101
|
Woo HI, Lim SW, Myung W, Kim DK, Lee SY. Differentially expressed genes related to major depressive disorder and antidepressant response: genome-wide gene expression analysis. Exp Mol Med 2018; 50:1-11. [PMID: 30076325 PMCID: PMC6076250 DOI: 10.1038/s12276-018-0123-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/25/2018] [Accepted: 04/17/2018] [Indexed: 12/15/2022] Open
Abstract
Treatment response to antidepressants is limited and varies among patients with major depressive disorder (MDD). To discover genes and mechanisms related to the pathophysiology of MDD and antidepressant treatment response, we performed gene expression analyses using peripheral blood specimens from 38 MDD patients and 14 healthy individuals at baseline and at 6 weeks after the initiation of either selective serotonin reuptake inhibitor (SSRI) or mirtazapine treatment. The results were compared with results from public microarray data. Seven differentially expressed genes (DEGs) between MDD patients and controls were identified in our study and in the public microarray data: CD58, CXCL8, EGF, TARP, TNFSF4, ZNF583, and ZNF587. CXCL8 was among the top 10 downregulated genes in both studies. Eight genes related to SSRI responsiveness, including BTNL8, showed alterations in gene expression in MDD. The expression of the FCRL6 gene differed between SSRI responders and nonresponders and changed after SSRI treatment compared to baseline. In evaluating the response to mirtazapine, 21 DEGs were identified when comparing MDD patients and controls and responders and nonresponders. These findings suggest that the pathophysiology of MDD and treatment response to antidepressants are associated with a number of processes, including DNA damage and apoptosis, that can be induced by immune activation and inflammation.
Collapse
Affiliation(s)
- Hye In Woo
- Department of Laboratory Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Shinn-Won Lim
- SAIHST, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
| | - Woojae Myung
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Doh Kwan Kim
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Soo-Youn Lee
- Department of Clinical Pharmacology & Therapeutics, Samsung Medical Center, Seoul, Korea.
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
102
|
Li L, Mao B, Wu S, Lian Q, Ge RS, Silvestrini B, Cheng CY. Regulation of spermatid polarity by the actin- and microtubule (MT)-based cytoskeletons. Semin Cell Dev Biol 2018; 81:88-96. [PMID: 29410206 DOI: 10.1016/j.semcdb.2018.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 01/27/2023]
Abstract
It is conceivable that spermatid apico-basal polarity and spermatid planar cell polarity (PCP) are utmost important to support spermatogenesis. The orderly arrangement of developing germ cells in particular spermatids during spermiogenesis are essential to obtain structural and nutrient supports from the fixed number of Sertoli cells across the limited space of seminiferous epithelium in the tubules following Sertoli cell differentiation by ∼17 day postpartum (dpp) in rodents and ∼12 years of age at puberty in humans. Yet few studies are found in the literature to investigate the role of these proteins to support spermatogenesis. Herein, we briefly summarize recent findings in the field, in particular emerging evidence that supports the concept that apico-basal polarity and PCP are conferred by the corresponding polarity proteins through their effects on the actin- and microtubule (MT)-based cytoskeletons. While much research is needed to bridge our gaps of understanding cell polarity, cytoskeletal function, and signaling proteins, a critical evaluation of some latest findings as summarized herein provides some important and also thought-provoking concepts to design better functional experiments to address this important, yet largely expored, research topic.
Collapse
Affiliation(s)
- Linxi Li
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; The Mary M. Wohlford Laboarory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Baiping Mao
- The Mary M. Wohlford Laboarory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Siwen Wu
- The Mary M. Wohlford Laboarory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Qingquan Lian
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | - C Yan Cheng
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; The Mary M. Wohlford Laboarory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States.
| |
Collapse
|
103
|
Peripheral biomarkers of major depression and antidepressant treatment response: Current knowledge and future outlooks. J Affect Disord 2018; 233:3-14. [PMID: 28709695 PMCID: PMC5815949 DOI: 10.1016/j.jad.2017.07.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/19/2017] [Accepted: 07/03/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND In recent years, we have accomplished a deeper understanding about the pathophysiology of major depressive disorder (MDD). Nevertheless, this improved comprehension has not translated to improved treatment outcome, as identification of specific biologic markers of disease may still be crucial to facilitate a more rapid, successful treatment. Ongoing research explores the importance of screening biomarkers using neuroimaging, neurophysiology, genomics, proteomics, and metabolomics measures. RESULTS In the present review, we highlight the biomarkers that are differentially expressed in MDD and treatment response and place a particular emphasis on the most recent progress in advancing technology which will continue the search for blood-based biomarkers. LIMITATIONS Due to space constraints, we are unable to detail all biomarker platforms, such as neurophysiological and neuroimaging markers, although their contributions are certainly applicable to a biomarker review and valuable to the field. CONCLUSIONS Although the search for reliable biomarkers of depression and/or treatment outcome is ongoing, the rapidly-expanding field of research along with promising new technologies may provide the foundation for identifying key factors which will ultimately help direct patients toward a quicker and more effective treatment for MDD.
Collapse
|
104
|
Savitz J, Harrison NA. Interoception and Inflammation in Psychiatric Disorders. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:514-524. [PMID: 29884282 PMCID: PMC5995132 DOI: 10.1016/j.bpsc.2017.12.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/28/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
Abstract
Despite a historical focus on neurally mediated interoceptive signaling mechanisms, humoral (and even cellular) signals also play an important role in communicating bodily physiological state to the brain. These signaling pathways can perturb neuronal structure, chemistry, and function, leading to discrete changes in behavior. They are also increasingly implicated in the pathophysiology of psychiatric disorders. The importance of these humoral signaling pathways is perhaps most powerfully illustrated in the context of infection and inflammation. Here we provide an overview of how interaction of immune activation of neural and humoral interoceptive mechanisms mediates discrete changes in brain and behavior and highlight how activation of these pathways at specific points in neural development may predispose to psychiatric disorder. As our mechanistic understanding of these interoceptive pathways continues to emerge, it is revealing novel therapeutic targets, potentially heralding an exciting new era of immunotherapies in psychiatry.
Collapse
Affiliation(s)
- Jonathan Savitz
- Laureate Institute for Brain Research, the University of Tulsa, Tulsa, Oklahoma; Oxley College of Health Sciences, the University of Tulsa, Tulsa, Oklahoma
| | - Neil A Harrison
- Clinical Imaging Sciences Centre, Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom; Sackler Centre for Consciousness Science, University of Sussex, Brighton, United Kingdom; Sussex Partnership NHS Foundation Trust, Brighton, United Kingdom.
| |
Collapse
|
105
|
Lamers F, Milaneschi Y, de Jonge P, Giltay EJ, Penninx BWJH. Metabolic and inflammatory markers: associations with individual depressive symptoms. Psychol Med 2018; 48:1102-1110. [PMID: 28889804 DOI: 10.1017/s0033291717002483] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Literature has shown that obesity, metabolic syndrome and inflammation are associated with depression, however, evidence suggests that these associations are specific to atypical depression. Which of the atypical symptoms are driving associations with obesity-related outcomes and inflammation is unknown. We evaluated associations between individual symptoms of depression (both atypical and non-atypical) and body mass index (BMI), metabolic syndrome components and inflammatory markers. METHODS We included 808 persons with a current diagnosis of depression participating in the Netherlands Study of Depression and Anxiety (67% female, mean age 41.6 years). Depressive symptoms were derived from the Composite International Diagnostic Interview and the Inventory of Depressive Symptomatology. Univariable and multivariable regression analyses adjusting for sex, age, educational level, depression severity, current smoking, physical activity, anti-inflammatory medication use, and statin use were performed. RESULTS Increased appetite was positively associated with BMI, number of metabolic syndrome components, waist circumference, C-reactive protein and tumor necrosis factor-α. Decreased appetite was negatively associated with BMI and waist circumference. Psychomotor retardation was positively associated with BMI, high-density lipoprotein cholesterol and triglycerides, and insomnia with number of metabolic syndrome components. CONCLUSION Increased appetite - in the context of a depressive episode - was the only symptom that was associated with both metabolic as well as inflammatory markers, and could be a key feature of an immuno-metabolic form of depression. This immuno-metabolic depression should be considered in clinical trials evaluating effectiveness of compounds targeting metabolic and inflammatory pathways or lifestyle interventions.
Collapse
Affiliation(s)
- F Lamers
- Department of Psychiatry,Amsterdam Public Health Research Institute and Amsterdam Neuroscience research institute,VU University Medical Center/GGZ inGeest,Amsterdam,the Netherlands
| | - Y Milaneschi
- Department of Psychiatry,Amsterdam Public Health Research Institute and Amsterdam Neuroscience research institute,VU University Medical Center/GGZ inGeest,Amsterdam,the Netherlands
| | - P de Jonge
- Interdisciplinary Center Psychopathology and Emotion regulation (ICPE),University of Groningen, University Medical Center,Groningen,the Netherlands
| | - E J Giltay
- Department of Psychiatry,Leiden University Medical Center,Leiden,the Netherlands
| | - B W J H Penninx
- Department of Psychiatry,Amsterdam Public Health Research Institute and Amsterdam Neuroscience research institute,VU University Medical Center/GGZ inGeest,Amsterdam,the Netherlands
| |
Collapse
|
106
|
Rush AJ, Ibrahim HM. A Clinician's Perspective on Biomarkers. FOCUS: JOURNAL OF LIFE LONG LEARNING IN PSYCHIATRY 2018; 16:124-134. [PMID: 31975907 DOI: 10.1176/appi.focus.20170044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Psychiatrists and mental health professionals regularly perform various clinical tasks (e.g., detection, differential diagnosis, prognostication, treatment selection and implementation). How well they perform each of these tasks has a direct impact on patient outcomes. Measurement-based care has brought greater precision to these tasks and has improved outcomes. This article provides an overview of the types of biomeasures and biomarkers, the clinical uses of biomarkers, and the challenges in their development and clinical use. Although still in their infancy, biomarkers hold the promise of bringing even greater precision and even better outcomes in mental health. Biomeasures that could become biomarkers include genetic, proteomic, metabolomic, and immunologic measures, as well as physiological, functional, and brain structural measures. Mechanistic markers reflect and are based on the specific pathobiological processes that are involved in the development of a clinically defined condition. Some clinically relevant biomarkers may rely on this mechanistic understanding while others may not. Clinical biomarkers serve three broadly defined goals. Diagnostic markers define what is wrong. Prognostic markers define what will happen in the natural course of the condition, although they may also predict the course of illness during treatment. Theranostic markers address issues pertinent to treatment by defining whether, when, whom, and how to treat. Other biomarkers may be used to monitor the overall effect of treatment regardless of the therapeutic effects or to monitor the specific therapeutic effects of the intervention on the disorder itself. Biomarkers can also be used to estimate susceptibility/risk of developing the condition or the biological consequences of having had the disorder.
Collapse
Affiliation(s)
- A John Rush
- Dr. Rush is professor emeritus, Duke-National University of Singapore, Singapore; adjunct professor at the Department of Psychiatry, Duke University Medical School, Durham, North Carolina, and at the Department of Psychiatry, Texas Tech University Health Sciences Center, Permina Basin. Dr. Ibrahim is with the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas
| | - Hicham M Ibrahim
- Dr. Rush is professor emeritus, Duke-National University of Singapore, Singapore; adjunct professor at the Department of Psychiatry, Duke University Medical School, Durham, North Carolina, and at the Department of Psychiatry, Texas Tech University Health Sciences Center, Permina Basin. Dr. Ibrahim is with the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
107
|
Xiao X, Zheng F, Chang H, Ma Y, Yao YG, Luo XJ, Li M. The Gene Encoding Protocadherin 9 (PCDH9), a Novel Risk Factor for Major Depressive Disorder. Neuropsychopharmacology 2018; 43:1128-1137. [PMID: 28990594 PMCID: PMC5854803 DOI: 10.1038/npp.2017.241] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/13/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022]
Abstract
Genomic analyses have identified only a handful of robust risk loci for major depressive disorder (MDD). In addition to the published genome-wide significant genes, it is believed that there are undiscovered 'treasures' underlying the current MDD genome-wide association studies (GWASs) and gene expression data sets, and digging into these data will allow better understanding of the illness and development of new therapeutic approaches. For this purpose, we performed a meta-analytic study combining three MDD GWAS data sets (23andMe, CONVERGE, and PGC), and then conducted independent replications of significant loci in two additional samples. The genome-wide significant variants then underwent explorative analyses on MDD-related phenotypes, cognitive function alterations, and gene expression in brains. In the discovery meta-analysis, a previously unidentified single-nucleotide polymorphism (SNP) rs9540720 in the PCDH9 gene was genome-wide significantly associated with MDD (p=1.69 × 10-8 in a total of 89 610 cases and 246 603 controls), and the association was further strengthened when additional replication samples were included (p=1.20 × 10-8 in a total of 136 115 cases and 355 275 controls). The risk SNP was also associated with multiple MDD-related phenotypes and cognitive function impairment in diverse samples. Intriguingly, the risk allele of rs9540720 predicted lower PCDH9 expression, consistent with the diagnostic analysis results that PCDH9 mRNA expression levels in the brain and peripheral blood tissues were reduced in MDD patients compared with healthy controls. These convergent lines of evidence suggest that PCDH9 is likely a novel risk gene for MDD. Our study highlights the necessity and importance of excavating the public data sets to explore risk genes for MDD, and this approach is also applicable to other complex diseases.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Fanfan Zheng
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Hong Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China,Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiao-Chang Donglu, Kunming, Yunnan 650223, China, Tel: +86 871 65190162, Fax: +86 871 65190162, E-mail:
| |
Collapse
|
108
|
Patas K, Willing A, Demiralay C, Engler JB, Lupu A, Ramien C, Schäfer T, Gach C, Stumm L, Chan K, Vignali M, Arck PC, Friese MA, Pless O, Wiedemann K, Agorastos A, Gold SM. T Cell Phenotype and T Cell Receptor Repertoire in Patients with Major Depressive Disorder. Front Immunol 2018. [PMID: 29515587 PMCID: PMC5826233 DOI: 10.3389/fimmu.2018.00291] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
While a link between inflammation and the development of neuropsychiatric disorders, including major depressive disorder (MDD) is supported by a growing body of evidence, little is known about the contribution of aberrant adaptive immunity in this context. Here, we conducted in-depth characterization of T cell phenotype and T cell receptor (TCR) repertoire in MDD. For this cross-sectional case–control study, we recruited antidepressant-free patients with MDD without any somatic or psychiatric comorbidities (n = 20), who were individually matched for sex, age, body mass index, and smoking status to a non-depressed control subject (n = 20). T cell phenotype and repertoire were interrogated using a combination of flow cytometry, gene expression analysis, and next generation sequencing. T cells from MDD patients showed significantly lower surface expression of the chemokine receptors CXCR3 and CCR6, which are known to be central to T cell differentiation and trafficking. In addition, we observed a shift within the CD4+ T cell compartment characterized by a higher frequency of CD4+CD25highCD127low/− cells and higher FOXP3 mRNA expression in purified CD4+ T cells obtained from patients with MDD. Finally, flow cytometry-based TCR Vβ repertoire analysis indicated a less diverse CD4+ T cell repertoire in MDD, which was corroborated by next generation sequencing of the TCR β chain CDR3 region. Overall, these results suggest that T cell phenotype and TCR utilization are skewed on several levels in patients with MDD. Our study identifies putative cellular and molecular signatures of dysregulated adaptive immunity and reinforces the notion that T cells are a pathophysiologically relevant cell population in this disorder.
Collapse
Affiliation(s)
- Kostas Patas
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Willing
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Cüneyt Demiralay
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Andreea Lupu
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Immunomodulation Group, Cantacuzino National Research Institute, Bucharest, Romania
| | - Caren Ramien
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Laura Stumm
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Kenneth Chan
- Adaptive Biotechnologies, Seattle, WA, Unites States
| | | | - Petra C Arck
- Experimentelle Feto-Maternale Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ole Pless
- Fraunhofer IME ScreeningPort, Hamburg, Germany
| | - Klaus Wiedemann
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Agorastos Agorastos
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan M Gold
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Charité - Universitätsmedizin Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin (CBF), Berlin, Germany
| |
Collapse
|
109
|
Bhattacharya A. Recent Advances in CNS P2X7 Physiology and Pharmacology: Focus on Neuropsychiatric Disorders. Front Pharmacol 2018; 9:30. [PMID: 29449810 PMCID: PMC5799703 DOI: 10.3389/fphar.2018.00030] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/10/2018] [Indexed: 12/17/2022] Open
Abstract
The ATP-gated P2X7 ion channel is an abundant microglial protein in the CNS that plays an important pathological role in executing ATP-driven danger signal transduction. Emerging data has generated scientific interest and excitement around targeting the P2X7 ion channel as a potential drug target for CNS disorders. Over the past years, a wealth of data has been published on CNS P2X7 biology, in particular the role of P2X7 in microglial cells, and in vivo effects of brain-penetrant P2X7 antagonists. Likewise, significant progress has been made around the medicinal chemistry of CNS P2X7 ligands, as antagonists for in vivo target validation in models of CNS diseases, to identification of two clinical compounds (JNJ-54175446 and JNJ-55308942) and finally, discovery of P2X7 PET ligands. This review is an attempt to bring together the current understanding of P2X7 in the CNS with a focus on P2X7 as a drug target in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Anindya Bhattacharya
- Neuroscience Therapeutic Area, Janssen Research and Development, LLC, San Diego, CA, United States
| |
Collapse
|
110
|
Blood plasma/IgG N-glycome biosignatures associated with major depressive disorder symptom severity and the antidepressant response. Sci Rep 2018; 8:179. [PMID: 29317657 PMCID: PMC5760622 DOI: 10.1038/s41598-017-17500-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022] Open
Abstract
While N-linked glycosylation has been extensively studied in the context of inflammatory and metabolic disorders, its relationship with major depressive disorder (MDD) and antidepressant treatment response has not been investigated. In our exploratory study, we analysed N-glycan profiles in blood plasma samples collected from MDD patients (n = 18) and found gender-dependent correlations with severity of depressive symptoms prior to initiating antidepressant treatment. In addition, several N-glycosylation traits showed gender-dependent associations with clinical antidepressant response. Follow up proteomics analysis in peripheral blood mononuclear cells (PBMCs) collected from MDD patients (n = 20) identified baseline and post-antidepressant treatment pathway differences between responder and non-responder patients. Reactome data analysis further delineated potential biological reaction differences between responder and non-responder patients. Our preliminary results suggest that specific glycosylation traits are associated with depressive symptom severity and antidepressant response and may be of use as biomarkers.
Collapse
|
111
|
Hestad KA, Engedal K, Whist JE, Farup PG. The Relationships among Tryptophan, Kynurenine, Indoleamine 2,3-Dioxygenase, Depression, and Neuropsychological Performance. Front Psychol 2017; 8:1561. [PMID: 29046648 PMCID: PMC5632654 DOI: 10.3389/fpsyg.2017.01561] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/28/2017] [Indexed: 12/17/2022] Open
Abstract
It has been suggested that the metabolic enzyme indoleamine 2,3-dioxygenase (IDO) is a biological mediator of inflammation related to the psychopathology of depression, with a Kynurenine (KYN) increase in the Tryptophan (TRP) metabolic pathway, resulting in reduced Serotonin. In this study, we examined KYN, TRP, and the ratio of KYN to TRP concentrations × 103 (KT Ratio) in serum and cerebrospinal fluid (CSF) in (a) a group of depressed patients and (b) a control group of patients referred to a neurologic outpatient clinic for whom no specific diagnosis could be established. The KT Ratio is considered an index that represents IDO. The participants were examined with the Beck Depression Inventory II (BDI-II), the Montgomery Aasberg Depression Rating Scale (MADRS), and a neuropsychological test battery. We found no significant differences between the two study groups with respect to TRP, KYN, or KT Ratio in serum or CSF. Differences in neuropsychological performance between the two patient groups could be seen in the following tests: Animal Fluency, Digit Symbol, the DKEFS Color-Interference Test (Naming Part), Trail Making Test A and B, and the Grooved Pegboard Non-dominant Hand. KYN in serum correlated highly with KYN in CSF. KYN in serum correlated significantly with both age and gender. When analyzing males and females separately, we found that women had a lower level of TRP in both serum (Mann-Whitney U-test: TRP in Serum; p = 0.001) and CSF (Mann-Whitney U-test: TRP in CSF; p = 0.003). Women had a lower level of KYN in serum (p = 0.029) than men did. Age was positively associated with KYN. KYN in CSF correlated only with age, however; there were no gender differences. No significant relationship was seen between BDI-II and MADRS on the one hand, and KYN and TRP on the other. KYN in CSF as the KT Ratio in both serum and CSF was associated with neuropsychological performance. Thus, we suggest that KYN and KT Ratio are related more strongly to neuropsychological performance than to affective symptoms in depression.
Collapse
Affiliation(s)
- Knut A Hestad
- Department of Research, Innlandet Hospital Trust, Brumunddal, Norway.,Department of Psychology, Faculty of Social Sciences and Technology Management, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Public Health, Inland Norway University of Applied Sciences, Elverum, Norway
| | - Knut Engedal
- Norwegian Center for Aging and Health, Vestfold Health Trust, Tønsberg, Norway
| | - Jon E Whist
- Department of Medical Biochemistry, Innlandet Hospital Trust, Brumunddal, Norway
| | - Per G Farup
- Department of Research, Innlandet Hospital Trust, Brumunddal, Norway.,Unit for Applied Clinical Research, Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
112
|
Spindola LM, Pan PM, Moretti PN, Ota VK, Santoro ML, Cogo-Moreira H, Gadelha A, Salum G, Manfro GG, Mari JJ, Brentani H, Grassi-Oliveira R, Brietzke E, Miguel EC, Rohde LA, Sato JR, Bressan RA, Belangero SI. Gene expression in blood of children and adolescents: Mediation between childhood maltreatment and major depressive disorder. J Psychiatr Res 2017; 92:24-30. [PMID: 28384542 DOI: 10.1016/j.jpsychires.2017.03.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/27/2017] [Accepted: 03/20/2017] [Indexed: 12/14/2022]
Abstract
Investigating major depressive disorder (MDD) in childhood and adolescence can help reveal the relative contributions of genetic and environmental factors to MDD, since early stages of disease have less influence of illness exposure. Thus, we investigated the mRNA expression of 12 genes related to the hypothalamic-pituitary-adrenal (HPA) axis, inflammation, neurodevelopment and neurotransmission in the blood of children and adolescents with MDD and tested whether a history of childhood maltreatment (CM) affects MDD through gene expression. Whole-blood mRNA levels of 12 genes were compared among 20 children and adolescents with MDD diagnosis (MDD group), 49 participants without MDD diagnosis but with high levels of depressive symptoms (DS group), and 61 healthy controls (HC group). The differentially expressed genes were inserted in a mediation model in which CM, MDD, and gene expression were, respectively, the independent variable, outcome, and intermediary variable. NR3C1, TNF, TNFR1 and IL1B were expressed at significantly lower levels in the MDD group than in the other groups. CM history did not exert a significant direct effect on MDD. However, an indirect effect of the aggregate expression of the 4 genes mediated the relationship between CM and MDD. In the largest study investigating gene expression in children with MDD, we demonstrated that NR3C1, TNF, TNFR1 and IL1B expression levels are related to MDD and conjunctly mediate the effect of CM history on the risk of developing MDD. This supports a role of glucocorticoids and inflammation as potential effectors of environmental stress in MDD.
Collapse
MESH Headings
- Adolescent
- Child
- Child Abuse/psychology
- Cohort Studies
- Depressive Disorder, Major/blood
- Depressive Disorder, Major/physiopathology
- Female
- Gene Expression/physiology
- Genetic Testing
- Humans
- Hypothalamo-Hypophyseal System/metabolism
- Interleukin-1beta/genetics
- Interleukin-1beta/metabolism
- Male
- Models, Biological
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Pituitary-Adrenal System/metabolism
- RNA, Messenger/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Residence Characteristics
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Leticia Maria Spindola
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP, Brazil; National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil; Department of Psychiatry, UNIFESP, Brazil
| | - Pedro Mario Pan
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP, Brazil; National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil; Department of Psychiatry, UNIFESP, Brazil
| | - Patricia Natalia Moretti
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP, Brazil; National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil; Department of Psychiatry, UNIFESP, Brazil
| | - Vanessa Kiyomi Ota
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP, Brazil; National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil; Department of Psychiatry, UNIFESP, Brazil
| | - Marcos Leite Santoro
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP, Brazil; National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil
| | - Hugo Cogo-Moreira
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP, Brazil; National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil; Department of Psychiatry, UNIFESP, Brazil
| | - Ary Gadelha
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP, Brazil; National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil; Department of Psychiatry, UNIFESP, Brazil
| | - Giovanni Salum
- National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil; Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Brazil
| | - Gisele Gus Manfro
- National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil; Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Brazil
| | - Jair Jesus Mari
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP, Brazil; National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil; Department of Psychiatry, UNIFESP, Brazil
| | - Helena Brentani
- National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil; Department & Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, Brazil
| | - Rodrigo Grassi-Oliveira
- Post-Graduation Program in Psychology, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Brazil; Developmental Cognitive Neuroscience Lab, PUCRS, Brazil
| | | | - Euripedes Constantino Miguel
- National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil; Department & Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, Brazil
| | - Luis Augusto Rohde
- National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil; Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Brazil
| | - João Ricardo Sato
- National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil; Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, Brazil
| | - Rodrigo Affonseca Bressan
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP, Brazil; National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil; Department of Psychiatry, UNIFESP, Brazil
| | - Sintia Iole Belangero
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, UNIFESP, Brazil; National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Brazil; Department of Psychiatry, UNIFESP, Brazil.
| |
Collapse
|
113
|
Abstract
Human genetic studies have been the driving force in bringing to light the underlying biology of psychiatric conditions. As these studies fill in the gaps in our knowledge of the mechanisms at play, we will be better equipped to design therapies in rational and targeted ways, or repurpose existing therapies in previously unanticipated ways. This review is intended for those unfamiliar with psychiatric genetics as a field and provides a primer on different modes of genetic variation, the technologies currently used to probe them, and concepts that provide context for interpreting the gene-phenotype relationship. Like other subfields in human genetics, psychiatric genetics is moving from microarray technology to sequencing-based approaches as barriers of cost and expertise are removed, and the ramifications of this transition are discussed here. A summary is then given of recent genetic discoveries in a number of neuropsychiatric conditions, with particular emphasis on neurodevelopmental conditions. The general impact of genetics on drug development has been to underscore the extensive etiological heterogeneity in seemingly cohesive diagnostic categories. Consequently, the path forward is not in therapies hoping to reach large swaths of patients sharing a clinically defined diagnosis, but rather in targeting patients belonging to specific "biotypes" defined through a combination of objective, quantifiable data, including genotype.
Collapse
Affiliation(s)
- Jacob J Michaelson
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
- Department of Biomedical Engineering, University of Iowa College of Engineering, Iowa City, IA, USA.
- Department of Communication Sciences and Disorders, University of Iowa College of Liberal Arts and Sciences, Iowa City, IA, USA.
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA.
- Genetics Cluster Initiative, University of Iowa, Iowa City, IA, USA.
- The DeLTA Center, University of Iowa, Iowa City, IA, USA.
- University of Iowa Informatics Initiative, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
114
|
Wong ML, Arcos-Burgos M, Liu S, Vélez JI, Yu C, Baune BT, Jawahar MC, Arolt V, Dannlowski U, Chuah A, Huttley GA, Fogarty R, Lewis MD, Bornstein SR, Licinio J. The PHF21B gene is associated with major depression and modulates the stress response. Mol Psychiatry 2017; 22:1015-1025. [PMID: 27777418 PMCID: PMC5461220 DOI: 10.1038/mp.2016.174] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/14/2016] [Accepted: 08/16/2016] [Indexed: 12/04/2022]
Abstract
Major depressive disorder (MDD) affects around 350 million people worldwide; however, the underlying genetic basis remains largely unknown. In this study, we took into account that MDD is a gene-environment disorder, in which stress is a critical component, and used whole-genome screening of functional variants to investigate the 'missing heritability' in MDD. Genome-wide association studies (GWAS) using single- and multi-locus linear mixed-effect models were performed in a Los Angeles Mexican-American cohort (196 controls, 203 MDD) and in a replication European-ancestry cohort (499 controls, 473 MDD). Our analyses took into consideration the stress levels in the control populations. The Mexican-American controls, comprised primarily of recent immigrants, had high levels of stress due to acculturation issues and the European-ancestry controls with high stress levels were given higher weights in our analysis. We identified 44 common and rare functional variants associated with mild to moderate MDD in the Mexican-American cohort (genome-wide false discovery rate, FDR, <0.05), and their pathway analysis revealed that the three top overrepresented Gene Ontology (GO) processes were innate immune response, glutamate receptor signaling and detection of chemical stimulus in smell sensory perception. Rare variant analysis replicated the association of the PHF21B gene in the ethnically unrelated European-ancestry cohort. The TRPM2 gene, previously implicated in mood disorders, may also be considered replicated by our analyses. Whole-genome sequencing analyses of a subset of the cohorts revealed that European-ancestry individuals have a significantly reduced (50%) number of single nucleotide variants compared with Mexican-American individuals, and for this reason the role of rare variants may vary across populations. PHF21b variants contribute significantly to differences in the levels of expression of this gene in several brain areas, including the hippocampus. Furthermore, using an animal model of stress, we found that Phf21b hippocampal gene expression is significantly decreased in animals resilient to chronic restraint stress when compared with non-chronically stressed animals. Together, our results reveal that including stress level data enables the identification of novel rare functional variants associated with MDD.
Collapse
Affiliation(s)
- M-L Wong
- Mind & Brain Theme, South Australian
Health and Medical Research Institute (SAHMRI), Adelaide,
SA, Australia
- Department of Psychiatry, Flinders
University School of Medicine, Bedford Park, SA,
Australia
| | - M Arcos-Burgos
- Department of Genome Sciences, John
Curtin School of Medical Research, Australian National University,
Canberra, ACT, Australia
- University of Rosario International
Institute of Translational Medicine, Bogotá,
Colombia
| | - S Liu
- Mind & Brain Theme, South Australian
Health and Medical Research Institute (SAHMRI), Adelaide,
SA, Australia
- Department of Psychiatry, Flinders
University School of Medicine, Bedford Park, SA,
Australia
| | - J I Vélez
- Department of Genome Sciences, John
Curtin School of Medical Research, Australian National University,
Canberra, ACT, Australia
- Universidad del Norte,
Barranquilla, Colombia
| | - C Yu
- Mind & Brain Theme, South Australian
Health and Medical Research Institute (SAHMRI), Adelaide,
SA, Australia
- Department of Psychiatry, Flinders
University School of Medicine, Bedford Park, SA,
Australia
| | - B T Baune
- Discipline of Psychiatry, University of
Adelaide, Adelaide, SA, Australia
| | - M C Jawahar
- Discipline of Psychiatry, University of
Adelaide, Adelaide, SA, Australia
| | - V Arolt
- Department of Psychiatry and
Psychotherapy, University of Münster, Münster,
Germany
| | - U Dannlowski
- Department of Psychiatry and
Psychotherapy, University of Münster, Münster,
Germany
- Department of Psychiatry and
Psychotherapy, University of Marburg, Marburg,
Germany
| | - A Chuah
- Department of Genome Sciences, John
Curtin School of Medical Research, Australian National University,
Canberra, ACT, Australia
| | - G A Huttley
- Department of Genome Sciences, John
Curtin School of Medical Research, Australian National University,
Canberra, ACT, Australia
| | - R Fogarty
- Mind & Brain Theme, South Australian
Health and Medical Research Institute (SAHMRI), Adelaide,
SA, Australia
| | - M D Lewis
- Mind & Brain Theme, South Australian
Health and Medical Research Institute (SAHMRI), Adelaide,
SA, Australia
- Department of Psychiatry, Flinders
University School of Medicine, Bedford Park, SA,
Australia
| | - S R Bornstein
- Department of Psychiatry and
Psychotherapy, University of Münster, Münster,
Germany
- Medical Clinic III, Carl Gustav Carus
University Hospital, Dresden University of Technology, Dresden,
Germany
| | - J Licinio
- Mind & Brain Theme, South Australian
Health and Medical Research Institute (SAHMRI), Adelaide,
SA, Australia
- Department of Psychiatry, Flinders
University School of Medicine, Bedford Park, SA,
Australia
| |
Collapse
|
115
|
Yamagata H, Uchida S, Matsuo K, Harada K, Kobayashi A, Nakashima M, Nakano M, Otsuki K, Abe-Higuchi N, Higuchi F, Watanuki T, Matsubara T, Miyata S, Fukuda M, Mikuni M, Watanabe Y. Identification of commonly altered genes between in major depressive disorder and a mouse model of depression. Sci Rep 2017; 7:3044. [PMID: 28596527 PMCID: PMC5465183 DOI: 10.1038/s41598-017-03291-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/26/2017] [Indexed: 12/11/2022] Open
Abstract
The heterogeneity of depression (due to factors such as varying age of onset) may explain why biological markers of major depressive disorder (MDD) remain uncertain. We aimed to identify gene expression markers of MDD in leukocytes using microarray analysis. We analyzed gene expression profiles of patients with MDD (age ≥50, age of depression onset <50) (N = 10, depressed state; N = 13, remitted state). Seven-hundred and ninety-seven genes (558 upregulated, 239 downregulated when compared to those of 30 healthy subjects) were identified as potential markers for MDD. These genes were then cross-matched to microarray data obtained from a mouse model of depression (676 genes, 148 upregulated, 528 downregulated). Of the six common genes identified between patients and mice, five genes (SLC35A3, HIST1H2AL, YEATS4, ERLIN2, and PLPP5) were confirmed to be downregulated in patients with MDD by quantitative real-time polymerase chain reaction. Of these genes, HIST1H2AL was significantly decreased in a second set of independent subjects (age ≥20, age of onset <50) (N = 18, subjects with MDD in a depressed state; N = 19, healthy control participants). Taken together, our findings suggest that HIST1H2AL may be a biological marker of MDD.
Collapse
Affiliation(s)
- Hirotaka Yamagata
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Shusaku Uchida
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Koji Matsuo
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Kenichiro Harada
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ayumi Kobayashi
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Mami Nakashima
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
- Nagatoichinomiya Hospital, 17-35 Katachiyama-midoricho, Shimonoseki, Yamaguchi, 751-0885, Japan
| | - Masayuki Nakano
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
- Katakura Hospital, 229-3 Nishikiwa, Ube, Yamaguchi, 755-0151, Japan
| | - Koji Otsuki
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
- Department of Psychiatry, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Naoko Abe-Higuchi
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Fumihiro Higuchi
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Toshio Watanuki
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Toshio Matsubara
- Health Service Center Organization for University Education, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi, 753-8511, Japan
| | - Shigeo Miyata
- Departments of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Masato Fukuda
- Departments of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Masahiko Mikuni
- Departments of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
- Hakodate Watanabe Hospital, 1-31-1 Yunokawa-cho, Hakodate, Hokkaido, 042-8678, Japan
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yoshifumi Watanabe
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
116
|
Social well-being is associated with less pro-inflammatory and pro-metastatic leukocyte gene expression in women after surgery for breast cancer. Breast Cancer Res Treat 2017; 165:169-180. [PMID: 28560656 DOI: 10.1007/s10549-017-4316-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 05/24/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE Satisfaction with social resources, or "social well-being," relates to better adaptation and longer survival after breast cancer diagnosis. Biobehavioral mechanisms linking social well-being (SWB) to mental and physical health may involve inflammatory signaling. We tested whether reports of greater SWB were associated with lower levels of pro-inflammatory and pro-metastatic leukocyte gene expression after surgery for non-metastatic breast cancer. METHODS Women (N = 50) diagnosed with non-metastatic (0-III) breast cancer were enrolled 2-8 weeks after surgery. SWB was assessed with the social/family well-being subscale of the FACT-B. Leukocyte gene expression for specific pro-inflammatory (cytokines, chemokines, and COX-2) and pro-metastatic genes (e.g., MMP9) was derived from microarray analysis. RESULTS Multiple regression analyses controlling for age, stage of disease, days since surgery, education, and body mass index (BMI) found higher levels of SWB related to less leukocyte pro-inflammatory and pro-metastatic gene expression (p < 0.05). Emotional well-being, physical well-being, and functional well-being did not relate to leukocyte gene expression (p > 0.05). Greater SWB remained significantly associated with less leukocyte pro-inflammatory and pro-metastatic gene expression after controlling for depressive symptoms. CONCLUSIONS Results have implications for understanding mechanisms linking social resources to health-relevant biological processes in breast cancer patients undergoing primary treatment. CLINICAL TRIAL REGISTRATION NUMBER NCT01422551.
Collapse
|
117
|
Xiao X, Chang H, Li M. Molecular mechanisms underlying noncoding risk variations in psychiatric genetic studies. Mol Psychiatry 2017; 22:497-511. [PMID: 28044063 PMCID: PMC5378805 DOI: 10.1038/mp.2016.241] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 12/18/2022]
Abstract
Recent large-scale genetic approaches such as genome-wide association studies have allowed the identification of common genetic variations that contribute to risk architectures of psychiatric disorders. However, most of these susceptibility variants are located in noncoding genomic regions that usually span multiple genes. As a result, pinpointing the precise variant(s) and biological mechanisms accounting for the risk remains challenging. By reviewing recent progresses in genetics, functional genomics and neurobiology of psychiatric disorders, as well as gene expression analyses of brain tissues, here we propose a roadmap to characterize the roles of noncoding risk loci in the pathogenesis of psychiatric illnesses (that is, identifying the underlying molecular mechanisms explaining the genetic risk conferred by those genomic loci, and recognizing putative functional causative variants). This roadmap involves integration of transcriptomic data, epidemiological and bioinformatic methods, as well as in vitro and in vivo experimental approaches. These tools will promote the translation of genetic discoveries to physiological mechanisms, and ultimately guide the development of preventive, therapeutic and prognostic measures for psychiatric disorders.
Collapse
Affiliation(s)
- X Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - H Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - M Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| |
Collapse
|
118
|
Yu C, Baune BT, Licinio J, Wong ML. Single-nucleotide variant proportion in genes: a new concept to explore major depression based on DNA sequencing data. J Hum Genet 2017; 62:577-580. [PMID: 28148926 DOI: 10.1038/jhg.2017.2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/21/2016] [Accepted: 12/26/2016] [Indexed: 01/03/2023]
Abstract
Major depressive disorder (MDD) is a common psychiatric illness with significant medical and socioeconomic impact. Genetic factors are likely to play important roles in the development of this condition. DNA sequencing technology has the ability to identify all private genetic mutations and provides new channels for studying the biology of MDD. In this proof-of-concept study we proposed a novel concept, single-nucleotide variant proportion (SNVP), to investigate MDD based on whole-genome sequencing (WGS) data. Our SNVP-based approach can be used to test newly found candidate genes as a complement to genome-wide genotyping analysis. Furthermore, we performed cluster analysis for MDD patients and ethnically matched healthy controls, and found that clusters based on SNVP may predict MDD diagnosis. Our results suggest that SNVP may be used as a potential biomarker associated with major depression. Our methodology could be a valuable predictive/diagnostic tool as one can test whether a new subject falls within or close to an existing MDD cluster. Advances in this study design have the potential to personalized treatments and could include the ability to diagnose patients based on their full or part DNA sequencing data.
Collapse
Affiliation(s)
- Chenglong Yu
- Mind and Brain Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, Australia.,School of Medicine, Flinders University, Bedford Park, SA, Australia
| | - Bernhard T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Julio Licinio
- Mind and Brain Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, Australia.,School of Medicine, Flinders University, Bedford Park, SA, Australia
| | - Ma-Li Wong
- Mind and Brain Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, Australia.,School of Medicine, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
119
|
Fabbri C, Hosak L, Mössner R, Giegling I, Mandelli L, Bellivier F, Claes S, Collier DA, Corrales A, Delisi LE, Gallo C, Gill M, Kennedy JL, Leboyer M, Lisoway A, Maier W, Marquez M, Massat I, Mors O, Muglia P, Nöthen MM, O'Donovan MC, Ospina-Duque J, Propping P, Shi Y, St Clair D, Thibaut F, Cichon S, Mendlewicz J, Rujescu D, Serretti A. Consensus paper of the WFSBP Task Force on Genetics: Genetics, epigenetics and gene expression markers of major depressive disorder and antidepressant response. World J Biol Psychiatry 2017; 18:5-28. [PMID: 27603714 DOI: 10.1080/15622975.2016.1208843] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022]
Abstract
Major depressive disorder (MDD) is a heritable disease with a heavy personal and socio-economic burden. Antidepressants of different classes are prescribed to treat MDD, but reliable and reproducible markers of efficacy are not available for clinical use. Further complicating treatment, the diagnosis of MDD is not guided by objective criteria, resulting in the risk of under- or overtreatment. A number of markers of MDD and antidepressant response have been investigated at the genetic, epigenetic, gene expression and protein levels. Polymorphisms in genes involved in antidepressant metabolism (cytochrome P450 isoenzymes), antidepressant transport (ABCB1), glucocorticoid signalling (FKBP5) and serotonin neurotransmission (SLC6A4 and HTR2A) were among those included in the first pharmacogenetic assays that have been tested for clinical applicability. The results of these investigations were encouraging when examining patient-outcome improvement. Furthermore, a nine-serum biomarker panel (including BDNF, cortisol and soluble TNF-α receptor type II) showed good sensitivity and specificity in differentiating between MDD and healthy controls. These first diagnostic and response-predictive tests for MDD provided a source of optimism for future clinical applications. However, such findings should be considered very carefully because their benefit/cost ratio and clinical indications were not clearly demonstrated. Future tests may include combinations of different types of biomarkers and be specific for MDD subtypes or pathological dimensions.
Collapse
Affiliation(s)
- Chiara Fabbri
- a Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| | - Ladislav Hosak
- b Department of Psychiatrics , Charles University, Faculty of Medicine and University Hospital, Hradec Králové , Czech Republic
| | - Rainald Mössner
- c Department of Psychiatry and Psychotherapy , University of Tübingen , Tübingen , Germany
| | - Ina Giegling
- d Department of Psychiatry, Psychotherapy and Psychosomatics , Martin Luther University of Halle-Wittenberg , Halle , Germany
| | - Laura Mandelli
- a Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| | - Frank Bellivier
- e Fondation Fondamental, Créteil, France AP-HP , GH Saint-Louis-Lariboisière-Fernand-Widal, Pôle Neurosciences , Paris , France
| | - Stephan Claes
- f GRASP-Research Group, Department of Neuroscience , University of Leuven , Leuven , Belgium
| | - David A Collier
- g Social, Genetic and Developmental Psychiatry Centre , Institute of Psychiatry, King's College London , London , UK
| | - Alejo Corrales
- h National University (UNT) Argentina, Argentinean Association of Biological Psychiatry , Buenos Aires , Argentina
| | - Lynn E Delisi
- i VA Boston Health Care System , Brockton , MA , USA
| | - Carla Gallo
- j Departamento de Ciencias Celulares y Moleculares, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía , Universidad Peruana Cayetano Heredia , Lima , Peru
| | - Michael Gill
- k Neuropsychiatric Genetics Research Group, Department of Psychiatry , Trinity College Dublin , Dublin , Ireland
| | - James L Kennedy
- l Neurogenetics Section, Centre for Addiction and Mental Health , Toronto , Ontario , Canada
| | - Marion Leboyer
- m Faculté de Médecine , Université Paris-Est Créteil, Inserm U955, Equipe Psychiatrie Translationnelle , Créteil , France
| | - Amanda Lisoway
- l Neurogenetics Section, Centre for Addiction and Mental Health , Toronto , Ontario , Canada
| | - Wolfgang Maier
- n Department of Psychiatry , University of Bonn , Bonn , Germany
| | - Miguel Marquez
- o Director of ADINEU (Asistencia, Docencia e Investigación en Neurociencia) , Buenos Aires , Argentina
| | - Isabelle Massat
- p UNI - ULB Neurosciences Institute, ULB , Bruxelles , Belgium
| | - Ole Mors
- q Department P , Aarhus University Hospital , Risskov , Denmark
| | | | - Markus M Nöthen
- s Institute of Human Genetics , University of Bonn , Bonn , Germany
| | - Michael C O'Donovan
- t MRC Centre for Neuropsychiatric Genetics and Genomics , Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University , Cardiff , UK
| | - Jorge Ospina-Duque
- u Grupo de Investigación en Psiquiatría, Departamento de Psiquiatría, Facultad de Medicina , Universidad de Antioquia , Medellín , Colombia
| | | | - Yongyong Shi
- w Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education , Shanghai Jiao Tong University , Shanghai , China
| | - David St Clair
- x University of Aberdeen, Institute of Medical Sciences , Aberdeen , UK
| | - Florence Thibaut
- y University Hospital Cochin (Site Tarnier), University Sorbonne Paris Cité (Faculty of Medicine Paris Descartes), INSERM U 894 Centre Psychiatry and Neurosciences , Paris , France
| | - Sven Cichon
- z Division of Medical Genetics, Department of Biomedicine , University of Basel , Basel , Switzerland
| | - Julien Mendlewicz
- aa Laboratoire de Psychologie Medicale, Centre Européen de Psychologie Medicale , Université Libre de Bruxelles and Psy Pluriel , Brussels , Belgium
| | - Dan Rujescu
- d Department of Psychiatry, Psychotherapy and Psychosomatics , Martin Luther University of Halle-Wittenberg , Halle , Germany
| | - Alessandro Serretti
- a Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| |
Collapse
|
120
|
Gerring ZF, Powell JE, Montgomery GW, Nyholt DR. Genome-wide analysis of blood gene expression in migraine implicates immune-inflammatory pathways. Cephalalgia 2017; 38:292-303. [PMID: 28058943 DOI: 10.1177/0333102416686769] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Typical migraine is a frequent, debilitating and painful headache disorder with an estimated heritability of about 50%. Although genome-wide association (GWA) studies have identified over 40 single nucleotide polymorphisms associated with migraine, further research is required to determine their biological role in migraine susceptibility. Therefore, we performed a study of genome-wide gene expression in a large sample of 83 migraine cases and 83 non-migraine controls to determine whether altered expression levels of genes and pathways could provide insights into the biological mechanisms underlying migraine. Methods We assessed whole blood gene expression data for 17994 expression probes measured using IlluminaHT-12 v4.0 BeadChips. Differential expression was assessed using multivariable logistic regression. Gene expression probes with a nominal p value < 0.05 were classified as differentially expressed. We identified modules of co-regulated genes and tested them for enrichment of differentially expressed genes and functional pathways using a false discovery rate <0.05. Results Association analyses between migraine and probe expression levels, adjusted for age and gender, revealed an excess of small p values, but there was no significant single-probe association after correction for multiple testing. Network analysis of pooled expression data identified 10 modules of co-expressed genes. One module harboured a significant number of differentially expressed genes and was strongly enriched with immune-inflammatory pathways, including multiple pathways expressed in microglial cells. Conclusions These data suggest immune-inflammatory pathways play an important role in the pathogenesis, manifestation, and/or progression of migraine in some patients. Furthermore, gene-expression associations are measurable in whole blood, suggesting the analysis of blood gene expression can inform our understanding of the biological mechanisms underlying migraine, identify biomarkers, and facilitate the discovery of novel pathways and thus determine new targets for drug therapy.
Collapse
Affiliation(s)
- Zachary F Gerring
- 1 Statistical and Genomic Epidemiology Laboratory, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Joseph E Powell
- 2 Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.,3 The Centre for Neurogenetics and Statistical Genomics, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Grant W Montgomery
- 2 Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Dale R Nyholt
- 1 Statistical and Genomic Epidemiology Laboratory, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
121
|
Genetic Contributions of Inflammation to Depression. Neuropsychopharmacology 2017; 42:81-98. [PMID: 27555379 PMCID: PMC5143493 DOI: 10.1038/npp.2016.169] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 01/05/2023]
Abstract
This paper describes the effects of immune genes genetic variants and mRNA expression on depression's risk, severity, and response to antidepressant treatment, through a systematic review on all papers published between 2000 and 2016. Our results, based largely on case-control studies, suggest that common genetic variants and gene-expression pathways are involved in both immune activation and depression. The most replicated and relevant genetic variants include polymorphisms in the genes for interleukin (IL)-1β, IL-6, IL-10, monocyte chemoattractant protein-1, tumor necrosis factor-alpha, C-reactive protein, and phospholipase A2. Moreover, increased blood cytokines mRNA expression (especially of IL-1β) identifies patients that are less likely to respond to conventional antidepressants. However, even for the most replicated findings there are inconsistent results, not only between studies, but also between the immune effects of the genetic variants and the resulting effects on depression. We find evidence that these discrepant findings may be explained, at least in part, by the heterogeneity of the depression immunophenotype, by environmental influences and gene × environment interactions, and by the complex interfacing of genetic variants with gene expression. Indeed, some of the most robust findings have been obtained in patients developing depression in the context of treatment with interferon-alpha, a widely used model to mimic depression in the context of inflammation. Further 'omics' approaches, through GWAS and transcriptomics, will finally shed light on the interaction between immune genes, their expression, and the influence of the environment, in the pathogenesis of depression.
Collapse
|
122
|
Huo YX, Huang L, Zhang DF, Yao YG, Fang YR, Zhang C, Luo XJ. Identification of SLC25A37 as a major depressive disorder risk gene. J Psychiatr Res 2016; 83:168-175. [PMID: 27643475 DOI: 10.1016/j.jpsychires.2016.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 12/20/2022]
Abstract
Major depressive disorder (MDD) is one of the most prevalent and disabling mental disorders, but the genetic etiology remains largely unknown. We performed a meta-analysis (14,543 MDD cases and 14,856 controls) through combining the GWAS data from the Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium and the CONVERGE consortium and identified seven SNPs (four of them located in the downstream of SCL25A37) that showed suggestive associations (P < 5.0 × 10-7) with MDD. Systematic integration (Sherlock integrative analysis) of brain eQTL and GWAS meta-analysis identified SCL25A37 as a novel MDD risk gene (P = 2.22 × 10-6). A cis SNP (rs6983724, ∼28 kb downstream of SCL25A37) showed significant association with SCL25A37 expression (P = 1.19 × 10-9) and suggestive association with MDD (P = 1.65 × 10-7). We validated the significant association between rs6983724 and SCL25A37 expression in independent expression datasets. Finally, we found that SCL25A37 is significantly down-regulated in hippocampus and blood of MDD patients (P = 3.49 × 10-3 and P = 2.66 × 10-13, respectively). Our findings implicate that the SCL25A37 is a MDD susceptibility gene whose expression may influence MDD risk. The consistent down-regulation of SCL25A37 in MDD patients in three independent samples suggest that SCL25A37 may be used as a potential biomarker for MDD diagnosis. Further functional characterization of SCL25A37 may provide a potential target for future therapeutics and diagnostics.
Collapse
Affiliation(s)
- Yong-Xia Huo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Liang Huang
- First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Deng-Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yi-Ru Fang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
123
|
Luykx JJ, Olde Loohuis LM, Neeleman M, Strengman E, Bakker SC, Lentjes E, Borgdorff P, van Dongen EPA, Bruins P, Kahn RS, Horvath S, de Jong S, Ophoff RA. Peripheral blood gene expression profiles linked to monoamine metabolite levels in cerebrospinal fluid. Transl Psychiatry 2016; 6:e983. [PMID: 27959337 PMCID: PMC5290339 DOI: 10.1038/tp.2016.245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/15/2016] [Indexed: 01/07/2023] Open
Abstract
The blood-brain barrier separates circulating blood from the central nervous system (CNS). The scope of this barrier is not fully understood which limits our ability to relate biological measurements from peripheral to central phenotypes. For example, it is unknown to what extent gene expression levels in peripheral blood are reflective of CNS metabolism. In this study, we examine links between central monoamine metabolite levels and whole-blood gene expression to better understand the connection between peripheral systems and the CNS. To that end, we correlated the prime monoamine metabolites in cerebrospinal fluid (CSF) with whole-genome gene expression microarray data from blood (N=240 human subjects). We additionally applied gene-enrichment analysis and weighted gene co-expression network analyses (WGCNA) to identify modules of co-expressed genes in blood that may be involved with monoamine metabolite levels in CSF. Transcript levels of two genes were significantly associated with CSF serotonin metabolite levels after Bonferroni correction for multiple testing: THAP7 (P=2.8 × 10-8, β=0.08) and DDX6 (P=2.9 × 10-7, β=0.07). Differentially expressed genes were significantly enriched for genes expressed in the brain tissue (P=6.0 × 10-52). WGCNA revealed significant correlations between serotonin metabolism and hub genes with known functions in serotonin metabolism, for example, HTR2A and COMT. We conclude that gene expression levels in whole blood are associated with monoamine metabolite levels in the human CSF. Our results, including the strong enrichment of brain-expressed genes, illustrate that gene expression profiles in peripheral blood can be relevant for quantitative metabolic phenotypes in the CNS.
Collapse
Affiliation(s)
- J J Luykx
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands,Department of Translational Neuroscience Human Neurogenetics Unit, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands,Department of Psychiatry, ZNA Hospitals, Antwerp, Belgium
| | - L M Olde Loohuis
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - M Neeleman
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E Strengman
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S C Bakker
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E Lentjes
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - P Borgdorff
- Department of Anesthesiology, Intensive Care and Pain Management, Diakonessenhuis Hospital, Utrecht, The Netherlands
| | - E P A van Dongen
- Department of Anesthesiology, Intensive Care and Pain Management, University Medical Center Utrecht, Utrecht, The Netherlands
| | - P Bruins
- Department of Anesthesiology, Intensive Care and Pain Management, University Medical Center Utrecht, Utrecht, The Netherlands
| | - R S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA,Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - S de Jong
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - R A Ophoff
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands,Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA. E-mail:
| |
Collapse
|
124
|
Abstract
Major depressive disorder (MDD) is a debilitating disease that is characterized by depressed mood, diminished interests, impaired cognitive function and vegetative symptoms, such as disturbed sleep or appetite. MDD occurs about twice as often in women than it does in men and affects one in six adults in their lifetime. The aetiology of MDD is multifactorial and its heritability is estimated to be approximately 35%. In addition, environmental factors, such as sexual, physical or emotional abuse during childhood, are strongly associated with the risk of developing MDD. No established mechanism can explain all aspects of the disease. However, MDD is associated with alterations in regional brain volumes, particularly the hippocampus, and with functional changes in brain circuits, such as the cognitive control network and the affective-salience network. Furthermore, disturbances in the main neurobiological stress-responsive systems, including the hypothalamic-pituitary-adrenal axis and the immune system, occur in MDD. Management primarily comprises psychotherapy and pharmacological treatment. For treatment-resistant patients who have not responded to several augmentation or combination treatment attempts, electroconvulsive therapy is the treatment with the best empirical evidence. In this Primer, we provide an overview of the current evidence of MDD, including its epidemiology, aetiology, pathophysiology, diagnosis and treatment.
Collapse
Affiliation(s)
- Christian Otte
- Department of Psychiatry and Psychotherapy, Charité University Medical Center, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Stefan M Gold
- Department of Psychiatry and Psychotherapy, Charité University Medical Center, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Brenda W Penninx
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
| | - Carmine M Pariante
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Amit Etkin
- Department of Psychiatry and Behavioural Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| | - Maurizio Fava
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David C Mohr
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alan F Schatzberg
- Department of Psychiatry and Behavioural Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
125
|
Walker RM, Sussmann JE, Whalley HC, Ryan NM, Porteous DJ, McIntosh AM, Evans KL. Preliminary assessment of pre-morbid DNA methylation in individuals at high genetic risk of mood disorders. Bipolar Disord 2016; 18:410-22. [PMID: 27440233 PMCID: PMC5006843 DOI: 10.1111/bdi.12415] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/09/2016] [Accepted: 06/17/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Accumulating evidence implicates altered DNA methylation in psychiatric disorders, including bipolar disorder (BD) and major depressive disorder (MDD). It is not clear, however, whether these changes are causative or result from illness progression or treatment. To disentangle these possibilities we profiled genome-wide DNA methylation in well, unrelated individuals at high familial risk of mood disorder. DNA methylation was compared between individuals who subsequently developed BD or MDD [ill later (IL)] and those who remained well [well later (WL)]. METHODS DNA methylation profiles were obtained from whole-blood samples from 22 IL and 23 WL individuals using the Infinium HumanMethylation450 BeadChip. Differential methylation was assessed on a single-locus and regional basis. Pathway analysis was performed to assess enrichment for particular biological processes amongst nominally significantly differentially methylated loci. RESULTS Although no locus withstood correction for multiple testing, uncorrected P-values provided suggestive evidence for altered methylation at sites within genes previously implicated in neuropsychiatric conditions, such as Transcription Factor 4 (TCF4) and Interleukin 1 Receptor Accessory Protein-Like 1 ([IL1RAPL1]; P≤3.11×10(-5) ). Pathway analysis revealed significant enrichment for several neurologically relevant pathways and functions, including Nervous System Development and Function and Behavior; these findings withstood multiple testing correction (q≤0.05). Analysis of differentially methylated regions identified several within the major histocompatibility complex (P≤.000 479), a region previously implicated in schizophrenia and BD. CONCLUSIONS Our data provide provisional evidence for the involvement of altered whole-blood DNA methylation in neurologically relevant genes in the aetiology of mood disorders. These findings are convergent with the findings of genome-wide association studies.
Collapse
Affiliation(s)
- Rosie May Walker
- Medical Genetics SectionCentre for Genomic and Experimental MedicineInstitute of Genetics and Molecular MedicineThe University of EdinburghWestern General HospitalEdinburghUK
| | - Jessika Elizabeth Sussmann
- Division of PsychiatryThe University of EdinburghRoyal Edinburgh HospitalUniversity of EdinburghEdinburghUK
| | - Heather Clare Whalley
- Division of PsychiatryThe University of EdinburghRoyal Edinburgh HospitalUniversity of EdinburghEdinburghUK
| | - Niamh Margaret Ryan
- Medical Genetics SectionCentre for Genomic and Experimental MedicineInstitute of Genetics and Molecular MedicineThe University of EdinburghWestern General HospitalEdinburghUK
| | - David John Porteous
- Medical Genetics SectionCentre for Genomic and Experimental MedicineInstitute of Genetics and Molecular MedicineThe University of EdinburghWestern General HospitalEdinburghUK,Centre for Cognitive Ageing and Cognitive EpidemiologyThe University of EdinburghEdinburghUK
| | - Andrew Mark McIntosh
- Division of PsychiatryThe University of EdinburghRoyal Edinburgh HospitalUniversity of EdinburghEdinburghUK,Centre for Cognitive Ageing and Cognitive EpidemiologyThe University of EdinburghEdinburghUK
| | - Kathryn Louise Evans
- Medical Genetics SectionCentre for Genomic and Experimental MedicineInstitute of Genetics and Molecular MedicineThe University of EdinburghWestern General HospitalEdinburghUK,Centre for Cognitive Ageing and Cognitive EpidemiologyThe University of EdinburghEdinburghUK
| |
Collapse
|
126
|
Kripke DF. Hypnotic drug risks of mortality, infection, depression, and cancer: but lack of benefit. F1000Res 2016; 5:918. [PMID: 27303633 PMCID: PMC4890308 DOI: 10.12688/f1000research.8729.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/09/2017] [Indexed: 09/02/2023] Open
Abstract
This is a review of hypnotic drug risks and benefits, reassessing and updating advice presented to the Commissioner of the Food and Drug Administration (United States FDA). Almost every month, new information appears about the risks of hypnotics (sleeping pills). The most important risks of hypnotics include excess mortality, especially overdose deaths, quiet deaths at night, infections, cancer, depression and suicide, automobile crashes, falls, and other accidents, and hypnotic-withdrawal insomnia. Short-term use of one-two prescriptions is associated with greater risk per dose than long-term use. Hypnotics have usually been prescribed without approved indication, most often with specific contraindications, but even when indicated, there is little or no benefit. The recommended doses objectively increase sleep little if at all, daytime performance is often made worse, not better, and the lack of general health benefits is commonly misrepresented in advertising. Treatments such as the cognitive behavioral treatment of insomnia and bright light treatment of circadian rhythm disorders offer safer and more effective alternative approaches to insomnia.
Collapse
Affiliation(s)
- Daniel F. Kripke
- University of California, San Diego, La Jolla, CA, 92037-2226, USA
| |
Collapse
|
127
|
Abstract
This is a review of hypnotic drug risks and benefits. Almost every month, new information appears about the risks of hypnotics (sleeping pills). The most important risks of hypnotics include excess mortality (especially overdose deaths, quiet deaths at night, and suicides), infections, cancer, depression, automobile crashes, falls, other accidents, and hypnotic-withdrawal insomnia. Short-term use of one-two prescriptions is associated with even greater risk per dose than long-term use. Hypnotics have usually been prescribed without approved indication, most often with specific contraindications, but even when indicated, there is little or no benefit. The recommended doses objectively increase sleep little if at all, daytime performance is often made worse (not better) and the lack of general health benefits is commonly misrepresented in advertising. Treatments such as the cognitive behavioral treatment of insomnia and bright light treatment of circadian rhythm disorders offer safer and more effective alternative approaches to insomnia.
Collapse
Affiliation(s)
- Daniel F. Kripke
- University of California, San Diego, La Jolla, CA, 92037-2226, USA
| |
Collapse
|
128
|
Kripke DF. Hypnotic drug risks of mortality, infection, depression, and cancer: but lack of benefit. F1000Res 2016; 5:918. [PMID: 27303633 PMCID: PMC4890308 DOI: 10.12688/f1000research.8729.1] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/11/2016] [Indexed: 12/14/2022] Open
Abstract
This is a review of hypnotic drug risks and benefits, reassessing and updating advice presented to the Commissioner of the Food and Drug Administration (United States FDA). Almost every month, new information appears about the risks of hypnotics (sleeping pills). This review includes new information on the growing USA overdose epidemic, eight new epidemiologic studies of hypnotics' mortality not available for previous compilations, and new emphasis on risks of short-term hypnotic prescription. The most important risks of hypnotics include excess mortality, especially overdose deaths, quiet deaths at night, infections, cancer, depression and suicide, automobile crashes, falls, and other accidents, and hypnotic-withdrawal insomnia. The short-term use of one-two prescriptions is associated with greater risk per dose than long-term use. Hypnotics are usually prescribed without approved indication, most often with specific contraindications, but even when indicated, there is little or no benefit. The recommended doses objectively increase sleep little if at all, daytime performance is often made worse, not better, and the lack of general health benefits is commonly misrepresented in advertising. Treatments such as the cognitive behavioral treatment of insomnia and bright light treatment of circadian rhythm disorders might offer safer and more effective alternative approaches to insomnia.
Collapse
Affiliation(s)
- Daniel F. Kripke
- University of California, San Diego, La Jolla, CA, 92037-2226, USA
| |
Collapse
|
129
|
Bhattacharya A, Drevets WC. Role of Neuro-Immunological Factors in the Pathophysiology of Mood Disorders: Implications for Novel Therapeutics for Treatment Resistant Depression. Curr Top Behav Neurosci 2016; 31:339-356. [PMID: 27677784 DOI: 10.1007/7854_2016_43] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mood disorders are associated with persistently high rates of morbidity and mortality, despite the widespread availability of antidepressant treatments. One limitation to extant therapeutic options has been that nearly all approved antidepressant pharmacotherapies exert a similar primary action of blocking monoamine transporters, and few options exist for transitioning treatment resistant patients to alternatives with distinct mechanisms. An emerging area of science that promises novel pathways to antidepressant and mood-stabilizing therapies has followed from evidence that immunological factors play major roles in the pathophysiology of at least some mood disorder subtypes. Here we review evidence that the compounds that reduce the release or signaling of neuroactive cytokines, particularly IL-1β, IL-6, and TNF-α, can exert antidepressant effects in subgroups of depressed patients who are identified by blood-based biomarkers associated with inflammation. Within this context we discuss the role of microglia in central neuroinflammation, and the interaction between the peripheral immune system and the central synaptic microenvironment during and after neuroinflammation. Finally we review data using preclinical neuroinflammation models that produce depression-like behaviors in experimental animals to guide the discovery of novel neuro-immune drug targets.
Collapse
Affiliation(s)
- Anindya Bhattacharya
- Neuroscience Drug Discovery, Janssen Research & Development, LLC, Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA.
| | - Wayne C Drevets
- Neuroscience, Janssen Research & Development, LLC, Titusville, NJ, 08560, USA
| |
Collapse
|