101
|
Very low protein diet enhances inflammation, malnutrition, and vascular calcification in uremic rats. Life Sci 2016; 146:117-23. [DOI: 10.1016/j.lfs.2015.12.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/06/2015] [Accepted: 12/29/2015] [Indexed: 01/10/2023]
|
102
|
Abstract
A hallmark of aging, and major contributor to the increased prevalence of cardiovascular disease in patients with chronic kidney disease (CKD), is the progressive structural and functional deterioration of the arteries and concomitant accrual of mineral. Vascular calcification (VC) was long viewed as a degenerative age-related pathology that resulted from the passive deposition of mineral in the extracellular matrix; however, since the discovery of "bone-related" protein expression in calcified atherosclerotic plaques over 20 years ago, a plethora of studies have evoked the now widely accepted view that VC is a highly regulated and principally cell-mediated phenomenon that recapitulates many features of physiologic ossification. Central to this theory are changes in vascular smooth muscle cell (VSMC) phenotype and viability, thought to be driven by chronic exposure to a number of dystrophic stimuli characteristics of the uremic state. Here, dedifferentiated synthetic VSMCs are seen to spawn calcifying matrix vesicles that actively seed mineralization of the arterial matrix. This review provides an overview of the major epidemiological, histological, and molecular aspects of VC in the context of CKD, and a counterpoint to the prevailing paradigm that emphasizes the primacy of VSMC-mediated mechanisms. Particular focus is given to the import of protein and small molecule inhibitors in regulating physiologic and pathological mineralization and the emerging role of mineral nanoparticles and their interplay with proinflammatory processes.
Collapse
Affiliation(s)
- Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, VIC, 3050, Australia.
| |
Collapse
|
103
|
Hortells L, Sosa C, Millán Á, Sorribas V. Critical Parameters of the In Vitro Method of Vascular Smooth Muscle Cell Calcification. PLoS One 2015; 10:e0141751. [PMID: 26554928 PMCID: PMC4640663 DOI: 10.1371/journal.pone.0141751] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/13/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Vascular calcification (VC) is primarily studied using cultures of vascular smooth muscle cells. However, the use of very different protocols and extreme conditions can provide findings unrelated to VC. In this work we aimed to determine the critical experimental parameters that affect calcification in vitro and to determine the relevance to calcification in vivo. EXPERIMENTAL PROCEDURES AND RESULTS Rat VSMC calcification in vitro was studied using different concentrations of fetal calf serum, calcium, and phosphate, in different types of culture media, and using various volumes and rates of change. The bicarbonate content of the media critically affected pH and resulted in supersaturation, depending on the concentration of Ca2+ and Pi. Such supersaturation is a consequence of the high dependence of bicarbonate buffers on CO2 vapor pressure and bicarbonate concentration at pHs above 7.40. Such buffer systems cause considerable pH variations as a result of minor experimental changes. The variations are more critical for DMEM and are negligible when the bicarbonate concentration is reduced to ¼. Particle nucleation and growth were observed by dynamic light scattering and electron microscopy. Using 2mM Pi, particles of ~200nm were observed at 24 hours in MEM and at 1 hour in DMEM. These nuclei grew over time, were deposited in the cells, and caused osteogene expression or cell death, depending on the precipitation rate. TEM observations showed that the initial precipitate was amorphous calcium phosphate (ACP), which converts into hydroxyapatite over time. In blood, the scenario is different, because supersaturation is avoided by a tightly controlled pH of 7.4, which prevents the formation of PO43--containing ACP. CONCLUSIONS The precipitation of ACP in vitro is unrelated to VC in vivo. The model needs to be refined through controlled pH and the use of additional procalcifying agents other than Pi in order to reproduce calcium phosphate deposition in vivo.
Collapse
Affiliation(s)
- Luis Hortells
- Department of Toxicology, University of Zaragoza, Veterinary Faculty, Zaragoza, Spain
| | - Cecilia Sosa
- Department of Toxicology, University of Zaragoza, Veterinary Faculty, Zaragoza, Spain
| | - Ángel Millán
- Institute of Materials Science of Aragón, CSIC – Universidad de Zaragoza, Zaragoza, Spain
| | - Víctor Sorribas
- Department of Toxicology, University of Zaragoza, Veterinary Faculty, Zaragoza, Spain
| |
Collapse
|
104
|
Villa-Bellosta R. Vascular Calcification Revisited: A New Perspective for Phosphate Transport. Curr Cardiol Rev 2015; 11:341-351. [PMID: 26242187 PMCID: PMC4774640 DOI: 10.2174/1573403x11666150805120505] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 12/30/2022] Open
Abstract
Elevated serum phosphorus has emerged as a key risk factor for pathologic calcification of
cardiovascular structures, or vascular calcification (VC). To prevent the formation of calciumphosphate
deposits (CPD), the body uses adenosine-5’-triphosphate (ATP) to synthesize inhibitors of
calcification, including proteins and inhibitors of low molecular weight. Extracellular pyrophosphate
(PPi) is a potent inhibitor of VC, which is produced during extracellular hydrolysis of ATP. Loss of
function in the enzymes and transporters that are involved in the cycle of extracellular ATP, including
Pi transporters, leads to excessive deposition of calcium-phosphate salts. Treatment of hyperphosphatemia
with Pi-binders and Injection of exogenous PPi are the effective treatments to prevent CPD
in the aortic wall. The role of sodium phosphate cotransporters in ectopic calcification is contradictory and not well defined,
but their important role in the control of intracellular Pi levels and the synthesis of ATP make them an important
target to study.
Collapse
|
105
|
Yamada S, Tokumoto M, Tsuruya K, Tatsumoto N, Noguchi H, Kitazono T, Ooboshi H. Fetuin-A decrease induced by a low-protein diet enhances vascular calcification in uremic rats with hyperphosphatemia. Am J Physiol Renal Physiol 2015; 309:F744-54. [DOI: 10.1152/ajprenal.00017.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 07/14/2015] [Indexed: 01/18/2023] Open
Abstract
Although dietary phosphate restriction is important for treating hyperphosphatemia in patients with chronic kidney disease, it remains unclear whether a low-protein diet (LPD), which contains low phosphate, has beneficial effects on malnutrition, inflammation, and vascular calcification. The effects of LPD on inflammation, malnutrition, and vascular calcification were therefore assessed in rats. Rats were fed a normal diet or diets containing 0.3% adenine and low/normal protein and low/high phosphate. After 6 wk, serum and urinary biochemical parameters, systemic inflammation, and vascular calcification were examined. The protective effect of fetuin-A and albumin were assessed in cultured vascular smooth muscle cells. Rats fed the diet containing 0.3% adenine developed severe azotemia. LPD in rats fed high phosphate induced malnutrition (decreases in body weight, food intake, serum albumin and fetuin-A levels, and urinary creatinine excretion) and systemic inflammation (increases in serum tumor necrosis factor-α and urinary oxidative stress marker). LPD decreased the serum fetuin-A level and fetuin-A synthesis in the liver and increased serum calcium-phosphate precipitates. A high-phosphate diet increased aortic calcium content, which was enhanced by LPD. Reduced fetal calf serum in the medium of cultured vascular smooth muscle cells enhanced phosphate-induced formation of calcium-phosphate precipitates in the media and calcification of vascular smooth muscle cells, both of which were prevented by fetuin-A administration. Our results suggest that phosphate restriction by restricting dietary protein promotes vascular calcification by lowering the systemic fetuin-A level and increasing serum calcium-phosphate precipitates and induces inflammation and malnutrition in uremic rats fed a high-phosphate diet.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Internal Medicine, Fukuoka Dental College Medical and Dental Hospital, Fukuoka, Japan
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Masanori Tokumoto
- Department of Internal Medicine, Fukuoka Dental College Medical and Dental Hospital, Fukuoka, Japan
| | - Kazuhiko Tsuruya
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
- Department of Integrated Therapy for Chronic Kidney Disease, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Narihito Tatsumoto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Hideko Noguchi
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Hiroaki Ooboshi
- Department of Internal Medicine, Fukuoka Dental College Medical and Dental Hospital, Fukuoka, Japan
| |
Collapse
|
106
|
Byon CH, Chen Y. Molecular Mechanisms of Vascular Calcification in Chronic Kidney Disease: The Link between Bone and the Vasculature. Curr Osteoporos Rep 2015; 13:206-15. [PMID: 25947259 PMCID: PMC4489999 DOI: 10.1007/s11914-015-0270-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Vascular calcification is highly prevalent in patients with chronic kidney disease (CKD) and increases mortality in those patients. Impaired calcium and phosphate homeostasis, increased oxidative stress, and loss of calcification inhibitors have been linked to vascular calcification in CKD. Additionally, impaired bone may perturb serum calcium/phosphate and their key regulator, parathyroid hormone, thus contributing to increased vascular calcification in CKD. Therapeutic approaches for CKD, such as phosphate binders and bisphosphonates, have been shown to ameliorate bone loss as well as vascular calcification. The precise mechanisms responsible for vascular calcification in CKD and the contribution of bone metabolism to vascular calcification have not been elucidated. This review discusses the role of systemic uremic factors and impaired bone metabolism in the pathogenesis of vascular calcification in CKD. The regulation of the key osteogenic transcription factor Runt-related transcription factor 2 (Runx2) and the emerging role of Runx2-dependent receptor activator of nuclear factor kappa-B ligand (RANKL) in vascular calcification of CKD are emphasized.
Collapse
Affiliation(s)
- Chang Hyun Byon
- Department of Pathology, University of Alabama at Birmingham, 614 Shelby Biomedical Research Bldg., 1825 University Blvd., Birmingham, AL 35294, USA
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham, 614 Shelby Biomedical Research Bldg., 1825 University Blvd., Birmingham, AL 35294, USA
- Department of Pathology, Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294, USA
| |
Collapse
|
107
|
Gajjala PR, Sanati M, Jankowski J. Cellular and Molecular Mechanisms of Chronic Kidney Disease with Diabetes Mellitus and Cardiovascular Diseases as Its Comorbidities. Front Immunol 2015. [PMID: 26217336 PMCID: PMC4495338 DOI: 10.3389/fimmu.2015.00340] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chronic kidney disease (CKD), diabetes mellitus (DM), and cardiovascular diseases (CVD) are complex disorders of partly unknown genesis and mostly known progression factors. CVD and DM are the risk factors of CKD and are strongly intertwined since DM can lead to both CKD and/or CVD, and CVD can lead to kidney disease. In recent years, our knowledge of CKD, DM, and CVD has been expanded and several important experimental, clinical, and epidemiological associations have been reported. The tight cellular and molecular interactions between the renal, diabetic, and cardiovascular systems in acute or chronic disease settings are becoming increasingly evident. However, the (patho-) physiological basis of the interactions of CKD, DM, and CVD with involvement of multiple endogenous and environmental factors is highly complex and our knowledge is still at its infancy. Not only single pathways and mediators of progression of these diseases have to be considered in these processes but also the mutual interactions of these factors are essential. The recent advances in proteomics and integrative analysis technologies have allowed rapid progress in analyzing complex disorders and clearly show the opportunity for new efficient and specific therapies. More than a dozen pathways have been identified so far, including hyperactivity of the renin–angiotensin (RAS)–aldosterone system, osmotic sodium retention, endothelial dysfunction, dyslipidemia, RAS/RAF/extracellular-signal-regulated kinase pathway, modification of the purinergic system, phosphatidylinositol 3-kinase (PI 3-kinase)-dependent signaling pathways, and inflammation, all leading to histomorphological alterations of the kidney and vessels of diabetic and non-diabetic patients. Since a better understanding of the common cellular and molecular mechanisms of these diseases may be a key to successful identification of new therapeutic targets, we review in this paper the current literature about cellular and molecular mechanisms of CKD.
Collapse
Affiliation(s)
- Prathibha Reddy Gajjala
- Institute for Molecular Cardiovascular Research, Universitätsklinikum RWTH Aachen , Aachen , Germany
| | - Maryam Sanati
- Institute for Molecular Cardiovascular Research, Universitätsklinikum RWTH Aachen , Aachen , Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, Universitätsklinikum RWTH Aachen , Aachen , Germany
| |
Collapse
|
108
|
Yiu AJ, Callaghan D, Sultana R, Bandyopadhyay BC. Vascular Calcification and Stone Disease: A New Look towards the Mechanism. J Cardiovasc Dev Dis 2015; 2:141-164. [PMID: 26185749 PMCID: PMC4501032 DOI: 10.3390/jcdd2030141] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Calcium phosphate (CaP) crystals are formed in pathological calcification as well as during stone formation. Although there are several theories as to how these crystals can develop through the combined interactions of biochemical and biophysical factors, the exact mechanism of such mineralization is largely unknown. Based on the published scientific literature, we found that common factors can link the initial stages of stone formation and calcification in anatomically distal tissues and organs. For example, changes to the spatiotemporal conditions of the fluid flow in tubular structures may provide initial condition(s) for CaP crystal generation needed for stone formation. Additionally, recent evidence has provided a meaningful association between the active participation of proteins and transcription factors found in the bone forming (ossification) mechanism that are also involved in the early stages of kidney stone formation and arterial calcification. Our review will focus on three topics of discussion (physiological influences-calcium and phosphate concentration-and similarities to ossification, or bone formation) that may elucidate some commonality in the mechanisms of stone formation and calcification, and pave the way towards opening new avenues for further research.
Collapse
Affiliation(s)
- Allen J. Yiu
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA; E-Mails: (A.J.Y.); (D.C.); (R.S.)
| | - Daniel Callaghan
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA; E-Mails: (A.J.Y.); (D.C.); (R.S.)
- Department of Pharmacology and Physiology, Georgetown University, 3900 Reservoir Road, NW, Washington, DC 20007, USA
| | - Razia Sultana
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA; E-Mails: (A.J.Y.); (D.C.); (R.S.)
| | - Bidhan C. Bandyopadhyay
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA; E-Mails: (A.J.Y.); (D.C.); (R.S.)
- Department of Pharmacology and Physiology, Georgetown University, 3900 Reservoir Road, NW, Washington, DC 20007, USA
- Department of Pharmacology and Physiology, School of Medicine, George Washington University, Ross Hall 2300 Eye Street, NW, Washington, DC 20037, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-202-745-8622; Fax: +1-202-462-2006
| |
Collapse
|
109
|
Massy ZA, Drüeke TB. Magnesium and outcomes in patients with chronic kidney disease: focus on vascular calcification, atherosclerosis and survival. Clin Kidney J 2015; 5:i52-i61. [PMID: 26069821 PMCID: PMC4455827 DOI: 10.1093/ndtplus/sfr167] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Patients with chronic kidney disease (CKD) have a high prevalence of vascular calcification, and cardiovascular disease is the leading cause of death in this population. However, the molecular mechanisms of vascular calcification, which are multifactorial, cell-mediated and dynamic, are not yet fully understood. We need to address ways to improve outcomes in CKD patients, both in terms of vascular calcification and cardiovascular morbidity and mortality—and to these ends, we investigate the role of magnesium. Magnesium’s role in the pathogenesis of vascular calcification has not been extensively studied. Nonetheless, several in vitro and animal studies point towards a protective role of magnesium through multiple molecular mechanisms. Magnesium is a natural calcium antagonist and both human and animal studies have shown that low circulating magnesium levels are associated with vascular calcification. Clinical evidence from observational studies of dialysis patients has shown that low-magnesium levels occur concurrently with mitral annular calcification, peripheral arterial calcification and increased carotid intima–media thickness. Few interventional studies have been performed. Two interventional studies suggest that there may be benefits such as retardation of arterial calcification and/or reductions in carotid intima–media thickness in response to magnesium supplementation in CKD patients, though both studies have limitations. Finally, observational studies have shown that low serum magnesium may be an independent risk factor for premature death in CKD patients, and patients with mildly elevated serum magnesium levels could have a survival advantage over those with lower magnesium levels.
Collapse
Affiliation(s)
- Ziad A Massy
- Departments of Clinical Pharmacology and Nephrology, Amiens University Hospital, CHU-Amiens South ; INSERM Unit 1088, UFR de Médicine et de Pharmacie, Université de Picardie Jules Verne, Amiens, France
| | - Tilman B Drüeke
- INSERM Unit 1088, UFR de Médicine et de Pharmacie, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
110
|
Palit S, Kendrick J. Vascular calcification in chronic kidney disease: role of disordered mineral metabolism. Curr Pharm Des 2015; 20:5829-33. [PMID: 24533939 DOI: 10.2174/1381612820666140212194926] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 02/11/2014] [Indexed: 11/22/2022]
Abstract
In patients with chronic kidney disease (CKD), vascular calcification is associated with significant morbidity and mortality. The prevalence of vascular calcification increases as glomerular filtration rate (GFR) declines and calcification occurs years earlier in CKD patients than in the general population. The mechanisms of vascular calcification in CKD patients are complex and not completely understood but likely involve non-traditional risk factors, which may be unique to patients with CKD. These unique risk factors may predispose patients to early and more accelerated calcification. Experimental and clinical studies show that disorders in mineral metabolisms including calcium and phosphorus homeostasis initiate and promote vascular calcification in patients with CKD. It is currently unknown if vascular calcification can be prevented or reversed with therapies aimed at maintaining calcium and phosphorus homeostasis. This review focuses on the potential mechanisms by which disordered mineral metabolism may promote vascular calcification in patients with CKD.
Collapse
Affiliation(s)
| | - Jessica Kendrick
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Denver Health Medical Center, 660 Bannock St Mail Code 4000, Denver, CO 80204.
| |
Collapse
|
111
|
The role of fetuin-A in mineral trafficking and deposition. BONEKEY REPORTS 2015; 4:672. [PMID: 25987986 DOI: 10.1038/bonekey.2015.39] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/13/2015] [Indexed: 12/18/2022]
Abstract
Calcium and phosphate are the principle ions involved in the deposition of mineral in the human body. Inhibitors of mineralisation are essential for the prevention of ectopic mineral precipitation and deposition. In the past decade, through in vitro, in vivo and clinical observation studies, we have come to appreciate the importance of fetuin-A (Fet-A), a circulating glycoprotein, in preventing ectopic calcium phosphate mineralisation. Moreover, the detection of Fet-A-containing mineral complex, termed calciprotein particles (CPPs), has provided new ways to assess an individual's calcific risk. The pathophysiological significance of CPPs in disease states is yet to be defined, but it provides an exciting avenue to further our understanding of the development of ectopic mineralisation.
Collapse
|
112
|
Sheen CR, Kuss P, Narisawa S, Yadav MC, Nigro J, Wang W, Chhea TN, Sergienko EA, Kapoor K, Jackson MR, Hoylaerts MF, Pinkerton AB, O'Neill WC, Millán JL. Pathophysiological role of vascular smooth muscle alkaline phosphatase in medial artery calcification. J Bone Miner Res 2015; 30:824-36. [PMID: 25428889 PMCID: PMC4406354 DOI: 10.1002/jbmr.2420] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/14/2014] [Accepted: 11/27/2014] [Indexed: 01/03/2023]
Abstract
Medial vascular calcification (MVC) is a pathological phenomenon that causes vascular stiffening and can lead to heart failure; it is common to a variety of conditions, including aging, chronic kidney disease, diabetes, obesity, and a variety of rare genetic diseases. These conditions share the common feature of tissue-nonspecific alkaline phosphatase (TNAP) upregulation in the vasculature. To evaluate the role of TNAP in MVC, we developed a mouse model that overexpresses human TNAP in vascular smooth muscle cells in an X-linked manner. Hemizygous overexpressor male mice (Tagln-Cre(+/-) ; Hprt(ALPL) (/Y) or TNAP-OE) show extensive vascular calcification, high blood pressure, and cardiac hypertrophy, and have a median age of death of 44 days, whereas the cardiovascular phenotype is much less pronounced and life expectancy is longer in heterozygous (Tagln-Cre(+/-) ; Hprt(ALPL) (/-) ) female TNAP-OE mice. Gene expression analysis showed upregulation of osteoblast and chondrocyte markers and decreased expression of vascular smooth muscle markers in the aortas of TNAP-OE mice. Through medicinal chemistry efforts, we developed inhibitors of TNAP with drug-like pharmacokinetic characteristics. TNAP-OE mice were treated with the prototypical TNAP inhibitor SBI-425 or vehicle to evaluate the feasibility of TNAP inhibition in vivo. Treatment with this inhibitor significantly reduced aortic calcification and cardiac hypertrophy, and extended lifespan over vehicle-treated controls, in the absence of secondary effects on the skeleton. This study shows that TNAP in the vasculature contributes to the pathology of MVC and that it is a druggable target.
Collapse
MESH Headings
- Alkaline Phosphatase/antagonists & inhibitors
- Alkaline Phosphatase/metabolism
- Animals
- Animals, Newborn
- Aorta/enzymology
- Aorta/pathology
- Enzyme Inhibitors/chemistry
- Enzyme Inhibitors/pharmacokinetics
- Enzyme Inhibitors/pharmacology
- Male
- Mice, Transgenic
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/physiopathology
- Phenotype
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Treatment Outcome
- Ultrasonography
- Vascular Calcification/blood
- Vascular Calcification/diagnostic imaging
- Vascular Calcification/enzymology
- Vascular Calcification/physiopathology
Collapse
Affiliation(s)
- Campbell R Sheen
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
de Cavanagh EMV, Inserra F, Ferder L. Angiotensin II blockade: how its molecular targets may signal to mitochondria and slow aging. Coincidences with calorie restriction and mTOR inhibition. Am J Physiol Heart Circ Physiol 2015; 309:H15-44. [PMID: 25934099 DOI: 10.1152/ajpheart.00459.2014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 04/30/2015] [Indexed: 02/07/2023]
Abstract
Caloric restriction (CR), renin angiotensin system blockade (RAS-bl), and rapamycin-mediated mechanistic target of rapamycin (mTOR) inhibition increase survival and retard aging across species. Previously, we have summarized CR and RAS-bl's converging effects, and the mitochondrial function changes associated with their physiological benefits. mTOR inhibition and enhanced sirtuin and KLOTHO signaling contribute to the benefits of CR in aging. mTORC1/mTORC2 complexes contribute to cell growth and metabolic regulation. Prolonged mTORC1 activation may lead to age-related disease progression; thus, rapamycin-mediated mTOR inhibition and CR may extend lifespan and retard aging through mTORC1 interference. Sirtuins by deacetylating histone and transcription-related proteins modulate signaling and survival pathways and mitochondrial functioning. CR regulates several mammalian sirtuins favoring their role in aging regulation. KLOTHO/fibroblast growth factor 23 (FGF23) contribute to control Ca(2+), phosphate, and vitamin D metabolism, and their dysregulation may participate in age-related disease. Here we review how mTOR inhibition extends lifespan, how KLOTHO functions as an aging suppressor, how sirtuins mediate longevity, how vitamin D loss may contribute to age-related disease, and how they relate to mitochondrial function. Also, we discuss how RAS-bl downregulates mTOR and upregulates KLOTHO, sirtuin, and vitamin D receptor expression, suggesting that at least some of RAS-bl benefits in aging are mediated through the modulation of mTOR, KLOTHO, and sirtuin expression and vitamin D signaling, paralleling CR actions in age retardation. Concluding, the available evidence endorses the idea that RAS-bl is among the interventions that may turn out to provide relief to the spreading issue of age-associated chronic disease.
Collapse
Affiliation(s)
- Elena M V de Cavanagh
- Center of Hypertension, Cardiology Department, Austral University Hospital, Derqui, Argentina; School of Biomedical Sciences, Austral University, Buenos Aires, Argentina; and
| | - Felipe Inserra
- Center of Hypertension, Cardiology Department, Austral University Hospital, Derqui, Argentina; School of Biomedical Sciences, Austral University, Buenos Aires, Argentina; and
| | - León Ferder
- Department of Physiology and Pharmacology, Ponce School of Medicine, Ponce, Puerto Rico
| |
Collapse
|
114
|
Abstract
Calciphylaxis, or calcific uremic arteriolopathy, is a vascular ossification-calcification disease involving cutaneous or visceral arterioles, with ischemic damage of the surrounding tissues, usually in the setting of chronic kidney disease. Pathogenesis is still unclear and probably comprises the participation of vascular smooth muscle cells, endothelial cells and macrophages surrounded by a uremic and/or pro-calcifying environment. According to the original concept of calcific uremic arteriolopathy coined by Hans Selye, risk factors may be divided into sensitizers and challengers and their knowledge is useful in clinical practice to pre-emptively identify both uremic and non-uremic 'at risk' patients and guide treatment. Systemic calcific uremic arteriolopathy is a rarity. Cutaneous calcific uremic arteriolopathy is more frequent and clinically presents as a first phase of cutaneous hardening and erythema, followed by a second phase of ulcerations and scars; these two phases are probably associated with the initial development of arteriolar lesion and tissue ischemic damage, respectively. Clinical history, physical examination, laboratory analysis, histology and imaging are the main tools to exclude important differential diagnoses and obtain a definitive diagnosis. Treatment is generally unrewarding and consists of rigorous control of comorbid conditions, anti-oxidant, anti-inflammatory and antithrombotic strategies, avoidance of iatrogeny and wound and pain management. Prognosis remains poor in terms of morbidity and mortality. Efforts should be made towards a greater awareness of calcific uremic arteriolopathy, development of better therapies and improvement of clinical outcomes.
Collapse
|
115
|
Abbasian N, Burton JO, Herbert KE, Tregunna BE, Brown JR, Ghaderi-Najafabadi M, Brunskill NJ, Goodall AH, Bevington A. Hyperphosphatemia, Phosphoprotein Phosphatases, and Microparticle Release in Vascular Endothelial Cells. J Am Soc Nephrol 2015; 26:2152-62. [PMID: 25745026 DOI: 10.1681/asn.2014070642] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/31/2014] [Indexed: 01/27/2023] Open
Abstract
Hyperphosphatemia in patients with advanced CKD is thought to be an important contributor to cardiovascular risk, in part because of endothelial cell (EC) dysfunction induced by inorganic phosphate (Pi). Such patients also have an elevated circulating concentration of procoagulant endothelial microparticles (MPs), leading to a prothrombotic state, which may contribute to acute occlusive events. We hypothesized that hyperphosphatemia leads to MP formation from ECs through an elevation of intracellular Pi concentration, which directly inhibits phosphoprotein phosphatases, triggering a global increase in phosphorylation and cytoskeletal changes. In cultured human ECs (EAhy926), incubation with elevated extracellular Pi (2.5 mM) led to a rise in intracellular Pi concentration within 90 minutes. This was mediated by PiT1/slc20a1 Pi transporters and led to global accumulation of tyrosine- and serine/threonine-phosphorylated proteins, a marked increase in cellular Tropomyosin-3, plasma membrane blebbing, and release of 0.1- to 1-μm-diameter MPs. The effect of Pi was independent of oxidative stress or apoptosis. Similarly, global inhibition of phosphoprotein phosphatases with orthovanadate or fluoride yielded a global protein phosphorylation response and rapid release of MPs. The Pi-induced MPs expressed VE-cadherin and superficial phosphatidylserine, and in a thrombin generation assay, they displayed significantly more procoagulant activity than particles derived from cells incubated in medium with a physiologic level of Pi (1 mM). These data show a mechanism of Pi-induced cellular stress and signaling, which may be widely applicable in mammalian cells, and in ECs, it provides a novel pathologic link between hyperphosphatemia, generation of MPs, and thrombotic risk.
Collapse
Affiliation(s)
- Nima Abbasian
- Departments of Infection, Immunity and Inflammation and
| | - James O Burton
- Departments of Infection, Immunity and Inflammation and John Walls Renal Unit, University Hospitals of Leicester, Leicester, United Kingdom; and
| | - Karl E Herbert
- Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom; Leicester National Institute for Health Research Cardiovascular Biomedical Research Unit Cardiovascular Sciences, University of Leicester, United Kingdom
| | | | - Jeremy R Brown
- Departments of Infection, Immunity and Inflammation and John Walls Renal Unit, University Hospitals of Leicester, Leicester, United Kingdom; and
| | - Maryam Ghaderi-Najafabadi
- Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom; Leicester National Institute for Health Research Cardiovascular Biomedical Research Unit Cardiovascular Sciences, University of Leicester, United Kingdom
| | - Nigel J Brunskill
- Departments of Infection, Immunity and Inflammation and John Walls Renal Unit, University Hospitals of Leicester, Leicester, United Kingdom; and
| | - Alison H Goodall
- Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom; Leicester National Institute for Health Research Cardiovascular Biomedical Research Unit Cardiovascular Sciences, University of Leicester, United Kingdom
| | | |
Collapse
|
116
|
Moon JY, Lee HM, Lee SH, Lee TW, Ihm CG, Jo YI, Han SW, Shin SG. Hyperphosphatemia is associated with patency loss of arteriovenous fistula after 1 year of hemodialysis. Kidney Res Clin Pract 2015; 34:41-6. [PMID: 26484018 PMCID: PMC4570653 DOI: 10.1016/j.krcp.2015.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The patency of arteriovenous access is important for stable and effective hemodialysis, and long-term technical survival is best achieved with a native arteriovenous fistula (AVF). However, maintaining AVF patency remains a challenge. This study was designed to determine the independent prognostic factors for AVF patency according to hemodialysis duration. METHODS The primary study end point was unassisted patency of the AVF, which was defined as the time from the first fistula surgery to the first AVF failure. AVF failure was defined as an event that required percutaneous intervention or surgery to revise or replace the fistula, which occurred at least 2 months after fistula formation. RESULTS We enrolled 478 patients with a mean age of 55.5±14.0 years, and mean duration of dialysis was 2.5±2.1 years. There were 109 cases (22.8%) of AVF failure. The factors related to AVF patency differed according to hemodialysis duration. Using a Cox-adjusted model, we observed a significant correlation between the incidence of AVF failure and diabetes within the initial 12 months of hemodialysis. Uncontrolled hyperphosphatemia (mean serum phosphorus>5.5 mg/dL during hemodialysis) was associated with patency loss of AVF after 1 year of hemodialysis. CONCLUSION Various factors were associated with the development of patency loss of AVF as hemodialysis duration differed, and a preventive role of hyperphosphatemia control in AVF survival needs further clinical study.
Collapse
Affiliation(s)
- Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Hyae Min Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Sang-Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Tae-Won Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea
| | - Chun-Gyoo Ihm
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea
| | - Young-Il Jo
- Division of Nephrology, Department of Internal Medicine, Konkuk University, Seoul, Korea
| | - Sang-Woong Han
- Division of Nephrology, Department of Internal Medicine, Hanyang University Guri Hospital, Guri, Korea
| | - Sug-Gyun Shin
- Division of Nephrology, Department of Internal Medicine, NHIC Ilsan Hospital, Goyang, Korea
| |
Collapse
|
117
|
Louvet L, Bazin D, Büchel J, Steppan S, Passlick-Deetjen J, Massy ZA. Characterisation of calcium phosphate crystals on calcified human aortic vascular smooth muscle cells and potential role of magnesium. PLoS One 2015; 10:e0115342. [PMID: 25607936 PMCID: PMC4301909 DOI: 10.1371/journal.pone.0115342] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/22/2014] [Indexed: 02/02/2023] Open
Abstract
Background Cardiovascular disease including vascular calcification (VC) remains the leading cause of death in patients suffering from chronic kidney disease (CKD). The process of VC seems likely to be a tightly regulated process where vascular smooth muscle cells are playing a key role rather than just a mere passive precipitation of calcium phosphate. Characterisation of the chemical and crystalline structure of VC was mainly led in patients or animal models with CKD. Likewise, Mg2+ was found to be protective in living cells although a potential role for Mg2+ could not be excluded on crystal formation and precipitation. In this study, the crystal formation and the role of Mg2+ were investigated in an in vitro model of primary human aortic vascular smooth muscle cells (HAVSMC) with physical techniques. Methodology/Principal Findings In HAVSMC incubated with increased Ca x Pi medium, only calcium phosphate apatite crystals (CPA) were detected by Micro-Fourier Transform InfraRed spectroscopy (µFTIR) and Field Effect Scanning Electron Microscope (FE — SEM) and Energy Dispersive X-ray spectrometry (EDX) at the cell layer level. Supplementation with Mg2+ did not alter the crystal composition or structure. The crystal deposition was preferentially positioned near or directly on cells as pictured by FE — SEM observations and EDX measurements. Large µFTIR maps revealed spots of CPA crystals that were associated to the cellular layout. This qualitative analysis suggests a potential beneficial effect of Mg2+ at 5 mM in noticeably reducing the number and intensities of CPA µFTIR spots. Conclusions/Significance For the first time in a model of HAVSMC, induced calcification led to the formation of the sole CPA crystals. Our data seems to exclude a physicochemical role of Mg2+ in altering the CPA crystal growth, composition or structure. Furthermore, Mg2+ beneficial role in attenuating VC should be linked to an active cellular role.
Collapse
Affiliation(s)
- Loïc Louvet
- INSERM U-1088, Amiens, France
- University of Picardie Jules Verne, Amiens, France
| | - Dominique Bazin
- Université Pierre et Marie Curie, Collège de France, Paris, France
| | - Janine Büchel
- Fresenius Medical Care Deutschland GmbH, Bad Homburg, Germany
| | - Sonja Steppan
- Fresenius Medical Care Deutschland GmbH, Bad Homburg, Germany
| | - Jutta Passlick-Deetjen
- Fresenius Medical Care Deutschland GmbH, Bad Homburg, Germany
- Department of Nephrology, University of Dusseldorf, Dusseldorf, Germany
| | - Ziad A. Massy
- INSERM U-1088, Amiens, France
- University of Picardie Jules Verne, Amiens, France
- Paris Ile de France Ouest (UVSQ) University, Paris, France
- * E-mail:
| |
Collapse
|
118
|
Rees L, Shroff R. The demise of calcium-based phosphate binders-is this appropriate for children? Pediatr Nephrol 2015; 30:2061-71. [PMID: 25543193 PMCID: PMC4623082 DOI: 10.1007/s00467-014-3017-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/06/2014] [Accepted: 11/12/2014] [Indexed: 01/16/2023]
Abstract
In children with chronic kidney disease (CKD) optimal control of mineral and bone disorder (MBD) is essential not only for the prevention of debilitating skeletal complications and for achieving adequate growth, but also for preserving long-term cardiovascular health. The growing skeleton is particularly vulnerable to the effects of CKD, and bone pain, fractures and deformities are common in children on dialysis. Defective bone mineralisation has been linked with ectopic calcification, which in turn leads to significant morbidity and mortality. Despite national and international guidelines for the management of CKD-MBD, the management of mineral dysregulation in CKD can be extremely challenging, and a significant proportion of patients have calcium, phosphate or parathyroid hormone levels outside the normal ranges. Clinical and experimental studies have shown that, in the setting of CKD, low serum calcium levels are associated with poor bone mineralisation, whereas high serum calcium levels can lead to arterial calcification, even in children. The role of calcium in CKD-MBD is the focus of this review.
Collapse
Affiliation(s)
- Lesley Rees
- Paediatric Nephrology, Great Ormond Street Hospital for Children, Great Ormond St, London, WC1N 3JH, UK.
| | - Rukshana Shroff
- Paediatric Nephrology, Great Ormond Street Hospital for Children, Great Ormond St, London, WC1N 3JH, UK
| |
Collapse
|
119
|
Arcidiacono T, Mingione A, Macrina L, Pivari F, Soldati L, Vezzoli G. Idiopathic calcium nephrolithiasis: a review of pathogenic mechanisms in the light of genetic studies. Am J Nephrol 2014; 40:499-506. [PMID: 25504362 DOI: 10.1159/000369833] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Calcium nephrolithiasis is a multifactorial disease with a polygenic milieu. Association studies identified genetic polymorphisms potentially implicated in the pathogenesis of calcium nephrolithiasis. The present article reviews the mechanisms of calcium stone formation and the potential contribution of gene polymorphisms to lithogenic mechanisms. SUMMARY Endoscopy observations suggested that precipitation of calcium-oxalate on the Randall's plaque at the papilla surface may cause idiopathic calcium-oxalate stones. The Randall's plaque is a hydroxyapatite deposit in the interstitium of the kidney medulla, which resembles a soft tissue calcification. Conversely, calcium-phosphate stones may develop from crystalline deposits located at the tip of the Bellini duct. Polymorphisms of eleven genes have been associated with stones in genome-wide association studies and replicated candidate-gene association studies: VDR, SLC34A1, SLC34A4, CLDN14, and CaSR genes coding for proteins regulating tubular phosphate and calcium reabsorption; CaSR, MGP, OPN, PLAU, and UMOD genes coding for proteins preventing calcium salt precipitation; AQP1 gene coding for a water channel in the proximal tubule. The renal activity of the last gene, DGKH, is unknown. Polymorphisms in these genes may predispose to calcium-oxalate and -phosphate stones by increasing the risk of calcium-phosphate precipitation in the tubular fluid. Key Messages: Genetic findings suggest that tubular fluid supersaturation with respect to calcium and phosphate predisposes to calcium-oxalate stones by triggering cellular mechanisms that lead to the Randall's plaque formation.
Collapse
Affiliation(s)
- Teresa Arcidiacono
- Nephrology and Dialysis Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | |
Collapse
|
120
|
Demer LL, Tintut Y. The leading edge of vascular calcification. Trends Cardiovasc Med 2014; 25:275-7. [PMID: 25572012 DOI: 10.1016/j.tcm.2014.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 11/23/2014] [Indexed: 11/16/2022]
Affiliation(s)
- Linda L Demer
- Department of Medicine, UCLA, Los Angeles, CA; Department of Physiology, UCLA, Los Angeles, CA; Department of Bioengineering, UCLA, Los Angeles, CA
| | - Yin Tintut
- Department of Medicine, UCLA, Los Angeles, CA.
| |
Collapse
|
121
|
Roberts JK, McCullough PA. The management of acute coronary syndromes in patients with chronic kidney disease. Adv Chronic Kidney Dis 2014; 21:472-9. [PMID: 25443572 DOI: 10.1053/j.ackd.2014.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/13/2014] [Accepted: 08/25/2014] [Indexed: 11/11/2022]
Abstract
Coronary heart disease is highly prevalent in patients with CKD, and survival after acute coronary syndrome (ACS) is worse compared with the general population. Many trials that define guidelines for cardiovascular disease excluded patients with kidney disease, leaving a gap between the evidence base and clinical reality. The underlying pathophysiology of vascular disease appears to be different in the setting of CKD. Patients with CKD are more likely to present with myocardial infarction and less likely to be diagnosed with ACS on admission compared with the general population. Patients with CKD appear to benefit with angiography and revascularization compared with medical management alone. However, the increased risk of in-hospital bleeding and risk of contrast-induced acute kidney injury are 2 factors that can limit overall benefit for some. Thus, judicious application of available therapies for the management of ACS is warranted to extend survival and reduce hospitalizations in this high-risk population. In this review, we highlight the clinical challenges and potential solutions for managing ACS in patients with CKD.
Collapse
|
122
|
Sakai Y, Nemoto E, Kanaya S, Shimonishi M, Shimauchi H. Calcium Phosphate Particles Induce Interleukin-8 Expression in a Human Gingival Epithelial Cell Line via the Nuclear Factor-κB Signaling Pathway. J Periodontol 2014; 85:1464-73. [DOI: 10.1902/jop.2014.130709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
123
|
Microtubule stabilization attenuates vascular calcification through the inhibition of osteogenic signaling and matrix vesicle release. Biochem Biophys Res Commun 2014; 451:436-41. [PMID: 25111813 DOI: 10.1016/j.bbrc.2014.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 08/01/2014] [Indexed: 11/21/2022]
Abstract
Vascular calcification is a strong predictor of cardiovascular morbidity and mortality, especially in individuals with chronic kidney disease or diabetes. The mechanism of vascular calcification has remained unclear, however, and no effective therapy is currently available. Our study was aimed at identifying the role of dynamic remodeling of microtubule cytoskeletons in hyperphosphatemia-induced vascular calcification. Exposure of primary cultures of mouse vascular smooth muscle cells (VSMCs) to inorganic phosphate (Pi) elicited ectopic calcification that was associated with changes in tubulin dynamics, induction of osteogenic signaling, and increased release of matrix vesicles. A microtubule depolymerizing agent enhanced Pi-dependent calcification, whereas microtubule stabilization by paclitaxel suppressed calcification both in VSMC cultures and in an ex vivo culture system for the mouse aorta. The inhibition of Pi-stimulated calcification by paclitaxel was associated with down-regulation of osteogenic signal and attenuation of matrix vesicle release. Our results indicate that microtubule plays a central role in vascular calcification, and that microtubule stabilization represents a potential new approach to the treatment of this condition.
Collapse
|
124
|
Yamada S, Tokumoto M, Tatsumoto N, Taniguchi M, Noguchi H, Nakano T, Masutani K, Ooboshi H, Tsuruya K, Kitazono T. Phosphate overload directly induces systemic inflammation and malnutrition as well as vascular calcification in uremia. Am J Physiol Renal Physiol 2014; 306:F1418-28. [DOI: 10.1152/ajprenal.00633.2013] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperphosphatemia contributes to increased cardiovascular mortality through vascular calcification (VC) in patients with chronic kidney disease (CKD). Malnutrition and inflammation are also closely linked to an increased risk of cardiovascular death in CKD. However, the effects of Pi overload on inflammation and malnutrition remain to be elucidated. The aim of the present study was to investigate the effects of dietary Pi loading on the interactions among inflammation, malnutrition, and VC in CKD. We used control rats fed normal diets and adenine-induced CKD rats fed diets with different Pi concentrations ranging from 0.3% to 1.2% for 8 wk. CKD rats showed dietary Pi concentration-dependent increases in serum and tissue levels of TNF-α and urinary and tissue levels of oxidative stress markers and developed malnutrition (decrease in body weight, serum albumin, and urinary creatinine excretion), VC, and premature death without affecting kidney function. Treatment with 6% lanthanum carbonate blunted almost all changes induced by Pi overload. Regression analysis showed that serum Pi levels closely correlated with the extent of inflammation, malnutrition, and VC. Also, in cultured human vascular smooth muscle cells, high-Pi medium directly increased the expression of TNF-α in advance of the increase in osteochondrogenic markers. Our data suggest that dietary Pi overload induces systemic inflammation and malnutrition, accompanied by VC and premature death in CKD, and that inhibition of Pi loading through dietary or pharmacological interventions or anti-inflammatory therapy may be a promising treatment for the prevention of malnutrition-inflammation-atherosclerosis syndrome.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Internal Medicine, Fukuoka Dental College Medical and Dental Hospital, Fukuoka, Japan
| | - Masanori Tokumoto
- Department of Internal Medicine, Fukuoka Dental College Medical and Dental Hospital, Fukuoka, Japan
| | - Narihito Tatsumoto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatomo Taniguchi
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideko Noguchi
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Masutani
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroaki Ooboshi
- Department of Internal Medicine, Fukuoka Dental College Medical and Dental Hospital, Fukuoka, Japan
| | - Kazuhiko Tsuruya
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Integrated Therapy for Chronic Kidney Disease, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
125
|
Lanzer P, Boehm M, Sorribas V, Thiriet M, Janzen J, Zeller T, St Hilaire C, Shanahan C. Medial vascular calcification revisited: review and perspectives. Eur Heart J 2014; 35:1515-25. [PMID: 24740885 PMCID: PMC4072893 DOI: 10.1093/eurheartj/ehu163] [Citation(s) in RCA: 533] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 03/06/2014] [Accepted: 03/21/2014] [Indexed: 12/17/2022] Open
Abstract
Vascular calcifications (VCs) are actively regulated biological processes associated with crystallization of hydroxyapatite in the extracellular matrix and in cells of the media (VCm) or intima (VCi) of the arterial wall. Both patterns of VC often coincide and occur in patients with type II diabetes, chronic kidney disease, and other less frequent disorders; VCs are also typical in senile degeneration. In this article, we review the current state of knowledge about the pathology, molecular biology, and nosology of VCm, expand on potential mechanisms responsible for poor prognosis, and expose some of the directions for future research in this area.
Collapse
Affiliation(s)
- Peter Lanzer
- Division of Cardiovascular Disease, Department of Internal Medicine, Health Care Center Bitterfeld, Bitterfeld-Wolfen gGmbH, Friedrich-Ludwig-Jahn-Straße 2, D-06749 Bitterfeld-Wolfen, Germany
| | - Manfred Boehm
- Center for Molecular Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Victor Sorribas
- Laboratory of Molecular Toxicology, University of Zaragoza, Zaragoza, Spain
| | - Marc Thiriet
- National Institute for Research in Computer Science and Control, Paris, France
| | | | - Thomas Zeller
- University Heart Center Freiburg, Bad Krozingen, Germany
| | - Cynthia St Hilaire
- Center for Molecular Medicine, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
126
|
Hunter LW, Charlesworth JE, Yu S, Lieske JC, Miller VM. Calcifying nanoparticles promote mineralization in vascular smooth muscle cells: implications for atherosclerosis. Int J Nanomedicine 2014; 9:2689-98. [PMID: 24920905 PMCID: PMC4043721 DOI: 10.2147/ijn.s63189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Nano-sized complexes of calcium phosphate mineral and proteins (calcifying nanoparticles [CNPs]) serve as mineral chaperones. Thus, CNPs may be both a result and cause of soft tissue calcification processes. This study determined if CNPs could augment calcification of arterial vascular smooth muscle cells in vitro. Methods CNPs 210 nm in diameter were propagated in vitro from human serum. Porcine aortic smooth muscle cells were cultured for up to 28 days in medium in the absence (control) or presence of 2 mM phosphate ([P] positive calcification control) or after a single 3-day exposure to CNPs. Transmission electron-microscopy was used to characterize CNPs and to examine their cellular uptake. Calcium deposits were visualized by light microscopy and von Kossa staining and were quantified by colorimetry. Cell viability was quantified by confocal microscopy of live-/dead-stained cells and apoptosis was examined concurrently by fluorescent labeling of exposed phosphatidylserine. Results CNPs, as well as smaller calcium crystals, were observed by transmission electron-microscopy on day 3 in CNP-treated but not P-treated cells. By day 28, calcium deposits were visible in similar amounts within multicellular nodules of both CNP- and P-treated cells. Apoptosis increased with cell density under all treatments. CNP treatment augmented the density of apoptotic bodies and cellular debris in association with mineralized multicellular nodules. Conclusion Exogenous CNPs are taken up by aortic smooth muscle cells in vitro and potentiate accumulation of smooth-muscle-derived apoptotic bodies at sites of mineralization. Thus, CNPs may accelerate vascular calcification.
Collapse
Affiliation(s)
| | - Jon E Charlesworth
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Sam Yu
- Lincoln University, Christchurch, New Zealand ; Izon Science Ltd., Christchurch, New Zealand
| | - John C Lieske
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA ; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Virginia M Miller
- Department of Surgery, Mayo Clinic, Rochester, MN, USA ; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
127
|
Demer LL, Tintut Y. Inflammatory, metabolic, and genetic mechanisms of vascular calcification. Arterioscler Thromb Vasc Biol 2014; 34:715-23. [PMID: 24665125 PMCID: PMC3975044 DOI: 10.1161/atvbaha.113.302070] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/13/2014] [Indexed: 01/06/2023]
Abstract
This review centers on updating the active research area of vascular calcification. This pathology underlies substantial cardiovascular morbidity and mortality, through adverse mechanical effects on vascular compliance, vasomotion, and, most likely, plaque stability. Biomineralization is a complex, regulated process occurring widely throughout nature. Decades ago, its presence in the vasculature was considered a mere curiosity and an unregulated, dystrophic process that does not involve biological mechanisms. Although it remains controversial whether the process has any adaptive value or past evolutionary advantage, substantial advances have been made in understanding the biological mechanisms driving the process. Different types of calcific vasculopathy, such as inflammatory versus metabolic, have parallel mechanisms in skeletal bone calcification, such as intramembranous and endochondral ossification. Recent work has identified important regulatory roles for inflammation, oxidized lipids, elastin, alkaline phosphatase, osteoprogenitor cells, matrix γ-carboxyglutamic acid protein, transglutaminase, osteoclastic regulatory factors, phosphate regulatory hormones and receptors, apoptosis, prelamin A, autophagy, and microvesicles or microparticles similar to the matrix vesicles of skeletal bone. Recent work has uncovered fascinating interactions between matrix γ-carboxyglutamic acid protein, vitamin K, warfarin, and transport proteins. And, lastly, recent breakthroughs in inherited forms of calcific vasculopathy have identified the genes responsible as well as an unexpected overlap of phenotypes. Until recently, vascular calcification was considered a purely degenerative, unregulated process. Since then, investigative groups around the world have identified a wide range of causative mechanisms and regulatory pathways, and some of the recent developments are highlighted in this review.
Collapse
Affiliation(s)
- Linda L. Demer
- Department of Medicine (Cardiology), University of California, Los Angeles Los Angeles, CA 90095-1679
- Department of Physiology and Bioengineering, University of California, Los Angeles Los Angeles, CA 90095-1679
| | - Yin Tintut
- Department of Medicine (Cardiology), University of California, Los Angeles Los Angeles, CA 90095-1679
| |
Collapse
|
128
|
Martel J, Peng HH, Young D, Wu CY, Young JD. Of nanobacteria, nanoparticles, biofilms and their role in health and disease: facts, fancy and future. Nanomedicine (Lond) 2014; 9:483-99. [DOI: 10.2217/nnm.13.221] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nanobacteria have been at the center of a major scientific controversy in recent years owing to claims that they represent not only the smallest living microorganisms on earth but also new emerging pathogens associated with several human diseases. We and others have carefully examined these claims and concluded that nanobacteria are in fact nonliving mineralo-organic nanoparticles (NPs) that form spontaneously in body fluids. We have shown that these mineral particles possess intriguing biomimetic properties that include the formation of cell- and tissue-like morphologies and the possibility to grow, proliferate and propagate by subculture. Similar mineral NPs (bions) have now been found in both physiological and pathological calcification processes and they appear to represent precursors of physiological calcification cycles, which may at times go awry in disease conditions. Furthermore, by functioning at the nanoscale, these mineralo-organic NPs or bions may shed light on the fate of nanomaterials in the body, from both nanotoxicological and nanopathological perspectives.
Collapse
Affiliation(s)
- Jan Martel
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
- Center for Molecular & Clinical Immunology, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
| | - Hsin-Hsin Peng
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
- Center for Molecular & Clinical Immunology, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
| | - David Young
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Primordia Institute of New Sciences & Medicine, Florham Park, NJ 07932, USA
| | - Cheng-Yeu Wu
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
- Center for Molecular & Clinical Immunology, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
- Research Center of Bacterial Pathogenesis, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
| | - John D Young
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
- Center for Molecular & Clinical Immunology, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
- Laboratory of Cellular Physiology & Immunology, The Rockefeller University, New York, NY 10021, USA
- Biochemical Engineering Research Center, Ming Chi University of Technology, Taishan, Taipei 24301, Taiwan
| |
Collapse
|
129
|
Guerrero F, Herencia C, Almadén Y, Martínez-Moreno JM, Montes de Oca A, Rodriguez-Ortiz ME, Diaz-Tocados JM, Canalejo A, Florio M, López I, Richards WG, Rodriguez M, Aguilera-Tejero E, Muñoz-Castañeda JR. TGF-β prevents phosphate-induced osteogenesis through inhibition of BMP and Wnt/β-catenin pathways. PLoS One 2014; 9:e89179. [PMID: 24586576 PMCID: PMC3937350 DOI: 10.1371/journal.pone.0089179] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/16/2014] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Transforming growth factor-β (TGF-β) is a key cytokine during differentiation of mesenchymal stem cells (MSC) into vascular smooth muscle cells (VSMC). High phosphate induces a phenotypic transformation of vascular smooth muscle cells (VSMC) into osteogenic-like cells. This study was aimed to evaluate signaling pathways involved during VSMC differentiation of MSC in presence or not of high phosphate. RESULTS Our results showed that TGF-β induced nuclear translocation of Smad3 as well as the expression of vascular smooth muscle markers, such as smooth muscle alpha actin, SM22α, myocardin, and smooth muscle-myosin heavy chain. The addition of high phosphate to MSC promoted nuclear translocation of Smad1/5/8 and the activation of canonical Wnt/β-catenin in addition to an increase in BMP-2 expression, calcium deposition and alkaline phosphatase activity. The administration of TGF-β to MSC treated with high phosphate abolished all these effects by inhibiting canonical Wnt, BMP and TGF-β pathways. A similar outcome was observed in high phosphate-treated cells after the inhibition of canonical Wnt signaling with Dkk-1. Conversely, addition of both Wnt/β-catenin activators CHIR98014 and lithium chloride enhanced the effect of high phosphate on BMP-2, calcium deposition and alkaline phosphatase activity. CONCLUSIONS Full VSMC differentiation induced by TGF-β may not be achieved when extracellular phosphate levels are high. Moreover, TGF-β prevents high phosphate-induced osteogenesis by decreasing the nuclear translocation of Smad 1/5/8 and avoiding the activation of Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Fátima Guerrero
- Instituto Maimónides para la Investigación Biomédica (IMIBIC). Hospital Reina Sofía. Universidad de Córdoba, Córdoba, Spain
| | - Carmen Herencia
- Instituto Maimónides para la Investigación Biomédica (IMIBIC). Hospital Reina Sofía. Universidad de Córdoba, Córdoba, Spain
| | - Yolanda Almadén
- Lipid and Atherosclerosis Unit. IMIBIC/Reina Sofía University Hospital/University of Córdoba, and CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Julio M. Martínez-Moreno
- Instituto Maimónides para la Investigación Biomédica (IMIBIC). Hospital Reina Sofía. Universidad de Córdoba, Córdoba, Spain
| | - Addy Montes de Oca
- Instituto Maimónides para la Investigación Biomédica (IMIBIC). Hospital Reina Sofía. Universidad de Córdoba, Córdoba, Spain
| | | | - Juan M. Diaz-Tocados
- Instituto Maimónides para la Investigación Biomédica (IMIBIC). Hospital Reina Sofía. Universidad de Córdoba, Córdoba, Spain
| | - Antonio Canalejo
- Departamento de Biología Ambiental y Salud Pública, Universidad de Huelva, Huelva, Spain
| | - Mónica Florio
- Metabolic Disorders Department, Amgen, Inc. One Amgen Center Drive, Thousand Oaks, California, United States of America
| | - Ignacio López
- Department of Medicina y Cirugía Animal, Universidad de Cordoba, Cordoba, Spain
| | - William G. Richards
- Metabolic Disorders Department, Amgen, Inc. One Amgen Center Drive, Thousand Oaks, California, United States of America
| | - Mariano Rodriguez
- Instituto Maimónides para la Investigación Biomédica (IMIBIC). Hospital Reina Sofía. Universidad de Córdoba, Córdoba, Spain
| | | | - Juan R. Muñoz-Castañeda
- Instituto Maimónides para la Investigación Biomédica (IMIBIC). Hospital Reina Sofía. Universidad de Córdoba, Córdoba, Spain
- * E-mail:
| |
Collapse
|
130
|
Abstract
Chronic kidney disease-mineral and bone disorder (CKD-MBD) is characterized by bone abnormalities, vascular calcification, and an array of laboratory abnormalities. The latter classically include disturbances in the parathyroid hormone/vitamin D axis. More recently, fibroblast growth factor 23 (FGF23) and klotho also have been identified as important regulators of mineral metabolism. Klotho deficiency and high circulating FGF23 levels precede secondary hyperparathyroidism in CKD patients. Levels of FGF23 and parathyroid hormone increase along the progression of CKD to maintain mineral homeostasis and to overcome end-organ resistance. It is hard to define when the increase of both hormones becomes maladaptive. CKD-MBD is associated with adverse outcomes including cardiovascular disease and mortality. This review summarizes the complex pathophysiology of CKD-MBD and outlines which laboratory abnormalities represent biomarkers of disease severity, which laboratory abnormalities are predictors of cardiovascular disease, and which laboratory abnormalities should be considered (direct) uremic toxins exerting organ damage. This information may help to streamline current and future therapeutic efforts.
Collapse
|
131
|
Martín-Pardillos A, Sosa C, Millán Á, Sorribas V. Effect of water fluoridation on the development of medial vascular calcification in uremic rats. Toxicology 2014; 318:40-50. [PMID: 24561004 DOI: 10.1016/j.tox.2014.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/08/2014] [Accepted: 01/26/2014] [Indexed: 10/25/2022]
Abstract
Public water fluoridation is a common policy for improving dental health. Fluoride replaces the hydroxyls of hydroxyapatite, thereby improving the strength of tooth enamel, but this process can also occur in other active calcifications. This paper studies the effects of water fluoridation during the course of vascular calcification in renal disease. The effect of fluoride was studied in vitro and in vivo. Rat aortic smooth muscle cells were calcified with 2mM Pi for 5 days. Fluoride concentrations of 5-10 μM--similar to those found in people who drink fluoridated water--partially prevented calcification, death, and osteogene expression in vitro. The anticalcifying mechanism was independent of cell activity, matrix Gla protein, and fetuin A expressions, and it exhibited an IC50 of 8.7 μM fluoride. In vivo, however, fluoridation of drinking water at 1.5mg/L (concentration recommended by the WHO) and 15 mg/L dramatically increased the incipient aortic calcification observed in rats with experimental chronic kidney disease (CKD, 5/6-nephrectomy), fed a Pi-rich fodder (1.2% Pi). Fluoride further declined the remaining renal function of the CKD animals, an effect that most likely overwhelmed the positive effect of fluoride on calcification in vitro. Ultrastructural analysis revealed that fluoride did not modify the Ca/P atomic ratio, but it was incorporated into the lattice of in vivo deposits. Fluoride also converted the crystallization pattern from plate to rode-like structures. In conclusion, while fluoride prevents calcification in vitro, the WHO's recommended concentrations in drinking water become nephrotoxic to CKD rats, thereby aggravating renal disease and making media vascular calcification significant.
Collapse
Affiliation(s)
- Ana Martín-Pardillos
- Department of Toxicology, University of Zaragoza, Veterinary Faculty, Calle Miguel Servet 177, E50013 Zaragoza, Spain.
| | - Cecilia Sosa
- Department of Toxicology, University of Zaragoza, Veterinary Faculty, Calle Miguel Servet 177, E50013 Zaragoza, Spain.
| | - Ángel Millán
- Instituto de Ciencia de Materiales de Aragón, Consejo Superior de Investigaciones Científicas-University of Zaragoza, Calle Pedro Cerbuna, s/n. E50009 Zaragoza, Spain.
| | - Víctor Sorribas
- Department of Toxicology, University of Zaragoza, Veterinary Faculty, Calle Miguel Servet 177, E50013 Zaragoza, Spain.
| |
Collapse
|
132
|
Tintut Y, Demer LL. Effects of bioactive lipids and lipoproteins on bone. Trends Endocrinol Metab 2014; 25:53-9. [PMID: 24183940 PMCID: PMC3946677 DOI: 10.1016/j.tem.2013.10.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/30/2013] [Accepted: 10/02/2013] [Indexed: 12/11/2022]
Abstract
Although epidemiological studies from the past two decades show a link between atherosclerotic vascular disease and bone loss, that is independent of age, the mechanism is still unclear. This review focuses on evidence that suggests a role for atherogenic lipids and lipoproteins in the pathogenesis of bone loss, including direct effects of these bioactive lipids/lipoproteins on bone cells, inhibiting osteoblastic differentiation and promoting osteoclastic differentiation. It also addresses recent evidence that suggests that bioactive lipids blunt the effects of bone anabolic agents such as teriparatide and bone morphogenetic proteins. Systemic and intracellular oxidant stress and inflammation are implicated in mediating the effects of bioactive lipids/lipoproteins.
Collapse
Affiliation(s)
- Yin Tintut
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, CA 90095, USA.
| | - Linda L Demer
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Physiology, University of California, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
133
|
Abstract
Extracellular phosphate is toxic to the cell at high concentrations. When the phosphate level is increased in the blood by impaired urinary phosphate excretion, premature aging ensues. When the phosphate level is increased in the urine by dietary phosphate overload, this may lead to kidney damage (tubular injury and interstitial fibrosis). Extracellular phosphate exerts its cytotoxicity when it forms insoluble nanoparticles with calcium and fetuin-A, referred to as calciprotein particles (CPPs). CPPs are highly bioactive ligands that can induce various cellular responses, including osteogenic transformation of vascular smooth muscle cells and cell death in vascular endothelium and renal tubular epithelium. CPPs are detected in the blood of animal models and patients with chronic kidney disease (CKD) and associated with adaptation of the endocrine axes mediated by fibroblast growth factor-23 (FGF23) and Klotho that regulate mineral metabolism and aging. These observations have raised the possibility that CPPs may contribute to the pathophysiology of CKD. This notion, if validated, is expected to provide new diagnostic and therapeutic targets for CKD.
Collapse
|
134
|
Zhang D, Maalouf NM, Adams-Huet B, Moe OW, Sakhaee K. Effects of sex and postmenopausal estrogen use on serum phosphorus levels: a cross-sectional study of the National Health and Nutrition Examination Survey (NHANES) 2003-2006. Am J Kidney Dis 2013; 63:198-205. [PMID: 24051078 DOI: 10.1053/j.ajkd.2013.07.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 07/23/2013] [Indexed: 01/31/2023]
Abstract
BACKGROUND Elevation of serum phosphorus concentrations has been associated with cardiovascular events in older women and men. Whether age, sex, or estrogen therapy is associated with different phosphorus levels is unknown. STUDY DESIGN Cross-sectional study. SETTING & PARTICIPANTS 7,005 participants in the National Health and Nutrition Examination Survey (NHANES) 2003-2006. PREDICTORS Demographic data; body measurement indexes; dietary intake by 24-hour dietary recall and food-frequency questionnaire; data for reproductive health, prescription medication, cardiovascular disease, osteoporosis, and diabetes mellitus obtained by questionnaire; and blood chemistry indexes. OUTCOMES & MEASUREMENTS Serum phosphorus concentrations. RESULTS In both males and premenopausal females, serum phosphorus levels decline progressively with age. In males, the decline continues over the entire age range of 21-85 years. In contrast, in females, serum phosphorus levels increase between ages 46-60 years (sex×age interaction; P<0.001). The increase in serum phosphorus levels in older women is independent of changes in serum parathyroid hormone levels, daily dietary phosphorus intake, and estimated glomerular filtration rate. In analysis of covariance, we show that postmenopausal women receiving estrogen therapy have significantly lower serum phosphorus levels than non-estrogen users after adjusting for age, race, body mass index, daily dietary phosphorus intake, and serum albumin, serum parathyroid hormone, and 25-hydroxyvitamin D levels (3.83 vs 3.98mg/dL; P<0.001). LIMITATIONS The study was cross-sectional in design and estrogen therapy was not randomly assigned or concealed. Important phosphorus regulatory factors such as serum fibroblast growth factor 23 and klotho were not available in the study. CONCLUSIONS Estrogen status may account for the difference in serum phosphorus levels in postmenopausal women.
Collapse
Affiliation(s)
- Dihua Zhang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX; The Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX; Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Naim M Maalouf
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX; The Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX
| | - Beverley Adams-Huet
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX; The Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX; Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX
| | - Orson W Moe
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX; The Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX
| | - Khashayar Sakhaee
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX; The Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
135
|
Abstract
Ageing is a potent, independent risk factor for cardiovascular disease. Calcification of the vascular smooth muscle cell (VSMC) layer of the vessel media is a hallmark of vascular ageing. Young patients with chronic kidney disease (CKD) exhibit an extremely high cardiovascular mortality, equivalent to that seen in octogenarians in the general population. Even children on dialysis develop accelerated medial vascular calcification and arterial stiffening, leading to the suggestion that patients with CKD exhibit a 'premature ageing' phenotype. It is now well documented that uraemic toxins, particularly those associated with dysregulated mineral metabolism, can drive VSMC damage and phenotypic changes that promote vascular calcification; epidemiological data suggest that some of these same risk factors associate with cardiovascular mortality in the aged general population. Importantly, emerging evidence suggests that uraemic toxins may promote DNA damage, a key factor driving cellular ageing, and moreover, that these ageing mechanisms may reiterate some of those seen in patients with genetically induced progeric syndromes caused by nuclear lamina disruption. This new knowledge should pave the way for the development of novel therapies that target tissue-specific ageing mechanisms to treat vascular decline in CKD.
Collapse
|
136
|
Loss of function of Slc20a2 associated with familial idiopathic Basal Ganglia calcification in humans causes brain calcifications in mice. J Mol Neurosci 2013; 51:994-9. [PMID: 23934451 PMCID: PMC3824575 DOI: 10.1007/s12031-013-0085-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 07/25/2013] [Indexed: 01/30/2023]
Abstract
Familial idiopathic basal ganglia calcification (FIBGC) is a neurodegenerative disorder with neuropsychiatric and motor symptoms. Deleterious mutations in SLC20A2, encoding the type III sodium-dependent phosphate transporter 2 (PiT2), were recently linked to FIBGC in almost 50 % of the families reported worldwide. Here, we show that knockout of Slc20a2 in mice causes calcifications in the thalamus, basal ganglia, and cortex, demonstrating that reduced PiT2 expression alone can cause brain calcifications.
Collapse
|
137
|
Silver J, Naveh-Many T. FGF-23 and secondary hyperparathyroidism in chronic kidney disease. Nat Rev Nephrol 2013; 9:641-9. [PMID: 23877588 DOI: 10.1038/nrneph.2013.147] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The metabolic changes that occur in patients with chronic kidney disease (CKD) have a profound influence on mineral and bone metabolism. CKD results in altered levels of serum phosphate, vitamin D, calcium, parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF-23); the increased levels of serum phosphate, PTH and FGF-23 contribute to the increased cardiovascular mortality in affected patients. FGF-23 is produced by osteocytes and osteoblasts and acts physiologically in the kidney to induce phosphaturia and inhibit the synthesis of 1,25-dihydroxyvitamin D3. PTH acts directly on osteocytes to increase FGF-23 expression. In addition, the high levels of PTH associated with CKD contribute to changes in bone remodelling that result in decreased levels of dentin matrix protein 1 and the release of low-molecular-weight fibroblast growth factors from the bone matrix, which stimulate FGF-23 transcription. A prolonged oral phosphorus load increases FGF-23 expression by a mechanism that includes local changes in the ratio of inorganic phosphate to pyrophosphate in bone. Other factors such as dietary vitamin D compounds, calcium, and metabolic acidosis all increase FGF-23 levels. This Review discusses the mechanisms by which secondary hyperparathyroidism associated with CKD stimulates bone cells to overexpress FGF-23 levels.
Collapse
Affiliation(s)
- Justin Silver
- Hadassah Hebrew University Medical Center, Minerva Center for Calcium and Bone Metabolism, Nephrology, Ein Karem, Jerusalem 91120, Israel
| | | |
Collapse
|
138
|
Kuro-o M. Klotho, phosphate and FGF-23 in ageing and disturbed mineral metabolism. Nat Rev Nephrol 2013; 9:650-60. [DOI: 10.1038/nrneph.2013.111] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
139
|
Abstract
Vascular calcification is an actively regulated process driven by vascular smooth muscle cell (VSMC) adaptation and ultimately dysfunction, leading to the induction of active osteogenic processes within the vessel wall. Dai et al., for the first time, identify autophagy as a novel adaptive mechanism that protects against phosphate-induced VSMC calcification, by acting to regulate apoptosis and the release of mineralizing matrix vesicles from VSMCs.
Collapse
Affiliation(s)
- Catherine M Shanahan
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, James Black Centre, King's College London, London, UK.
| |
Collapse
|
140
|
|
141
|
Villa-Bellosta R, Rivera-Torres J, Osorio FG, Acín-Pérez R, Enriquez JA, López-Otín C, Andrés V. Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson-Gilford progeria syndrome that is ameliorated on pyrophosphate treatment. Circulation 2013; 127:2442-51. [PMID: 23690466 DOI: 10.1161/circulationaha.112.000571] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Progerin is a mutant form of lamin A responsible for Hutchinson-Gilford progeria syndrome (HGPS), a premature aging disorder characterized by excessive atherosclerosis and vascular calcification that leads to premature death, predominantly of myocardial infarction or stroke. The goal of this study was to investigate mechanisms that cause excessive vascular calcification in HGPS. METHODS AND RESULTS We performed expression and functional studies in wild-type mice and knock-in Lmna(G609G/+) mice expressing progerin, which mimic the main clinical manifestations of HGPS. Lmna(G609G/+) mice showed excessive aortic calcification, and primary aortic vascular smooth muscle cells from these progeroid animals had an impaired capacity to inhibit vascular calcification. This defect in progerin-expressing vascular smooth muscle cells is associated with increased expression and activity of tissue-nonspecific alkaline phosphatase and mitochondrial dysfunction, which leads to reduced ATP synthesis. Accordingly, Lmna(G609G/+) vascular smooth muscle cells are defective for the production and extracellular accumulation of pyrophosphate, a major inhibitor of vascular calcification. We also found increased alkaline phosphatase activity and reduced ATP and pyrophosphate levels in plasma of Lmna(G609G/+) mice without changes in phosphorus and calcium. Treatment with pyrophosphate inhibited vascular calcification in progeroid mice. CONCLUSIONS Excessive vascular calcification in Lmna(G609G) mice is caused by reduced extracellular accumulation of pyrophosphate that results from increased tissue-nonspecific alkaline phosphatase activity and diminished ATP availability caused by mitochondrial dysfunction in vascular smooth muscle cells. Excessive calcification is ameliorated on pyrophosphate treatment. These findings reveal a previously undefined pathogenic process in HGPS that may also contribute to vascular calcification in normal aging, because progerin progressively accumulates in the vascular tissue of individuals without HGPS.
Collapse
Affiliation(s)
- Ricardo Villa-Bellosta
- Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernández Almagro 3, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
142
|
Fetuin-A-containing calciprotein particles reduce mineral stress in the macrophage. PLoS One 2013; 8:e60904. [PMID: 23577176 PMCID: PMC3620111 DOI: 10.1371/journal.pone.0060904] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/05/2013] [Indexed: 12/14/2022] Open
Abstract
The formation of fetuin-A-containing calciprotein particles (CPP) may facilitate the clearance of calcium phosphate nanocrystals from the extracellular fluid. These crystals may otherwise seed extra-osseous mineralization. Fetuin-A is a partially phosphorylated glycoprotein that plays a critical role in stabilizing these particles, inhibiting crystal growth and aggregation. CPP removal is thought to be predominantly mediated by cells of the reticuloendothelial system via type I and type II class A scavenger receptor (SR-AI/II). Naked calcium phosphate crystals are known to stimulate macrophages and other cell types in vitro, but little is known of the effect of CPP on these cells. We report here, for the first time, that CPP induce expression and secretion of tumour necrosis factor (TNF)-α, interleukin (IL)-1β in murine RAW 264.7 macrophages. Importantly, however, CPP induced significantly lower cytokine secretion than hydroxyapatite (HAP) crystals of equivalent size and calcium content. Furthermore, CPP only had a modest effect on macrophage viability and apoptosis, even at very high levels, compared to HAP crystals, which were strongly pro-apoptotic at much lower levels. Fetuin-A phosphorylation was found to modulate the effect of CPP on cytokine secretion and apoptosis, but not uptake via SR-AI/II. Prolonged exposure of macrophages to CPP was found to result in up-regulated expression of SR-AI/II. CPP formation may help protect against some of the pro-inflammatory and harmful effects of calcium phosphate nanocrystals, perhaps representing a natural defense system for calcium mineral stress. However, in pathological states where production exceeds clearance capacity, these particles may still stimulate pro-inflammatory and pro-apoptotic cascades in macrophages, which may be important in the pathogenesis of vascular calcification.
Collapse
|
143
|
Shroff R. Phosphate is a vascular toxin. Pediatr Nephrol 2013; 28:583-93. [PMID: 23161206 DOI: 10.1007/s00467-012-2347-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/07/2012] [Accepted: 10/09/2012] [Indexed: 12/18/2022]
Abstract
Elevated phosphate (P) levels are seen in advanced renal failure and, together with dysregulated calcium, parathyroid hormone and vitamin D levels, contribute to the complex of chronic kidney disease-mineral and bone disease (CKD-MBD). Converging evidence from in vitro, clinical and epidemiological studies suggest that increased P is associated with vascular calcification and mortality. When vessels are exposed to high P conditions in vitro, they develop apoptosis, convert to bone-like cells and develop extensive calcification. Clinical studies in children on dialysis show that high P is associated with increased vessel wall thickness, arterial stiffness and coronary calcification. Epidemiological studies in adult dialysis patients demonstrate a significant and independent association between raised P and mortality. Importantly, raised P is associated with cardiovascular changes even in pre-dialysis CKD, and also in subjects with normal renal function but high P. All P binders can effectively reduce serum P, and this decrease is linked to improved survival. Raised serum P triggers the release of fibroblast growth factor 23 (FGF-23), which has the beneficial effect of increasing P excretion in early CKD, but is increased several 1,000-fold in dialysis, and may be an independent cardiovascular risk factor. Both FGF-23 and its co-receptor Klotho may have direct effects on the vasculature leading to calcification. Fascinatingly, disturbances in FGF-23-Klotho and raised P have also been associated with premature aging. These data suggest that high P levels have adverse vascular effects and that maintaining the serum P levels in the normal range reduces cardiovascular risk and mortality.
Collapse
Affiliation(s)
- Rukshana Shroff
- Renal Unit, Great Ormond Street Hospital for Children, Great Ormond Street, London, WC1N 3JH, UK.
| |
Collapse
|
144
|
Goettsch C, Hutcheson JD, Aikawa E. MicroRNA in cardiovascular calcification: focus on targets and extracellular vesicle delivery mechanisms. Circ Res 2013; 112:1073-84. [PMID: 23538277 PMCID: PMC3668680 DOI: 10.1161/circresaha.113.300937] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular calcification is a prominent feature of chronic inflammatory disorders-such as chronic kidney disease, type 2 diabetes mellitus, and atherosclerosis-that associate with significant morbidity and mortality. The concept that similar pathways control both bone remodeling and vascular calcification is widely accepted, but the precise mechanisms of calcification remain largely unknown. The central role of microRNAs (miRNA) as fine-tune regulators in the cardiovascular system and bone biology has gained acceptance and has raised the possibility for novel therapeutic targets. Additionally, circulating miRNAs have been proposed as biomarkers for a wide range of cardiovascular diseases, but knowledge of miRNA biology in cardiovascular calcification is very limited. This review focuses on the role of miRNAs in cardiovascular disease, with emphasis on osteogenic processes. Herein, we discuss the current understanding of miRNAs in cardiovascular calcification. Furthermore, we identify a set of miRNAs common to diseases associated with cardiovascular calcification (chronic kidney disease, type 2 diabetes mellitus, and atherosclerosis), and we hypothesize that these miRNAs may provide a molecular signature for calcification. Finally, we discuss this novel hypothesis with emphasis on known biological and pathological osteogenic processes (eg, osteogenic differentiation, release of calcifying matrix vesicles). The aim of this review is to provide an organized discussion of the known links between miRNA and calcification that provide emerging concepts for future studies on miRNA biology in cardiovascular calcification, which will be critical for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Claudia Goettsch
- Harvard Medical School, Cardiovascular Medicine, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB-741, Boston, MA 02115, USA.
| | | | | |
Collapse
|
145
|
Suto M, Nemoto E, Kanaya S, Suzuki R, Tsuchiya M, Shimauchi H. Nanohydroxyapatite increases BMP-2 expression via a p38 MAP kinase dependent pathway in periodontal ligament cells. Arch Oral Biol 2013; 58:1021-8. [PMID: 23518236 DOI: 10.1016/j.archoralbio.2013.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/18/2013] [Accepted: 02/28/2013] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Bone morphogenetic protein (BMP)-2 promotes the osteoblastic differentiation of human periodontal ligament (PDL) cells, which play a pivotal role in periodontal regeneration. Recently, nano-sized hydroxyapatite (nano-HA) has been highlighted due to its advantageous features over micro-sized materials. DESIGN AND RESULTS We investigated the effect of nano-HA on BMP-2 expression in human PDL cells. Real time PCR analysis revealed that the expression of BMP-2 increased upon stimulation with nano-HA in dose- and time-dependent manners. An immunofluorescence assay demonstrated the synthesis of BMP-2 proteins. Concentrations of Ca(2+) as well as phosphate (Pi) in culture supernatants were unchanged, suggesting that nano-HA functioned as a nanoparticle rather than as a possible source for releasing Ca(2+) and/or Pi extracellularly, which were shown to also enhance the expression of BMP-2. Nano-HA-induced BMP-2 expression was dependent on the p38 MAP kinase pathway because increases in BMP-2 expression were inhibited by treatment with SB203580, a p38 inhibitor, and phosphorylation of p38 was detected by Western blotting. CONCLUSIONS This novel mechanism of nano-HA will be important for the rational design of future periodontal regeneration.
Collapse
Affiliation(s)
- Mizuki Suto
- Division of Periodontology and Endodontology, Tohoku University, Graduate School of Dentistry, Sendai 980-8575, Japan
| | | | | | | | | | | |
Collapse
|
146
|
Smith ER, Cai MM, McMahon LP, Pedagogos E, Toussaint ND, Brumby C, Holt SG. Serum fetuin-A concentration and fetuin-A-containing calciprotein particles in patients with chronic inflammatory disease and renal failure. Nephrology (Carlton) 2013; 18:215-21. [DOI: 10.1111/nep.12021] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2012] [Indexed: 11/27/2022]
Affiliation(s)
- Edward R Smith
- Department of Renal Medicine; Eastern Health Clinical School; Faculty of Medicine; Nursing & Health Sciences Monash University
| | - Michael M Cai
- Department of Renal Medicine; Eastern Health Clinical School; Faculty of Medicine; Nursing & Health Sciences Monash University
| | - Lawrence P McMahon
- Department of Renal Medicine; Eastern Health Clinical School; Faculty of Medicine; Nursing & Health Sciences Monash University
| | - Eugenie Pedagogos
- Department of Nephrology; The Royal Melbourne Hospital; Melbourne; Victoria; Australia
| | - Nigel D Toussaint
- Department of Nephrology; The Royal Melbourne Hospital; Melbourne; Victoria; Australia
| | - Catherine Brumby
- Department of Renal Medicine; Eastern Health Clinical School; Faculty of Medicine; Nursing & Health Sciences Monash University
| | - Stephen G Holt
- Department of Renal Medicine; Eastern Health Clinical School; Faculty of Medicine; Nursing & Health Sciences Monash University
| |
Collapse
|
147
|
Haarhaus M, Arnqvist HJ, Magnusson P. Calcifying human aortic smooth muscle cells express different bone alkaline phosphatase isoforms, including the novel B1x isoform. J Vasc Res 2013; 50:167-74. [PMID: 23328739 DOI: 10.1159/000346161] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 11/25/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Vascular calcification, causing cardiovascular morbidity and mortality, is associated with hyperphosphatemia in chronic kidney disease (CKD). In vitro, phosphate induces transdifferentiation of vascular smooth muscle cells to osteoblast-like cells that express alkaline phosphatase (ALP). In vivo, raised serum ALP activities are associated with increased mortality. A new bone ALP isoform (B1x) has been identified in serum from CKD patients. The present study investigated the different ALP isoforms in calcifying human aortic smooth muscle cells (HAoSMCs). METHODS HAoSMCs were cultured for 30 days in medium containing 5 or 10 mmol/l β-glycerophosphate in the presence or absence of the ALP-specific inhibitor tetramisole. RESULTS All known bone-specific ALP (BALP) isoforms (B/I, B1x, B1 and B2) were identified in HAoSMCs. β-Glycerophosphate stimulated calcification of HAoSMCs, which was associated with increased BALP isoforms B/I, B1x and B2. Tetramisole inhibited the β-glycerophosphate-induced HAoSMC calcification, which was paralleled by the inhibition of the B1x and B/I, but not the other isoforms. CONCLUSIONS HAoSMCs express the four known BALP isoforms. B/I, B1x and B2 could be essential for soft tissue calcification. B/I and B1x were more affected by tetramisole than the other isoforms, which suggests different biological functions during calcification of HAoSMCs.
Collapse
Affiliation(s)
- Mathias Haarhaus
- Bone and Mineral Metabolic Unit, Division of Clinical Chemistry, Linköping University, Linköping, Sweden. mathias.loberg-haarhaus @ karolinska.se
| | | | | |
Collapse
|
148
|
Hu MC, Shiizaki K, Kuro-o M, Moe OW. Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol 2013; 75:503-33. [PMID: 23398153 PMCID: PMC3770142 DOI: 10.1146/annurev-physiol-030212-183727] [Citation(s) in RCA: 424] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The metabolically active and perpetually remodeling calcium phosphate-based endoskeleton in terrestrial vertebrates sets the demands on whole-organism calcium and phosphate homeostasis that involves multiple organs in terms of mineral flux and endocrine cross talk. The fibroblast growth factor (FGF)-Klotho endocrine networks epitomize the complexity of systems biology, and specifically, the FGF23-αKlotho axis highlights the concept of the skeleton holding the master switch of homeostasis rather than a passive target organ as hitherto conceived. Other than serving as a coreceptor for FGF23, αKlotho circulates as an endocrine substance with a multitude of effects. This review covers recent data on the physiological regulation and function of the complex FGF23-αKlotho network. Chronic kidney disease is a common pathophysiological state in which FGF23-αKlotho, a multiorgan endocrine network, is deranged in a self-amplifying vortex resulting in organ dysfunction of the utmost severity that contributes to its morbidity and mortality.
Collapse
Affiliation(s)
- Ming Chang Hu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Department of Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| | - Kazuhiro Shiizaki
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Makoto Kuro-o
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Department of Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| | - Orson W. Moe
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Department of Physiology University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Department of Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| |
Collapse
|
149
|
Sallam T, Cheng H, Demer LL, Tintut Y. Regulatory circuits controlling vascular cell calcification. Cell Mol Life Sci 2012; 70:3187-97. [PMID: 23269436 DOI: 10.1007/s00018-012-1231-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/12/2012] [Accepted: 12/03/2012] [Indexed: 12/20/2022]
Abstract
Vascular calcification is a common feature of chronic kidney disease, cardiovascular disease, and aging. Such abnormal calcium deposition occurs in medial and/or intimal layers of blood vessels as well as in cardiac valves. Once considered a passive and inconsequential finding, the presence of calcium deposits in the vasculature is widely accepted as a predictor of increased morbidity and mortality. Recognition of the importance of vascular calcification in health is driving research into mechanisms that govern its development, progression, and regression. Diverse, but highly interconnected factors, have been implicated, including disturbances in lipid metabolism, oxidative stress, inflammatory cytokines, and mineral and hormonal balances, which can lead to formation of osteoblast-like cells in the artery wall. A tight balance of procalcific and anticalcific regulators dictates the extent of disease. In this review, we focus on the main regulatory circuits modulating vascular cell calcification.
Collapse
Affiliation(s)
- Tamer Sallam
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Center for the Health Sciences, A2-237, 10833 Le Conte Ave., Los Angeles, CA, 90095-1679, USA
| | | | | | | |
Collapse
|
150
|
Louvet L, Büchel J, Steppan S, Passlick-Deetjen J, Massy ZA. Magnesium prevents phosphate-induced calcification in human aortic vascular smooth muscle cells. Nephrol Dial Transplant 2012; 28:869-78. [PMID: 23229924 PMCID: PMC3611891 DOI: 10.1093/ndt/gfs520] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Vascular calcification (VC) is prevalent in patients suffering from chronic kidney disease. Factors promoting calcification include abnormalities in mineral metabolism, particularly high phosphate levels. Inorganic phosphate (Pi) is a classical inducer of in vitro VC. Recently, an inverse relationship between serum magnesium concentrations and VC has been reported. The present study aimed to investigate the effects of magnesium on Pi-induced VC at the cellular level using primary HAVSMC. Methods Alive and fixed HAVSMC were assessed during 14 days in the presence of Pi with increasing concentrations of magnesium (Mg2+) chloride. Mineralization was measured using quantification of calcium, von Kossa and alizarin red stainings. Cell viability and secretion of classical VC markers were also assessed using adequate tests. Involvement of transient receptor potential melastatin (TRPM) 7 was assessed using 2-aminoethoxy-diphenylborate (2-APB) inhibitor. Results Co-incubation with Mg2+ significantly decreased Pi-induced VC in live HAVSMC, no effect was found in fixed cells. At potent concentrations in Pi-induced HAVSMC, Mg2+ significantly improved cell viability and restored to basal level increased secretions of osteocalcin and matrix gla protein, whereas a decrease in osteopontin secretion was partially restored. The block of TRPM7 with 2-APB at 10−4 M led to the inefficiency of Mg2+ to prevent VC. Conclusions Increasing Mg2+ concentrations significantly reduced VC, improved cell viability and modulated secretion of VC markers during cell-mediated matrix mineralization clearly pointing to a cellular role for Mg2+ and 2-APB further involved TRPM7 and a potential Mg2+ entry to exert its effects. Further investigations are needed to shed light on additional cellular mechanism(s) by which Mg2+ is able to prevent VC.
Collapse
|