapy protocols. This review presents selected examples of how magnetic resonance (MR) has been used to assess therapeutic efficacy by non-invasive quantitation of cell kill, to detect a therapeutic response prior to a change in tumour volume and to detect spatial heterogeneity of the tumour response and quantitate transgene expression. In addition, applications of the use of bioluminescence imaging (BLI) for the evaluation of treatment efficacy and in vivo transgene expression are also presented. These examples provide an overview of areas in which imaging of animal tumour models can contribute towards improving the evaluation of experimental therapeutic agents.
Collapse
Affiliation(s)
- B D Ross
- Department of Radiology, University of Michigan Medical School, 1150 West Medical Center Drive, Medical Sciences Research Building III, Room 9303, Ann Arbor 48109-0648, USA.
| | | | | |
Collapse
|
122
|
Chenevert TL, Meyer CR, Moffat BA, Rehemtulla A, Mukherji SK, Gebarski SS, Quint DJ, Robertson PL, Lawrence TS, Junck L, Taylor JM, Johnson TD, Dong Q, Muraszko KM, Brunberg JA, Ross BD. Diffusion MRI: A New Strategy for Assessment of Cancer Therapeutic Efficacy. Mol Imaging 2002; 1:336-43. [PMID: 12926229 DOI: 10.1162/15353500200221482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The use of anatomical imaging in clinical oncology practice traditionally relies on comparison of patient scans acquired before and following completion of therapeutic intervention. Therapeutic success is typically determined from inspection of gross anatomical images to assess changes in tumor size. Imaging could provide significant additional insight into therapeutic impact if a specific parameter or combination of parameters could be identified which reflect tissue changes at the cellular or physiologic level. This would provide an early indicator of treatment response/outcome in an individual patient before completion of therapy. Moreover, response of a tumor to therapeutic intervention may be heterogeneous. The use of imaging could assist in delineating therapeutic-induced spatial heterogeneity within a tumor mass by providing information related to specific regions that are resistant or responsive to treatment. Largely untapped potential resides in exploratory methods such as diffusion MRI, which is a non-volumetric intravoxel measure of tumor response based upon water molecular mobility. Alterations in water mobility reflect changes in tissue structure at the cellular level. While the clinical utility of diffusion MRI for oncologic practice is still under active investigation, this overview on the use of diffusion MRI for the evaluation of brain tumors will serve to introduce how this approach may be applied in the future for the management of patients with solid tumors.
Collapse
Affiliation(s)
- Thomas L Chenevert
- Department of Radiology, Center for Molecular Imaging, University of Michigan Medical School, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Gillies RJ, Raghunand N, Karczmar GS, Bhujwalla ZM. MRI of the tumor microenvironment. J Magn Reson Imaging 2002; 16:430-50. [PMID: 12353258 DOI: 10.1002/jmri.10181] [Citation(s) in RCA: 423] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The microenvironment within tumors is significantly different from that in normal tissues. A major difference is seen in the chaotic vasculature of tumors, which results in unbalanced blood supply and significant perfusion heterogeneities. As a consequence, many regions within tumors are transiently or chronically hypoxic. This exacerbates tumor cells' natural tendency to overproduce acids, resulting in very acidic pH values. The hypoxia and acidity of tumors have important consequences for antitumor therapy and can contribute to the progression of tumors to a more aggressive metastatic phenotype. Over the past decade, techniques have emerged that allow the interrogation of the tumor microenvironment with high resolution and molecularly specific probes. Techniques are available to interrogate perfusion, vascular distribution, pH, and pO(2) nondestructively in living tissues with relatively high precision. Studies employing these methods have provided new insights into the causes and consequences of the hostile tumor microenvironment. Furthermore, it is quite exciting that there are emerging techniques that generate tumor image contrast via ill-defined mechanisms. Elucidation of these mechanisms will yield further insights into the tumor microenvironment. This review attempts to identify techniques and their application to tumor biology, with an emphasis on nuclear magnetic resonance (NMR) approaches. Examples are also discussed using electron MR, optical, and radionuclear imaging techniques.
Collapse
Affiliation(s)
- Robert J Gillies
- Department of Biochemistry, Arizona Cancer Center, University of Arizona HSC, Tucson, Arizona 85724-5024, USA.
| | | | | | | |
Collapse
|
124
|
Dev SB, Caban JB, Nanda GS, Bleecher SD, Rabussay DP, Moerland TS, Gibbs SJ, Locke BR. Magnetic resonance studies of laryngeal tumors implanted in nude mice: effect of treatment with bleomycin and electroporation. Magn Reson Imaging 2002; 20:389-94. [PMID: 12206863 DOI: 10.1016/s0730-725x(02)00517-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recently, a new type of cancer treatment has been introduced that combines pulsed electric fields (PEF) with anticancer drugs. The proposed mode of action is that PEF create transient pores in the membranes which allow entry of drugs into the cells. This method increases cytotoxicity of some anticancer drugs like bleomycin (BLM) by 2-3 orders of magnitude, which, in turn, reduces systemic drug dosage without decreasing efficacy. In the present study, magnetic resonance imaging (MRI) was used to determine changes in apparent water self-diffusion coefficients (ADC) and spin-lattice (T(1)) and spin-spin (T(2)) relaxation times that occur in an animal laryngeal tumor (HEp-2 cells) model with BLM delivered by PEF. A Bruker 14 Tesla (600 MHz) wide-bore spectrometer with micro-imaging capability was used to generate all the data. Mice carrying approximately 8 mm tumors were treated with several combinations of drug and PEF. All measurements were made on tumor samples excised from mice 24 and 48 hours after treatment with (i) saline, intratumor injection (i.t.), (ii) BLM, i.t., (iii) saline with PEF, and (iv) BLM, i.t., followed by PEF. Although T(1) does not differ between the controls (i, ii, and iii) and full treatment (iv) 6.72 +/- 0.20 s vs. 6.31 +/- 1.7 s, T(2) for (iv) at 24 hours is significantly different from the controls 52.4 +/- 0.91 ms vs. 46.5 +/- 1.54 ms. T(2) differences between treatment and controls disappear at 48 hours. ADC increases significantly from 24 to 48 hours (7.31 +/- 0.16 x 10(-6) to 8.28 +/- 0.28 x 10(-6) cm(2)/sec, p = 0.05). Longer T(2) values may reflect early apoptosis and tumor death when the tumor is structurally less dense. Higher ADC's, associated with the periphery of the tumors and the central region, may indicate loose structural organization and necrosis resulting from the combination treatment.
Collapse
|
125
|
Abstract
Diffusion-weighted magnetic resonance imaging is a specialized technique that measures the degree of diffusion of water molecules within extracellular space and between intracellular and extracellular space. Diffusion-weighted imaging signal is high (bright) when diffusion is restricted, as occurs in cytotoxic damage from ischemia, inflammation, trauma, or tumor. This technique, now available on most magnetic resonance imaging units, is especially helpful in detecting early ischemic stroke and multiple sclerosis and in differentiating arachnoid cyst from epidermoid tumor and brain abscess from neoplasm.
Collapse
Affiliation(s)
- Suresh K Mukherji
- Department of Radiology, University of Michigan Health System, Ann Arbor 48109, USA.
| | | | | |
Collapse
|
126
|
Jennings D, Hatton BN, Guo J, Galons JP, Trouard TP, Raghunand N, Marshall J, Gillies RJ. Early response of prostate carcinoma xenografts to docetaxel chemotherapy monitored with diffusion MRI. Neoplasia 2002; 4:255-62. [PMID: 11988845 PMCID: PMC1531699 DOI: 10.1038/sj.neo.7900225] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2001] [Accepted: 09/25/2001] [Indexed: 11/09/2022]
Abstract
For many anticancer therapies, it would be desirable to accurately monitor and quantify tumor response early in the treatment regimen. This would allow oncologists to continue effective therapies or discontinue ineffective therapies early in the course of treatment, and hence, reduce morbidity. This is especially true for second-line therapies, which have reduced response rates and increased toxicities. Previous works by others and ourselves have shown that water mobility, measured by diffusion-weighted magnetic resonance imaging (DW-MRI), increases early in tumors destined to respond to therapies. In the current communication, we further characterize the utility of DW-MRI to predict response of prostate cancer xenografts to docetaxel in SCID mice in a preclinical setting. The current data illustrate that tumor volumes and secreted prostate-specific antigen both respond strongly to docetaxel in a dose-responsive manner, and the apparent diffusion coefficient of water (ADC(w)) increases significantly by 2 days even at the lowest doses (10 mg/kg). The ADCw data were parsed by histogram analyses. Our results indicate that DW-MRI can be used for early detection of prostate carcinoma xenograft response to docetaxel chemotherapy.
Collapse
Affiliation(s)
- Dominique Jennings
- Department of Biochemistry, University of Arizona Health Sciences Center, 1501 North Campbell Avenue, Tucson, AZ 85724, USA
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Santana-Blank LA, Rodríguez-Santana E, Vargas F, Santana-Rodríguez KE. Photo-induced cytomorphologic changes in an advanced cancer phase I clinical trial. Lasers Surg Med 2002; 30:18-25. [PMID: 11857599 DOI: 10.1002/lsm.10017] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND AND OBJECTIVES The aim of this study was to investigate whether the application of an Infrared Pulsed Laser Device (IPLD) photo-induced significant cytomorphologic changes during the monitoring of advanced cancer patients participating in a phase I clinical trial. MATERIALS AND METHODS Patients were irradiated with an IPLD (904 nm pulsed at 3 MHz) under a one-dose, one-schedule, and one-procedure design. Total daily dose consisted of a Radiant Exposure of 4.5x10(5) J/m(2). Thirty-one tissue samples from eleven patients with progressive solid neoplastic diseases (TNM IV, UICC) were obtained at three intervals: Time 0 (15-90 days pre-treatment, n=11); Time I (2-5 months post-treatment; n=11); Time II (6-12 months post-treatment, n=09). Three blinded pathologists evaluated samples; scores were determined by consensus. Data were evaluated by using the Wilcoxon matched-pairs signed-rank test and Spearman rank correlation coefficient. The level of statistical significance was alpha=0.05. RESULTS Increased apoptosis (Time I, P<0.003; Time II, P<0.007), necrosis (Time I, NS; Time II, P<0.01), cytoplasmic vacuoles (Time I, P<0.03; Time II, P<0.02), and nuclear vacuoles (Time I, NS; Time II, P<0.01), reduced cell size (Time I, P<0.007; Time II, P<0.01) and intercellular adhesion (Time I, P<0.01; Time II, P<0.02) were present in neoplastic cells after IPLD treatment. No apparent changes were noted in non-neoplastic cells. The Spearman rank correlation coefficient between apoptosis, necrosis, nuclear vacuoles, cytoplasmatic vacuoles, intercellular adhesion, and cell size was positive and highly significant (P<0.006). CONCLUSIONS Although further research is necessary, our preliminary results support the novel possibility that the IPLD photo-induces chaotic dynamics that modulate complex physiologically reparative bioeffects.
Collapse
Affiliation(s)
- Luis A Santana-Blank
- Fundalas, Foundation for Interdisciplinary Research and Development, Caracas, Venezuela.
| | | | | | | |
Collapse
|
128
|
Tzika AA, Zarifi MK, Goumnerova L, Astrakas LG, Zurakowski D, Young-Poussaint T, Anthony DC, Scott RM, Black PM. Neuroimaging in pediatric brain tumors: Gd-DTPA-enhanced, hemodynamic, and diffusion MR imaging compared with MR spectroscopic imaging. AJNR Am J Neuroradiol 2002; 23:322-33. [PMID: 11847064 PMCID: PMC7975274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
BACKGROUND AND PURPOSE Gadolinium-enhanced MR images assist in defining tumor borders; however, the relation between tumor cell extent and contrast-enhanced regions is unclear. Our aim was to improve conventional neuroimaging of pediatric brain tumors with hemodynamic, diffusion, and spectroscopic MR imaging. METHODS We performed conventional MR and MR spectroscopic imaging in 31 children with neuroglial brain tumors. Hemodynamic MR imaging was performed in 16 patients with a first-pass intravenous bolus of gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA); apparent diffusion coefficients (ADCs) were measured in 12 patients. To account for multiple measurements in a patient, we used a nested analysis of variance. RESULTS At MR spectroscopy, choline (Cho)-containing compounds (indicating tumor) and lipid levels (indicating necrosis) did not correlate with percent Gd-DTPA enhancement on MR images. Percent enhancement was positively correlated with relative cerebral blood volumes (rCBVs) (P =.05) and negatively correlated with ADCs (P <.001). Stepwise multiple linear regression revealed that rCBV (P =.008), ADC (P =.022), and lipid (P <.001) levels were significant independent predictors of percent enhancement. Tumor spectral patterns were detected in tumor regions and outside enhancing tumor beds in patients with clinical progression; these were confirmed at neuropathologic analysis. CONCLUSION MR spectroscopic imaging improves the assessment of pediatric brain tumors by adding biochemical information regarding tumor involvement and by depicting residual or recurrent tumor outside the Gd-DTPA-enhanced tumor bed. rCBV and ADC mapping complemented MR spectroscopic imaging. We recommend the use of MR spectroscopic imaging in addition to conventional MR imaging in assessing pediatric brain tumors.
Collapse
Affiliation(s)
- A Aria Tzika
- Department of Radiology, Children's Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Kauppinen RA. Monitoring cytotoxic tumour treatment response by diffusion magnetic resonance imaging and proton spectroscopy. NMR IN BIOMEDICINE 2002; 15:6-17. [PMID: 11840548 DOI: 10.1002/nbm.742] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Exposure of tumours to anti-cancer drugs, gene or radiation therapy consistently leads to an increase in water diffusion in the cases expressing favourable treatment response. The diffusion change coincides cytotoxic cell eradication and precedes volume reduction in drug or gene therapy-treated experimental tumours. Interestingly, the recent studies from human brain tumour patients undergoing chemotherapy show similar behaviour of diffusion, suggesting important application for MRI in patient management. In this review observations from diffusion MRI and MRS in the tumours during cytotoxic treatment are summarized and the cellular mechanisms affecting molecular mobility are discussed in the light of tissue microenvironmental and microdynamic changes.
Collapse
Affiliation(s)
- Risto A Kauppinen
- National Bio-NMR Facility, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland.
| |
Collapse
|
130
|
Rehemtulla A, Hall DE, Stegman LD, Prasad U, Chen G, Bhojani MS, Chenevert TL, Ross BD. Molecular Imaging of Gene Expression and Efficacy following Adenoviral-Mediated Brain Tumor Gene Therapy. Mol Imaging 2002; 1:43-55. [PMID: 12920860 DOI: 10.1162/15353500200200005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cancer gene therapy is an active area of research relying upon the transfer and subsequent expression of a therapeutic transgene into tumor cells in order to provide for therapeutic selectivity. Noninvasive assessment of therapeutic response and correlation of the location, magnitude, and duration of transgene expression in vivo would be particularly useful in the development of cancer gene therapy protocols by facilitating optimization of gene transfer protocols, vector development, and prodrug dosing schedules. In this study, we developed an adenoviral vector containing both the therapeutic transgene yeast cytosine deaminase (yCD) along with an optical reporter gene (luciferase). Following intratumoral injection of the vector into orthotopic 9L gliomas, anatomical and diffusion-weighted MR images were obtained over time in order to provide for quantitative assessment of overall therapeutic efficacy and spatial heterogeneity of cell kill, respectively. In addition, bioluminescence images were acquired to assess the duration and magnitude of gene expression. MR images revealed significant reduction in tumor growth rates associated with yCD/5-fluorocytosine (5FC) gene therapy. Significant increases in mean tumor diffusion values were also observed during treatment with 5FC. Moreover, spatial heterogeneity in tumor diffusion changes were also observed revealing that diffusion magnetic resonance imaging could detect regional therapeutic effects due to the nonuniform delivery and/or expression of the therapeutic yCD transgene within the tumor mass. In addition, in vivo bioluminescence imaging detected luciferase gene expression, which was found to decrease over time during administration of the prodrug providing a noninvasive surrogate marker for monitoring gene expression. These results demonstrate the efficacy of the yCD/5FC strategy for the treatment of brain tumors and reveal the feasibility of using multimodality molecular and functional imaging for assessment of gene expression and therapeutic efficacy.
Collapse
|
131
|
Partridge SC, McKinnon GC, Henry RG, Hylton NM. Menstrual cycle variation of apparent diffusion coefficients measured in the normal breast using MRI. J Magn Reson Imaging 2001; 14:433-8. [PMID: 11599068 DOI: 10.1002/jmri.1204] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent investigations have shown that tumors may be distinguished from benign lesions in the breast based on differences in apparent diffusion coefficient (ADC) values. The goal of this study was to assess the magnitude of normal variations in the measured ADC of breast parenchyma during the menstrual cycle. Eight healthy female subjects were scanned once a week for 4 weeks, using a diffusion-weighted single-shot fast spin-echo (DW-SSFSE) sequence. The ADC of breast fibroglandular tissue was calculated for each woman at each time point. Results showed a trend of decreased ADC during the second week of the cycle, and increased ADC during the final week. However, no significant influence of menstrual cycle on breast ADC values was identified. The results of this study show that the normal fluctuation of breast ADC is relatively small, and the coefficient of variation was determined to be 5.5% for our group of volunteers during a menstrual cycle. Nonetheless, breast diffusion measurements for tumor differentiation and evaluation of treatment response should be interpreted with consideration of normal variability.
Collapse
Affiliation(s)
- S C Partridge
- Magnetic Resonance Science Center, Department of Radiology, University of California-San Francisco, 1 Irving Street, San Francisco, CA 94143-1290, USA.
| | | | | | | |
Collapse
|
132
|
Lemaire L, Roullin VG, Franconi F, Venier-Julienne MC, Menei P, Jallet P, Le Jeune JJ, Benoit JP. Therapeutic efficacy of 5-fluorouracil-loaded microspheres on rat glioma: a magnetic resonance imaging study. NMR IN BIOMEDICINE 2001; 14:360-366. [PMID: 11599034 DOI: 10.1002/nbm.720] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The aim of this work was to assess the therapeutic efficacy of an intratumoral bolus injection of 5-fluorouracil (FU) compared to that of drug loaded in biodegradable microspheres, for the treatment of brain tumour. Experiments were carried out using a fast-growing C6-glioma rat model. The therapeutic protocols were performed 12 days after the injection of glioma cells. At this stage, the tumours were installed and the mean volume was 13 +/- 2 microl as measured by proton magnetic resonance (MR) imaging. This technique was used for the follow-up of the tumour volume with respect to time and therapy. In terms of rat survival, both therapies induced a significant 50% increase in animal life span (p < 0.05) compared to animals receiving no drug or unloaded microspheres. Whilst no cure was observed, analysis of the MR images showed that the local and sustained delivery of FU slowed the tumour development in the vicinity of the microspheres by a factor of 3, compared with the bolus intratumoral injection.
Collapse
Affiliation(s)
- L Lemaire
- INSERM ERIT-M 0104, Ingénierie de la Vectorisation, BAT 1BT, 10 rue Bocquel, 49100 Angers, France.
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Santana-Blank LA, Rodríguez-Santana E, Scott-Algara D, Hunger M, Santana-Rodríguez KE, Orellana R. Short-term bioeffects of an infrared pulsed laser device on burned rat skin monitored by transverse relaxation times (NMR). Lasers Surg Med 2001; 27:411-9. [PMID: 11126435 DOI: 10.1002/1096-9101(2000)27:5<411::aid-lsm1002>3.0.co;2-p] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND OBJECTIVE The aim of this study was to determine whether the application of an infrared pulsed laser device (IPLD) on the burned skin of rats induced significant changes in the water dynamics of the burned tissues as measured by nuclear magnetic resonance (NMR) at a proton frequency of 90 MHz by using transverse relaxation times (T2, I/T2). STUDY DESIGN/MATERIALS AND METHODS Seven groups (GI-GVII), each consisting of four albino rats (Sprague-Dawley), of 12-14 weeks of age were used in the experiment. Rats in GI-GVI were anesthetized and burned with a hot tip. GI, GIII, GV were not irradiated. GII, GIV, GVI were irradiated at 0 hours; 0 and 24 hours; and 0, 24, and 48 hours, respectively. Rats in GVII served as controls and were neither burned nor irradiated. Samples from all groups were obtained and monitored by NMR by using transverse relaxation times (T2 and 1/T2). An unpaired Student's t-test and a one-way analysis of variance (ANOVA I) were preformed on the mean values obtained (T2, 1/T2). The statistical design was chosen to give a 95% power of contrast 1-beta (1/T2). The modulated beam of the IPLD used is composed of two superposed waves; a carrier wave (3 MHz), and a drive force wave in the near infrared (904 nm, f = 1014 Hz). A dose of 1.5 x 10(3) J/M2 per session was applied by placing the IPLD directly over the burned tissue by using a top-hat distribution. RESULTS The results of a t-test on the T2 and 1/T2 values did not show statistically significant differences at 0 and 24 hours between the irradiated groups, the nonirradiated groups, and the nonburned nonirradiated (control) group. Nonetheless, at 48 hours after the burn, we found a statistically significant difference in the 1/T2 values for the irradiated specimens compared with the nonirradiated specimens and the control group. Furthermore, the variance of the 1/T2 values as a function of time showed a tendency to decrease significantly only for the irradiated specimens. CONCLUSION These findings show possible effects on the water dynamics of burned rat tissue in a short term as a result of the IPLD's application.
Collapse
Affiliation(s)
- L A Santana-Blank
- Foundation for Interdisciplinary Research and Development Fundalas, Caracas, Venezuela.
| | | | | | | | | | | |
Collapse
|
134
|
Ballon D, Dyke J, Schwartz LH, Lis E, Schneider E, Lauto A, Jakubowski AA. Bone marrow segmentation in leukemia using diffusion and T (2) weighted echo planar magnetic resonance imaging. NMR IN BIOMEDICINE 2000; 13:321-328. [PMID: 11002312 DOI: 10.1002/1099-1492(200010)13:6<321::aid-nbm651>3.0.co;2-p] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Magnetic resonance images of leukemic bone marrow were acquired over large regions of the pelvis and lower abdomen with minimal interference from overlying tissues using diffusion and T(2) weighted echo planar imaging. Data acquisition times were on the order of 1 min for scanning volumes of up to 25 l at a spatial resolution of 31 microl. A survey of 21 patients with leukemia and eight healthy adult volunteers was undertaken to determine the magnitude of the observed effect and its dependence upon specific pathologies. The acquisition methods yielded high-quality segmentation of leukemic bone marrow prior to therapy in seven of seven patients with acute lymphocytic leukemia, chronic lymphocytic leukemia or chronic myelogenous leukemia, and who had hypercellular (>95%) bone marrow at the time of the study. The quality of the segmentation was sufficient to allow the use of maximum intensity projection images which afforded a convenient evaluation of both intra- and extramedullary disease. The measured signal-to-noise ratios agreed with a theoretical estimate that accounted for the percentage cellularity, T(2) relaxation time of water, and self-diffusion coefficient of water in iliac bone marrow. In addition, the mean signal-to-noise ratios from iliac marrow were strongly dependent upon the time after the initiation of chemotherapeutic regimens, implying that the methods may be useful for therapeutic monitoring.
Collapse
Affiliation(s)
- D Ballon
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
135
|
Stegman LD, Rehemtulla A, Hamstra DA, Rice DJ, Jonas SJ, Stout KL, Chenevert TL, Ross BD. Diffusion MRI detects early events in the response of a glioma model to the yeast cytosine deaminase gene therapy strategy. Gene Ther 2000; 7:1005-10. [PMID: 10871748 DOI: 10.1038/sj.gt.3301199] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Detection of a therapeutic response early in the course of cancer treatment, before tumor growth delay or regression, is not currently possible in experimental models or clinical medicine. New interim measures of therapeutic response would be particularly useful in the development of cancer chemosensitization gene therapy by facilitating optimization of gene transfer protocols and prodrug dosing schedules. Diffusion MRI is a sensitive technique producing quantitative and noninvasive images of the apparent mobility of water within a tissue. We investigated the utility of diffusion MRI for detecting early changes associated with a refined cytosine deaminase (CD)/5-fluorocytosine (5FC) chemosensitization gene therapy paradigm in orthotopic 9L gliomas stably expressing the recently cloned S. cerevisiae CD gene. Mean tumor diffusion increased 31% within 8 days of initiating 5-FC treatment, preceding tumor growth arrest and regression. Complete regression of the intracranial tumor was observed in four of five treated animals, and recurrent tumor in the remaining animal exhibited water diffusion behavior similar to primary, untreated tumors. These results demonstrate the efficacy of the yCD/5FC strategy for glioma and suggest that increased tumor water diffusion is an indicator of active therapeutic intervention.
Collapse
Affiliation(s)
- L D Stegman
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109-0648, USA
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Lyng H, Haraldseth O, Rofstad EK. Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging. Magn Reson Med 2000; 43:828-36. [PMID: 10861877 DOI: 10.1002/1522-2594(200006)43:6<828::aid-mrm8>3.0.co;2-p] [Citation(s) in RCA: 352] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of this study was to investigate whether apparent diffusion coefficients (ADCs) could be used as measures of cell density and necrotic fraction of tumors. Tumors of four human melanoma xenograft lines were subjected to diffusion-weighted magnetic resonance imaging (DWI). ADCs were calculated from the images and related to cell density and necrotic fraction, as determined from histological sections. A significant correlation was found between the ADC of the viable tissue and cell density, regardless of whether tumors of different lines or different regions within individual tumors were considered. Necrosis was found in two of the lines. A single region of massive necrosis that could be differentiated from the viable tissue in ADC maps was found in one line, whereas a number of smaller necrotic regions that could not be identified in ADC maps were found in the other line. Tumor ADC was significantly correlated with the necrotic fraction of the former, but not of the latter line. Our results suggest that ADCs can be used as measures of cell density and necrotic fraction of some but not of all tumors, depending on whether the individual necrotic regions are large enough to be differentiated from the viable tissue with the obtained spatial resolution of the DW images. Magn Reson Med 43:828-836, 2000.
Collapse
Affiliation(s)
- H Lyng
- Department of Biophysics, The Norwegian Radium Hospital, Oslo, Norway
| | | | | |
Collapse
|
137
|
Lemaire L, Franconi F, Saint-Andre JP, Roullin VG, Jallet P, Le Jeune JJ. High-field quantitative transverse relaxation time, magnetization transfer and apparent water diffusion in experimental rat brain tumour. NMR IN BIOMEDICINE 2000; 13:116-123. [PMID: 10861992 DOI: 10.1002/1099-1492(200005)13:3<116::aid-nbm616>3.0.co;2-d] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The potential of quantitative parameter images of transverse relaxation time T(2), apparent diffusion coefficient (ADC) and magnetization transfer ratio (MTR) to characterize experimental brain tumours was studied. Necrosis or haemorrhage can be detected using either MTR, ADC or T(2) (necrosis-MTR reduced by 35%, ADC and T(2) increased respectively by 170% and 100% compared with normal brain tissue; haemorrhage-MTR increased by 60%, ADC and T(2) decreased by 40% and 20%, respectively). Normal brain tissue can only be distinguished from tumour on T(2) and MTR parameter images. However, for small tumours (10 microl), the best contrast is observed with MTR, ca. 30%, whereas for T(2) the contrast is ca. 10%.
Collapse
Affiliation(s)
- L Lemaire
- UPRES-EA 2169 Vectorisation Particulaire, Universite d'Angers, Angers, France.
| | | | | | | | | | | |
Collapse
|
138
|
Evelhoch JL, Gillies RJ, Karczmar GS, Koutcher JA, Maxwell RJ, Nalcioglu O, Raghunand N, Ronen SM, Ross BD, Swartz HM. Applications of magnetic resonance in model systems: cancer therapeutics. Neoplasia 2000; 2:152-65. [PMID: 10933074 PMCID: PMC1531871 DOI: 10.1038/sj.neo.7900078] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The lack of information regarding the metabolism and pathophysiology of individual tumors limits, in part, both the development of new anti-cancer therapies and the optimal implementation of currently available treatments. Magnetic resonance [MR, including magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and electron paramagnetic resonance (EPR)] provides a powerful tool to assess many aspects of tumor metabolism and pathophysiology. Moreover, since this information can be obtained nondestructively, pre-clinical results from cellular or animal models are often easily translated into the clinic. This review presents selected examples of how MR has been used to identify metabolic changes associated with apoptosis, detect therapeutic response prior to a change in tumor volume, optimize the combination of metabolic inhibitors with chemotherapy and/or radiation, characterize and exploit the influence of tumor pH on the effectiveness of chemotherapy, characterize tumor reoxygenation and the effects of modifiers of tumor oxygenation in individual tumors, image transgene expression and assess the efficacy of gene therapy. These examples provide an overview of several of the areas in which cellular and animal model studies using MR have contributed to our understanding of the effects of treatment on tumor metabolism and pathophysiology and the importance of tumor metabolism and pathophysiology as determinants of therapeutic response.
Collapse
Affiliation(s)
- J L Evelhoch
- Barbara Ann Karmanos Cancer Institute and Department of Internal Medicine, Wayne State University, Detroit, MI, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Lyng H, Haraldseth O, Rofstad EK. Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging. Magn Reson Med 2000. [DOI: 10.1002/1522-2594(200006)43:6%3c828::aid-mrm8%3e3.0.co;2-p] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
140
|
Galons JP, Altbach MI, Paine-Murrieta GD, Taylor CW, Gillies RJ. Early increases in breast tumor xenograft water mobility in response to paclitaxel therapy detected by non-invasive diffusion magnetic resonance imaging. Neoplasia 1999; 1:113-7. [PMID: 10933044 PMCID: PMC1508128 DOI: 10.1038/sj.neo.7900009] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
An important goal in cancer chemotherapy is to sensitively and quantitatively monitor the response of individual patients' tumors to successful, or unsuccessful, therapy so that regimens can be altered iteratively. Currently, tumor response is monitored by frank changes in tumor morphology, yet these markers take long to manifest and are not quantitative. Recent studies suggest that the apparent diffusion coefficient of water (ADCw), measured noninvasively with magnetic resonance imaging, is sensitively and reliably increased in response to successful CTx. In the present study, we investigate the combination chemotherapy response of human breast cancer tumor xenografts sensitive or resistant to Paclitaxel by monitoring changes in the ADCw. Our results indicate that there is a clear, substantial, and early increase in the ADCw after successful therapy in drug sensitive tumors and that there is no change in the ADCw in p-glycoprotein-positive tumors, which are resistant to Paclitaxel. The mechanism underlying these changes is unknown yet is consistent with apoptotic cell shrinkage and a concomitant increase in the extracellular water fraction.
Collapse
Affiliation(s)
- J P Galons
- Department of Radiology, University of Arizona, Tucson, USA.
| | | | | | | | | |
Collapse
|
141
|
Lemaire L, Howe FA, Rodrigues LM, Griffiths JR. Assessment of induced rat mammary tumour response to chemotherapy using the apparent diffusion coefficient of tissue water as determined by diffusion-weighted 1H-NMR spectroscopy in vivo. MAGMA (NEW YORK, N.Y.) 1999; 8:20-6. [PMID: 10383089 DOI: 10.1007/bf02590631] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemosensitivity of N-methyl-N-nitrosourea-induced rat mammary tumours treated with 5-fluorouracil at a dose of 100 mg kg(-1) i.p. was assessed by using diffusion-weighted 1H-MRS to measure the average diffusion coefficient (ADC) of water in the tumour tissue. ADC measurements prior to any therapy correlated positively with necrotic fraction. Tumours with low initial ADC (< 0.95 x 10(9) m2 s(-1)) showed an increase in ADC 7 days after treatment, whereas tumours with a high initial ADC (> 1.2 x 10(9) m2 s(-1)) showed a decrease. All tumours decreased significantly in volume (P < 0.05) 2, 5 and 7 days after treatment. At day 7 post-treatment, tumours with a high pre-treatment ADC started to regrow. The initial ADC value, as well as changes after treatment predict tumour chemosensitivity, which could be clinically relevant.
Collapse
Affiliation(s)
- L Lemaire
- Department of Cellular and Molecular Sciences, St George's Hospital Medical School, London, UK.
| | | | | | | |
Collapse
|
142
|
Bhujwalla ZM, McCoy CL, Glickson JD, Gillies RJ, Stubbs M. Estimations of intra- and extracellular volume and pH by 31P magnetic resonance spectroscopy: effect of therapy on RIF-1 tumours. Br J Cancer 1998; 78:606-11. [PMID: 9744499 PMCID: PMC2063062 DOI: 10.1038/bjc.1998.548] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Quantification of metabolite or drug concentrations in living tissues requires determination of intra- and extracellular volumes. This study demonstrates how this can be achieved non-invasively by 31P magnetic resonance spectroscopy (MRS) employing dimethyl methylphosphonate (DMMP) as a marker of total water space, 3-aminopropylphosphonate (3-APP) as a marker of extracellular space and P and 3-APP as markers of intracellular pH (pH) and extracellular pH (pHe) respectively. The MRS measurements of the tumour volumes were validated by classic radiolabelling methods using 3H2O and [14C]inulin as markers of total and extracellular space respectively. The extracellular volume fraction measured by radiolabelling of RIF-1 tumours was 23 +/- 0.83% (mean +/- s.e.m. n = 9), not significantly different (P > 0.1) from that found by MRS (27 +/- 2.9%, n = 9, London, and 35 +/- 6.7, n = 14, Baltimore). In untreated RIF-1 tumours, pH was about 0.2 units higher than pHe (P < 0.01). 5-Fluorouracil (5FU) treatment (165 mg kg(-1)) caused no significant changes in either pHe or per cent extracellular volume. However significant increases in pH, 48 h after treatment (P < 0.01) correlated with decreased tumour size and improved bioenergetic status [NTP/inorganic phosphate (Pi) ratio]. This study shows the feasibility of an MR method (verified by a 'gold standard') for studying the effects of drug treatment on intra- and extracellular spaces and pH in solid tumours in vivo.
Collapse
Affiliation(s)
- Z M Bhujwalla
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
143
|
Robinson SP, Barton SJ, McSheehy PM, Griffiths JR. Nuclear magnetic resonance spectroscopy of cancer. Br J Radiol 1997; 70 Spec No:S60-9. [PMID: 9534719 DOI: 10.1259/bjr.1997.0009] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nuclear magnetic resonance spectroscopy (MRS) offers a non-invasive approach for studying tumour biochemistry and physiology. This review highlights NMR nuclei (31P, 1H, 19F, 13C, 2H) that have been observed in both pre-clinical and clinical spectroscopic studies of cancer.
Collapse
Affiliation(s)
- S P Robinson
- CRC Biomedical Magnetic Resonance Research Group, Division of Biochemistry, St George's Hospital Medical School, London, UK
| | | | | | | |
Collapse
|
144
|
Abstract
It is shown that diffusion-weighted imaging is possible in the human breast. Diffusion constants were measured in the breast parenchyma of four volunteers with no known breast lesions. The apparent diffusion constant of water measured in regions of interest chosen in normal human breast fibroglandular tissue was 1.64 +/- 0.19 x 10(-5) cm2/S and that measured in the area of fatty breast tissue was 0.32 +/- 0.18 x 10(-5) cm2/S. The resulting images indicate that fibroglandular tissue and fat can be clearly distinguished in diffusion-weighted as well as in absolute diffusion images of the breast. Potential future applications of this technology for the study of breast pathologies are suggested.
Collapse
Affiliation(s)
- S A Englander
- Johns Hopkins University Medical School, Department of Radiology, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
145
|
Maier CF, Paran Y, Bendel P, Rutt BK, Degani H. Quantitative diffusion imaging in implanted human breast tumors. Magn Reson Med 1997; 37:576-81. [PMID: 9094080 DOI: 10.1002/mrm.1910370417] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Quantitative diffusion measurements were performed in tumors arising from inoculation of nude mice with two human breast cancer cell lines (MCF7 and T47D) to evaluate the specificity of this technique for characterizing solid tumors. ADC maps were compared to histology and correlated well with gross tumor morphology. Measured ADCs were highly specific for viable and necrotic tumor in the five T47D tumors included in this study (P < 0.02), while only two of the five MCF7 tumors studied developed distinguishable areas of necrosis. No statistically significant difference was observed in ADCs from viable tumor between the different cell lines (P > 0.05).
Collapse
Affiliation(s)
- C F Maier
- Tom Lawson Family Imaging Research Laboratory, John P. Robarts Research Institute, University of Western Ontario, London, Canada
| | | | | | | | | |
Collapse
|